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Abstract. The spiral is one of Nature’s more ubiquitous shape: it can be seen in
various media, from galactic geometry to cardiac tissue. In the literature, very specific
models are used to explain some of the observed incarnations of these dynamic entities.
Barkley [1,2] first noticed that the range of possible spiral behaviour is caused by the
Euclidean symmetry that these models possess.

In experiments however, the physical domain is never perfectly Euclidean. The
heart, for instance, is finite, anisotropic and littered with inhomogeneities. To capture
this loss of symmetry (and as a result model the physical situation with a higher degree
of accuracy), LeBlanc and Wulff introduced forced Euclidean symmetry-breaking
(FESB) in the analysis, via two basic types of perturbations: translational symmetry-
breaking (TSB) and rotational symmetry-breaking terms. In [3,4], they show that
phenomena such as anchoring and quasi-periodic meandering can be explained by
combining Barkley’s insight with FESB.

In this article, we provide a fuller characterization of spiral anchoring by studying
the effects of n simultaneous TSB perturbations, where n > 1.
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1. Introduction

Spiral waves have been observed in a variety of experimental contexts, ranging from
the well-known Belousov-Zhabotinsky chemical reaction to the electrical potential in
cardiac tissue [1,2,5-16]. In this last case, spiral waves are believed to be a precursor to
several fatal cardiac arrythmias (e.g. ventricular tachycardia and ventricular fibrillation)
[13,17,18]. A thorough understanding of the various dynamical properties of spiral waves
is therefore warranted.

One of the most interesting and fruitful approaches in recent years to the study
of spiral waves has been to use the theory of equivariant dynamical systems to derive
finite-dimensional models for many of the observed dynamical states and bifurcations of
spirals. The pioneer of this approach was Barkley, who realized that the experimentally-
observed transition from rigid rotation to quasi-periodic meandering and drifting
could be explained using only the underlying symmetries (the group SE(2) of all
planar translations and rotations) of the governing reaction-diffusion partial differential
equations: he derived an ad hoc system of 5 ordinary differential equations with SE(2)
symmetry which model a Hopf bifurcation from a rotating wave, and then showed
that this finite-dimensional system replicated the experimentally-observed transition to
meandering and drifting [1,2,19]. Sandstede, Scheel and Wulff later proved a general
center manifold reduction theorem for relative equilibria and relative periodic solutions
in spatially extended infinite-dimensional SE(2)-equivariant dynamical systems, thereby
providing mathematical justification for Barkley’s approach [20-24].

One of the advantages of this equivariant dynamical systems approach is that
one can often give universal, model-independent explanations of many of the observed
dynamics and bifurcations of spiral waves. For example, the above-mentioned Hopf
bifurcation from rigid rotation to quasi-periodic meandering and drifting has been
observed in both numerical simulations [16] and in actual chemical reactions [5]. Another
example is the anchoring/repelling of spiral waves on/from a site of inhomogeneity,
which has been observed in numerical integrations of an Oregonator system [8], in
photo-sensitive chemical reactions [7] and in cardiac tissue [11]. Using a model-
independent approach based on forced symmetry-breaking, LeBlanc and Wulff showed
that anchoring/repelling of rotating waves is a generic property of systems in which
the translation symmetry of SE(2) is broken by a small perturbation [3]. Similarly,
some dynamics of spiral waves observed in anisotropic media (e.g. phase-locking and/or
linear drifting of meandering spiral waves) have been shown to be generic consequences
of rotational symmetry-breaking [4,12,25-28].

Consider as a paradigm a system of reaction-diffusion partial differential equations

ou

E:D-Vzujtf(u) (1.1)
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where u is a k-vector valued function of time and two-dimensional space, D is a
matrix of diffusion coefficients and f : R¥ — R* is a smooth reaction term. Many
of the phenomena in which spiral waves are observed experimentally are modeled by
systems of the form ([CTl). Moreover, Scheel has proved that systems of this form can
admit time-periodic, rigidly rotating spiral wave solutions [29]. Implicit in the form of
equations (L)) is the fact that the medium of propagation is completely homogeneous
and isotropic. Mathematically, this is represented by the invariance of (LIl) under the
transformations

u(t,x) — u(t, x1 cos 0 — xosin O + py, xysin 0 + x5 cos 0 + pa), (1.2)

where (0, p1,p2) € S' x R? and z € R? [30,31]. The group of all transformations of the
form (C2) is isomorphic to the special Euclidean group SE(2) of all planar translations
and rotations.

When studying the effects of inhomogeneities on the propagation of spiral waves,
one must consider a larger class of models than ([[CII), since inhomogeneous media do
not possess Euclidean invariance. For example, one might consider systems of the form

ou 9 9

E:D-V u+ f(u)+ Ag(u, ||z]|%,A) (1.3)
which are perturbations of ([LJ]). Such systems could model a spatially extended
reaction-diffusion medium in which there is one site of inhomogeneity (with circular
symmetry) centered at the origin of R?. For instance, the Oregonator model which
is used to study spiral anchoring in [8] is of the form (C3). When A # 0, (I3) has
rotational symmetry about the origin, but does not possess any translation symmetry.
This phenomenon is called forced translational symmetry-breaking; it is studied in detail
in [3].

In this paper, we use a similar equivariant dynamical systems approach to study
the problem of spiral wave dynamics (specifically, with regards to anchoring/repelling)
in media in which there are several sites of inhomogeneities (as opposed to just one site),
of which cardiac tissue is an important example.

We will make several simplifying assumptions which are meant to make the analysis
more tractable. First, we assume that the inhomogeneities consist of a finite number of
“sources” which are localized near distinct sites (1, ..., (, in the plane. Second, we will
assume that these n sources of inhomogeneity are independent in the following sense:
we introduce n independent real parameters Aq, ..., A\, which give some measure of the
relative “amplitudes” of the sources. In particular, when all the \; are zero except, say
Ai= # 0, then there is only one source of inhomogeneity localized near the point (.
In that case, we will make a third simplifying assumption: the single inhomogeneity
is circularly symmetric around the point (;.. The following is an example of a class
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of reaction-diffusion partial differential equations which are perturbations of (LTl) and
which might model such a situation:

we = DAu+ f() + 3 A [Dillle = GIE NAu+ fiw e = GIZ V], (14)

i=1

where the functions ﬁj, f; are bounded and smooth enough. The goal of this paper is to
provide a detailed analysis of a larger class of abstract dynamical systems which share
the symmetry properties of ([C4):

(S1) when \; = --- = X\, = 0, the systems are invariant under the action ([CZ) of the
group SE(2),

(S2) when all the \; are zero except A, the systems have rotational symmetry about
the point (., but they do not generically possess translation symmetries,

(S3) when two or more of the \; are non-zero, the systems do not generically possess
any of the symmetries ([L2) except for the identity.

Our results will apply to the subclass LCy of systems whose members also generate a
smooth local semi-flow on a suitable function space [20-24], as well as some technical
conditions which will be specified as we proceed.

