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Renato Mirollo* and Steven H. Strogatz†

Dedicated to the memory of John David Crawford

Abstract

We solve a longstanding stability problem for the Kuramoto model of coupled oscilla-

tors. This system has attracted mathematical attention, in part because of its applications

in fields ranging from neuroscience to condensed-matter physics, and also because it pro-

vides a beautiful connection between nonlinear dynamics and statistical mechanics. The

model consists of a large population of phase oscillators with all-to-all sinusoidal coupling.

The oscillators’ intrinsic frequencies are randomly distributed across the population ac-

cording to a prescribed probability density, here taken to be unimodal and symmetric

about its mean. As the coupling between the oscillators is increased, the system sponta-

neously synchronizes: the oscillators near the center of the frequency distribution lock their

phases together and run at the same frequency, while those in the tails remain unlocked

and drift at different frequencies. Although this “partially locked” state has been observed

in simulations for decades, its stability has never been analyzed mathematically. Part of

the difficulty is in formulating a reasonable infinite-N limit of the model. Here we describe

such a continuum limit, and prove that the corresponding partially locked state is, in fact,

neutrally stable, contrary to what one might have expected. The possible implications of

this result are discussed.
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1. Introduction

Collective synchronization occurs throughout the living world, from the rhythmic

firing of thousands of pacemaker cells in our hearts, to the chorusing of crickets on a

warm summer evening [Winfree 1967, 1980; Pikovsky et al. 2001; Strogatz 2003]. What

is remarkable is that these and many other biological populations somehow manage to

synchronize themselves spontaneously, without any external cue, despite the inevitable

diversity in the natural frequencies of their constituent oscillators.

Thirty years ago, Kuramoto introduced an elegant model of such self-synchronizing

systems [Kuramoto 1975, 1984; for reviews, see Strogatz 2000 and Acebron et al. 2005].

Although the model was originally inspired by biology [Winfree 1967], it has since found

application to many other parts of science and technology. Examples include the mutual

synchronization of electrochemical oscillators [Kiss et al. 2002], metronomes [Pantaleone

2002], Josephson junction arrays [Wiesenfeld, Colet and Strogatz 1996], neutrino flavor

oscillations [Pantaleone 1998], collective atomic recoil lasing [von Cube et al. 2004], audi-

ences clapping in unison [Neda 2000], and crowds walking on wobbly footbridges [Strogatz

et al. 2005].

Aside from its scientific applications, the model has also been an object of mathemat-

ical interest. Its main virtue has always been its tractability. In the limit of an infinite

number of oscillators, one could “solve the model exactly,” in the physicists’ sense, as long

as one was willing to make some plausible assumptions about the stability and conver-

gence properties of the solutions. Putting these assumptions on a more rigorous footing

has, however, turned out to be problematic.

Indeed, Kuramoto himself realized this from the start and was frank about it. For

instance, in his 1984 book he presents an ingenious formal calculation and then draws

attention to its limitations. Specifically, he shows that as the coupling between the oscil-

lators is increased, the zero solution (corresponding to a completely desynchronized state)

bifurcates supercritically to a nonzero solution (corresponding to a partially synchronized

state) at a critical value of the coupling strength. He then remarks that the zero solution

should be stable below threshold and unstable above it, but writes “Surprisingly enough,

this seemingly obvious fact seems difficult to prove” [Kuramoto 1984, p. 74]. Similarly, he

points out that the bifurcating solution is expected to be stable above threshold, though
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“Again, this fact appears to be difficult to prove” [Kuramoto 1984, p. 75].

In this paper we settle the second of these issues, namely, the stability of the par-

tially synchronized state. We find that this state is linearly neutrally stable, rather than

asymptotically stable. This result may seem puzzling, but there is a precedent for it: the

same neutral stability was already established fifteen years ago for the zero solution (now

known as the incoherent state) for coupling strengths below the synchronization threshold

[Strogatz and Mirollo 1991].

The question studied here may be of interest to readers working on stability analyses

in other parts of nonlinear science, wherever continuity equations arise, such as kinetic

theory, traffic flow, plasma physics, and fluid mechanics. The problem formulation involves

a nonlinear partial integro-differential equation, one of whose stationary solutions (the

partially locked state) contains both a smooth piece and a delta-function piece. To make

sense of this, we need to work in an appropriate functional-analytic setting, and carry out

the linear stability analysis in a space of suitable “generalized functions.”

The resulting technical issues are new, at least in this context. They certainly did

not arise in previous studies of the other stationary states of the Kuramoto model. For

example, the stability of the incoherent state can be determined with standard methods, at

both the linear [Strogatz and Mirollo 1991, Crawford 1994] and weakly nonlinear [Bonilla

et al. 1992, Crawford 1994] levels. The problem is relatively straightforward because the

incoherent state is described by a smooth (in fact, constant) density of oscillators in phase

space. The fully locked state is similarly amenable to conventional techniques, as long as

N is finite. Its stability analysis can be handled with linear algebra [Aeyels and Rogge

2004, Mirollo and Strogatz 2005] or Lyapunov functions [van Hemmen andWreszinski 1993,

Jadbabaie et al. 2004, Chopra and Spong 2006], since the finite-N locked state corresponds

to a fixed point for an ordinary differential equation. Even the partially locked state is

susceptible to familiar approaches, if one regularizes the Kuramoto model by adding noise

terms to it [Sakaguchi 1988]; then the stability of partial locking at onset follows from the

weakly nonlinear analyses mentioned above [Bonilla et al. 1992, Crawford 1994].

But none of these simplifications are available for the problem studied here. Its

thornier aspects stem from the combination of a continuum limit, the absence of noise,

the need to work far from the onset of instability, and the singular nature of the partially

locked state itself. We imagine that a similar mix of ingredients could crop up in stability
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problems in other parts of nonlinear science, and hence may be of wider interest.

The goal of this paper is threefold: set up the continuum limit of the Kuramoto

model in a mathematically precise fashion; describe the fixed states for this model; and

carry out the linear stability analysis at these states. The third of these is by far the

most interesting to us, since it has potential to shed light on the still poorly understood

dynamics of the finite-N system [Strogatz 2000, Balmforth and Sassi 2000, Maistrenko

et al. 2005]. Ultimately, we will achieve a complete understanding of the spectrum of

the linearized evolution equation for the fixed states of greatest significance, which we call

special positive fixed states. These are the only candidates for stability; the other stationary

states turn out to be manifestly unstable.

The organization follows accordingly. After reviewing the Kuramoto model to es-

tablish notation (Section 2), we describe its continuum limit (Section 3) and classify its

corresponding fixed states (Section 4). Included here is the derivation of Kuramoto’s

original self-consistency equation [Kuramoto 1975, 1984], which becomes rigorous in this

setting. In Section 5 we develop the technical machinery needed to describe the tangent

space of the model at a fixed state; this is the natural domain for the linear stability

analysis. We analyze the continuous spectrum of the linearized model in Section 6, and

derive a characteristic equation whose roots give us the eigenvalues of the linearization in

Section 7. Finally in Section 8 we prove that the fully locked special positive states are

linearly stable, but the partially locked special positive states are only neutrally stable,

since the spectrum contains the entire imaginary axis! The implications of this result for

the finite-N model are far from clear, although this vaguely suggests that one should not

expect to see any kind of exponential convergence to a stable configuration in the finite-N

system in the range of coupling for which there is only partial locking.

Before turning to the analytical development, we would like to add a personal note.

When we began thinking about this stability problem around a decade ago, we found

ourselves confused by a number of its features. As we had done on an earlier occasion

[Strogatz et al. 1992], we turned to John David Crawford for advice. J. D. was a brilliant

mathematical physicist with expertise in bifurcation theory, plasma physics, and nonlin-

ear science in general. He was also exceptionally generous and a natural teacher. We

last saw him in the spring of 1998 at a conference on pattern formation at the Institute

for Mathematics and its Applications in Minneapolis. A few years earlier he had been
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diagnosed with Burkitt’s lymphoma, and when we saw him at the meeting, he was frail

from chemotherapy but delighted to be able to renew old friendships and to join in the

scientific discussions. In particular, he became curious about the stability problem that

is the subject of this paper. The three of us spent a few afternoons working out some

preliminary calculations. Tragically, J. D. passed away later that summer, at age 44. He

was very much in our minds as we gathered the fortitude to finish this project, and we’re

sure it would have been completed much sooner had J. D. still been on our team. We are

honored to dedicate this work to his memory.

2. The Kuramoto model

The Kuramoto model is the system

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi), i = 1, . . . , N (1)

where N is the number of oscillators, θi(t) is the phase of the ith oscillator at time t, ωi

its natural frequency, and K > 0 the coupling strength. The right hand side of (1) defines

a flow on the N -fold torus TN , which is the natural state space for the system. If the

frequencies ωi have mean ω, we can go into a moving frame at frequency ω to transform

(1) to a system where the frequencies have mean 0. So we can assume ω = 0 without loss

of generality; then fixed points of (1) correspond to phase-locked solutions in the original

reference frame. We also assume that at least one ωi 6= 0; otherwise, (1) is a gradient

system and is very easy to analyze.

To characterize the macroscopic state of the system, it is convenient to introduce a

complex order parameter defined by

Reiψ =
1

N

N
∑

j=1

eiθj .

If we think of a state (θ1, . . . , θN ) as an ordered set of N points eiθj on the unit circle in the

complex plane, then Reiψ is just the centroid of this configuration. The radius 0 ≤ R ≤ 1

measures the phase coherence of the oscillators and ψ indicates their collective phase.
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Using the order parameter, we can rewrite the governing equations as

θ̇i = ωi +KR sin(ψ − θi), i = 1, . . . , N. (2)

For a given set of natural frequencies ω1, . . . , ωN there exists a locking threshold Kl such

that (1) has fixed points (fully locked states) if and only if K ≥ Kl; furthermore, for

K > Kl, (1) has a unique stable fixed point up to rotational symmetry, and hence has a

unique stable fixed point whose order parameter has angle ψ = 0 [Aeyels and Rogge 2004,

Mirollo and Strogatz 2005]. Equation (2) shows that Kl ≥ |ωi| for all i, so Kl will be large

if just one of the natural frequencies ωi is large. So if the natural frequencies ωi are chosen

randomly with respect to a probability density function g on R which has infinite support,

then as N → ∞ the system (1) will have no fixed points for most selections of ωi.

Kuramoto’s intuition was that one could still predict the asymptotic behavior of the

system (1) for large N in the absence of fixed points. He guessed that as N → ∞ the

order parameter might still settle down to an almost constant value, despite the incessant

motion of the unlocked oscillators. Seeking such statistically steady solutions, one can

assume the order parameter actually is a constant R > 0 and proceed from there. Then

the oscillators divide into two classes, the locked and drifting oscillators, according to

whether equation (2) has a fixed point or not; the locked oscillators have natural frequencies

ωi ∈ [−KR,KR], whereas the drifting oscillators have |ωi| > KR. We call these kind of

states partially locked, assuming there are in fact some drifting oscillators (otherwise we say

the state is fully locked). Kuramoto showed that on average the drifting oscillators make

no contribution to the order parameter R. Then, by computing the contribution from the

locked oscillators, he produced a self-consistency equation for R. The N → ∞ limit of

this equation has a solution R > 0 if and only if K is larger than some critical coupling

Kc, which Kuramoto computed in terms of the density function g. Numerical simulations

later confirmed that the size of the order parameter for the system (1) for large N remains

close to the value of R predicted by Kuramoto’s self-consistency equation [Sakaguchi and

Kuramoto 1986].

It’s important to understand that Kuramoto’s self-consistency equation is only a

heuristic (albeit deeply insightful) calculation, so unfortunately no precise conclusions

about the finite-N system can be inferred from it. However, one can introduce an infinite-N

analogue of Kuramoto’s system, which has the advantage that the states analogous to the
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partially locked configurations described above are fixed states in the infinite-N model. We

replace the oscillators θi and natural frequencies ωi with probability measures ρω, which

we think of as describing the distribution of the oscillators with natural frequency ω on

the circle S1. Here ω ranges over the support of a density function g, so a state of the

infinite-N Kuramoto model is in effect a family of probability measures parametrized by

the natural frequencies ω. The measures ρω evolve according to an evolution equation mo-

tivated by the conservation of oscillators; this is a continuity equation, or equivalently, a

Fokker-Planck equation with no second-order (diffusion) term. In this setting, Kuramoto’s

heuristic calculation can be made perfectly rigorous.

