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Abstract

Shadowing trajectories are one of the most powerful ideas of modern dynamical systems
theory, providing a tool for proving some central theorems and a means to assess the
relevance of models and numerically computed trajectories of chaotic systems. Shadowing
has also been seen to have a role in state estimation and forecasting of nonlinear systems.
Shadowing trajectories are guaranteed to exist in hyperbolic systems, but this is not true
of non-hyperbolic systems, indeed it can be shown there are systems that cannot have
long shadowing trajectories. In this paper we consider what might be called shadowing
pseudo-orbits. These are pseudo-orbits that remain close to a given pseudo-orbit, but have
smaller mismatches between forecast state and verifying state. Shadowing pseudo-orbits
play a useful role in the understanding and analysis of gradient descent noise reduction,
state estimation and forecasting nonlinear systems, because their existence can be ensured
for a wide class of non-hyperbolic systems. New theoretical results are presented that
that extend classical shadowing theorems to shadowing pseudo-orbits. These new results
provide some insight into the convergence behaviour of gradient descent noise reduction
methods. The paper also discusses, in the light of the new results, some recent numerical
results for an operational weather forecasting model when gradient descent noise reduction
was employed.

1 Introduction

From a mathematical perspective this paper can be viewed as a continuation of a long chain of
results concerning the existence of shadowing trajectories, but the results presented here are not
intended to be just statements of mathematical existence; they are intended to provide a tool
to better understand noise reduction, state estimation and forecasting in nonlinear systems.

Shadowing trajectories play a central role in dynamical systems theory with many deeply
profound results about the nature of dynamical systems having been obtained from them [19,
23, 24]. These results begin with the work of Anosov [1] and Bowen [3] in the 1960’s for
hyperbolic systems, then Pesin [27] expanded the shadowing results to non-uniformly hyperbolic
systems using ergodic methods, and recently Chow and Palmer [5], and Diamond, Kloeden and
others [9, 10, 20] have considered shadowing in more general settings. The work presented here
owes a lot to these recent developments, although the content is complementary rather than an
extension of it.

Of particular interest to us is the numerical computation, or approximation, of shadowing
trajectories. There have been developed algorithms for approximating shadowing trajectories,
most notably gradient descent methods [4, 7, 12, 13]. Recent proofs show that these methods
converge to the true trajectory of a hyperbolic system, given observations with sufficiently small
noise and a perfect model [4, 28]. When noise levels are larger, or the system is non-hyperbolic,
then it has been described how near tangencies of invariant stable and unstable manifolds can
cause the failure of numerical methods for finding shadowing trajectories [28]. The algorithms
fail to shadow the true trajectory because they convergence to nearby trajectories that are
homoclinic to the true trajectory [28], a phenomenon sometimes referred to as glitches [29].
There are other problems. It has been shown that there exist non-hyperbolic systems for which
shadowing trajectories cannot not be obtained [8, 21, 22, 31]; these systems have local Lyapunov
exponents that fluctuate about zero over time. On the other hand, Pilyugin and others have
shown that shadowing is a generic property of homeomorphisms in the C0-topology [26].

The results of this paper provide a counter point to the problems known to hinder numerical
computation of shadowing trajectories. It is argued that a non-hyperbolic system may behave
sufficiently like a hyperbolic system to enable useful noise reduction, state estimation and
forecasting.
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The real motivation, and intended application, of the results of this paper is in the realm
of forecasting with imperfect observations and imperfect models. From the author’s point of
view this paper is a piece of a larger puzzle. For some time there has been growing interest
in using shadowing ideas and methods as a diagnostic of model error [11, 30, 25] and as a
basis for ensemble forecasting in nonlinear systems [16, 17]. (Preliminary experiments have
been made with operational weather forecasting models [15].) There is already evidence that
shadowing-based methods provide better state estimation for nonlinear systems than traditional
Kalman filter methods [14], but a more general argument is being developed along the lines
that the increasingly widely used sequential-update Bayesian methods (ensemble Kalman filters
and particle filters) have fundamental limitations that shadowing methods avoid. This line of
argument will not be developed here because the purpose of this paper is to present technical
results.

The first sections of this paper state, develop, and prove the main results, then in section 5
we use the results to better understand and assess iterative methods for finding shadowing
trajectories, for example, gradient descent algorithms. We discuss the main result in the context
of the expected convergence properties of gradient descent shadowing algorithms when applied
to non-hyperbolic models, including an operational weather forecasting model.