The paper is organized as follows. In the second section, we derive the center bundle
equations of the semi-flow of a system in LCy, near a hyperbolic rotating wave. We state
and prove our main results in the third section: to wit, spiral anchoring is generic in
a parameter wedge. Then, we provide a visual criterion characterizing the anchoring
wedges in the case n = 2. Finally, we perform numerical experiments demonstrating
the validity of our results.

2. Reduction to the Center Bundle Equations

Let X be a Banach space, Y C R" a neighborhood of the origin and ®, 5 be a smoothly
parameterized family (parameterized by A € U) of smooth local semi-flows on X.
Let SE(2) = C+S0O(2) denote the group of all planar translations and rotations,
and let
a:SE(2) — GL(X) (2.1)

be a faithful and isometric representation of SE(2) in the space of bounded, invertible
linear operators on X. For example, if X is a space of functions with planar domain, a
typical SE(2) action (such as (L2) in the preceding section) is given by

(a(y)u)(z) = u(y™'(z)), 7 € SE(2).
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We will parameterize SE(2) as follows: SE(2) & C x S, with multiplication given by

(1, 91) - (D2, p2) = (€¥'p2 + p1, P14 pa), ¥ (D1, 1), (D2, p2) € C x Sh. For fixed € € C,
we define the following subgroup of SE(2):

SO(2)e = {(£,0)- (0,0) - (=£,0) | 0 € S"}

which is isomorphic to SO(2), and represents rotations about the point {. We will
assume the following symmetry conditions on the family ®; » of semi-flows.

Hypothesis 1 There exists n distinct points &, ..., &, in C such that if e; denotes the
jth vector of the canonical basis in R™, then Vu € X,a #0,t > 0,

(I)LOch (a(y)u) = a(’Y)(I)t,aej (u) <= vy € S@(Q)gj, and
Py o(a(v)u) = a(y)Pro(u), Vv € SE(2).

Hypothesis [ basically states that (a) when A = 0, the semi-flow ®,, is SE(2)-
equivariant; (b) when A # 0 is near the origin and along the jth coordinate axis of R",
the semi-flow is only SO(2)¢;-equivariant (i.e. it only commutes with rotations about
the point ¢;), and (c) when A is not as in (a) or (b), the semi-flow has (generically)
trivial equivariance.

We are interested in the effects of the forced symmetry-breaking on normally
hyperbolic rotating waves. Therefore, we will assume the following hypothesis.

Hypothesis 2 There exists u* € X and Q* in the Lie algebra of SE(2) such that
et is a rotation and Py o(u*) = a(e® )u* for all t. We also assume that the set
{N € C ||\ > 1} is aspectral set for the linearization a(e* ) D®y o(u*) with projection

P, such that the generalized eigenspace range(P,) is three dimensional.

For sake of simplicity, we will only be interested in one-armed spiral waves; there-
fore, we assume that u* in hypothesis Pl has trivial isotropy subgroup. While hypotheses
1 and 2 hold for a large variety of spirals (such as decaying spirals), there is also a large
family of spirals for which they don’t (including Archimedean spirals) [29].§

Let LCy be the collection of all abstract dynamical systems that do satisfy them, as well
as all other hypotheses required in order for the center manifold theorems of [20-23] to
hold, and let ®, 5 be produced by some member of LCy. It follows that for A\ near the
origin in R", the essential dynamics of the semi-flow ®, y near the rotating wave reduces

§ However, even in the case of Archimedean spirals (for which hypothesis 1 fails), finite-dimensional
center-bundle equations which share the symmetries of the underlying abstract dynamical systems have
been shown to possess a definite predictive value in terms of possible dynamics and bifurcations of these
spiral waves [1-5].
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to the following ordinary differential equations on the bundle C x S! (see [32] for more
details):

‘ - (2.2)
¢ =w+G?(p,p, 0, M)

where V' is a complex constant, w # 0 is a real constant, G? and G¥ are smooth,
uniformly bounded in p, and such that GP(p,p, ¢,0) = 0 and G¥(p, D, ¢,0) = 0. If X is
near the origin, we can re-scale time along orbits of ([Z2) to get

)= €0+ G(p,p,p, A
z? e“v+G(p, D, 0, ) (2.3)
p=1

where G is smooth, uniformly bounded in p, and such that G(p,D, ¢,0) = 0. Of course,
G is not completely arbitrary because of the symmetry conditions in hypothesis [l A
simple computation and Taylor’s theorem lead to the following.

Proposition 2.1 The symmetry conditions in hypothesis O imply that the equations
(Z3) have the general form

v > NH((p—&)e Y, (p— &) N (2.4)

i=1

p= eie(t)

where, without loss of generality, p(t) =1t, v € C, A = (A1, ..., \,), and the functions
H; are smooth and uniformly bounded in p.

A 27 —periodic solution p, of (Z4) is called a perturbed rotating wave of (Z4]). Define
the average value

[pA]a = %/O;A(t) dt. (2.5)

If the Floquet multipliers of p, all lie within (resp. outside) the unit circle, we shall say
that [px]a is the anchoring (resp. repelling, or unstable anchoring) center of pj.

In the following section, we will perform an analysis of anchoring of perturbed
rotating waves of (4] for parameter values near A = 0.

3. Analysis of the Center Bundle Equations

Equations (Z7]) represent the dynamics near a normally hyperbolic rotating wave
for a parameterized family ®; ) of semi-flows satisfying the forced-symmetry breaking
conditions in hypothesis [l We start with a brief review of the case n = 1 which was
studied in detail in [3], and then present new results on the general n case.
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3.1. The Case n =1

In this case, we may assume without loss of generality that £ = 0, so that (4] has the
form

p = e [v + \H (pe™™, pe™, )\)} (3.1)
where \ € R is small. By writing w = pe~%4 iv, this system becomes
W = —iw + AH (w,m, \) (3.2)
where H(w,w,\) = H(w — iv,w + v, A). The following theorem is proved in [3].

Theorem 3.1 Let a = Re(D1H(0,0,0)), where H is as in (8H). If a # 0, then for all
A # 0 small enough, (1) has a hyperbolic rotating wave

p(t) = (—iv +ON)) e,  o(t) =t (3.3)
The origin [p|a = 0 is an anchoring center if aX < 0; it is a repelling center if a\ > 0.

Remark 3.2 In the case where the semi-flow ®, ) is generated by a system of planar
reaction-diffusion partial differential equations, the solution (B3]) represents a wave
which is rigidly and uniformly rotating around the origin in the plane. In the case where
a)\ < 0, the rotating wave is locally asymptotically stable. When a\ > 0, the rotating
wave is unstable (see [8] for an experimental characterization of this phenomenon in an
Oregonator model).

3.2. The Casen > 1

One might think that the combination of many perturbations would just combine the
effects of each perturbation, so that spirals would be observed anchoring at each of the
centers, but we shall see that this is not usually the case.

By re-labeling the indices in (4] if necessary, we can temporarily shift our point
of view so that & plays the central role in the following analysis. Then, under the
co-rotating frame of reference z = p — & + ie''v, (24 becomes

t=p—elvo=e"Y NH;((z— Gle "~ iv,(z = {;)e"+ i, \), (3.4)
j=1
where (;j =¢§; =& for j=1,...,n.