3. The Infinite-N Kuramoto Model

We now describe the infinite-N Kuramoto model. Let Ω = [−1, 1] or R, and let g(ω)

be a probability density function on Ω, which we think of as specifying a distribution of

natural frequencies. We assume that g(−ω) = g(ω); g is non-increasing on [0,∞)∩Ω; and

g is continuous on Ω and nonzero on the interior of Ω. Two familiar examples are the

uniform density given by the constant function 1/2 on [−1, 1], and the standard normal

density function. (For convenience, we extend g to be 0 outside Ω in the case Ω = [−1, 1].)

As we shall see, these conditions on g are necessary to facilitate many of the calculations

undertaken in this paper.

Let Pr(S1) be the space of Borel probability measures on the unit circle. A state for

the model will be a family ρω ∈ Pr(S1), parametrized by ω ∈ Ω. The map ω 7→ ρω must

satisfy at least a mild regularity condition, and to make sense of this we need to put a

topology on the space Pr(S1). There are various ways of doing this; we choose the one

best suited to our purposes.

Consider the Banach space Ck(S1) of k-times continuously differentiable real-valued

functions on the circle, where k is a non-negative integer (if k = 0 then C0(S1) = C(S1),

the space of continuous functions on S1). The norm on Ck(S1) can be defined by

‖φ‖k = max
θ∈S1

(

|φ(θ)|+ |φ′(θ)|+ · · ·+ |φ[k](θ)|
)

for φ ∈ Ck(S1). We’ll be working with the dual spaces Ck(S1)∗ throughout this paper,

so it will be helpful to describe their elements as concretely as possible. Any ν ∈ Ck(S1)∗
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can be represented as follows:

〈φ, ν〉 =
∫

S1

φ dµ0 +

∫

S1

φ′dµ1 + · · ·+
∫

S1

φ[k]dµk

where µ0, . . . , µk are signed Borel measures on S1 and φ is any Ck function on S1 (the

signed measures µ0, . . . , µk are not unique). We can express this more succinctly as

〈φ, ν〉 = 〈1, ν〉
∫

S1

φ dm+

∫

S1

φ[k]dµ (3)

where m is normalized Lebesgue measure and µ a signed Borel measure with µ(S1) =

0, which is now uniquely determined by ν. The elements of Ck(S1)∗ can be thought

of as a certain class of generalized functions or distributions on S1, which we call kth-

order distributions; these are just measures and their first k derivatives, in the sense of

distributions. We can interpret ν = 〈1, ν〉m+ (−1)kDkµ in this sense.

In particular, a Borel probability measure µ on S1 is naturally an element of the dual

space Ck(S1)∗, with the pairing given by integration:

〈φ, µ〉 =
∫

S1

φ dµ.

This gives an embedding of Pr(S1) in Ck(S1)∗, and we use the dual norm on Ck(S1)∗ to

induce a metric on Pr(S1). A distribution ν ∈ Ck(S1)∗ is a probability measure if and

only if 〈1, ν〉 = 1, and 〈φ, ν〉 ≥ 0 for any φ ∈ Ck(S1) such that φ ≥ 0. This shows that

Pr(S1) is closed in Ck(S1)∗ for all k ≥ 0. The inclusion map i : Ck(S1) → C(S1) is a

compact operator when k ≥ 1, and hence so is its adjoint i∗ : C(S1)∗ → Ck(S1)∗. Any

probability measure has norm 1 when considered as an element of C(S1)∗, so Pr(S1) is

contained in the image of the unit ball under the map i∗, and hence Pr(S1) is a compact

subset of Ck(S1)∗.

From now on we insist that k ≥ 1. The compactness of Pr(S1) in Ck(S1)∗ has some

desirable consequences. A compact Hausdorff topology cannot be strengthened without

sacrificing compactness, or weakened without sacrificing the Hausdorff property. This

implies that the topology on Pr(S1) is the same for all k. Furthermore, the so-called

weak∗-topologies on Ck(S1)∗ all induce the same topology on Pr(S1). The closure of the

span of Pr(S1) in Ck(S1)∗ is the subspace of elements ν ∈ Ck(S1)∗ that can be represented

in the form (3) with µ absolutely continuous w.r.t. Lebesgue measure; we call this subspace
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Ck(S1)∗abs . The space C
k(S1)∗abs is separable (it’s in fact isomorphic to L1(S1)), and so is

an ideal choice for a Banach space in which to embed Pr(S1). (The larger Banach spaces

Ck(S1)∗ are not separable for all k ≥ 0.)

Now that we have a good topology on Pr(S1), we can officially define the states of the

infinite-N Kuramoto model. We need a regularity condition on the states which will allow

us to integrate various things; the mildest form of this is the requirement of measurability.

So we define the states as follows:

Definition. A state for the infinite-N Kuramoto model is a measurable map ω 7→ ρω

from Ω to Pr(S1). We denote the space of states by S.

As is the usual practice, we shall identify two states which agree for almost all ω ∈ Ω, so

a state is actually an equivalence class of maps under this relation, but we will usually be

tacit about this technicality. Since the weak∗ and dual norm topologies on Ck(S1)∗ induce

the same topology on Pr(S1), the measurability condition is equivalent to requiring that

for any Ck function φ on S1, the function

ω 7→
∫

S1

φ dρω

is measurable on Ω. The state space S is naturally a closed subset of the Banach space

L1(Ω, Ck(S1)∗abs) of (equivalence classes of) measurable functions from Ω to Ck(S1)∗abs

that are integrable with respect to the measure g(ω)dω. (See Lang [1993, Chapter VI] for

background information on integration of functions with values in a Banach space).

Let K > 0 be a constant, which we think of as determining the coupling strength for

the model. The rest of the ingredients in the Kuramoto model can be defined as follows.

Definition. Given a state ρ ∈ S, its order parameter is the complex number

Reiψ =

∫

Ω

(
∫ 2π

0

eiθdρω(θ)

)

g(ω)dω. (4)

The vector field vω associated to ρ is the function vω on S1 given by

vω(θ) = ω +KR sin(ψ − θ). (5)

Note that the map

ω 7→
∫ 2π

0

eiθdρω(θ)
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is a bounded measurable function of ω, and so the order parameter Reiψ is well-defined.

The vector field varies with ω, so it’s best to think of this as a family of vector fields vω

on S1 parametrized by ω ∈ R, just like the measures ρω. Now we can finally describe the

equation that drives the infinite-N Kuramoto model:

Definition. The evolution equation for states ρ ∈ S is

d

dt
(ρω) +D(vωρω) = 0. (6)

Here D is the derivative on S1, interpreted in the sense of distributions: if φ is a Ck

function on the circle, then the action of D(vωρω) on φ is given by

〈φ,D(vωρω)〉 = −
∫

S1

φ′vω dρω.

The evolution equation is motivated by the conservation of oscillators with a given fre-

quency ω; in fact, (6) is exactly the equation that governs the flow of a measure or distri-

bution on S1 corresponding to the flow determined by the vector field vω, except for the

added twist that vω depends on ρ through the order parameter, and so (6) is nonlinear. It

can be shown that there exists a unique solution to (6) for any initial state ρ, defined for

all time t. This is not a trivial matter, since the operator D is unbounded on the space

Ck(S1)∗, and so the usual existence and uniqueness theorems for ODEs on Banach spaces

don’t apply. We present a brief outline of the proof of this claim, and save the details for

a future work devoted to the analysis of the nonlinear system defined by (6).

Let z(t) be a continuous function on [0, T ] taking values in the closed unit disc, and

let

wω(θ) = ω +K Im(z(t)e−iθ).

Replace vω by wω in (6) to define an uncoupled version of (6). For a given initial state ρω,

we solve this uncoupled equation for each ω to obtain a 1-parameter family t 7→ ρω,t and

substitute back in (4) to obtain a new continuous function Z(t) on [0, T ]. This defines a

map Φ : z 7→ Z on the space of continuous functions on [0, T ] taking values in the unit

disc. Fixed points of Φ correspond to solutions of the original evolution equation (6). For

T sufficiently small (independent of the initial condition), Φ is a contraction map and so

has a unique fixed point; this proves existence and uniqueness of solutions on [0, T ], which

in turn implies existence and uniqueness for all time t.
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4. Fixed States

Our first task is to determine the fixed states for our model. A fixed state ρ is just a

solution to the equation

D(vωρω) = 0

(for almost all ω). The distributions ξ on S1 that satisfy Dξ = 0 are constant multiples

of Lebesgue measure m on S1, which we normalize so that m(S1) = 1. So the fixed states

satisfy an equation of the form

vωρω = Cωm, (7)

where Cω is some coefficient function depending on ω. If ρ has order parameter 0 then its

associated vector field reduces to vω(θ) = ω, so we see that ρω = m for all ω. We call this

ρ the incoherent state, as mentioned in the introduction. Note that ρ does indeed have

order parameter 0, since
∫ 2π

0

eiθdθ = 0

and so the inner integral in (4) is 0 for all ω. Hence the incoherent state is the unique

fixed state with order parameter 0.

Now let’s try to understand the fixed states which have nonzero order parameter (there

are a lot of them). If ρ is such a state, then so is the rotated state ρθ0 given by

dρθ0ω (θ) = dρω(θ − θ0),

where θ0 is any fixed angle. The order parameters for ρθ0 and ρ are related by the factor

eiθ0 , so we can narrow our search to states for which the order parameter has angle ψ = 0;

in other words, we assume the order parameter is some R > 0.

Definition. The positive fixed states are those fixed states ρ ∈ S for which the order

parameter R > 0.

Plugging in ψ = 0 gives

vω(θ) = ω −KR sin θ.

Let ω ∈ Ω. If |ω| > KR, vω(θ) 6= 0 for all θ, and equation (7) gives

dρω(θ) =
Cω

ω −KR sin θ
dθ.
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Because ρω is a probability measure, we must have

C−1
ω =

∫ 2π

0

dθ

ω −KR sin θ
. (8)

This integral can be evaluated to obtain

Cω = ± 1

2π

√

ω2 − (KR)2,

where the ± is the same as the sign of ω; in other words, Cω is an odd function of ω (this

observation will be important later). Thus ρω is completely determined for |ω| > KR:

dρω(θ) =
1

2π

√

ω2 − (KR)2

|ω −KR sin θ| dθ. (9)

It’s helpful to imagine that for these natural frequencies the oscillators are continuously

distributed on the circle according to the measure defined above; we call these oscillators

or frequencies drifting for this reason. By the way, when K is sufficiently large there exist

positive fixed states which have KR ≥ 1 (we’ll construct these in a moment). So when

Ω = [−1, 1], there exist fixed states which have no drifting oscillators; we call these states

fully locked.

If |ω| ≤ KR we must have Cω = 0 in (7). To see this, observe that away from the

zeros of vω, the measure ρω is given by

dρω(θ) =
Cω

ω −KR sin θ
dθ,

just as before. But now the denominator changes sign, so ρω cannot be a positive measure

unless Cω = 0. Hence ρω must be supported on the roots of vω. Let θω be the root that

satisfies

sin θω =
ω

KR
, −π

2
< θω <

π

2
;

notice that this choice corresponds to the stable fixed point of the one-dimensional flow on

the circle defined by θ̇ = vω(θ) = ω − KR sin θ, for |ω| < KR with R regarded as fixed.

The other root is θ∗ω = π − θω, and of course it corresponds to the unstable fixed point of

the flow on the circle.

Thus ρω is just a sum of point masses at these two points. Let w(ω) be the weight of

the probability measure ρω at the point θ∗ω. Our measurability assumption on the states
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ρω guarantees that w is a measurable function on [−KR,KR] ∩ Ω, taking values in [0, 1].

The weight at θω is of course 1− w(ω). So for |ω| ≤ KR we have

ρω = (1− w(ω)) δθω + w(ω)δθ∗ω , (10)

where we use δθ to denote the unit point mass measure at the point θ. The case we are

most interested in is when w(ω) = 0 a.e.; in other words, ρω is a unit point mass in the

right half-plane (so in the general case, w measures the deviation from these preferred

states). The intuition here is that these special states have the best chance of being stable

for the full, infinite-N system, since their locked oscillators are all located at their stable

positions, at least with respect to perturbations that don’t change the order parameter.