2 Main results

Let f : U → U be a diffeomorphism on a metric space U. Of interest is a situation where f
represents a model of some dynamical system (some aspect of reality) and there is a given
sequence of states x ∈ Un, which may have been estimated from observations. These states
are not a trajectory of f , that is, there is a mismatch between xi and f(xi−1). The question
asked is whether there exists another sequence of states y ∈ Un that is both close to x and
has significantly smaller mismatches. As already alluded to, the existence of such a y has
implications for noise reduction, state estimation and forecasting. If f were globally hyperbolic,
then a shadowing trajectory exists for all time, which has zero mismatch, and the gradient
descent algorithm will converge to such a trajectory if the observational noise is sufficiently
small [28]. This cannot be said of a non-hyperbolic system [8, 21, 22, 31]. Of course, if a
non-hyperbolic system happens to be locally hyperbolic in the region of x and y, then some
of the results pertaining to (globally) hyperbolic systems may apply, but this does not help
when the system is non-hyperbolic in this region. On the other hand, there are practical
difficulties even in the (locally) hyperbolic case. It can be shown that convergence of the
gradient descent algorithm is limited by the smallest Lyapunov exponent [28], so convergence,
even for a hyperbolic system, could be very slow, and in practice no method ever obtains an
actual trajectory.

The core idea of the results presented here is that if one only wants to obtain from x another
sequence of states y that has smaller mismatches than x, then one does not need the model f
to be hyperbolic, f only has to have dynamics that are partially hyperbolic in the sense we now
define.

We will say that f is partially hyperbolic if there exists an interval (λ0, λ1) ⊂ (0, 1], such

that for all λ ∈ (λ0, λ1) there is a splitting TzU = E
(−1)
λ (z)⊕E

(0)
λ (z)⊕E

(+1)
λ (z), continuous with

z ∈ U, with df(z)(Eκ
λ(z)) = Eκ

λ(f(z)) for κ ∈ {−1, 0, +1}, where Eκ
λ(z) 6= 0 for κ ∈ {−1, +1}

and
∀v ∈ Eκ

λ(z), ‖df(z)κv‖ ≤ λ‖v‖, κ ∈ {−1, +1}.

In this definition Eκ
λ(z) for κ ∈ {−1, +1} describe the principle expanding and contracting

directions, where as E0
λ(z) represents the other directions, sometimes called “(nearly) neutral

modes”, which may have near zero growth exponents, or have local exponents that fluctuate
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about zero over time. If λ1 = 1 then f will be said to be weakly hyperbolic. The more familiar
notion of uniformly hyperbolic occurs when there exists λ ∈ (λ0, λ1) such that E

(0)
λ (z) = 0.

Such a λ is called a uniform bound.
It will become apparent later that a lower bound on the angle θ(z) between the Eκ

λ(z) for
κ ∈ {−1, +1} is of importance. Let θ = infz θ(z), which will be called the angle bound. It will
be necessary for our purposes that θ > 0, which will be seen to be easily assured by having
supz ‖df(z)‖∞ bounded.

It will be advantageous to assume that U is a finite dimensional Banach1 space B. Our aim
is to establish the following proposition and discuss some of its consequences. The statement
of this proposition is presented so as to give a clearer indication of results, rather than being
a complete statement of all details. The statement is derived from approximation of stricter
bounds given later.

In the following proposition there is a sequence of model states x derived from observations
of the system. The proposition implies the existence of a y that shadows x and has smaller
mismatches. The mismatches xi+1−f(xi) represent the forecast errors of the model: these mis-
matches may involve errors resulting from errors in the observations, that is, as a consequence
of assimilation of observational data into the model to obtain state “estimates” xi and xi+1;
the mismatches may also result from model error. The mismatches yi+1 − f(yi) represent the
corrections to the model states required to keep the model consistent with the observations.
Consistency is judged in the proposition by the threshold ε, while β measures the relative
success of the shadowing, that is, reduction of the mismatches.

Proposition 1 Suppose f : B → B is a twice differentiable diffeomorphism on a finite di-
mensional Banach space B, with bounded first and second derivatives, in particular let J =
supB‖d2f‖∞. If x ∈ Bn, with ‖xi+1 − f(xi)‖ ≤ δ and there exist 0 < β < 1 and 0 < γ < 1 so
that 1

n−1

∑n−1
i=1 ‖xi+1 − f(xi)‖ ≤ γδ and n2γ2 − 1 < 2n(n − 1)β, then there exists y ∈ Bn such

that ‖xi − yi‖ ≤ ε, ‖yi+1 − f(yi)‖ ≤ βε, when

δ ≤ 1

2K2J
, ε =

1−
√

1− 2K2Jδ

KJ
=

Kδ

1 +
√

1− 2K2Jδ
,

and K is bounded as follows or is one, which ever is the larger. If f is uniformly hyperbolic
with bound λ and angle bound θ, then

K ≤ 1

2 sin θ/2

(
2
1− λm

1− λ
− 1− β

1− λn

1− λ

)
where m =

1

2
(nγ + 1).

If f is partially hyperbolic on (λ0, λ1) with angle bound θ and γ small, then the above bound
on K applies with

λ ≥
(

2− β

β(n− 1)

) 1
n

,

provided λ ∈ (λ0, λ1), and
βλn

1 − 2λm
1 + λ1 + 1− β < 0.