When A\; # 0 and Ay = --- = )\, = 0, we find ourselves in the situation described
in the previous subsection. Now, set ¢ = Ay, 1y = 1 and \; = pje for j =2,...,n and
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= (o, ..., p1y) € R"L Then ([BA) can be viewed as a perturbation of the correspond-
ing equation in the case n = 1. Note that (; =0 and A = (1, p)e.

Equation (B4 rewrites as
3 = ege® Z,ujﬂj((z — e =i, (z — (e i, (1, pe). (3.5)
j=1

Let flj(w,w,a,u) = Hj(w — 0, W + i1, (1,,u)5) for j =1,...n. Then (BX) becomes

i =ce"K(ze " ze" e, 1) (3.6)
where K(w,w,t, e, p) = Zujflj(w — (e " w — Zjeit,e,u) is 2w —periodic in t.
=1
Set a; = D1 H,(—iv,40,0). The time—27 map P of (BH) is given by

P(z,Z,e,u) = z + 2me [alz + O(|z\2) +O(g, pa, .. -, ,un)} (3.7)

near z = 0 and (e, u) = (0,0).

Hyperbolic fixed points of ([B) correspond to hyperbolic 2r—periodic solutions
of (BH), and so to perturbed rotating waves of (Z4l), that is, the path traced by the
solution wave need not be circular. As z = 0 is not generally a fixed point of (B1), these
perturbed rotating waves may not be centered at & . Indeed, let

B(z,z,e,p1) = a1z + O(|z]*) + O(e, p2, - . ., i) (3.8)

be the function inside the square brackets in (B1). Note that B(0,0,0,0) = 0 and that,
generically, D;B(0,0,0,0) = oy # 0. By the implicit function theorem, there is a unique
smooth function z(e, ) defined near (e, ) = (0,0) with z(0,0) = 0 and

B(z(e, 1), 2(e, 1), 6,11) =0 (3.9)
near z = 0. This leads to the following theorem.

Theorem 3.3 Let oy be as in the preceding discussion, with Re(ay) # 0. If the
parameters are small enough to satisfy the conditions outlined in the proof below, the
time—2m map ([379) has a unique family of hyperbolic fized points, whose stability is
exactly determined by the sign of € Re(ay).

Proof: Let B be as in (B8) and z(e, ) be the unique continuous function solving the
equation B = 0 for small parameter values, as asserted above. When ¢ = 0, any point
of R? is a non-hyperbolic fixed point of P and so, from now on, we will assume that
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e # 0. If that is the case, and if € and ||ps|| are small enough, the eigenvalues wy 2 (e, )
of DP(z(e, ), €, ) satisty

wia(e, w))* = 14 4me Re(oy) + €0(e, p) # 1,

since Re(ay) # 0. In other words, the fixed point z(e,p) is hyperbolic. When
eRe(ay) < 0, the eigenvalues lie inside the unit circle and the fixed point is asymp-
totically stable; otherwise, it is unstable. O

We are now able to formulate and prove the following result.

Theorem 3.4 Suppose the hypotheses of theorem[Z3 are satisfied. Then there exists a
wedge-shaped region near A = 0 of the form

Wi ={(A1,..., ) €R™ 2 |\ < Wy |A], Wi,; >0, for j# 1and A\ near 0}

such that for all 0 # X € Wy, has a unique perturbed rotating wave Sy, with
center [Sy]a generically away from & . Furthermore, [Sy|a is a center of anchoring
when A Re(ay) < 0.

Proof: For j # 1, let W, ; > 0 be such that the conclusion of theorem holds for
any p; with ;| < Wi, Let W be as stated in the hypothesis. If (e, u) is such that
the time—27 map (B) has a hyperbolic fixed point z(e, ) near 0, then (BXH) has a
hyperbolic 2r—periodic orbit Z ,(t) centered at a point near z = ¢; = 0.

For j # 1, let A\; = € # 0 be small enough and set A\; = pje. Then A € W, as

(Nl = lpsllel < Wi h| for j#1,

and Z. ,(t) is a 2mr—periodic orbit for the parameter A\, which we denote by z,(¢). Since
p =z —ic'v + &, [Z3) has a unique perturbed rotating wave S;, with

1 [ :
[Sila = %/0 (2a(t) —ie™v + &) dt = & + [22]a.

If 0 # X € W is such that p; = \j/e # 0 is fixed for j = 2,...,n, then [z3]a = O(1) as
A1 — 0 and so [S}]a # &1, generically. The conclusion about the stability of S} follows
directly from theorem B3 O

Remark 3.5 When \ approaches the \;—axis away from the origin, [Si]a — &. On
the other hand, when the parameter values stray outside of W, all that can generically
be said with certainty is that solutions of (ZZl) locally drift away from &;, which cannot
then be a center of anchoring. After drifting, the spiral may very well get anchored at
some point far from &;, depending on the global nature of the perturbation functions

Hj in (IE)
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The preceding results have been achieved by considering (£4]) under a co-rotating frame
of reference around &;. Of course, since the choice for £ was arbitrary, corresponding
results must also be achieved, in exactly the same manner, when the viewpoint shifts
to another &. For j =1,...,n, let o; = Dy H;(—iv,iv,0) be the anchoring coefficients

of (24).

Theorem 3.6 Let k € {1,...,n}. If Re(ar) # 0, then there exists a wedge-shaped
region near A\ = 0 of the form

Wi ={(M,...,\) € R" o |\j| < Wi | Ael, Wi >0, for j # k and Ay near 0}

such that for all 0 # X € W, has a unique perturbed rotating wave S¥, with
center [S¥]a generically away from &,. Furthermore, [SY|a is a center of anchoring
when A\ Re(ay) < 0.

Clearly, the remark that appears after the proof of theorem B4 still holds.

4. Characterization of Spiral Anchoring (n = 2)

In the previous section, we described the (local) behaviour of spiral anchoring in small
wedges around the parameter coordinate axes. In this section, we present a fuller char-
acterization of spiral wave anchoring for the case n = 2.||

Let 0 # & € R?, Ag = (M,0),A¢ = (0,)9) € R? and let P : R? x R*? — R? be
a real analytic map with P(x,0) = x, DP(z,0) = I, for all # € R?, satisfying the
following conditions: for n € {0,¢},
(P1) Jw, > 0 such that P(n, A,) =0, for all ||A,|] < wy;
(P2) the eigenvalues of DP(n, A,) lie both outside or both inside the unit circle for all
07 [|Ay]] < ws;
(P3) there is a wedge region w, surrounding the coordinate axis generated by A, in
parameter space (see figure 1) in which P has a (locally) unique manifold z,(\)
such that, for all A € w,,
(a) P(zy(A),A) = zy(N);
(b) x,(A) — n as A approaches the coordinate axis away from the origin;
(c) x,(A) shares its stability with n in (P2).
When the hypotheses of theorem Bl hold, the associated time—27 map (BZ) (viewed in

real coordinates) satisfies (P1)—(P3). Numerous questions cannot be answered by local
analysis alone. For instance:

|| Most of the analysis can be extended and adapted to the general case n > 2, but at the cost of
substantial algebraic complications.
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A

We

A

Wo

Figure 1. Wedges in parameter space corresponding to property (P3).