This observation motivates the following:

Definition. The special positive fixed states are those fixed states ρ ∈ S for which the

order parameter R > 0 and the weight function w(ω) = 0 almost everywhere.

If ω is equal to either KR or −KR, then the only probability measure ρω satisfying

(7) is a unit point mass at π
2 or −π

2 , so the values of w at ±KR are irrelevant. Of

course technically we don’t even have to consider this case, since the state ρ is completely

determined if we describe ρω for almost all ω. Since the frequencies |ω| ≤ KR have measure

ρω concentrated at one or two points, we call these oscillators or frequencies locked. Every

positive fixed state has some locked oscillators. If all oscillators are locked, we say the

state ρ is fully locked; of course, this can only happen when Ω = [−1, 1]. Otherwise, we

call ρ partially locked.

The state ρ satisfies the equation

R =

∫

Ω

(
∫ 2π

0

eiθdρω(θ)

)

g(ω)dω,

which in terms of real and imaginary parts is equivalent to

R =

∫

Ω

(
∫ 2π

0

cos θ dρω(θ)

)

g(ω)dω and 0 =

∫

Ω

(
∫ 2π

0

sin θ dρω(θ)

)

g(ω)dω. (11)

We split each of these integrals according to whether |ω| ≥ KR or |ω| ≤ KR. In the first

case we have
∫ 2π

0

cos θ dρω(θ) = Cω

∫ 2π

0

cos θ dθ

ω −KR sin θ
= 0
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since the integrand has a periodic antiderivative on S1. We also have

∫ 2π

0

sin θ dρω(θ) = Cω

∫ 2π

0

sin θ dθ

ω −KR sin θ

=
ωCω
KR

∫ 2π

0

(

1

ω −KR sin θ
− 1

ω

)

dθ

=
ω − 2πCω
KR

.

This last term is an odd function of ω, and so when we integrate it against g(ω) on the

set {|ω| ≥ KR} ∩ Ω we get zero, since g is even. Hence the drifting oscillators make zero

contribution to the order parameter, in concordance with Kuramoto’s original calculation

[Kuramoto 1975, 1984].

The locked oscillators make no contribution to the sine integral since for these fre-

quencies
∫ 2π

0

sin θ dρω(θ) = sin θω =
ω

KR
,

which is an odd function of ω. For the cosine integral we have

∫ 2π

0

cos θ dρω(θ) = (1− w(ω)) cos(θω) + w(ω) cos(θ∗ω)

= (1− 2w(ω))

√

1−
( ω

KR

)2

.

So R and w satisfy the self-consistency equation

R =

∫ KR

−KR
(1− 2w(ω))

√

1−
( ω

KR

)2

g(ω)dω,

or equivalently

K−1 =

∫ 1

−1

(1− 2w(KRs))
√

1− s2 g(KRs)ds. (12)

On the other hand if we begin with some R > 0 and a weight function w that satisfies

(12), then the formulas above define a positive fixed state ρ with order parameter R, and

so we have a complete description of the positive fixed states. We summarize these results

below.

14



Proposition 1. To every fixed state ρ ∈ S with order parameter R > 0 we associate a

measurable weight function w : Ω ∩ [−KR,KR] → [0, 1] that satisfies the self-consistency

equation (12). Conversely, given R > 0 and a measurable function w : Ω ∩ [−KR,KR] →
[0, 1] which satisfy (12), the state ρ defined by equations (9) and (10) is a positive fixed

state with order parameter R.

Since most of our arguments treat the locked and drifting frequencies separately, we

introduce notation for these sets; let

Ωl = Ω ∩ [−KR,KR] and Ωd = Ω− Ωl.

Now let’s look in more detail at the special positive fixed states (where w = 0); then (12)

reduces to the simpler self-consistency equation

K−1 =

∫ 1

−1

√

1− s2 g(KRs)ds. (13)

We can parametrize all solutions (K,R) to (13) with K, R > 0 as follows. Let t > 0,

and let ρ(t) be the state defined by equations (9) and (10) where we substitute t for the

constant KR. Also define

f(t) =

∫ 1

−1

√

1− s2 g(ts)ds = 2

∫ 1

0

√

1− s2 g(ts)ds,

and let

K = f(t)−1, R = tf(t)

for t ∈ (0,∞). Then KR = t and the state ρ(t) is a special positive fixed state with order

parameter R for the model with coupling constant K. (These states are all simply related:

if we let ρ̃ = ρ(1), then we have

ρ(t)ω = ρ̃ω
t
.

So the states ρ(t) are all identical up to a scaling of the frequencies.)

f is continuous, positive, and non-increasing on [0,∞). We have

f(0) = 2g(0)

∫ 1

0

√

1− s2 ds =
πg(0)

2
, and lim

t→∞
f(t) = 0.
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Therefore the image f ((0,∞)) is either
(

0, πg(0)2

)

or
(

0, πg(0)2

]

, depending on whether the

value πg(0)
2 is taken on at some t > 0. Hence there is a critical coupling constant given by

Kc = f(0)−1 =
2

πg(0)

such that (13) has solutions if K > Kc, but not if K < Kc. This is essentially Kuramoto’s

derivation of the critical coupling value for his model.

What happens at K = Kc? It depends on the behavior of the density function g

near 0. Let ω0 be the largest value of ω such that g is constant on [0, ω]. If ω0 > 0 (in

other words, if g is locally constant at 0) then the function f is constant on [0, ω0], so

there is a family of solutions to (13) parametrized by t ∈ (0, ω0] which all have K = Kc

(Figure 1(b)). However there are no solutions to (13) with K = Kc and R > 0 when

ω0 = 0 (Figure 1(a),(c)).

If we rewrite the function R = tf(t) as

R = 2

∫ t

0

√

1−
(ω

t

)2

g(ω)dω,

then we see that R is a strictly increasing function of t, with image (0, 1) for t > 0. So if

we plot the parametric curve (K,R) = (f(t)−1, tf(t)) in the K-R plane, then we obtain a

curve C in the first quadrant which defines R as an increasing, continuous function of K

for K > Kc, with perhaps a vertical segment at K = Kc; R→ 1 as K → ∞ (Figure 1).

Now suppose we have a positive solution (K0, R0) to (12) for a weight function w

which is not almost everywhere equal to 0. If we set t = K0R0, then (12) shows that

K−1
0 < f(t), so the point (K0, R0) will lie on the hyperbola KR = K0R0, in the region

below the curve C and above the K-axis. Conversely, if (K0, R0) is in this region then

we can construct a positive fixed state with these parameters as follows. Let (K ′
0, R

′
0) be

the point on C that intersects the hyperbola KR = K0R0. Take the special positive fixed

state with parameters (K ′
0, R

′
0) and continuously deform its weight function from w = 0

to w = 1/2; the corresponding fixed states’ parameters will trace all points below C on

the hyperbola KR = K0R0.

To summarize, we see that for each point (K,R) on the curve C there corresponds a

unique special positive fixed state with parameters K and R; this state always has weight

function w = 0. And for each point (K,R) in the region between C and the K-axis there
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exist (actually infinitely many) positive fixed states with those parameters; these states all

have weight functions that are not a.e. equal to 0. If Ω = [−1, 1], then the points (K,R)

on or above the hyperbola KR = 1 correspond to fully locked states, whereas points below

this hyperbola correspond to partially locked states (Figure 1(a),(b)). So in this case there

is a second critical coupling constant

Kl = f(1)−1

such that the model has fully locked states if and only if K ≥ Kl. (An equivalent formula

for the locking threshold Kl was first obtained by Ermentrout [1985].)

We wish to stress the distinction between Kl and Kc because there seems to be

occasional confusion about it in the literature. To put it intuitively, suppose that K is

gradually increased from zero. The system remains completely desynchronized until K

reaches Kc, at which point the first oscillators begin to phase-lock. Thus Kc marks the

onset of partial locking. With further increases in K, more and more drifting oscillators

are recruited into the synchronized pack. When K finally reaches Kl, the locking process

is complete. Now all the oscillators run at the same frequency.

Hence, partial locking begins at Kc; full locking begins at Kl. Notice that Kl ≥ Kc,

with equality if and only if g is constant on [−1, 1], corresponding to a uniform distribution

of natural frequencies. If the support of g is R, full locking is never achieved, so it is natural

to define Kl = ∞ in this case (Figure 1(c)).

5. Linearization at Fixed States

Our next task is to study the linearization of the evolution equation (6) at a fixed state

ρ, which we assume is either a positive fixed state or the incoherent state. Our ultimate

goal is to describe the spectrum of this linearization, which if contained completely in the

left half plane would establish the asymptotic stability of the fixed state ρ in the nonlinear

model. The domain of the linearized model will be the tangent space TρS at ρ of the state

space S, which is a subspace of the Banach space L1(Ω, Ck(S1)∗abs). We recall the relevant

definitions.

Definition. Suppose A be a subset of a (real) Banach space E, and p ∈ A. The tangent

cone TCpA to A at p is the set of x ∈ E for which there exists a function γ : [0, t0) → A
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for some t0 > 0 such that γ(0) = p and γ′(0+) = x; i.e.

lim
t→0+

∥

∥

∥

γ(t)− p

t
− x
∥

∥

∥
= 0.

The tangent space to A at p is TpA = TCpA ∩ (−TCpA).

TCpA is the set of one-sided tangent vectors at p to the set A, and TpA is the set of

two-sided tangent vectors. TCpA and TpA are always closed subsets of E. If A is convex,

then TCpA = CpA, where CpA is the convex cone spanned by A − p. Therefore TCpA is

closed under addition and multiplication by non-negative scalars, and the tangent space

TpA = TCpA ∩ (−TCpA) is a closed subspace of E.

Before tackling the tangent spaces TρS, let’s look at the simpler case of just one prob-

ability measure µ on S1, and try to understand the tangent space TµPr(S
1) in Ck(S1)∗abs

for some fixed k (it turns out that now we’ll need k ≥ 2 to get everything we want). We can

explicitly describe these tangent spaces, at least for the two types of measures that occur

for the fixed states. A (two-sided) tangent vector at µ to Pr(S1) is just the derivative at

t = 0 of some function γ(t) = µt in Pr(S
1) with µ = µ0 and t ranging over some interval

(−t0, t0) in R. This derivative, if it exists in Ck(S1)∗, is the kth-order distribution η on

S1 defined by the rule

〈φ, η〉 = d

dt

∫

S1

φ dµt

∣

∣

∣

∣

t=0

for any Ck function φ on S1. For example, let γ(t) = δt be the unit point mass at the point

t. For k ≥ 2, the derivative of this function at t = 0 is the distribution which assigns to

any Ck function φ its derivative φ′(0); this distribution is just the distributional derivative

−Dδ0 (we need k ≥ 2 to insure that γ is strongly differentiable in the sense described in

our definition above).

Pr(S1) is a subset of the hyperplane in Ck(S1)∗abs defined by 〈1, η〉 = 1, so any

η ∈ TµPr(S
1) must satisfy the linear condition 〈1, η〉 = 0. This is the only constraint on

the tangent space TµPr(S
1) ⊂ Ck(S1)∗abs if µ is given by dµ(θ) = α(θ)dθ for some smooth

positive function α on S1 (as is the case for the measures ρω for the drifting frequencies

ω). To see this, let η be any smooth distribution on S1 such that 〈1, η〉 = 0. Then tη+µ is

a probability measure for t is sufficiently small, so η ∈ TµPr(S
1). The closure of the space

of smooth distributions ν with 〈1, η〉 = 0 in Ck(S1)∗ is the codimension-one subspace of

Ck(S1)∗abs defined by 〈1, η〉 = 0, which therefore must be the tangent space TµPr(S
1).
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On the other hand, suppose that γ(t) = µt ∈ Pr(S1) for t ∈ (−t0, t0) has derivative η
at t = 0, and µ0 is supported on some compact K ⊂ S1. If φ ≥ 0 is a Ck function which

vanishes on Kc, then
∫

S1

φ dµt ≥ 0 and

∫

S1

φ dµ0 = 0.