1A complete normed linear space, of which, the Euclidean space Rd. Since many complex models are
constructed in this way this is a perfectly reasonable restriction. Weather forecasting models, for example, are
essentially partial differential equations evolving vector fields, on the region bound by two concentric spheres.
This function space is an infinite dimensional Banach space. In practice a model is constructed on a finite
dimensional basis, such as the spherical harmonics, finite elements, or Galerkin approximation. Using such
a finite dimensional basis reduces the problem to dynamics in Rd, where for operational weather forecasting
models d is currently several million.
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The essential point of this proposition is that if the average mismatch of the initial (observa-
tion) sequence x is sufficiently small relative to the maximum mismatch, that is, γ is sufficiently
small, then there is a y with smaller mismatches, βε < δ. If γ is not sufficiently small, then
the mismatches of the initial sequence x may not necessarily be significantly improved upon.
The role and interplay of β, γ and λ, is discussed in section 5, particularly in the context of
gradient descent noise reduction and state estimation. It might be useful, however, to contrast
this proposition with classical shadowing theorems, which generally involve only two or three
key parameters corresponding to our δ, ε and λ; some classical theorems roughly correspond to
β = 0 and no reference to γ. If β = 0 in our proposition, then a classical result similar to Chow
and Palmer [5] is recovered, because although not immediately obvious the conditions involving
γ can be ignored, see proof of proposition 4. In classical shadowing theorems the parameters δ,
ε and λ are not independent, similarly, our δ, ε, λ, β and γ are not independent, indeed there
is an additional complex relationship between λ, β and γ, see section 5.1.

3 Detailed results

In this section the main results are stated in detail, with proofs deferred to the next section.
Both this and the next section can be safely skipped on a first reading.

It is common to assume a dynamical system is modelled by a diffeomorphism f : U → U,
on a metric space U with everywhere identical tangent spaces, TxU = V for all x ∈ U. Here
we will make the stronger assumption that U is a Banach space B, in which case V = U = B,
however, we will continue to use the different labels U and V, because it is advantageous to
make their identity apparent. We will also assume that f is twice differentiable and will define
constants

D = sup
x∈U

‖df(x)‖∞ and J = sup
x∈U

‖d2f(x)‖∞.

Suppose there is a sequence of model states x = (xi)
n
i=1 ∈ Un. Define on Un the (nonlinear)

mismatch operator M : Un → Un−1, by M = S − F , where S(x) = (xi+1)
n−1
i=1 and F (x) =

(f(xi))
n−1
i=1 . Furthermore, for x ∈ Un and v = (vi)

n
i=1 ∈ Vn define the linear operator Lx : Vn →

Vn−1, by Lx = S − Ax, where Ax(v) = (df(xi)vi)
n−1
i=1 and the shift operator S similarly applies

to v ∈ Vn.
For any linear operator A on Vn and β > 0, define a semi-norm

‖A‖a,b,β = sup
‖v‖a=1

inf
‖w‖b=1

‖A(v + βw)‖a,

where subscripts a and b denote possibly different norms on Vn. Note that this is a norm if
β < 1/ sup{‖w‖a : ‖w‖b = 1}.

Proposition 2 Given x ∈ Un, with ‖M(x)‖a ≤ δ, if there exists a right inverse of Lx, with
K = max{1, ‖L−1

x ‖a,b,β} and

δ ≤ 1

2K2J
,

then there exists y ∈ Un, with ‖M(y)‖b ≤ βε and ‖x− y‖a ≤ ε, where

ε =
1−

√
1− 2K2Jδ

KJ
.

By itself this proposition is a fairly limited generalisation of a result of Chow and Palmer [5],
and the proof we provide follows their proof fairly closely. For the purposes of proposition 1
the important task now is estimating useful bounds on ‖L−1

x ‖a,b,β. This is the subject of the
following propositions.
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For 0 < γ < 1 define γ-mean-max norms to be a combination of three norms on Bn,
labelled a, b, and c, such that if z ∈ Bn then ‖z‖c = 1

n

∑n
i=1‖zi‖, ‖z‖b = supi‖zi‖ and ‖z‖a =

max{‖z‖b, γ
−1‖z‖c}. Note that the norm on B does not need to be specified.

The following three propositions provide statements of bounds that were used, or approxi-
mated, in the statement of proposition 1. For the purposes of these propositions, define,

K(λ) = Kβ,γ,θ,n(λ) =
1

2 sin θ/2

(
2
1− λ(nγ+1)/2

1− λ
− 1− β

1− λn

1− λ

)
Proposition 3 If f is hyperbolic with uniform bound λ and angle bound θ, then given γ-mean-
max norms there exists a right inverse of Lx with ‖L−1

x ‖a,b,β ≤ K(λ).

Proposition 4 If f is weakly hyperbolic on (λ0, 1) with angle bound θ, then for γ-mean-max
norms with n2γ2 − 1 < 2n(n − 1)β, 0 < β < 1, there exists a right inverse of Lx such that
‖L−1

x ‖a,b,β ≤ K(λ?), where λ? ∈ (λ0, 1) is a root of

β(n− 1)λn − βnλn−1 − (nγ − 1)λ(nγ+1)/2 + (nγ + 1)λ(nγ−1)/2 + β − 2 = 0.