) Can the wedges overlap? What does that imply for anchoring in (ZZ1)?

) Can a wedge contain its “opposite” coordinate axis?

(iii) If the wedges do not overlap, what is the nature of their complement?
)

If there is a complement with non-trivial measure, what kinds of dynamics can be
expected as the parameter vector \ traces a circle around the origin in parameter
space?

We will provide answers to these questions by first studying a specific map, then
extending our results to the general mapping.
4.1. A Specific Mapping
Consider the mapping P : R? x R? — R? given by
P(z,\) =z + 21 (A Fo () + MaGe(2)], (4.1)

where 0 # £ € R?, and Fy, G¢ are real analytic functions of z, A € R?.

Such a map is obtained by truncating the A—terms of order > 2 from the time—27
map (B), for instance. According to theorem B, the jacobians DFy(0) and DGe(§)
have a particular structure.

Proposition 4.1 If F4(0) =0, G¢(§) =0, and if

DFy(0) = (Z _ab> and DGe¢(€) = (2 _Cd>

where a,c # 0, then there exists w, > 0 such that the map defined by [1)) satisfies the
conditions (P1)—(P3).
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4.1.1. The search for fized points. Define A : R? — My(R) by
Aw) = [Re) Gew)]. (42)

Then, z is a fixed point of (1) for A € R? if and only if A(z) - A = 0, that is if and
only if A € L; = ker A(). Let (2, ) be such a pair. According to the implicit function
theorem, as long as

det (DxP(:i", ) — 1) — 472 det (leFo(;f;) + XQDGg(;z«)) £0, (4.3)

there is a neighbourhood W of A and a unique analytic function X : W — R? such that
X(A\) =2 and A(X(N))- A= 0 for all A € W. By construction, X () is a fixed point of
&) for all X € W.

If dim L; = 0 as a manifold, then L; = {0}. Consequently, the preceding implicit
function theorem construction fails, which contradicts property (P3). We need thus only
investigate fixed points Z for which dim L; # 0. As the quantities under consideration

are analytic, it can further be assumed that rank A(Z) = 1 and dim L; = 1.

We now show how to optimally extend the wedge regions w, using property (P3).
Let (2%, \), (24, Ax) € R? x (R? — {0}) be such that z*, z, are fixed points of ([EII),
A € Ly, A\ € L, and ([E3J) is satisfied for both pairs. According to the implicit
function theorem, there are open neighbourhoods W*, W, of \*, A\, € R? respectively,
and a pair of unique real analytic functions X* : W* — R?, X, : W, — R? for which
X*(N) =2, X,(\) =z, and

A(X*(A)-A=0, forall A€ W*, A(X.(A)-A=0, for all A € W,.

Lemma 4.2 [f AT € W = W* N W, is such that X*(A) = X.(AY), then X* = X,
on Wr

Proof: The assertion follows from the uniqueness of the real analytic functions X*, X,
in the implicit function theorem. O

Denote the punctured open disc of radius w, centered at the origin by B(0,w,). Let
n € {0,&}, w. > 0 be as in proposition Elland 0 # A, € w, be a point on the appropri-
ate coordinate axis, as in properties (P1) and (P2). According to these same properties,
n is a fixed point of ([ETI) for A, and det (D, P(n,A,) — 1) # 0.

Lemma then implies the existence of a maximal open region W, defined as a
union of open sets W C B(0,w,) (in much the same way as the maximal interval is
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v Wo
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Yo Wk )\1

Figure 2. Wedge angles, with optimal wedge-like regions in parameter space.

built in the Fundamental Theorem of ODE [33]), containing w, N B(0, w,) and for which
there is a unique real analytic function X, : W, — R? satisfying z,, = X, |w,,, where z,
is as in property (P3). Since Z is a fixed point of ) for 0 # A whenever \ € L;, W,
is described (in polar coordinates) by either one of

W, ={(r,0): 0 <r <w,and s, — ¢, <0 <s,+ ¢’
W, = {(r,0) : 0 < r <w, and 0 € [0, 27|}

where ¢, ¢, € (0,7/2] and

0 ifn=20
5y = { = (4.4)
/2 ifn=~¢.

In the latter case, we will say that W, is catastrophe-free. In the former case, the quan-
tities ¢, , p;f € (0,7/2] are called the fore-angle and post-angle of W, respectively (see
figure 2).

The implicit function theorem fails to extend A(X,(A)) - A = 0 (that is, it fails to
extend W,)) at (z*, \*) if either

(C1) det (N{DFy(z*) + A5DGe(x*)) = 0 and X, (A) = 2* as A = \*, or

(C2) |IX,(A)]| = 00 as A — A%

Such events will be referred to as fold and co— catastrophes, respectively, or catastrophes,
collectively.
Let 0 < p < w, and set

Yols) = p (cos(s), sin(s))" . (4.5)
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Assume W, is not catastrophe-free. Starting at (p,s,) € W,, denote the angles in
(0,7/2] measuring the first clockwise and the first counter-clockwise occurrence of a
catastrophe along v, by 6, and 6, respectively. Then, ¢;- = s, £ 6.

4.1.2. Fold bifurcation points. Modulo a simple regularity condition (see below), (C1)
is equivalent to the existence of a fold bifurcation curve in parameter space for (EII).
Indeed, in that case, (z*, \*) is a solution of

P(x,\) —x =0, det (D P(x,\) —1)=0. (4.6)

If the (full) Jacobian of the left-hand side of (fE0) has rank 3 at that point, (E0) has a
fold bifurcation curve through A\* [34]. Such solutions are in one-to-one correspondence
with regular solutions of

A(x) - A=0,  det(D,[A(z)-\]) = 0. (4.7)

Set

1 0 0 0 A 01 1 0
110:<0 0)7 ]01=<O 1>7 [:<1 O)’ €1=<O> and 62:<1)7

and define H,, H, : R? — R? by
Hi(w) = |LoA(@) + InA@)] er,  Ha(2) = [LoA(2) + InA2)]] ex,
A quick computation shows that () can be written as
A(x) - A =0, N Q(z)\ =0, (4.8)

where

and
B(z) = det DFy(x)
C(z) = det DHy(x) + det DHs(x) (4.9)
E(z) = det DG¢(z).
Let 2* be a fixed point of () and denote K, = {\: AT Q(z)\ = 0}. Generically, K-
consists of a single line or a pair of intersecting lines through the origin in parameter
space. Writing L, = L, N B(0,w,) and K, = K, N B(0,w,), we can summarize the
situation with the following proposition.

Proposition 4.3 If (z*, \*) is a regular solution of [ with {0} # Ly« C Ky«, then
(x*, A) is a fold bifurcation point of [ ) for all X € Ly-.
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4.2. The Visual Criterion
Set 3 ={(z,\) : P(x,\) =x and A € L, # {0}} and

k(3) = {x : 3\ # 0 such that (z,\) € 3}.