Taking the derivative at t = 0 shows that 〈φ, η〉 = 0. This implies that the distribution η

is 0 when restricted to Kc; in other words, η is also supported on K. Consequently any

tangent vector η ∈ TµPr(S
1) satisfies the condition supp(η) ⊂ supp(µ).

The extreme points of the convex set Pr(S1) are the unit point mass measures δp,

p ∈ S1. As one might expect, the tangent spaces at these points are fairly small: TδpPr(S
1)

is just the one-dimensional space spanned by Dδp provided that k ≥ 2 (TδpPr(S
1) = {0}

when k = 1, since Dδp 6∈ C1(S1)∗abs). To see this, take p = 0 and let φ be any smooth

function on S1 with φ(0) = φ′(0) = 0. Suppose γ(t) = µt ∈ Pr(S1) for t ∈ (−t0, t0) has

γ(0) = δ0 and γ′(0) = η. Construct a non-negative smooth function φ̃ such that φ̃(0) = 0

and |φ| ≤ φ̃ (take φ̃(θ) to be a large multiple of sin2(θ/2), for example). Then

−〈φ̃, µt〉 ≤ 〈φ, µt〉 ≤ 〈φ̃, µt〉

and 〈φ̃, µ0〉 = φ̃(0) = 0. 〈φ̃, η〉 = 0 by the same argument as above, so 〈φ, η〉 = 0 as well.

This, together with the facts that 〈1, η〉 = 0 and supp(η) ⊂ {0}, imply η = cDδ0 for some

c. Similarly, if µ is a linear combination of two distinct unit point masses δp and δq, then

the elements of TµPr(S
1) are of the form

η = c0(δp − δq) + c1Dδp + c2Dδq

where the ci are constants.

From now on, let’s insist that k ≥ 2. This insures us a decent supply of tangent vectors

at the locked states. Now that we understand the tangent spaces for the types of measures

that occur for the fixed states ρ ∈ S, it becomes a relatively straighforward matter to

describe the tangent spaces TρS we will be working with. The state space S embeds as a

convex subset of the space L1(Ω, Ck(S1)∗abs), and we can generalize the arguments above

to prove the folllowing.

Proposition 2. The tangent space TρS ⊂ L1(Ω, Ck(S1)∗abs) at a fixed state ρ ∈ S consists

of all η ∈ L1(Ω, Ck(S1)∗abs) such that ηω ∈ TρωPr(S
1) for almost all ω ∈ Ω.
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Proof. In one direction, suppose η ∈ TρS. Then there exists a map γ : t 7→ S defined on

some interval (−t0, t0) with γ(0) = ρ such that

lim
t→0

∫

Ω

∥

∥

∥

∥

γ(t)ω − ρω
t

− ηω

∥

∥

∥

∥

g(ω)dω = 0,

where the norm is taken in the space Ck(S1)∗. Let tn ∈ (0, t0) be any sequence converging

to 0. The (real-valued) functions

ω 7→
∥

∥

∥

∥

γ(tn)ω − ρω
tn

− ηω

∥

∥

∥

∥

converge to 0 in the space L1(Ω,R) with respect to the measure g(ω)dω; hence by passing

to a subsequence if necessary, we can assume that

lim
n→∞

∥

∥

∥

∥

γ(tn)ω − ρω
tn

− ηω

∥

∥

∥

∥

= 0

for almost all ω ∈ Ω. Hence ηω ∈ CρωPr(S
1) = TCρωPr(S

1) for almost all ω. If we choose

tn < 0 we get ηω ∈ −TCρωPr(S1), so ηω ∈ TρωPr(S
1) for almost all ω.

Now consider the set V = {η ∈ L1(Ω, Ck(S1)∗abs)
∣

∣ ηω ∈ TρωPr(S
1) a.e.}; we wish to

show that V ⊂ TρS. Both V and TρS are subspaces of L1(Ω, Ck(S1)∗abs) and TρS is closed,

so it suffices to prove that TρS contains a set of elements η ∈ V whose span is dense in

V . Any η ∈ V can be expressed as a sum η = ηl + ηd, where ηl, ηd ∈ V are supported on

the locked and drifting frequencies respectively, so we can consider these cases separately.

The most general η ∈ V supported on the locked frequencies can be expressed as

ηω = c0(ω)(δθω − δθ∗ω ) + c1(ω)Dδθω + c2(ω)Dδθ∗ω

for ω ∈ Ωl, where the coefficients ci are L
1-functions of ω w.r.t. the measure g(ω)dω, and

satisfy the constraints c0(ω) = 0 if w(ω) = 0 or 1, c2(ω) = 0 if w(ω) = 0 and c1(ω) = 0 if

w(ω) = 1. We consider these three terms separately.

The element η ∈ V defined by ηω = c0(ω)(δθω − δθ∗ω ) can be uniformly approximated

by linear combinations of simpler elements η ∈ V defined by ηω = χA(ω)(δθω −δθ∗ω ), where
A ⊂ Ωl is measurable (χA denotes the characteristic function of the set A). Because of the

constraints on the function c0, we can also assume that for some ǫ > 0, ǫ ≤ w(ω) ≤ 1− ǫ

for all ω ∈ A. We must show that this η ∈ TρS. Define γ(t) by

γ(t)ω = ρω + tχA(ω)(δθω − δθ∗ω );
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clearly γ′(0) = η. Now γ(t)ω is a probability measure as long as |t| ≤ ǫ, so η = γ′(0) ∈ TρS.
The proof for the other coefficients is similar. For the c1-term, it suffices to prove

that the element η ∈ V defined by ηω = χA(ω)Dδθω is in TρS, where again A ⊂ Ωl is

measurable, and this time we assume that for some ǫ > 0, w(ω) ≤ 1 − ǫ for all ω ∈ A.

Define γ(t) by

γ(t)ω = ρω + ǫχA(ω)(δθω+t − δθω );

then γ′(0) = −ǫη. γ(t)ω is a probability measure for all t, and hence η = −ǫ−1γ′(0) ∈ TρS.
The argument for the c2-term is exactly the same. Hence any η ∈ V supported on the

locked frequencies is in TρS.
Finally, suppose η ∈ V is supported on the drifting frequencies. η is an element

of the Banach space L1(Ωd, Ck(S1)∗abs), taking values in the codimension-one subspace

W ⊂ Ck(S1)∗abs consisting of distributions orthogonal to the constant function 1 on S1.

Therefore η can be uniformly approximated by linear combinations of elements in V of the

form

ηω = χA(ω)ξ,

where A ⊂ Ωd is measurable and ξ is a smooth distribution in W (ξ has no dependence

on ω). We can also assume that A has positive distance from the boundary frequencies

±KR. It suffices to prove that this η ∈ TρS. Define γ(t) by

γ(t)ω = ρω + tχA(ω)ξ;

clearly γ′(0) = η. Since ξ is a smooth distribution, ξ is a signed measure on S1 given by

dξ(θ) = α(θ)dθ where α is a smooth function on S1 with integral 0. Now recall that for the

drifting frequencies, ρω is the measure given by (9); the coefficient function has minimum

value
1

2π

√

ω2 − (KR)2

|ω|+KR
,

which is uniformly bounded away from 0 for ω ∈ A since we assumed A has positive

distance from ±KR. The function α is bounded on S1, so if |t| is sufficiently small, γ(t)ω

is a probability measure for all ω, and hence η = γ′(0) ∈ TρS.

QED

Strictly speaking TρS depends on k, even though we supress this dependence in the

notation. As a closed subspace of L1(Ω, Ck(S1)∗abs), TρS is a Banach space in its own
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right, and is the natural domain for the linearization of the evolution equation (6), which

we turn to next. If we replace ρ by ρ + ǫη in (5), we see that the first-order perturbation

of the vector field vω corresponding to a tangent vector η ∈ TρS is equal to

K

∫ ∞

−∞
〈sin(τ − θ), ηω(τ)〉g(ω)dω = K (Sη cos θ − Cη sin θ)

(the pairing inside the integral is with respect to the dummy variable τ). The coefficients

Cη and Sη are given by

Cη =

∫

Ω

〈cos τ, ηω(τ)〉g(ω)dω and

Sη =

∫

Ω

〈sin τ, ηω(τ)〉g(ω)dω.

Cη and Sη are respectively the perturbations of the real and imaginary parts of the order

parameter Reiψ (C for cosine, S for sine). To linearize (6), replace ρω with ρω + ǫηω and

gather all the linear terms in ǫ to obtain the equation

d

dt
(ηω) +D

(

vωηω +K (Sη cos θ − Cη sin θ) ρω
)

= 0.

This leads to the following definition.

Definition. The linearized evolution equation at a state ρ ∈ S is d
dt
(η) = Lη, where L is

the linear operator defined by

(Lη)ω = −D
(

vωηω +K (Sη cos θ − Cη sin θ) ρω
)

(14)

on the space TρS.

The right hand side of (14) is an integrable family of distributions in Ck+1(S1)∗abs, but

not necessarily in Ck(S1)∗abs, since D may map kth-order distributions to (k + 1)st-order

distributions. Hence the operator L is in general unbounded (the exception, as we shall

see, is when ρ is fully locked). However L is a closed, densely-defined operator on the

Banach space TρS, which is the next best thing to being a bounded operator.

6. The Spectrum of L for Special Positive States
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The main goal of this paper is to describe completely the spectrum σ(L) for the

special positive states. (For all other positive states, the spectrum σ(L) contains positive

numbers, and so these states are linearly unstable, and hence of less interest to us. We’ll

comment more on this at the end of this section.) Since the spectrum may contain complex

numbers, we need to study the operator L on the complexified tangent space TρS ⊗C; so

from here on we will allow the distributions ηω to be complex-valued. We’ll denote the

complex Banach space TρS ⊗ C simply as E. Following tradition we partition σ(L) into

three parts: its point, continuous and residual spectrum. The point spectrum σp(L) is just

the set of eigenvalues of L. The continuous spectrum σc(L) is the set of λ ∈ C such that

ker(λI − L) = {0} and the image Im(λI − L) is dense in E, but the inverse (λI − L)−1,

defined on the dense subspace Im(λI −L), is unbounded. Since L is a closed operator, the

densely-defined operator (λI − L)−1 is bounded if and only if it is defined on all of E, or

equivalently, if and only if the image of λI − L is E; this is a consequence of the closed

graph theorem (see Kato [1995, p. 166]). So we can also describe σc(L) as the set of λ

such that λI − L is one-to-one, has dense image, but is not surjective. The remainder of

the spectrum is the residual spectrum σr(L), which is therefore the set of λ ∈ C such that

ker(λI − L) = {0} and Im(λI − L) is contained in a proper closed subspace of E. In this

section we begin the analysis of the spectrum of L.

Henceforth, unless explicitly noted, we assume that ρ is a special positive state. To

understand the spectrum of L, it helps to express L =M +B, with the operators M and

B defined by

(Mη)ω = −D(vωηω),

(Bη)ω = −KD
(

(Sη cos θ − Cη sin θ) ρω
)

.

Notice that M is completely uncoupled, in the sense that (Mη)ω depends only on ηω; in

other words, if we define Mωηω = −D(vωηω), then (Mη)ω = Mωηω. The operator B is

bounded on E provided that k ≥ 2, which as mentioned earlier is needed to insure that

the map ω 7→ Dρω from Ω to Ck(S1)∗ is measurable. B has a codimension-two kernel

determined by the equations Cη = Sη = 0, so the rank of B is only 2; in other words, the

operators L and M are in a sense very close. The coupling of the oscillators is entirely

expressed through the operator B, so one can think of the operator M as describing the

linearized Kuramoto model with the coupling artificially suppressed.

We can split the tangent space E as a direct sum E = El⊕Ed, where El and Ed are the
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subspaces of tangent vectors supported on the locked and drifting frequencies respectively.

Notice that M preserves both these subspaces. As we saw in the proof of Proposition 2,

El is isomorphic to the space of complex-valued functions L1(Ωl,C) (w.r.t. the measure

g(ω)dω on Ωl). Ed is the space L1(Ωd,W ), where W ⊂ Ck(S1,C)∗abs is the subspace of

complex-valued distributions orthogonal to the constant function 1 on S1. We can also

split the tangent space another way, into even and odd subspaces, as follows. The space

E has an involution defined by the rule

(η)ω(θ) = η−ω(−θ).