Proposition 5 If f is partially hyperbolic on (λ0, λ1), then the results of proposition 4 apply
provided λ? ∈ (λ0, λ1) and K(λ1) < 0.

It is clear that the above propositions are meaningless unless θ > 0, however, this is assured
by the upper bound D on the derivative of f as the following proposition implies.

Proposition 6 Let A be an invertible matrix with ‖A‖∞ ≤ D, and u and v vectors such that
for some 0 < λ < 1, ‖Au‖ ≤ λ‖u‖ and ‖Av‖ ≥ λ−1‖v‖. If φ is the acute angle between u
and v, then φ > 0 and

cos φ ≤ 1− λ−2 − λ2

2D2
.

4 Proofs

This first proof is a generalisation of the method of Chow and Palmer [5].

Proof of proposition 2: Given x ∈ Un and a right inverse of Lx with K = ‖L−1
x ‖a,b,β, we are

required to find z, w ∈ Vn with w = M(x + z), ‖z‖a ≤ ε and ‖w‖b ≤ βε.
The following sequence of equalities follow by straight forward substitutions and manipula-

tions:

M(x + z) = w,

M(x + z)− Axz = w − Axz,

Sx + Sz − F (x + z)− Axz = w − Axz,

Sz − Axz = F (x + z)− Sx− Axz + w,

Lxz = (F (x + z)− Fx− Axz)− (Sx− Fx) + w,

Lxz = Gx(z)−M(x) + w,

where the last equality serves to define Gx(z) = F (x + z)− Fx− Axz.
Now define Tw(z) = L−1

x (Gx(z) −M(x) + w). It follows from the definition of K that for
each z there exists w(z) such that

‖w(z)‖b ≤ β‖Gx(z)−M(x)‖a and ‖Tw(z)(z)‖a ≤ K‖Gx(z)−M(x)‖a. (1)
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On the other hand, using the definition of J and δ

‖Gx(z)−M(x)‖a ≤ ‖Gx(z)‖a + ‖M(x)‖a ≤
1

2
J‖z‖2

a + δ. (2)

Let Zε = {z ∈ Vn : ‖z‖a ≤ ε} and Wβε = {w ∈ Vn : ‖w‖b ≤ βε}. It follows from (1) and (2)
that for every z ∈ Zε there exists w(z) ∈ Wβε, such that Tw(z)(z) ∈ Zε, provided ε can be
chosen so that

1

2
Jε2 + δ ≤ ε and K ×

(
1

2
Jε2 + δ

)
≤ ε. (3)

If K < 1, then the first inequality implies the second, and if K > 1, then the second implies
the first.

Consequently, if ε is chosen so that the appropriate inequality of (3) is solved as an equality,

then T̂ (Zε) ⊆ Zε, where T̂ (z) = Tw(z)(z). Since T̂ is continuous it follows from Brower’s fixed
point theorem that there exists w? ∈ Wβε and z? ∈ Zε such that Tw?(z?) = z?. These are
the required z and w. It is easily seen that to satisfy (3) the required ε is as stated in the
proposition. �

The proof of propositions 3, 4 and 5 require the following two results. Define L(V) to be
the space of linear operators on V.

Proposition 7 Any right inverse of Lx can be written as B+C+ + B−C− where C+ and C−

are arbitrary n× n diagonal matrices over L(V) such that C+ + C− = I, and B+ and B− are
the fixed (n + 1)× n matrices over L(V) with

B+
ij =


0 i ≤ j

I i = j + 1

Ai−1 . . . Aj+1 i > j + 1,

, B−
ij =

{
0 i > j

−A−1
i . . . A−1

j i ≤ j,

where Ai = df(xi).

It might help to understand this result by writing out the case where n = 3, which gives,

Lx =

−A1 I 0 0
0 −A2 I 0
0 0 −A3 I


and

B+ =


0 0 0
I 0 0
A2 I 0

A3A2 A3 I

 , B− =


−A−1

1 −A−1
1 A−1

2 −A−1
1 A−1

2 A−1
3

0 −A−1
2 −A−1

2 A−1
3

0 0 −A−1
3

0 0 0

 .

Proof of proposition 7: First observe that B+ and B− are right inverses of Lx, and consequently,
so is B+C++B−C−. Next observe that Lx is of full rank, because each Ai = df(xi) is invertible,
because f is a diffeomorphism. By the rank nullity theorem the subspace of right inverses of Lx

has dimension n in the space of (n + 1)× n matrices. On the other hand, the subspace defined
by B+C+ + B−C− has dimension n, so it must include all the right inverses. �

Proposition 8 Let Un be equipped with γ-mean-max norms. If f is partially hyperbolic and
λ ∈ (λ0, λ1), then there exists a right inverse of Lx, such that for all v ∈ E∗