By construction, x(3) is the zero-set of det A(z) in R? and 0,¢ € k(3). Generically,
k(3) is a collection C of isolated planar curves, whose constituents come in two vari-
eties: bounded or unbounded.§ Denote this partition by C = Cg UCs and let Cy, C¢ be
the curves in C for which 0 € Cj and £ € Ck.

Let v, : [0,27] — R? be the circle of radius p around the origin, parameterized as
in ([{LH). For each (x,\) € 3, define L? and K? as the intersection of that circle with L,
and K, respectively, and let P, : R? x [0, 27] — R? be given by

P,(z,5) = x4 2mp[ cos(s) Fy(x) + sin(s)Ge(z)]. (4.10)

Then L? consists of two antipodal points {+a ,}, and the fixed points (z, s) of P, are in
one-to-one correspondence with the ‘lines’ of fixed points (z, L, ) of P for which L, # {0}
(see proposition E3)).

Set 3, = {(x,s) € R? x [0,27] : P,(z,s) =z and 7,(s) € L2} and

kp(3p) = {7 : (z,5) € 3,}.

By construction, k,(3,) = #(3). Thus for each C' € C, x,"(C) is a branch of fixed points
in the bifurcation diagram of P,. According to section LTIl the converse also holds:
each branch of fixed points in the bifurcation diagram of P, projects down via r, to a
curve in C.

The existence and location of fold catastrophes cannot be read directly from C, but
the next proposition remedies that situation.

Let (z*,a) € R?* x (R* — {0}) be such that ||| = p, a € L. C K’.. Recall that
A(z*) #0. Then, (A, (x*) Aj2(z*)) # 0 for some j € {1,2} and

Lx* = {)\ . AjJ(ZL'*))\l + Ajg(l'*))\g = O}
The function I'; : R? — R? defined by

j(x) = [Af,(2)B(z) — Aju(2)A;2(2)C(x) + AT (2) E(2)], (4.11)

q Indeed, were any such curves to intersect at x,, P would undergo a transcritical bifurcation along
k~1(z,). Such bifurcations are not generically permitted by (C1) and (C2).
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where B, C and FE are as in ([L9), is called the j—fold bifurcation function of (). Let
R; be the zero-set of I';(z) in R?. We shall say that z* is a transverse intersection of
k(3) and R; if det A(z*) =T';(2*) = 0 and

- det A(z*) _
r kD( D (%) ) 2.

Proposition 4.4 Let j € {1,2}. If x* is a transverse intersection of k(3) and R; such
that (Aj1(z*) Aj2(2*)) # 0 and either

(1) B(z*) =0 and A;1(2*)C(z*) — Aj2(2*)E(z*) =0 or
(2) B(xz*) # 0 and C(z*)?> — 4B(z*)E(z*) > 0,
then P, undergoes a fold catastrophe at (x*,s*) for all s* such that v,(s*) = £y~ ,.

Proof: By re-labeling the terms if necessary, we may assume A;; # 0. There are then
two possibilities.

(1) If B=0 and AjJC — Aj,2E = O’ then
Ky ={A: MMC+ ME=0}={\: X =0o0r \\C+ \E =0}

(a) If Ay = 0, then L,» = {(A\1,0) : \jA;; = 0} = {0} since A;; # 0. But this
contradicts the assumption dim L.~ = 1.

(b) If )\10 -+ )\QE = O, then
rank <Aé;1 Aé’z) = 1.

(i) If B #0 and C2 — 4BE > 0, then

— N O?2 —

2B
In this case,
ABT; = (—2A;,B + A;,C)* — A% (C* — 4BE)
- (—2Aj,gB + A (C + \/m))
(~24;2B+ 4, (€ = VCT=4BE)) =0

and so

Ajo  —C++/C*—4BE Ay —C—+/C?—4BE

— —_= or — g

Aj,l 2B Aj,l 2B
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In either cases, L, is contained in K,«; thus {0} # L,» C K,« and {0} # L. C K?..
As z* is a transverse intersection of x(3) and R, it is also a regular solution of (EJ);
(x*, L) then consists of fold bifurcation points of (El), according to proposition E3
The desired conclusion follows from {£a,« ,} = L7. = L,- N+, and from the correspon-
dence between fixed points of P, and ‘lines’ of fixed points of P. O

By construction, the bifurcation diagram of P, is 2r—periodic in s. Consequently,
elements of Cg must be (bounded) loops and elements of C,, must give rise to two
oo—catastrophes. Moreover, the number of fold catastrophes on any given C' € Cg can-
not be odd as C' could not be a loop were that the case. Finally, note that catastrophes
cannot occur at 0 or £ as this would contradict (P2) and (P3).

4.3. The Bifurcation Diagrams

Let Cy, C¢, sp and s¢ be as defined previously. Set n € {0,{}. By definition, C,
goes through 7 at s = s,. By (P3), the wedges’ angles gpﬁ lie in (0,7) or (0,n] (when
they exist), according to whether they record fold or co—catastrophes, respectively. Set
v =@y +¢; and v, = @y + ¢ . Then W, and W overlap

(i) in all four quadrants if and only if vy, 5 > 7/2;

(ii) in the first and third quadrants if and only if v; > 7/2 and v, < 7/2, and in the
second and fourth quadrants if and only if v; < 7/2 and vy > 7/2.

If v; = 7/2, the wedges do not overlap but their complement has zero measure in a
neighbourhood of the origin. When the wedge angles gpﬁ do not exist, W, is a deleted
neighbourhood of the origin in parameter space.

4.8.1. The case Cy # C¢ In this instance, it is sufficient to understand the bifurcation
diagrams along a single curve: the full picture can then be obtained by combining
the diagrams corresponding to Cy and Ce. When C,, € Cg, there are two (essentially)
distinct generic possibilities.

+

(i) If there is no fold catastrophe along C,, then the angles ¢, do not exist and W, is

catastrophe-free deleted neighbourhood of the origin in parameter space.

(ii) If there are 2k fold catastrophes along C,,, k > 0, then the angles <p,j7E are well-defined:
sy F gpff are the s—values of the first fold catastrophes occurring respectively before
and after n along C,.

When C), € Cw, there are two (essentially) distinct generic possibilities.

(i) If there is no fold catastrophe along C,, then the angles gpﬁ are well defined and
sy F gpff are the s—values of the co—catastrophes occurring respectively before and
after n via C,.
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H Bifurcation Diagram

]

]

fT

]

S

Figure 3. Partial bifurcation diagrams of P, when Cy # C¢. Only one branch is
shown. The square represents the origin or £ and the circles and arrows indicate fold
and co—catastrophes, respectively.

(ii) If there are k fold catastrophes along C,, k > 0, then the angles gpff are well-
defined: if all the fold catastrophes lie on one side of n (say s > s,) along C,, then
sy F cp,f are the s—values of the co—catastrophes occurring before n and the first
fold catastrophe after n along C,, respectively (or vice-versa). Otherwise, s, F <pff
are the s—values of the first fold catastrophes occurring respectively before and
after n along C),.