We call η even if η = η and odd if η = −η. This notion of even and odd behaves much

like the usual one for functions of one variable: any η ∈ E can be expressed as a sum of

an even and odd element in a unique way; if η is even then the element Dη is odd, and

vice versa; and if φ(θ) is a smooth function on S1, then the usual rules for φη apply: if φ

is even (in the traditional sense) and η is even, then φη is even, etc. Notice that if η ∈ E

is even then Sη = 0, since the integrand is an odd function of ω:

〈sin θ, η−ω(θ)〉 = 〈sin θ, ηω(−θ)〉 = 〈sin(−θ), ηω(θ)〉 = −〈sin θ, ηω(θ)〉.

Similarly, Cη = 0 if η is odd.

We denote the even and odd subspaces of E by Ec and Es respectively, to remind us

that the even (odd) tangent vectors correspond to cosine (sine) perturbations of the order

parameter. The even-odd decomposition also respects the locked-drifting decomposition,

so we can express El = Elc ⊕ Els and Ed = Edc ⊕ Eds as the direct sum of even and odd

subspaces. Since any even or odd η ∈ E is completely determined by ηω for ω ≥ 0, we can

identify

Elc
∼= Els

∼= L1(Ωl+,C) and Edc
∼= Eds

∼= L1(Ωd+,W )

where Ωl+ = Ωl ∩ [0,∞), Ωd+ = Ωd ∩ [0,∞). The operators M and L both preserve the

even and odd subspaces. (Proof: if η is even, then vωηω is odd, so D(vωηω) is even. And

(sin θ)ρω(θ) is odd, so D ((sin θ)ρω(θ)) is even; hence Mη and Lη are even. The proof for

η odd is similar.) Hence we can analyze the spectrum of L restricted to the subspaces Ec

and Es separately, and combine the results to obtain the spectrum of L on E.

M has only continuous spectrum, and it’s fairly easy to describe:
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Proposition 3. σ(M) = [−KR,−
√

(KR)2 − 1] if ρ is fully locked, and σ(M) = [−KR, 0]∪
Ri if ρ is partially locked (here Ri denotes the imaginary axis). All λ ∈ σ(M) are in the

continuous spectrum.

The proof of this proposition is somewhat technical, so we postpone it to the end of

this section so as not to interrupt the main thread we are developing. When two closed

operators on a Banach space differ by a bounded operator of finite rank, as is the case for

L and M , their spectra are closely related. In fact, Proposition 3 is the key ingredient in

establishing the main result of this paper. We present the proof of this theorem below,

with some of the steps deferred to Sections 7 and 8.

Theorem. The spectrum σ(L) consists of σ(M), an eigenvalue at 0, and perhaps one other

eigenvalue λ ∈ [−
√

(KR)2 − 1, 0) if ρ is fully locked. Except for 0 and λ, the spectrum of

L is all continuous.

Proof. Suppose λ ∈ σ(M). The spectrum of M is all continuous, so the image of the

operator λI−M , which coincides with the domain of the unbounded operator (λI−M)−1,

must be dense in E and have infinite codimension (otherwise we could extend (λI −M)−1

to a closed operator defined on all of E by adding a bounded, finite rank operator, but

then the closed graph theorem would imply that (λI−M)−1 is bounded on E). Therefore

λI − L is also not onto, so λ ∈ σ(L); hence σ(M) ⊂ σ(L). Reversing the roles of L and

M in this argument shows that σc(L) ⊂ σ(M). So to complete the proof we need to

prove three things: 0 is always an eigenvalue for L (this is not surprising considering the

rotational symmetry of the Kuramoto model); L has at most one other eigenvalue λ 6= 0,

which satisfies λ ∈ [−
√

(KR)2 − 1, 0) and occurs only in the fully locked case; and the

residual spectrum σr(L) = ∅ in all cases.

Let’s begin with the eigenvalues. As discussed above, it suffices to study L separately

on the even and odd subspaces Ec and Es; on Ec, L is given by

(Lη)ω =Mωηω +K(Cη)D
(

(sin θ)ρω
)

.

M is defined pointwise as a function of ω ∈ Ω, and as we shall see in the course of the

proof of Proposition 3, for any given λ ∈ C the operator (λI −Mω) is invertible for all

but at most countably many values of ω. So suppose η ∈ Ec is an eigenvector for λ. We

must have Cη 6= 0, since otherwise λ would be an eigenvalue for M . So we can assume
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that Cη = K−1 if we like. Then η is determined uniquely by the formula

ηω = (λI −Mω)
−1D

(

(sin θ)ρω
)

.

Conversely if λ 6∈ σ(M) then this equation defines an element η ∈ Ec. But if λ ∈ σ(M)

then η may not be in Ec, since η may fail to be integrable w.r.t. the density function g(ω).

λ is an eigenvalue for L on Ec if and only if η ∈ Ec and λ satisfies the self-consistency

relation Cη = K−1. Define the function hc by the formula

hc(λ) =

∫

Ω

〈cos θ, (λI −Mω)
−1D

(

(sin θ)ρω
)

〉g(ω)dω;

the domain of hc is defined to be those λ ∈ C for which the integrand above is integrable.

Then a necessary condition for λ to be an eigenvalue for L on Ec is that λ satisfies the self-

consistency equation hc(λ) = K−1; this condition is necessary and sufficient if λ 6∈ σ(M).

The situation is similar for Es. Here L is given by

(Lη)ω =Mωηω −K(Sη)D
(

(cos θ)ρω
)

.

We define

hs(λ) = −
∫

Ω

〈sin θ, (λI −Mω)
−1D

(

(cos θ)ρω
)

〉g(ω)dω;

if λ is an eigenvalue for L on Es, then λ must satisfy the self-consistency equation hs(λ) =

K−1. We call hc and hs the characteristic functions for L. We will derive explicit formulas

for these functions in the next section, and then in Section 8 we shall prove

Proposition 4. The equation hc(λ) = K−1 has at most one nonzero root λ, and only

if K > Kl. This root satisfies −
√

(KR)2 − 1 ≤ λ < 0. In addition, λ = 0 is a root if

and only if K = Kc. The equation hs(λ) = K−1 has λ = 0 as its only root in all cases.

Furthermore, the roots of the characteristic equations are in fact eigenvalues of L on Ec

and Es respectively.

This completes the description of σp(L). Notice that we have to be a little careful here:

a root λ ∈ σ(M) of one of the characteristic equations is not automatically an eigenvalue

of L, since the associated eigenvector η might not be integrable w.r.t. g(ω). Fortunately

as we shall see in Section 8, this doesn’t happen.

Now what about the residual spectrum of L? To answer this, we’ll need a concrete

description of the elements ν ∈ L1(Ω,W )∗. Let W0 = L2(S1,C) ∩W be the subspace
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of W consisting of measures of the form φ dm, where φ is L2 on S1. The subspace W0

naturally has the structure of a separable Hilbert space, and its image inW is dense, which

implies that the natural map L1(Ω,W )∗ → L1(Ω,W0)
∗ is injective. Now L1(Ω,W0)

∗ ∼=
L∞(Ω,W ∗

0 ) (see Lang [1993, p. 188] for this result), and the Hilbert space W ∗
0 can be

identified with the space of L2 functions on S1 with integral 0. So an element ν ∈ E∗
c can

be represented as a function ω 7→ νω, where νω is a function on S1 for each frequency ω.

If η ∈ Ec the pairing 〈〈η, ν〉〉 of η and ν is given by integrating the function ω 7→ 〈νω, ηω〉:

〈〈η, ν〉〉 =
∫

Ω

〈νω, ηω〉g(ω)dω.

Now suppose the operator λI − L does not have dense image on Ec. Then there must be

a nonzero element ν ∈ E∗
c such that

〈〈(λI − L)η, ν〉〉 = 〈〈(λI −M)η, ν〉〉 −K(Cη)〈〈D
(

(sin θ)ρ
)

, ν〉〉 = 0

for all η ∈ Ec in the domain ofM . Since M has only continuous spectrum, we cannot have

〈〈D
(

(sin θ)ρ
)

, ν〉〉 = 0, so we may assume that 〈〈D
(

(sin θ)ρ
)

, ν〉〉 = K−1 if we like. Then

we have

〈〈(λI −M)η, ν〉〉 = Cη

for all η ∈ Ec in the domain of M , or equivalently,

〈〈η, ν〉〉 = C(λI −M)−1η

for all η ∈ Ec in the range of λI −M , which is dense in Ec. The operator (λI −Mω)
−1

exists and is bounded for almost all ω, and so we have

∫

Ω

〈νω(θ), ηω(θ)〉g(ω) dω =

∫

Ω

〈cos θ, (λI −Mω)
−1ηω(θ)〉g(ω) dω

=

∫

Ω

〈(λI −M∗
ω)

−1 cos θ, ηω(θ)〉g(ω) dω

for all η ∈ Ec in the range of λI −M , where M∗
ω denotes the adjoint of the operator Mω.

This uniquely determines ν:

νω(θ) = (λI −M∗
ω)

−1 cos θ
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for almost all ω. Now

〈〈D
(

(sin θ)ρ
)

, ν〉〉 =
∫

Ω

〈(λI −M∗
ω)

−1 cos θ,D
(

(sin θ)ρω
)

〉g(ω)dω

=

∫

Ω

〈cos θ, (λI −Mω)
−1D

(

(sin θ)ρω
)

〉g(ω) dω = hc(λ),

so the self-consistency equation 〈〈D
(

(sin θ)ρ
)

, ν〉〉 = K−1 is exactly the same as before:

hc(λ) = K−1. The same argument applies to L on Es. But by Proposition 4, any roots of

the characteristic equations are eigenvalues of L, so the only way λI − L can fail to have

dense image is if λ ∈ σp(L), and thus we conclude that σr(L) = ∅.

QED

We now turn to the proof of Proposition 3.

Proof of Proposition 3. We’ll analyze the spectrum of M on the spaces El and Ed

separately and then combine the results. The most general tangent vector η ∈ El has the

form

ηω = c(ω)Dδθω

where the coefficient c is an L1-function of ω ∈ Ωl w.r.t. the measure g(ω)dω. Let φ be

any smooth function on S1. Then

〈φ,Mωηω〉 = 〈φ,−D(vωηω)〉 = 〈vωφ′, ηω〉 = −c(ω)(vωφ′)′(θω).

But vω(θω) = 0, so

〈φ,Mωηω〉 = −c(ω)v′ω(θω)φ′(θω) = c(ω)KR cos θωφ
′(θω),

and hence

Mωηω = −KRc(ω) cos θωDδθω .

In other words, M is just multiplication by the function −KR cos θω. This explicit de-

scription shows that M is a bounded operator on El, since the function cos θω is bounded.

(λI −Mω) is multiplication by (λ+KR cos θω) which is nonzero a.e.; hence λI −M has

trivial kernel on El.

The inverse of λI −M on El is multiplication by (λ + KR cos θω)
−1; this operator

is bounded on El ∼= L1(Ωl,C) if and only if the function ω 7→ (λ + KR cos θω)
−1 is
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essentially bounded. This is equivalent to λ not in the image of the continuous function

ω 7→ −KR cos θω as ω ranges over the locked oscillators. Hence the spectrum of M on

El is [−KR,−
√

(KR)2 − 1] if ρ is fully locked, and [−KR, 0] if ρ is partially locked. For

these λ the operator (λI −M)−1 is unbounded, but is defined on coefficient functions c

that are supported away from the roots of λ + KR cos θω, and hence is densely defined.

Therefore the spectrum of M on El is all continuous.

When the state ρ is partially locked, we will show that the spectrum ofM on Ed is Ri

and is all continuous, and this will complete the proof. For ω ∈ Ωd, the operatorMω is the

adjoint of the first-order differential operator Nω on S1 defined by Nωφ = vωφ
′. Note that

Nω is a closed, unbounded operator on the space of complex-valued functions Ck(S1,C),

and is a bounded operator from Ck(S1,C) to Ck−1(S1,C). We will see that for each ω

with |ω| > KR, the spectrum σ(Nω) = σp(Nω) = {2πinCω |n ∈ Z}, where Cω is the

coefficient given by (8). So if Reλ 6= 0, then (λI −Nω)
−1 exists and is a bounded (in fact

compact) operator on Ck(S1,C). Therefore (λI −Mω)
−1 =

(

(λI −Nω)
−1
)∗

is a bounded

operator on Ck(S1,C)∗, with image in Ck−1(S1,C)∗. Notice also that (λI −Nω)1 = λ, so

(λI −Nω)
−11 = λ−1. Hence if ηω ∈ Ck(S1,C)∗ satisfies 〈1, ηω〉 = 0, then

〈1, (λI −Mω)
−1 ηω〉 = 〈(λI −Nω)

−11, ηω〉 = λ−1〈1, ηω〉 = 0.