λ = E
(−1)
λ ⊕ E

(+1)
λ

with ‖v‖a ≤ 1, there is a w ∈ E∗
λ, with ‖w‖b ≤ 1, such that ‖L−1

x (v + βw)‖a ≤ K(λ).
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Proof of proposition 8: Using proposition 7 write L−1
x = B+C+ + B−C− and set C+ =

P (+1) + α+P (0) and C− = P (−1) + α+P (0), where α+, α− ∈ R, α+ + α− = 1, and P (κ) is a

projection onto E
(κ)
λ where P (+1) projects perpendicularly onto E∗

λ then projects onto E
(+1)
λ

parallel to E
(−1)
λ , P (−1) projects similarly, and P (0) is a projection parallel to E∗

λ. (See figure 1.)
Note that these C+, C−, are diagonal matrices over L(V) and C+ + C− = I. From the partial
hyperbolicity of f it follows for v ∈ E∗

λ that

‖L−1
x v‖a = ‖B+C+v + B−C−v‖a

≤ 1

2 sin θ/2
max

{
sup

i

∑
j

λ|i−j−1|‖vj‖,
1

γ

∑
i,j

λ|i−j−1|‖vj‖

}
.

The factor involving θ appears because this is the maximum expansion of the length ‖vj‖ as
a consequence of the parallel projections. (See figure 1.) The constraint ‖v‖a ≤ 1 defines a
convex set and so on this subset of E∗

λ the supremum of 1
γ

∑
i,j λ|i−j−1|‖vj‖ occurs when ‖vj‖ = 1

for the terms with largest coefficient λ|i−j−1|, subject to
∑

j‖vj‖ = nγ. This implies that for
v ∈ E∗

λ

sup
‖v‖a=1

‖L−1
x v‖a ≤

1

2 sin θ/2

(
2
1− λ(nγ+1)/2

1− λ
− 1

)
,

that is, choose the bnγc components vi with largest coefficients to have ‖vi‖ = 1. (In the above
we bump up the power to (nγ + 1)/2 to allow that nγ is generally not integer.) On the other
hand, if ‖w‖b = 1 and w ∈ E∗

λ, then there exists a w with

sup
‖w‖b=1

‖L−1
x w‖a ≥

1

2 sin θ/2

(
1− λn

1− λ

)
,

that is, let every component wi have ‖wi‖ = 1. The statement in the theorem now follows. �

Proof of proposition 3: If f is hyperbolic with uniform bound λ, then the result follows
trivially from proposition 8, because E∗

λ = E
(−1)
λ ⊕E

(+1)
λ = Un, so the stated bound is a bound

on ‖L−1
x ‖a,b,β. �

Proof of proposition 4: Define F (θ) = 1/(2 sin θ/2). Observe K(λ) and its derivative K ′(λ)
have the properties that,

K(0) = (1− β)F (θ), limλ→1 K(λ) = n(γ − β)F (θ),
K ′(0) = (2− β)F (θ), limλ→1 K ′(λ) = (1

4
(n2γ2 − 1)− 1

2
n(n− 1)β)F (θ).

The limit results are obtained by employing L’Hopital’s rule. If n2γ2 − 1 < 2n(n − 1)β, then
K(λ) is increasing at λ = 0 and decreasing at λ = 1, which implies K(λ) has a global extremum
for some 0 < λ? < 1. This occurs where K ′(λ?) = 0, that is, λ? is the appropriate solution of

β(n− 1)λn − βnλn−1 − (nγ − 1)λ(nγ+1)/2 + (nγ + 1)λ(nγ−1)/2 + β − 2 = 0.

Furthermore, since (1−λm)/(1−λ) is increasing for λ ∈ [0, 1), and the rate of increase increases
with m, it is easily shown that if n2γ2 − 1 ≥ 2n(n− 1)β, then K(λ) is increasing for λ ∈ [0, 1)
and hence K(λ) < n(γ − β)F (θ).

Proof of proposition 5: If K(λ1) < 0, then K(λ) < 0 for all λ ∈ (λ1, 1). If K(λ) < 0, then it
follows from the argument of proposition 8 that the effect of any v ∈ E∗

λ	E∗
λ1

can be completely
nullified by some w ∈ Vn with ‖w‖b ≤ β. Hence, only v ∈ E∗

λ1
need be considered. �
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Proof of proposition 1: The first part of the proposition follows from proposition 2 using γ-
mean-max norms. The approximate value of K for hyperbolic f follows from simplification of
proposition 3. For the weakly hyperbolic f observe that from proposition 4 that the equation

β(n− 1)λn − βnλn−1 − (nγ − 1)λ(nγ+1)/2 + (nγ + 1)λ(nγ−1)/2 + β − 2 = 0

to a first approximation, that is, when γ � 1, has a solution λ? with

λ? ≥
(

2− β

β(n− 1)

) 1
n

.

The case of partially hyperbolic f follows from simplification of proposition 5. �

Proof of proposition 6: Let v = u + w. We have the following inequalities

λ−2‖v‖2 ≤ ‖Av‖2 ≤ ‖A(u + w)‖2

≤ ‖Au‖2 + ‖Aw‖2

≤ λ2‖u‖2 + D2‖w‖2

On the other hand the cosine rule states

‖w‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos φ.