Some corresponding qualitative bifurcation diagrams are shown in figure 3.

4.8.2. The case Cy = C¢ In this instance, the bifurcation diagram must pass through
Oat s =0 and £ at s = 7/2. When Cy = C¢ € Cg, the number of fold catastrophes
along the curve is even; there are then three (essentially) distinct generic possibilities.

(i) If there is no fold catastrophe along Cy = C, then the angles @7 and cpgi do not
exist and Wy = W, are catastrophe-free deleted neighbourhoods of the origin in
parameter space.
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(ii) If there is an odd number of fold catastrophes between the origin and ¢ along
Cy = Cg, then the angles Fog and 7/ 2:Fg02t are well-defined: they are the s—values
of the first fold catastrophes occurring respectively before and after 0 and £ via
Co = C.

(iii) If there is an even number of fold catastrophes between 0 and § along Cy = Cf, the
situation is much as described in (2), save for the fact that Cy = C¢ is not a loop
in the bifurcation diagram of P,.

When Cy = C¢ € Cy, there are two (essentially) distinct generic possibilities.

(i) If there is no fold catastrophe along Cy = C¢, then the angles <p5—L and @? are well
defined and s, F @,f are the s—values of the co—catastrophes occurring respectively
before and after 0 and & via Cy = C.

(ii) If there are k fold catastrophes along Cy = C¢, k > 0, then the angles ¢t and <p2t
are well-defined: if no fold catastrophe lies between 0 and { along Cy = C¢ then
Foi and /2 F ¢, are determined as in the case C, € Co, item (2) (see p. [F). If
there are fold catastrophes between 0 and ¢ along Cy = C¢, then ¢f and 7/2 — ©e
are the s—values of the first fold catastrophes occurring respectively after 0 and
before £ along C.

Some corresponding qualitative bifurcation diagrams are shown in figure 4.

4.4. The General Mapping

The mapping (1)) is not the most general mapping satisfying (P1)—(P3); one should
instead study maps of the form

Pz, \) =2 +27 [)\1]:0(3:, A1) 4+ MAaT (2, A) + AaGe(x, )\2)}, (4.12)

where £ # 0 € R?, Fy, J and G are real analytic in their variables and the jacobians
D, Fy(0, A1) and D,G¢(€, \y) have the particular form prescribed by proposition EI]
which is analogous to proposition EET1

Proposition 4.5 If F(0,\;) =0, G¢(£, X2) =0, and if

oo = (10 7)ot oster=(i )

where a,b,c,d : R — R are continuous in their variables and a(0),c(0) # 0, then there
exists w, > 0 such that the map defined by [[-13) satisfies conditions (P1)—(P3).

Define A : R? x R? — M, (R) by

Az, ) = | Folz, M) + 2.7 (2, ) %j(x,)\)—l—gg(x,)\g)]; (4.13)
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Figure 4. Partial bifurcation diagrams of P, when Cy = C¢. The squares represent 0
and £, and the circles and arrows indicate fold and co—catastrophes, respectively. The
apparent self-intersection is an artifact of the projection on the ||z|| — s plane; it does
not, in fact, occur.

fixed points of (EIZ) are then in one-to-one correspondence with solutions of
Az, \) - A =0. (4.14)

Set F(z,\) = det A(x,\). According to Taylor’s theorem, there are appropriate
functions Ko, Ko; such that §(xz, \) = §(x,0) + A\ Kio(x, \) + Ao Ko1(z, A).

Let & be such that §(z,0) = 0, det D,§(#,0) # 0 and A(z,0) # 0. Then, by
the implicit function theorem, there is a neighbourhood 2 C R? of the origin and
a unique analytic function X : U — R? such that X(0) = #, F(X(A\),\) = 0 and
rank A(X(A\),\) =1V e Y.
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Define £; = {\ € U : A(X(N\),\) - A = 0}. A simple rank argument shows that £; is
defined via a single equation in two real variables, with a regular solution at the origin;
consequently, as a manifold, £; is one-dimensional.

Let £; = ker A(Z,0). Then, there is a small neighbourhood & C B(0,w,) of the
origin in parameter space for which

{(XN\),A): Axednkg;} isadeformation of {(Z,\):AedUnNL;}:

both ‘curves’ can be parameterized by the same A;, 7 = 1,2. The preceding discussion
shows that the fixed points of ([ZIZ) are in one-to-one correspondence with the fixed
points of the (already studied) truncated map

Pr(z, ) = & + 21 [\ Fo(x,0) 4+ AaGe (2, 0)]. (4.15)

Fold bifurcations persist under small perturbations [35,36]. Similarly, a generic
unbounded curve remains unbounded under small perturbations.

Indeed, in the real projective plane, an element of C, meets the line at infinity in
two points. Generically, these two points are distinct and a small perturbation will not
change that fact, i.e the perturbed curve is still an element of C,. In the non-generic
case where the two points at infinity are equal, a small perturbation will either cause
the points to separate or to vanish entirely (reminescent of a fold bifurcation of points
at infinity), i.e the perturbed curve either stays in C., or becomes finite.

Thus, catastrophes generically persist: as a result, the bifurcation diagrams of
ET2) and IH) are (locally) topologically equivalent for small parameter values A.
Consequently, (EI2) has wedge-like regions 20, corresponding to the wedge regions W,
of (ETI).

Finally, note that since P is the ‘linearization’ of P at the origin with respect to A,
the wedge regions W,, of (1)) provide tangential ‘cones’ for the corresponding wedge-like

regions 20, of ([EIJ).
5. Numerical Simulations and Examples

In this section, we illustrate and interpret the results of the preceding sections through
various examples. As such, the emphasis lies with qualitative observations rather
than with precise numerical analysis. First, we study systems of PDE from a (naive)
numerical perspective: we observe spiral anchoring, as well as hysteresis and homotopy
of the spiral tip. Finally, we provide a few examples of mappings of the form (EI2)
together with their zero-level sets and partial bifurcation diagrams.

5.1. PDE, FESB and Semi-Flows

In this section, we examine systems of partial differential equations giving rise to semi-
flows satisfying the FESB equivariance described in section 2.
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Figure 5. Anchoring in (Bl) with perturbations as in (). The spiral tip paths
are plotted in black, the anchored perturbed rotating wave is shown in gray, and the
squares indicate the location of the perturbation centers.

The computations are carried out on a two-dimensional square domain [—30, 30]* with
200 grid points to a side and time-step At = 0.005 and Neumann boundary condition,
using a 5-point Laplacian and i) an explicit Runge-Kutta 2—stage method of order two
in section BTl and ii) Matsui’s fourth-order Runge-Kutta code based on Barkley’s
EZ-Spiral in section T2 Throughout, centers of anchoring are found via fast Fourier
transforms of the tip data.

5.1.1. Spiral anchoring Consider the following small perturbation of the FitzHugh-
Nagumo equations:

ut:l(u—§u3—v)+<b1+Au,

N

(5.1)

where
d;(x) = V2c0s(0.05m)0.12f (21 — €14, 2 — 25), § = 1,2, (5.2)
cip=9,c,1=0,c12=—10, coo = 5v/3 and
f(z) = exp (—0.00086 (z7 + z3)) .