Therefore (λI −Mω)
−1 preserves the subspace W ⊂ Ck(S1,C)∗, since Ck−1(S1,C)∗ ⊂

Ck(S1,C)∗abs.

The operator Nω depends continuously on ω, and hence so does the operator (λI −
Mω)

−1. We will also show that the norm of (λI−Nω)−1 (as an operator mapping Ck(S1,C)

to itself) is bounded as a function of ω. Since ‖
(

(λI −Nω)
−1
)∗ ‖ = ‖(λI − Nω)

−1‖, all
this proves that if Reλ 6= 0, then λI −M has a bounded inverse on Ed defined for η ∈ Ed

by the rule
(

(λI −M)−1η
)

ω
=
(

(λI −Nω)
−1
)∗
ηω .

If λ ∈ Ri but λ 6= 0, then (λI−Mω)
−1 is defined at all frequencies except ±ωn, where

ωn =

√

(KR)2 +
|λ|2
n2

, n > 0

is obtained by solving λ = 2πiCωn for ωn. Note that the problem frequencies ±ωn have

no limit point in the open intervals ±(KR,∞). (λI −M)−1η is defined for any η ∈ Ed
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that vanishes on a neighborhood of {±ωn}, and the set of such η is dense in Ed. This

proves that (λI −M)−1 is defined on a dense subspace of Ed; in other words, the image

of λI −M is dense in Ed. However, we claim that λI −M is not surjective, and hence

λ is in the continuous spectrum of M on Ed. To see this, let φ be a non-trivial solution

to (λI −Nωn
)φ = 0 for some problem frequency ωn (φ is guaranteed to be C∞). Choose

η ∈ Ed such that 〈φ, ηω〉 = 1 for all ω in some neighborhood of ωn (we can do this because

φ is not constant), and suppose (λI −M)−1η exists in Ed. Then

(λI −Nω)φ = ((λI −Nωn
) + (Nωn

−Nω))φ = (ωn − ω)φ′,

and so for ω sufficiently close to ωn we have

1 = 〈φ, ηω〉 = 〈(λI −Nω)φ, (λI −Mω)
−1ηω〉 = (ωn − ω)〈φ′, (λI −Mω)

−1ηω〉.

Therefore

1 ≤ |ω − ωn| ‖φ′‖‖(λI −Mω)
−1ηω‖

as ω → ωn, where the norms of φ′ and (λI −Mω)
−1ηω are taken in the spaces Ck(S1,C),

Ck(S1,C)∗ respectively. But this implies that the function ω 7→ ‖(λI −Mω)
−1ηω‖ is not

integrable, which is a contradiction.

Special care must be taken when λ = 0, since 0 ∈ σp(Nω) for all ω. The spectrum

of a closed operator is always a closed set, so 0 is in the spectrum of M on Ed. M has

trivial kernel in Ed, since the only solutions to the equation D(vωηω) = 0 are multiples

of ρω, but any η ∈ Ed satisfies 〈1, ηω〉 = 0 for all ω. We can invert Mω on the subspace

W ⊂ Ck(S1,C)∗ as follows:

M−1
ω ηω = −v−1

ω

(

D−1ηω − 〈v−1
ω , D−1ηω〉
〈v−1
ω , m〉

m

)

,

where D−1ηω denotes the unique distributional antiderivative of ηω on S1 determined by

the requirement 〈1, D−1ηω〉 = 0. If ηω = 0 for ω in some neighborhood of ±KR, then
M−1η is perfectly well-behaved, so M−1 is defined on a dense subspace of Ed; in other

words, the image of M is dense. Therefore we see that M has empty point and residual

spectra on Ed, and continuous spectrum Ri, as desired.

Now let’s complete the analysis of the operator Nω. Observe that λ is an eigenvalue

of Nω if and only if the equation

λφ− vωφ
′ = 0
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has a non-trivial solution on S1. This equation has general solution

φ(θ) = k exp

(

λ

∫ θ

0

vω(τ)
−1dτ

)

,

and assuming the constant k 6= 0 this function is periodic if and only if exp
(

λ
Cω

)

= 1, which

is equivalent to λ = 2πiCωn for some n ∈ Z. Therefore σp(Nω) = 2πiCωZ. If λ 6∈ 2πiCωZ

then we rewrite the ODE

λψ − vωψ
′ = φ (15)

as

ψ′ − λv−1
ω ψ = −v−1

ω φ.

We can solve this equation with the aid of the integrating factor

γω(θ) = exp

(

−λ
∫ θ

0

vω(τ)
−1dτ

)

;

the unique periodic solution is

ψ(θ) = −γω(θ)−1

(

∫ θ

0

γω(τ)vω(τ)
−1φ(τ) dτ + (γω(2π)− 1)−1

∫ 2π

0

γω(τ)vω(τ)
−1φ(τ) dτ

)

.

γω(2π) = exp(− λ
Cω

) 6= 1, so this function is well-defined. The right-hand side defines the

bounded operator (λI−Nω)−1 from Ck(S1,C) to Ck+1(S1,C), and so σ(Nω) = σp(Nω) =

{2πinCω |n ∈ Z}.
Next we establish the necessary norm bounds for (λI −Nω)

−1. The differential equa-

tion (15) has an irregular singular point at the limiting values ω = ±KR, since the function
vω = ω −KR sin θ has a double root at π

2 when ω = KR (and a double root at−π
2 when

ω = −KR). So the fact that ‖(λI−Nω)−1‖ is bounded as a function of ω is not trivial. It

suffices to prove the existence of constants Ck, k ≥ 0, depending only on λ and KR, such

that

‖(λI −Nω)
−1φ‖k ≤ Ck‖φ‖k

for any φ ∈ Ck(S1,C), and any ω with |ω| > KR. For k = 0, we take φ ∈ C(S1,C) and

put ψ = (λI −Nω)
−1φ ∈ C1(S1,C). Suppose |ψ(θ)|2 has a positive maximum at θ = θ0.

d

dθ
|ψ(θ)|2 = ψ′(θ)ψ(θ) + ψ(θ)ψ′(θ) = 2Re(ψ′(θ)ψ(θ)),
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and so Re(ψ′(θ0)ψ(θ0) = 0. Multiply (15) by ψ(θ0) and take real parts of both sides to

obtain

(Reλ)|ψ(θ0)|2 = Re(φ(θ0)ψ(θ0));

hence

|ψ(θ0)| ≤ |Reλ|−1|φ(θ0)|,

and so we have ‖ψ‖0 ≤ C0‖φ‖0 with C0 = |Reλ|−1. This proves the base case k = 0 of our

assertion.

Now we proceed by induction, and assume the existence of the constants C0, C1, . . . , Ck

has been established. As before, let ψ = (λI −Nω)
−1φ, where now φ ∈ Ck+1(S1,C) and

hence ψ ∈ Ck+2(S1,C). Differentiating (15) k times gives

vωψ
[k+1] = λψ[k] − φ[k] −

k−1
∑

j=0

(

k

j

)

v[k−j]ω ψ[j+1].

The terms v
[k−j]
ω are all bounded by KR, so by induction the right-hand side is bounded

by C′‖φ‖k, and hence C′‖φ‖k+1, for some constant C′. If |ψ[k+1]| takes its maximum at

θ = θ0, then we obtain

‖ψ[k+1]‖0 ≤ C′|ω −KR sin θ0|−1‖φ‖k+1.

Now we differentiate (15) one more time and imitate the proof for the case k = 0. We

write the result in the form

(λ− (k + 1)v′ω)ψ
[k+1] − vωψ

[k+2] = φ[k+1] +

k−1
∑

j=0

(

k + 1

j

)

v[k+1−j]
ω ψ[j+1],

and observe that the right-hand side is bounded by C′′‖φ‖k+1 for some constant C′′.

Multiply by ψ[k+1](θ0) and take real parts of both sides to obtain

‖ψ[k+1]‖0 ≤ C′′|Reλ+ (k + 1)KR cos θ0|−1‖φ‖k+1.

Fortunately, the function

m(θ, ω) = min
(

C′|ω −KR sin θ|−1, C′′|Reλ+ (k + 1)KR cos θ|−1
)
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is bounded for θ ∈ S1, |ω| > KR. (If not, we could construct a sequence (ωn, θn) such

that m(ωn, θn) → ∞, but this implies that both

| sin θn| → 1 and cos θn → − Reλ

(k + 1)KR
6= 0,

which is impossible.) Therefore we have ||ψ[k+1]‖0 ≤ C′′′‖φ‖k+1, where C
′′′ is any bound

on m(θ, ω), so we can take Ck+1 = C′′′ + Ck, and we’re done.

QED

Remark on σ(L) for non-special positive states. In this case, we can carry out a

similar analysis of the continuous spectrum σc(M), but now it will contain positive real

values, coming from the essential range of the function ω 7→ −KR cos θ∗ω = KR cos θω.

The same reasoning used in our main theorem shows that these values are also contained

in σ(L), so these states are not linearly stable. We omit the details since these states are

of minor importance to us.

7. Characteristic Functions for L

Our next task is to compute the characteristic functions hc and hs, given by

hc(λ) =

∫

Ω

〈cos θ, (λI −Mω)
−1D

(

(sin θ)ρω
)

〉g(ω)dω,

hs(λ) = −
∫

Ω

〈sin θ, (λI −Mω)
−1D

(

(cos θ)ρω
)

〉g(ω)dω.

To do this, we’ll have to compute (λI −Mω)
−1D

(

(sin θ)
)

and (λI −Mω)
−1D

(

(cos θ) ex-

plicitly. Let’s begin with the locked frequencies ω ∈ Ωl. As we saw in the previous section,

for these frequencies (λI −Mω)
−1 is just multiplication by (λ+KR cos θω)

−1. Hence we

obtain the contributions hlc and hls resp. from the locked oscillators to the characteristic

functions hc and hs:

hlc(λ) =

∫

Ωl

(λ+KR cos θω)
−1〈cos θ,D

(

(sin θ)ρω
)

〉 g(ω)dω

=

∫

Ωl

(λ+KR cos θω)
−1〈sin θ, (sin θ)ρω

)

〉 g(ω)dω

=

∫

Ωl

sin2 θω
λ+KR cos θω

g(ω)dω

=
1

(KR)2

∫ KR

−KR

ω2

λ+
√

(KR)2 − ω2
g(ω)dω

(16)
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and

hls(λ) = −
∫

Ωl

(λ+KR cos θω)
−1〈sin θ,D

(

(cos θ)ρω
)

〉 g(ω)dω

=

∫

Ωl

cos2 θω
λ+KR cos θω

g(ω)dω

=
1

(KR)2

∫ KR

−KR

(KR)2 − ω2

λ+
√

(KR)2 − ω2
g(ω)dω.

(17)

The functions hlc(λ), h
l
s(λ) are (up to the constant K) the N → ∞ limits of the rational

functions Rs(λ), Rc(λ) resp. that we defined in our study of the finite-N Kuramoto model

[Mirollo and Strogatz 2005], as was to be expected. After all, completely locked states are

just the infinite-N analogues of fixed points for the finite-N Kuramoto model. However the

partially locked states have no finite-N analogues, so we should expect to see something

new there.

Now suppose ρ is partially locked, and consider the drifting frequencies ω ∈ Ωd. For

almost all ω ∈ Ωd, the distribution (λI −Mω)
−1D

(

(sin θ)ρω
)

will be a smooth measure of

the form αω(θ)dθ, where αω is a smooth function on S1. The operator λI −Mω applied

to the measure αω(θ)dθ gives the measure (λαω(θ) + (vωαω)
′(θ))dθ, and D

(

(sin θ)ρω
)

is

just the measure Cω

(

sin θ
vω(θ)

)′
dθ. Therefore αω must satisfy the first-order ODE

λαω(θ) + (vω(θ)αω(θ))
′
= Cω

(

sin θ

vω(θ)

)′
.