Eliminating ‖w‖ obtains

λ−2‖v‖2 − λ2‖u‖2 ≤ D2(‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos φ). (4)

If 0 ≤ φ < π/2, that is, the angle φ between u and v is acute and not a right angle, then

λ−2‖v‖2 − λ2‖u‖2 < D2(‖u‖2 + ‖v‖2). (5)

Since we are only concerned about the angle φ between u and v, we can scale both vectors so
that ‖u‖ = ‖v‖ = 1. With this substitution the inequality stated in the proposition follows
immediately from (4). If φ = 0 and ‖u‖ = ‖v‖ = 1, then (4) implies that λ−2 − λ2 ≤ 0, which
contradicts 0 < λ < 1, hence φ > 0. Alternatively, making the substitution ‖u‖ = ‖v‖ = 1 into
(5) implies that λ−2 − λ2 < 2D2, which when combined with the fact that 0 < λ < 1 in turn
implies the right hand side of the stated inequality is strictly positive and less than one. �

5 Applications and Discussion

One method of finding shadowing trajectories and pseudo-orbits is gradient descent of indeter-
minism (GDI). Suppose one is given an initial sequence of states θ = (θi)

n
i=0 and the aim is

to find a pseudo-orbit, x = (xi)
n
i=0 of a model f that is close to θ having smaller mismatches

xi − f(xi−1). Define the indeterminism of x as

I(x) =
1

n

n∑
i=1

‖xi − f(xi−1)‖2. (6)

Defined in this way, indeterminism is the mean square size of the mismatches of a pseudo-
orbit. (Note that I(x) = 0 if and only if x is a trajectory.) One can obtain from θ a family of
pseudo-orbits x(ξ) with progressively smaller mismatches by solving the differential equation

dx

dξ
= −∇I(x), x(0) = θ. (7)
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One can obtain an iterative algorithm for reducing indeterminism by integrating this differential
equation by Euler’s method. For example, using the Euclidean norm, choose a step size ∆,
then iterate from x = θ,

xi 7→ xi −
2∆

n


−A(xi)(xi+1 − f(xi)), i = 0,

(xi − f(xi−1))− A(xi)(xi+1 − f(xi)), 0 < i < n,

xi − f(xi−1), i = n,

(8)

where A(x) is the adjoint df(x)T . This is a remarkably successful algorithm for obtaining
pseudo-orbits with smaller mismatches. Typically, 2∆/n = 0.1 is suitable. For some models
the adjoint is not readily available, however, GDI algorithm is quite robust and still works
with approximate adjoints, even as bad an approximation as a constant times the identity
matrix [18]. The point being that to decrease indeterminism one does not necessary have to
take the direction of steepest descent.

GDI has been applied to many systems, but we are most interested in applications to high
dimensional systems, such as weather forecasting models. The author, for example, has applied
GDI to a simple quasi-geostrophic model of the atmosphere [18] (dimension ≈ 1500) and an
operational weather forecasting model at reduced resolution [15] (dimension ≈ 7.5 × 105). In
both of these applications the model certainly has Lyapunov exponents near zero, and possibly
local Lyapunov exponents that fluctuate about zero [8, 21, 22, 31]. Three important issues that
arise in the application of GDI are:

1. Concern, often raised as a criticism, that GDI has no means to prevent wandering far
from the initial sequence of states θ.

2. Since GDI will never converge to a trajectory, when should the gradient descent be
stopped, that is, when has sufficient convergence been achieved?

3. How does model error influence the convergence of GDI? Can the mismatches of a pseudo-
orbit give an indication of the nature of model error?

In the following we use proposition 1 to provide some guidance on these, and other, issues.
Although we speak only of GDI it is likely that much of what we say applies to other algorithms
for finding shadowing pseudo-orbits.

5.1 Numerical computations of λ and K

As stated previously, the parameters β, γ and λ are not independent. Figure 2(a) shows
numerical computations of a bound on λ for various β and γ. This bound has been computed
according to proposition 4, which is more precise than the bound stated in proposition 1.

Figure 2(b) shows numerical computations of a bound K/F (θ), that is, the K of propo-
sition 1 without the factor F (θ) = 1/(2 sin θ/2). The numerical bound has been computed
according to proposition 1 using the bound computed for λ. In the most optimistic situation
one has θ = π/2, so the value of K is a factor of

√
2 less than the value of K/F (θ) shown in

figure 2. As λ → 1 it is likely that θ → 0, which will inflate K (significantly) more than the
value of K/F (θ) shown in figure 2.

The implications of figure 2 will be discussed further in the following.

5.2 Convergence of gradient descent algorithms

Proposition 1 and the computed bounds on λ and K shown in figure 2 can be used to appreciate
the convergence properties of GDI. In the terms of proposition 1, GDI corresponds to finding
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successive y that reduce the value of β, with a trajectory obtained when β = 0. (Note the
convergence has a non-trivial quadratic effect: the bound on the mismatch of y is βε, but ε
depends on K, which depends on β.) It is also possible that γ varies as iteration proceeds.