Each g;(x), alone, breaks translational symmetry but preserves rotational symmetry
about (9,0) (for j = 1) or (—10,5v/3) (for j = 2). Note that both perturbations are
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uniformly bounded on R? and that they go to 0 as ||z|| — oco. Under these conditions,
the flow of (EX1]) near a normally hyperbolic rotating wave is equivalent to the flow of
some center bundle equation (). Thus, if spiral waves anchor at all, they will generi-
cally do so away from either perturbation center. This is confirmed in figure 5, in which
the transients anchor at what would be an otherwise unremarkable location.

We now present the results of simulations on a reaction-diffusion system with 4 TSB
perturbations. Set

ut:l(u—%u?’—v)—i-gfh—i-Au,

(5.3)
vy =¢(u+ f —yv+ p9),

where ¢ = 0.3, 8 = 0.6, v = 0.5, and where ¢1,¢5 are inhomogeneous terms which
depend on z € R? and are defined by

g1 (ZL’) + gg(l’) = 012f1(£13’1 — 9, 1'2) — OlOfg(l’l + 1,1’2 — 10),
93(2) + ga(x) = —0.12f1 (1 + 10, 35 — 5V/3) + 0.08 f3(z1 — 10, 25 — 10),
where Al = 012, Ag = —010, Bl = —012, Bg = 008,

fi(@) =exp (a;(a] +23)), j=1,2,3,

a; = —0.00086, as = —0.0008 and a3 = —0.0009.

Each g;(z), alone, breaks translational symmetry but preserves rotational symmetry
about ¢; = (9,0) (for j = 1), ey = (—1,10) (for j = 2), c3 = (—10,5v/3) (for j = 3) and
¢y = (10,10) (for 7 = 4). Note that the four perturbations are uniformly bounded on
R? and that they go to 0 as ||x|| — co. As predicted, anchoring takes place away from
thec;, j=1,...,4.

The transients in figure 6 appear to first (hyperbolically) approach some manifold
along which they travel to the anchored perturbed rotating wave; this will be the topic
of an upcoming paper.

5.1.2. Homotopy and hysteresis of rotating waves Following [8], define the modified
Oregonator

uz%(u—u—(fv%—(b) )—i—Au
= (u —v) + 0.6Av,

(5.4)

where f = 1.4, ¢ = 0.002, ¢ = 0.05 and ¢ is an inhomogeneous term which depends on
r € R%Z When ¢ = 0, (B4) has full Euclidean symmetry.
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Figure 6. Anchoring in the FitzHugh-Nagumo equations (B3). The spiral tip paths
are plotted in black, the anchored perturbed rotating wave is shown in gray and the
black squares indicate the location of the perturbation centers.

In the following simulations, ¢ is the sum of two Gaussian bells:

Moo QO INY | , (_Mon) (BTG

M@Zawm<

B Bo°
with oy, a2, f1, f2 € R, and fpy,; # 0. Each g;(x), alone, breaks translational
symmetry but preserves rotational symmetry about ¢; = (15,15) (for j = 1) or

¢y = (18.75,15) (for j = 2). Note that both perturbations are uniformly bounded
on R? and that they go to 0 as [|z| — oc.

When o = (ay,0) # 0, (&) is SO(2).,—equivariant. Similarly, (&2]) is SO(2).,—
equivariant when a = (0, ag) # 0 and trivially equivariant when oy, ag # 0.

Set f; = B, = 1 and p, = 0.01. Along the path a(r) = 7 (7) = p. (cos(r),sin(r))"
in parameter space, (B4]) undergoes a homotopy of perturbed rotating waves, whose tip
paths deform continuously from a circle centered at ¢, when 7 = 0, to a circle centered
at co, when 7 = 7/2 (see figure 7).

Along the path a(7) = 72(7) = $571(7), however, the homotopy is replaced by hystere-
sis. As the parameters vary along the path, (4]) has an anchored perturbed rotating
wave whose tip path deforms continuously from a circle centered at ¢;. At Ny € 5, the
rotating wave jumps (discontinuously) to another anchored perturbed rotating wave,
whose tip path deforms continuously from a circle centered at cs.
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Figure 7. Homotopy of the spiral tip path in (24]). The first spatial coordinates of the
anchoring centers are plotted against 7; compare this image with the first bifurcation
diagram on p.

Following 7, in the opposite direction leads to similar behaviour, this time with the
discontinuous jump taking place at Ny € 75, as can be seen in figure 8. Consequently,
there must be a third unstable rotating wave (which escapes detection by direct means)
appearing and then disappearing at N; and Ny, respectively, in saddle-node bifurcations.

In a sense, both of these occurrences have been predicted by the analysis provided
in section Bt consult, for instance, the first and third bifurcation diagrams on p. B
5.2. Wedges and Catastrophes

In this final section, we provide a partial catalogue of (partial) bifurcation diagrams for
mappings of the form

P(z,A) = o + 21 [\ Fo () + MaGe(2)], (5.5)

where \ € R?, £ = (2, 2>T7

Fy(x) = (2“"1 N “) - fol@),

Ty + 2z + Y by ol

. 7T — 3!13'1 - % + ZC,’J([L’l — 2)2(1'2 — 2)] )

aj,bij,cijdi; € R, i+ j > 1, and fy and ge are continuous functions such that (&3)
satisfies proposition EETk we can then use the visual criterion of section to under-
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Figure 8. Hysteresis of the spiral tip path in (&4). The first spatial coordinates of
the anchoring centers are plotted against 7. The question marks interpolate (roughly)

the unstable rotating waves. Compare this image with the third bifurcation diagram
on p.

stand the nature of the bifurcation diagram of the associated map Fyo;. Furthermore,
the wedge angles can be read directly from the bifurcation diagram.

In the figures of this section, Cy and C¢ are shown in black or gray. Fold catastro-
phes are indicated by circles, co—catastrophes by arrows and the squares mark both the
origin and &.

5.2.1. The Elowyn-Bonhomme map The Elowyn-Bonhomme (EB) map is obtained
from (BH) by setting fo = ge = 1, a11 = bag = co2 = d11 = dog = 1, a2 = —1 and
all other coefficients to 0; the corresponding x(3) is shown in figure 8. In this instance,
Co € Cg and C¢ € Cy. For the EB map, w, = 3% Let p = 0.01 < w,. Using a pseudo-
arc length continuation algorithm (see [37] for details), a partial bifurcation diagram of
P, (ignoring all fixed point branches but those through n at s = s, for n € {0,£}) is
built: the results can be seen in figure 9.

There are 6 fold catastrophes: two along Cj and four along C¢. Their location can
be recovered directly from x(3) and R;, j = 1,2, with the help of proposition L} in
figure 9, the six intersections that satisfy the appropriate hypotheses are marked with
circles. Each corresponds to one of the six fold catastrophes observed in figure 7.