Our strategy for solving this equation is to express αω in the form βω/v
2
ω, so as to clear

out the denominator v2ω above. The corresponding equation for βω is

λβω(θ) + vω(θ)β
′
ω(θ)− v′ω(θ)βω(θ) = Cω(vω(θ) cos θ − v′ω(θ) sin θ). (18)

Now a fortunate miracle occurs. The functions sin θ, cos θ and vω(θ) are all contained

in the vector space V spanned by 1, cos θ and sin θ. Notice that V is closed under the

operation

{φ, ψ} = φψ′ − φ′ψ,

so we restrict our search for solutions βω to (18) to functions of the form

βω(θ) = c0(ω) + c1(ω) cos θ + c2(ω) sin θ,
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with coefficients ci that depend on ω. (The miracle is that the three-dimensional subspace

consisting of measures ρω of the form (βω/v
2
ω)dθ, with βω being a linear combination of

1, sin θ and cos θ, is invariant under the differential operator Mω.) Substituting vω(θ) =

ω −KR sin θ in (18) gives

(λc0(ω) +KRc1(ω)) + (KRc0(ω) + λc1(ω) + ωc2(ω)) cos θ + (−ωc1(ω) + λc2(ω)) sin θ

= ωCω cos θ.

We equate coefficients and solve for ci(ω) to obtain

c0(ω) = − KRωCω
λ2 + ω2 − (KR)2

,

c1(ω) =
λωCω

λ2 + ω2 − (KR)2
,

c2(ω) =
ω2Cω

λ2 + ω2 − (KR)2
.

So the contribution hdc to hc from the drifting frequencies is given by

hdc(λ) =

∫

Ωd

〈cos θ, (λI −Mω)
−1D

(

(sin θ)ρω
)

〉g(ω)dω

=

∫

|ω|≥KR

(
∫ 2π

0

cos θ(c0(ω) + c1(ω) cos θ + c2(ω) sin θ)v
−2
ω (θ) dθ

)

g(ω)dω

=

∫

|ω|≥KR

c1(ω)

(
∫ 2π

0

cos2 θ

(ω −KR sin θ)2
dθ

)

g(ω)dω

(the other two integrals vanish because the integrands have periodic antiderivatives on S1).

We can evaluate the inner integral using integration by parts:

∫ 2π

0

cos θ

(ω −KR sin θ)2
cos θ dθ =

1

KR

∫ 2π

0

sin θ

ω −KR sin θ
dθ

=
1

(KR)2

∫ 2π

0

(

ω

ω −KR sin θ
− 1

)

dθ

=
1

(KR)2
(ωC−1

ω − 2π).
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Therefore

hdc(λ) =
1

(KR)2

∫

|ω|≥KR

λωCω
λ2 + ω2 − (KR)2

(ωC−1
ω − 2π)g(ω)dω

=
1

(KR)2

∫

|ω|≥KR

λ

λ2 + ω2 − (KR)2
(ω2 − 2πωCω)g(ω)dω

=

∫

|ω|≥KR

λ

λ2 + ω2 − (KR)2
· |ω|
|ω|+

√

ω2 − (KR)2
g(ω)dω.

(19)

We repeat this procedure to compute the smooth measures (λI −Mω)
−1D

(

(cos θ)ρω
)

for ω ∈ Ωd; express this measure in the form βω(θ)dθ, where now βω satisfies the equation

λβω(θ) + vω(θ)β
′
ω(θ)− v′ω(θ)βω(θ) = −Cω(vω(θ) sin θ + v′ω(θ) cos θ).

We put βω(θ) = c0(ω) + c1(ω) cos θ + c2(ω) sin θ and solve for the coefficients ci as before,

this time obtaining

c0(ω) =
KRλCω

λ2 + ω2 − (KR)2
,

c1(ω) =
Cω(ω

2 − (KR)2)

λ2 + ω2 − (KR)2
,

c2(ω) = − λωCω
λ2 + ω2 − (KR)2

.

The contribution hds to hs from the drifting frequencies is given by

hds(λ) = −
∫

Ωd

〈sin θ, (λI −Mω)
−1D

(

(cos θ)ρω
)

〉g(ω)dω

= −
∫

|ω|≥KR

(
∫ 2π

0

sin θ(c0(ω) + c1(ω) cos θ + c2(ω) sin θ)v
−2
ω (θ) dθ

)

g(ω)dω

= −
∫

|ω|≥KR

∫ 2π

0

c0(ω) sin θ + c2(ω) sin
2 θ

(ω −KR sin θ)2
dθ.
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Substituting the coefficients c0 and c2 gives

hds(λ) =

∫

|ω|≥KR

λCω
λ2 + ω2 − (KR)2

(
∫ 2π

0

−KR sin θ + ω sin2 θ

(ω −KR sin θ)2
dθ

)

g(ω)dω

=

∫

|ω|≥KR

λCω
λ2 + ω2 − (KR)2

(
∫ 2π

0

(

1

ω −KR sin θ
− ω cos2 θ

(ω −KR sin θ)2

)

dθ

)

g(ω)dω

=

∫

|ω|≥KR

λ

λ2 + ω2 − (KR)2
·

√

ω2 − (KR)2

|ω|+
√

ω2 − (KR)2
g(ω)dω.

(20)

So the characteristic functions hc and hs are given by hc(λ) = hlc(λ) + hdc(λ) and hs(λ) =

hls(λ) + hds(λ), with the functions hlc, h
d
c , h

l
s and hds given by (16), (17), (19) and (20)

above. This completes the derivation of the characteristic functions.

8. Roots of the Characteristic Equations

Our final task is to prove Proposition 4, which we restate here for convenience:

Proposition 4. The equation hc(λ) = K−1 has at most one nonzero root λ, and only

if K > Kl. This root satisfies −
√

(KR)2 − 1 ≤ λ < 0. In addition, λ = 0 is a root if

and only if K = Kc. The equation hs(λ) = K−1 has λ = 0 as its only root in all cases.

Furthermore, the roots of the characteristic equations are in fact eigenvalues of L on Ec

and Es respectively.

Proof. Notice first that

hls(0) =
1

(KR)2

∫ KR

−KR

√

(KR)2 − ω2 g(ω)dω =
KR2

(KR)2
= K−1

and hds(0) = 0 in the partially locked case, so λ = 0 is always a root of the characteristic

equation hs(λ) = K−1. This is no surprise, since the rotational symmetry of the Kuramoto

model implies that λ = 0 is always an eigenvalue of L. The corresponding eigenvector is

just Dρ ∈ Es: we have S(Dρ) = −R, and so

L(Dρ)ω = −D(vωDρω −KR(cos θ)ρω)

= −D2(vωρω) = 0.
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Next, let’s consider the fully locked case, so Ω = [−1, 1], K ≥ Kl (equivalently, KR ≥
1), hc = hlc and hs = hls. If λ ∈ C has nonzero imaginary part, then the same is true for

hc(λ) and hs(λ); to see this, multiply the numerator and denominator in the integrands for

hlc(λ) and h
l
s(λ) by λ+

√

(KR)2 − ω2. Hence the characteristic equations can have only real

roots in this case. So let λ ∈ R. If λ ≤ −KR then hc(λ), hs(λ) < 0, so λ is not a root of the

characteristic equations. (Note that hc(−KR) is well-defined, whereas hs(−KR) = −∞.)

hc(λ) and hs(λ) are undefined for −KR < λ < −
√

(KR)2 − 1, since the integrands in the

formulas for hc(λ) and hs(λ) have simple poles at ω = ±
√

(KR)2 − λ2 ∈ (−1, 1). The

functions hc and hs are both defined and positive on (−
√

(KR)2 − 1,∞), but might take

the value +∞ at λ = −
√

(KR)2 − 1. And both functions are strictly decreasing on the

interval [−
√

(KR)2 − 1,∞), so the characteristic equations each can have at most one

root here. Since we already saw that hs(0) = K−1 in all cases, we conclude that there are

no other roots to the characteristic equation hs(λ) = K−1 in the fully locked case.

Next we claim that hc(0) ≤ K−1, which implies that any root λ of the equation

hc(λ) = K−1 must satisfy λ ≤ 0. To see this, observe that

hc(0)−K−1 =
1

(KR)2

∫ KR

−KR

(

ω2

√

(KR)2 − ω2
−
√

(KR)2 − ω2

)

g(ω)dω

= 2

∫ 1

0

(

s2√
1− s2

−
√

1− s2
)

g(KRs)ds.

The function h(s) = s2√
1−s2 −

√
1− s2 changes sign from negative to positive at s0 =

√
2
2 ,

and g is non-increasing on [0, 1] by assumption. Therefore

1

2

(

hc(0)−K−1
)

=

∫ s0

0

h(s)g(KRs)ds+

∫ 1

s0

h(s)g(KRs)ds

≤ g(KRs0)

∫ s0

0

h(s)ds+ g(KRs0)

∫ 1

s0

h(s)ds

= g(KRs0)

∫ 1

0

(

s2√
1− s2

−
√

1− s2
)

ds = 0.

This inequality is strict except in one special case: when KR = 1 and g is constant on

[0, 1]; recall that in this case the two critical coupling constants Kc and Kl are equal. So

in the fully locked case with K > Kl the equation hc(λ) = K−1 has at most one root,

which satisfies −
√

(KR)2 − 1 < λ < 0. If K = Kl then the equation hc(λ) = K−1 has
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no roots, except for λ = 0 in the special case where g is constant on [0, 1], or equivalently

when K = Kl = Kc .

If K > Kl, then the characteristic equation hc(λ) = K−1 has a root in the interval

[−
√

(KR)2 − 1, 0) if and only if hc(−
√

(KR)2 − 1) ≥ K−1. If we examine the formula for

hc(−
√

(KR)2 − 1), we see that we can make this value as small or as large as we like by

varying the density function (to make hc(−
√

(KR)2 − 1) small, take the density function

to be concentrated at ω = 0, where the integrand vanishes). So it is possible that hc has

no roots in [−
√

(KR)2 − 1, 0). If the endpoint λ = −
√

(KR)2 − 1 ∈ σ(M) happens to be

a root, then we need to check that the associated eigenvector η given by

ηω =
ω

KR
(λ+

√

(KR)2 − ω2)−1Dδθω

is in fact an element of Ec. The coefficient function above becomes infinite as ω →
±1, but is nevertheless integrable against g(ω), since the integrand in the formula for

hc(−
√

(KR)2 − 1) has the same asymptotic behavior as ω → ±1. So η is a bona fide

element of Ec, and λ is an eigenvalue of L on Ec. The same thing happens in the special

case with KR = 1 and g constant on [−1, 1]: we have

ηω =
ω√

1− ω2
Dδθω

and the coefficient function is integrable on [−1, 1], so λ = 0 is an eigenvalue of L on Ec.

This completes the proof for the fully locked case.

Now we turn to the partially locked case K < Kl, and prove that both characteristic

equations have no roots λ 6= 0. Let’s begin with λ ∈ R. If λ ≤ −KR, then hc(λ),

hs(λ) < 0, and if −KR < λ < 0, then hc(λ) and hs(λ) are undefined. To complete the

proof for λ ∈ R, we will establish that hc(λ) < K−1 and hs(λ) < K−1 for all λ > 0. To

simplify the notation a bit, replace λ with KRλ; then the first inequality is equivalent to

∫ 1

0

(

s2

λ+
√
1− s2

−
√

1− s2
)

g(KRs)ds+

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

g(KRs)ds < 0

for all λ > 0. As before, the function h(s) = s2

λ+
√
1−s2 −

√
1− s2 changes sign from negative

to positive at a unique point s0 ∈ (0, 1), so

∫ 1

0

(

s2

λ+
√
1− s2

−
√

1− s2
)

g(KRs)ds ≤ g(KRs0)

∫ 1

0

(

s2

λ+
√
1− s2

−
√

1− s2
)

ds;
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the integral on the right is negative for λ > 0 and g is non-increasing, so we have

∫ 1

0

(

s2

λ+
√
1− s2

−
√

1− s2
)

g(KRs)ds ≤ g(KR)

∫ 1

0

(

s2

λ+
√
1− s2

−
√

1− s2
)

ds.