Other things being equal, the rate of convergence of GDI is governed by the value of λ [28];
the smaller λ, the faster the convergence, and if λ → 1, then convergence essentially stops.
From figure 2(a) it can be seen that as β decreases, λ increases, and furthermore, unless γ is
small, convergence will be slow, and will grind to a halt long before a trajectory is obtained. It
should be stressed that figure 2(a) represents a worse case analysis, because convergence will
depend on the nature of the initial mismatches of x and perhaps other factors discussed later.

5.3 Wandering

The parameter ε in proposition 1 is an explicit bound on how far y can be expected to wander
from x. From proposition 1, if δ is small, then ε ≈ Kδ. Now K can be greater than one2.
From proposition 1 when β is sufficiently close to one, then one could have K < 1. Of course,
if β = 1, then βε = δ and y has the same size mismatches as x, which is of no value.

From the values of K implied by figure 2(b) it is seen that there can be significant move-
ment away from x as GDI proceeds, that is as β decreases, especially when γ is large. This
assertion could be a little misleading, because, as the preceding discussions point out, for large
γ convergence grinds to halt before it wanders this far. Even so, there is still the potential for
significant wandering when γ is small.

Once again it should be stressed that figure 2(b) represents a worse case analysis, however,
this upper bound should be more of a concern than it was for convergence issues, because there
is more potential for wandering when the model is imperfect. This should be taken as a warning
not to force convergence of GDI with imperfect models, or at least to watch for wandering.

5.4 Effects of model error on gradient descent

Model error and observational errors tend to have different characteristics: observational errors
tend to be random, whereas model errors tend to be systematic. Even when model errors are
effectively random, there is typically a strong systematic component too, because model error
often results from the model having an incorrect functional form or incorrect parameter values.
If model errors have a systematic component, then model trajectories tend to drift away from
true trajectories [25]. The effects of systematic model error on GDI can be understood in terms
of the parameter γ. (See also the following section for a discussion of how the interpretation of
γ may need to be adjusted for spatially extended systems, like weather models.)

First consider the nature of γ given a perfect model. If an initial x = θ were influenced by
observational errors, say independent Gaussian errors with mean zero and variance σ2, then γ
should be significantly less than one, because for most xi the error will be smaller than σ, but
some may be larger than 2σ. As GDI proceeds it typically reduces mismatches in proportion
to their magnitude, because it follows the gradient of the mismatches. Thus, in a situation of
a perfect model and random state errors one should anticipate that as GDI proceeds the value
of γ is initially significantly less than one and will remain so. From figure 2 one can also expect
GDI to obtain good convergence toward a trajectory of the model.

Consider now an imperfect model and a trajectory x of the true system that is perfectly
observed. This x will be a pseudo-orbit of the imperfect model f . Systematic model error
(drift) will be revealed in x through the mismatches xi − f(xi−1) being in a similar direction,
and of similar magnitude, for consecutive states. Even if there is a random component, the

2Chow and Palmer made a direct numerical estimate of K ≈ 113277 for the Henon map [5], but they were
considering the situation where β = 0.
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consecutive mismatches will be highly correlated. If this is the case, then γ will be close to one,
because all the mismatches are of similar size. (In contrast with random errors as discussed
above for which γ should be significantly less than one.) According to proposition 1 and figure 2,
if γ is close to one, then GDI cannot be expected to obtain pseudo-orbits with much smaller
mismatches, that is, progress of GDI will be slow, small, or non-existent, and convergence to a
trajectory is unlikely.

If the model is imperfect and the initial θ also includes observational errors that are large
relative to model error, then γ can be significantly less than one. In this case GDI can be
expected to at first reduce the random observational error component of the mismatches, but
as the random errors are reduced to a size similar to the systematic model error, the value of
γ will increase toward one, and GDI will slow to a halt well short of obtaining a trajectory.
When this happens the residual mismatches may provide useful information about the nature
of the systematic model error.

On the other hand, model error need not imply γ is close to one. It could happen that
model error is larger in some states than others. Then the model may be fairly good most of
the time and have occasional bad periods; the model error is localised in time. In this case γ
can be small, and proposition 1 implies good shadowing pseudo-orbits can be found.

5.5 Spatially extended systems

For spatially extended systems, like weather and climate models, the discussion of the preceding
section concerning the role of γ may need to be modified. The problem that arises is γ typically
always appears to be close to one, regardless of the nature of the errors. For example, in the
weather model discussed later, γ is typically around 0.9, but GDI still achieves significant
reduction of mismatches. This would appear to contradict the indications of proposition 1 and
figure 2, but really it requires a re-evaluation of the role of γ. First we consider two ways that γ
can be close to one, and GDI will still be effective. We then discuss how γ can be re-interpreted
in these cases.