Furthermore, two oo—catastrophes occur via C¢. The interesting values for the EB
map are compiled in table 1 above. We continue by providing examples that highlight
the various possibilities.
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Table 1. EB map catastrophes along Cjy and C.

* *

Curve Type x S Wedge Angle

Co Fold  (1.2483,—0.1286) 5.9809 ¢ ~ 0.3023
Co Fold  (0.2269,—3.4760) 0.2308 ¢ ~ 0.2308
Ce Fold  (0.3371,3.1473)"  1.1020 ¢, ~ 0.4688
Ce Fold  (2.2769,0.2082)  2.1125 ¢ ~0.5417

Cs Fold  (—3.2933,6.1024)" 1.1581 n.a.

Cs Fold  (5.6733,—1.2807)  1.9267 n.a.

Ce Infinity n.a. 1.0172 n.a.

Ce Infinity n.a. 2.3562 n.a.
20 \ 10
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Figure 9. On the left: zero-level set x(3) for the EB map. On the right: fixed point
branches of Py o1 (the apparent self-intersection on Cy is due to a projection onto the
lz|| — s plane). Both Cy (the curve through 0) and C¢ (the curve through ¢) are shown
in black.

5.2.2. The first example

a270 =0 a,171 =1 a072 =-1 6270 =1 6171 =0 b072 =0
0270 =0 11 = 0 0072 =1 d270 =1 dl,l =1 d072 =0

fo(x) = exp (=(a% +23)/10)  ge(x) = exp (= ((z1 = 2)* + (22 — 2)) /14).

See figure 11 for a portion of x(3) and a partial bifurcation diagram of Py¢. By
construction, the zero-level set for this first example is exactly the zero-level set of the EB
map; however, their bifurcation diagrams are not topologically equivalent (compare with
figure 9). In this instance, the wedge angles record fold catastrophes on C (black) € Cg
and oo—catastrophes on C¢ (gray) € Co. Note further that this map provides an
instance when the anchoring wedges overlap.
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b B : \

Figure 10. Intersections of the zero-level sets x(3) (thick black lines) and Ry and Rs
(thin gray lines) of the Elowyn-Bonhomme problem. The squares represent 0 and &;
the points that satisfy the hypotheses of proposition EE4] are marked with circles. The
light gray region is part of the planar set for which C(z)? — 4B(z)E(z) < 0.
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Figure 11. The first example: x(3) (left), bifurcation diagram of Py g1 (right).

5.2.8. The second example

2 _ 43 _ 7 _ 51 __9 _ _ 12
a0 = 3 a1 = 1p ap2 = —75 bao = 10 b1 = —10 bo2 = — 5
_ _16 __ 99 _ _ 48 _ _ 53 _ 61 _ _ 99
€20 = —7% €11 = —7 Co2 = —7§ dao = 10 dig = 10 do2 = 10

folw) =1 ge(x) =1

See figure 12 for a portion of k(3) and a partial bifurcation diagram of Fyg;. In this
instance, Cy (black), C¢ (gray) € Cs, and <p5—L,g0§_ record fold catastrophes while of
records an co—catastrophe.
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Figure 12. The second example: £(3) (left), bifurcation diagram of Py o1 (right).
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Figure 13. The third example: x(3) (left), bifurcation diagram of Py o1 (right).

5.2.4. The third example

_ 53 _ _ _ 9 _ 4 _ 57
agp=—35 a1 =—% Ga=-9 bypo=—3% bi=-1 bp2=-7
_ 2 _ a2 _ 3 _ _ 49 _

00 =% =% Copg=—35 dop=-9 di1=7 dpo = —10

folx) =1 ge(x) =1
See figure 13 for a portion of x(3) and a partial bifurcation diagram of Pp¢;. In this
instance, Cy (black), C¢ (gray) € Cg, and the wedge angles all record fold catastrophes.

5.2.5. The fourth example

_ __ 13 _ 13 __ 16 21 _ 3
ago =2 ail1 = 5§ ap,2 = — 1o bap = 5 big = T bo2 = 5

_ _ 4 _ 3 29 _ 9 _ T _ 3
Co0 = —3 €11 = 79 €02 = — 79 dz,o =710 d1,1 =10 d0,2 =3
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Figure 15. The fifth example: x(3) (left), bifurcation diagram of Py g1 (right).

See figure 14 for a portion of k(3) and a partial bifurcation diagram of Fyg;. In this
instance, Cy = C¢ € Cg, the wedge angles all record fold catastrophes and the anchoring
wedges overlap.

5.2.6. The fifth example

__ 59 __ 43 _ __ 38 _ 27 _ 59 1
a0 = 15 a1 = 15 ap,2 = =7 aso = & 21 = 5 Q12 = —75 @03 = —3
_ 37 _ 51 _ 9 __ 63 _ 4 _ _ 43
bz,o = —7F 51,1 =70 bo,z = -5 bs,o =10 52,1 =70 b1,2 =—4 bo,3 =10
11 36 38 61 4 8
€20 = &5 Clp=—% CGp=—% CGo=—7 C1=2 C2=—3 C3="¢
’ 5 ’ 5 ’ 5 ’ 10 ’ ) 5 ; 5
_ 49 _ 38 27 19 _ 69 29 41
dz,o =10 d1,1 = -3 do,z =10 d3,0 =10 d2,1 =70 d1,2 = -3 do,s =10

folw) =1 ge(x) =1

See figure 15 for a portion of x(3) and a partial bifurcation diagram of Pp¢;. In this
instance, Cy = C¢ € C» and the wedge angles all record fold catastrophes.
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Figure 16. Fixed point branches of Py o1 (left); anchoring wedges Wy (gray) and 20,
(black) for the Elowyn-Bonhomme maps (right).

5.2.7. The Elowyn-Bonhomme map revisited Let &, Fy and G¢ be as in the original
EB map (see p. 28) and consider the map P defined via [IZ), with

9,.2 41 57

28
—2x; + 929 — S2] — TFT1T2 — fz
Folz, A1) = Fo(z) + A > ; i 0 ’
o(@, A1) 0(#) + M (—9x1 — By — 9z} + Bayzs — 1023

z - —:):1 — 6:):2 + —xl 5T1%2 + ga:2

28 = 261, + fay + Fat = Haran g@)
5

Ge(, Aa) = Ge(@) + A2 ( 2 7

and
67 32 33 ,..2 8 2

j(l’, )‘) = (59

31 46 79
10 + —1'1 — —1’2 + —|- 101’11'2 ‘|‘

Then, according to proposition L3, P satisfies (P1)—(P3). By the preceding discussion,
the bifurcation diagrams of the EB map P is topologically equivalent to that of P when
A is close enough to the origin.

As an example, let 0.01 < w, = T and define Py o; as the restriction of P to the

3
circle vg,01(s) = 0.01 (cos(s),sin(s))" in parameter space. Compare the diagram shown
(on the left) in figure 16 with the corresponding diagram of section B2l

Finally, the wedge regions Wy of the EB map and 2, of the revisited EB map are

shown (on the right) in figure 16, illustrating the last remark of section 4.
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