For the second integral, observe that

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

g(KRs)ds < g(KR)

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds

(strict inequality holds because g(KR) > 0 and g(ω) → 0 as ω → ∞). So it suffices to

prove that

∫ 1

0

(

s2

λ+
√
1− s2

−
√

1− s2
)

ds+

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds ≤ 0

for all λ > 0. These integrals can be evaluated explicitly, and in fact equality holds above:

∫ 1

0

s2

λ+
√
1− s2

ds+

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds =

∫ 1

0

√

1− s2 ds =
π

4

if Re λ > 0. The relevant explicit formulas are

∫ 1

0

s2

λ+
√
1− s2

ds = −π
2
λ2 + λ+

π

4
+ λ
√

λ2 − 1 tan−1
√

λ2 − 1

and
∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds =
π

2
λ2 − λ− λ

√

λ2 − 1 tan−1
√

λ2 − 1

for λ > 1. Keep in mind that the integrals above are analytic functions on the domain

Reλ > 0, so proving they agree for λ > 1 is sufficient.

The proof of the inequality hs(KRλ) < K−1 is similar: we need

∫ 1

0

(

1− s2

λ+
√
1− s2

−
√

1− s2
)

g(KRs)ds+

∫ ∞

1

λ

λ2 + s2 − 1
·

√
s2 − 1

s+
√
s2 − 1

g(KRs)ds < 0

for all λ > 0. We have

∫ 1

0

(

1− s2

λ+
√
1− s2

−
√

1− s2
)

g(KRs)ds = −λ
∫ 1

0

√
1− s2

λ+
√
1− s2

g(KRs)ds

≤ −λg(KR)
∫ 1

0

√
1− s2

λ+
√
1− s2

ds
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and

∫ ∞

1

λ

λ2 + s2 − 1
·

√
s2 − 1

s+
√
s2 − 1

g(KRs)ds < λg(KR)

∫ ∞

1

1

λ2 + s2 − 1
·

√
s2 − 1

s+
√
s2 − 1

ds

as before. This time we find that

∫ ∞

1

1

λ2 + s2 − 1
·

√
s2 − 1

s+
√
s2 − 1

ds =

∫ 1

0

√
1− s2

λ+
√
1− s2

ds

= −π
2
λ+ 1 +

λ2√
λ2 − 1

tan−1
√

λ2 − 1

for all λ > 1, and this completes the proof that the characteristic equations have no

non-zero real roots.

Now let’s rule out any complex roots. Since hc(λ) = hc(λ) and hs(λ) = hs(λ), it

suffices to prove that Imλ > 0 implies Imhc(λ) < 0 and Imhs(λ) < 0. Let Imλ > 0. If λ

is pure imaginary, then hc(λ) and hs(λ) are defined only if Ω = [−1, 1] and Imλ ≥ KR,

and it’s easy to see that Imhc(λ) < 0 and Imhs(λ) < 0 in this case (all the integrands

have negative imaginary part). So assume Reλ 6= 0. Replacing λ with KRλ as before, we

see that it suffices to prove

Im

∫ 1

0

s2

λ+
√
1− s2

g(KRs)ds+ Im

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

g(KRs)ds < 0

and

Im

∫ 1

0

1− s2

λ+
√
1− s2

g(KRs)ds+ Im

∫ ∞

1

λ

λ2 + s2 − 1
·

√
s2 − 1

s+
√
s2 − 1

g(KRs)ds < 0

for Imλ > 0. The proofs of these two inequalities are identical, so we’ll present only the

first one.

Im

(

s2

λ+
√
1− s2

)

< 0

for 0 < s < 1, so

Im

∫ 1

0

s2

λ+
√
1− s2

g(KRs)ds ≤ g(KR) Im

∫ 1

0

s2

λ+
√
1− s2

ds.

The function

Im

(

λ

λ2 + s2 − 1

)

= Imλ

(

s2 − |λ|2 − 1

|λ2 + s2 − 1|2
)
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changes sign from negative to positive at s0 =
√

|λ|2 + 1. So by the same argument as

before,

Im

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

g(KRs)ds < g(KRs0) Im

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds.

Therefore

Im

∫ 1

0

s2

λ+
√
1− s2

g(KRs)ds+ Im

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

g(KRs)ds

< g(KR) Im

∫ 1

0

s2

λ+
√
1− s2

ds+ g(KRs0) Im

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds

≤ g(KRs0) Im

∫ 1

0

s2

λ+
√
1− s2

ds+ g(KRs0) Im

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds

= g(KRs0) Im

(
∫ 1

0

s2

λ+
√
1− s2

ds+

∫ ∞

1

λ

λ2 + s2 − 1
· s

s+
√
s2 − 1

ds

)

.

The right hand side is 0 if Reλ > 0, so we’re done in this case. If Reλ < 0, let λ∗ = −λ
be the reflection of λ in the imaginary axis. Then

Im

(

s2

λ+
√
1− s2

)

< Im

(

s2

λ∗ +
√
1− s2

)

for 0 < s < 1 and

Im

(

λ

λ2 + s2 − 1

)

= Im

(

λ∗

(λ∗)2 + s2 − 1

)

for all s ≥ 1, so we are done by the previous case.

To finish up, we need to see when λ = 0 is a root of the characteristic equation

hc(λ) = K−1. The same argument as in the fully locked case shows that this holds if and

only if g is constant on [−KR,KR], which is equivalent to K = Kc. Since 0 ∈ σ(M),

we need to check that the associated eigenvector η given by the formulas in Section 7 is a

bona fide element of the tangent space E. If |ω| ≤ KR, η is given by

ηω =
ω

KR
· 1
√

(KR)2 − ω2
Dδθω ,

and if |ω| > KR, ηω(θ) = αω(θ)dθ with

αω(θ) =
1

2π
· |ω|
√

ω2 − (KR)2
· −KR+ ω sin θ

(ω −KR sin θ)2
.
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The function ω 7→ ((KR)2 − ω2)−
1
2 has an integrable singularity at ω = ±KR, and

fortunately, the same thing happens for the drifting frequencies. To see this, express

ω = KR(1 + ǫ), with 0 < ǫ < 1, to analyze the singularity at ω = KR (the singularity at

−KR has the same behavior). Then

αω(θ) =
1

2πKR
· 1 + ǫ√

2ǫ+ ǫ2
· −1 + (1 + ǫ) sin θ

(1 + ǫ− sin θ)2
=

1

2πKR
· 1 + ǫ√

2ǫ+ ǫ2
(log(1 + ǫ− sin θ))

′′
.

If φ is any C∞ function on S1, then

〈φ, ηω〉 =
1

2πKR
· 1 + ǫ√

2ǫ+ ǫ2

∫ 2π

0

φ′′(θ) log(1 + ǫ− sin θ)dθ

Hence ‖ηω‖, taken in C2(S1)∗, satisfies

‖ηω‖ ≤ c√
ǫ

∫ 2π

0

| log(1 + ǫ− sin θ)|dθ

for some constant c, and the integral above is bounded as ǫ→ 0 (this follows from the fact

that log x has an integrable singularity at 0). Hence η is an element of E, and the proof is

complete.

QED

The eigenvector described above has an interesting interpretation. As we saw in

Section 4, if the density function g is constant on [0, ω0], the model with critical coupling

Kc = 2/πg(0) has a family ρ(t) of special positive states parametrized by t ∈ (0, ω0]. The

tangent vector η described above is exactly the derivative of ρ(t) with respect to t, at the

value t = KR.

Remark on σ(L) for the incoherent state. All our methods apply as well to the

incoherent state, and are in fact much easier to work through in this case. The details are

in [Strogatz and Mirollo 1991], so we present here a brief summary of the results in the

context of our current formulation. There are no locked frequencies now, and the operator

Mω is just −ωD on S1, which has spectrum iωZ. So M has purely continuous spectrum

Ri, and the characteristic functions hc and hs are given by

hc(λ) = hs(λ) =
1

2

∫ ∞

−∞

λ

λ2 + ω2
g(ω)dω.
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The only possible roots of the characteristic equation are real and positive, so the contin-

uous spectrum of L is also Ri. If λ > 0, we express

hc(λ) =

∫ ∞

0

1

1 + s2
g(λs)ds

to see that hc is strictly decreasing on (0,∞). Furthermore

lim
λ→0+

hc(λ) = g(0)

∫ ∞

0

1

1 + s2
ds =

πg(0)

2
= K−1

c ,

so the characteristic equation hc(λ) = K−1 has a root λ > 0 if and only if K > Kc, and

hence the incoherent state is linearly unstable in this case. It is of course no coincidence

that the incoherent state loses stability at the same critical coupling at which the positive

fixed states are born.

9. Concluding Remarks

We can now completely describe the spectrum of L for all special positive states in the

infinite-N Kuramoto model (Figure 2). For the fully locked case withK > Kl the spectrum

consists of the closed interval [−KR,−
√

(KR)2 − 1], at most one negative eigenvalue in

[−
√

(KR)2 − 1, 0), and the eigenvalue at 0 coming from the rotational symmetry of the

Kuramoto model. This result is not surprising; the corresponding finite-N model [Mirollo

and Strogatz 2005] has stable fixed points for most choices of frequencies ωi as N → ∞,

provided the coupling K > Kl. The eigenvalues for these fixed points are all negative, and

so σ(L) is in some sense just the limit of the spectrum in the finite-N case.

When we make the transition to the partially locked case at K < Kl, the spectrum

explodes to include the entire imaginary axis, along with the segment [−KR, 0], as shown
in Figure 2c. The presence of negative values in σ(L) suggests some sort of asymptotic

stability, but the presence of Ri in the spectrum suggests more neutral behavior. So in

some sense what we have accomplished is to rule out any kind of exponential convergence

to fixed states in the partially locked case.

On the other hand, the order parameter R(t) might still be able to approach its

stationary value exponentially fast, due to a phase-mixing mechanism akin to Landau

damping; this is known to occur for the incoherent state under some conditions [Strogatz et
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al. 1992; Balmforth and Sassi 2000]. One should also keep in mind that the partially locked

states have only been shown to be linearly neutrally stable. The small nonlinear terms

neglected here could therefore prove crucial to understanding the full stability properties

of the fixed states. A careful nonlinear analysis along these lines, ideally one that is global

in character, may be the next logical step in the ongoing attempt to make sense out of

Kuramoto’s marvelous calculation of 1975.
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Figures

Figure 1: Order parameter R for fixed states of the infinite-N Kuramoto model, as a

function of the coupling strength K. Points (K,R) on the curve C correspond to special

positive fixed states. Points (K,R) below the curve and above the K-axis correspond to

positive fixed states with nonzero weight functions w; all of these non-special states turn

out to be unstable, as we remark at the end of Section 6. The curve C has a vertical

segment if and only if the density function g is locally constant at 0. And when Ω, the

support of g, is [−1, 1], points on or above the hyperbola KR = 1 correspond to fully

locked states, and points below correspond to partially locked states. We present three

qualitatively different cases: (a) Ω = [−1, 1] and g(x) < g(0) for x 6= 0. (b) Ω = [−1, 1]

and g is locally constant about its maximum. Here C has a vertical segment at K = Kc,

corresponding to a 1-parameter family of special positive states, all with K = Kc but

different values of R. (c) Ω = R and g(x) < g(0) for x 6= 0. Full locking is never achieved.

Figure 2: The spectrum σ(L) for the special positive fixed states. (a) For fully locked

states with K > Kl, λ and 0 are eigenvalues. The rest of σ(L) is continuous. The zero

eigenvalue follows from the rotational symmetry of the Kuramoto model. In contrast, the

eigenvalue λ is not present in all cases; it exists if and only if hc(−
√

(KR)2 − 1) ≥ K−1,

as shown in the proof of Proposition 4. (b) For fully locked states at the bifurcation value

K = Kl, the spectrum contains an eigenvalue at 0, and the rest of σ(L) is continuous. (c)

For partially locked states with K < Kl, there is still an eigenvalue at 0. The rest of the

spectrum is continuous, as before, but now it includes the whole imaginary axis. Hence

the partially locked states are linearly neutrally stable.
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