In spatially extended systems observational errors are typically independent on long length
scales. Suppose, for example, each component of θi ∈ Rd has an independent normally dis-
tributed error with mean zero and variance σ2. The square of the magnitude of the error will
have a χ2-distribution with d degrees of freedom. If d is large, then the magnitude of the error
will have a very small variance. Consequently, γ will be approximately one.

Similarly, in spatially extended systems model errors can be localized in space and move
around in time. As a consequence, if the localized errors are of a similar size, then, in a typical
norm, γ will be close to one.

We can re-interpret γ as follows. The value of γ is defined by the norm on state space B.
In proposition 1 the underlying norm on B is not specified, which means this norm can be any
convenient or pertinent norm. If the system is spatially extended one could choose a norm
that is spatially localised, emphasizing differences in locales of interest. For example, using a
norm that emphasized differences over North America, or Japan, or over the tropical Pacific
Ocean. With a localised normed, observational and model errors are only large when they
directly effect the locality. Viewed in this way, it can be understood why GDI is still effective
with localised errors. Whether there is any advantage in using a localised norm, rather than a
global norm, in practice needs further investigation.

In situations like this an indication of the effective value of γ can be determined by reducing
γ in proportion to the size of the region where errors are localised relative to the size of the
whole domain.
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5.6 Application to a weather forecasting model

The author has applied GDI to an operation weather forecasting model using real atmospheric
observations [15]. The model used was the Navy Operational Global Atmospheric Prediction
System (NOGAPS) [2]. Various experiments involving GDI have been performed using opera-
tional observations from March and October 2003. The results discussed here used a T79L30
resolution model with a 6 hour forecast period. The initial pseudo-orbit x was 7 days of analy-
ses (29 states) obtained by three dimensional variational assimilation at the model’s resolution
of atmospheric observations using the NAVDAS implementation [6]. GDI was implemented as
equation (8), with 2∆/n = 0.1, and A(x) a dry atmosphere approximation of the adjoint [15].

Figure 3 shows how the indeterminism typically varies as the GDI algorithm is iterated.
Note how there is an initial rapid decrease in the first 5 to 10 steps, followed slower decrease.
Normalising to have δ = 1, it was found that ε ≈ 1.44 and β ≈ 0.43 after about 10 iterations
of the algorithm used, and β ≈ 0.27 after 50 iterations, with a very slow rate of convergence
by this stage. Using a global spectral norm a direct computation gives γ ≈ 0.9, but this is
misleading because of the highly localised spatio-temporal nature of the initial mismatches.
Viewing zonal averages of the mismatches suggests significant localization and an effective γ of
around 0.3 to 0.6.

Working with the computed values of ε, β and γ, it is seen that the observed convergence
behaviour is consistent with the bounds indicated by figure 2(a), that is, the slowing down after
an initial rapid convergence is consist with approaching the λ bound for the computed β and
γ values.

The ε value is quite small given the worse case bounds of figure 2(b); even with γ = 0.2 we
could have expected ε up to 2. This is encouraging. Even if we inflate ε by 1/0.3, as a crude
assumption that mismatches only occur in 30% of the spatial variables, then this would give
ε ≈ 4.8, which is still consistent with figure 2(b).

We conclude that the convergence properties and wandering of the gradient descent algo-
rithm we applied to an operational weather model are consistent with the theory developed,
and therefore indicates the results obtained with the weather model are both reasonable and
useful.

6 Conclusions and further work

The introduction of the idea of shadowing pseudo-orbits has provided a useful tool to understand
and analyse gradient descent algorithms for finding shadowing trajectories. The main theorem
shows that provided a non-hyperbolic system is sufficiently like a hyperbolic system, then
shadowing pseudo-orbits exist and some of their properties can be explicitly stated. Since
gradient descent algorithms iteratively improve pseudo-orbits, the main theorem can be used
to assess the convergence in non-hyperbolic systems. It can be expected that the algorithm’s
convergence will slow to an almost halt before it convergences to a trajectory. (Although partial
convergence may be useful, because, for example, it may improve state estimates for forecasting
or give better indications of model error.)

The definitions of hyperbolic and partially hyperbolic were in terms of a single growth rate
parameter λ. This choice was made to simplify the proofs. It is common to define hyperbolicity
in terms of two parameters, one for unstable modes, and another for stable modes. This can
be done for partial hyperbolicity too. By doing so one should be able to obtain tighter bounds
than those stated in propositions 1, 3 and 4.

Clearly, further work needs to be done on application to spatially extended systems, because
the results as currently stated are not immediately applicable, some adjustment was necessary.
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Figure 2: (a) The bound on λ computed according to proposition 4, (b) K/F (θ), that is, the
bound on K stated in proposition 1 without the factor F (θ) = 1/(2 sin θ/2) involving the angle
bound θ.
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Figure 3: Convergence of indeterminism for the T79L30 NOGAPS model. This figure shows the
indeterminism computed separately for each level of the vorticity field. The other prognostic
variables (divergence, temperature, specific humidity and surface pressure) behave similarly.
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