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Modéles réduits pour les systémes atomistiques
mono-dimensionnels & température finie: analyse
mathématique et approches numériques

Résumé : Nous présentons une approche possible pour le calcul de moyennes d’ensemble
et d’énergies libres de modéles réduits en science des matériaux, dans un cadre mono-
dimensionnel. L’approche s’appuie sur une limite thermodynamique, et utilise des théo-
rémes ergodiques et la théorie des grandes déviations. Nous obtenons ainsi non seulement
une stratégie numeérique efficace pour le calcul de moyennes thermodynamiques, mais aussi
un moyen de vérifier numériquement la validité des hypothéses qui sont couramment faites
dans la littérature pour développer de telles approches.

Mots-clés : moyennes d’ensemble, énergies libres, modéles réduits, science des matériaux,
limite thermodynamique, stratégie numérique



Finite-temperature coarse-graining of one-dimensional models 3

1 Introduction

Computing canonical averages is a standard task of computational materials science. Con-
sider an atomistic, supposedly large, system consisting of N particles, at positions u =
(u',...,u"N) € R®N. Provide this system with an energy

E,(u) = E, (u',...,u"). (1)

A prototypical example of such an energy is the pair interaction energy

1 . _
Bu(u) = 5 W (W —ul). (2)
i#£j
The finite temperature thermodynamical properties of the material are obtained from canon-
ical ensemble averages,

Afw) exp(~BE, (w)) du
() = S , ®)
| (BB w) du

where 0 C R3 is the macroscopic domain where the positions u’ vary, A is the observable
of interest, and 8 = 1/(kgT) is the inverse temperature [15]. The denominator of (3) is
denoted by Z and called the partition function. The major computational difficulty in (3)
is of course the N-fold integrals, where N, the number of particles, is extremely large. For
integrals of the type (3) to be quantitatively meaningful in practice, N does not need to
approach the Avogadro number, but still needs to be extremely large (10°, say).

The three dominant computational approaches for the evaluation of (3) are Monte Carlo
methods, Markov chains methods, and Molecular dynamics methods respectively (see e.g.
[13] for a review and a mathematical and computational comparison). In the present article,
we use the latter type of methods, and more precisely the overdamped Langevin dynamics
(also called biased randow walk). The ensemble average (3) is calculated as the long-time
average

(A) = Tim % /O Au(t)) dt (4)

T—+o00

along the trajectory generated by the stochastic differential equation

du = —V,E,(u) dt + \/2/BdB;. (5)

It is often the case that the observable A actually does not depend on the positions u?
of all the atoms, but only on some of them. Think for instance of nanoindentation: we are
especially interested in the positions of the atoms below the indenter, in the forces applied
on these atoms, ... Our first aim is to design a numerical method that efficiently computes
canonical averages of such observables. Our second aim will be to assess the validity of other
approaches, as compared to ours.

RR n°® 6544



4 X. Blanc, C. Le Bris, F. Legoll, C. Patz

The QuasiContinuum Method (QCM) is a commonly used example of approaches that
allow for the calculation of ensemble averages. In its original version, the method was
focused on the zero temperature setting. It was originally introduced in [44, 45], and then
further developed in [27, 34, 35, 41, 42, 43]. It has been studied mathematically in e.g.
[1,2,3,7,8,9, 18, 20, 21, 22, 30, 31, 37]. See [10] for a recent review. An extension of the
original idea has recently been developed in [19] and carries through to the finite-temperature
case, considered in the present article. See also [14, 29] for prior studies developing ideas in
the same vein.

Let us briefly detail the bottom line of coarse-graining strategies for the computation
of canonical averages. For simplicity of exposition, we let the atoms vary in Q = R3. The
idea is to subdivide the particles of the system into two subsets. The first subset consists of
the so-called representative atoms (abbreviated in the QCM terminology as repatoms, with
positions henceforth denoted by u,.). The second subset is that of atoms that are eliminated
in the coarse-grained procedure. Their positions are denoted here by u.. We assume that
the observable considered only depends on the positions u, of the repatoms, not on those of
the other atoms, u.. More precisely, one writes

w=(u,.. ,u’) = (up,ue), ur RNy, RN N=N,+ N,

Our aim is to compute (3) for such observable, that is,

(A)y=2z7" A(uy) exp(—BEy(u)) du. (6)

R3N

We observe that, owing to our assumption on A,

/RaN A(uy) exp(—FE,(u)) du = /RaNT du, A(u,) /ch exp(—0BE, (ur, uc)) due,

and likewise
Z :/ exp(—0E,(u)) du :/ du, / exp(—0E, (ur, uc)) due.
R3N R3Nr- R3Nc

Introducing the coarse-grained potential (also called free energy)

Ecc(uy) := —%ln [/ exp(—LE, (ur, uc)) duc] , (7)
R3Nc
the expression (6) rewrites
) =2 [ ) exp(=BEea(w) du ©
where of course
Z, = / exp(—BEcc(ur)) du,. (9)
R3Nr

INRIA



Finite-temperature coarse-graining of one-dimensional models b)

Under appropriate conditions ensuring ergodicity of the system, the integral (8) is in turn
computed from

1 (T
()= Jim / Alun (b)) dt with du, = —V Eoa(up) dt+/2/BdB,.  (10)
Simulating the dynamics in (10) is a less computationally demanding task than simulating
(5), owing to the reduced dimension N,. This simplification comes at a price: calculating
the coarse-grained free energy (7).

Remark 1 The present work concentrates on the computation of ensemble averages us-
ing coarse-grained models, and free energies. Practice shows that the same coarse-graining
paradigm is used to simulate actual coarse-grained dynamics at finite temperature. We will
not go in this direction as the physical relevance of the latter approach is unclear to us.

In order to approximate the free energy (7), state-of-the-art finite temperature methods
perform a Taylor expansion of the position of the eliminated atoms wu.. In this Taylor
expansion, a linear interpolation and a harmonic approximation of the positions of the
atoms are successively performed. More precisely, given the positions u, of the repatoms, the
average positions u.(u,) of the eliminated atoms are first determined by linear interpolation
between two (or more) adjacent repatoms. Then it is postulated that

Ue = u_c(ur) + gc

where the perturbation &, is small. The energy is then calculated from a Taylor expansion
truncated at second order:

Eu(urauc) = Eu(uruu_c(ur)+€c)

T AT — 1, 8E,
~ E“(ur’ uc(u’”)) + du, (u"“a uc(ur)) e+ §§c : 5—’11(2:

€= E’(ur,uc).

It follows (we skip the details of the argument and refer to the bibliography pointed out
above for further details) that Ecg(u,.) is approximated by

Eqom(uy) :_%m " exp(—BE (ur, u)) due, (11)

which is analytically computable. Without such simplifying assumptions, the actual compu-
tation of Eqg for practical values of IV, and N, seems undoable. The approach has proven
efficient. Reportedly, it satisfactorily treats three-dimensional problems of large size. How-
ever, from the mathematical standpoint, it is an open question to evaluate the impact of
the above couple of approximations (linear interpolation of the average positions, followed
by harmonic expansion). The purpose of the present article is to present an approach that,
in simple cases and under specific assumptions, also allows for a quantitative assessment of
the validity and limits of the above couple of approximations.

RR n°® 6544



6 X. Blanc, C. Le Bris, F. Legoll, C. Patz

Our approach is based on a thermodynamic limit. It was first outlined in [38] for the
special case of harmonic interactions. The approach is ezact in the limit of an infinite num-
ber of eliminated atoms, and therefore valid when this number N, is large as compared to
the number N, of representative atoms that are kept explicit in the coarse-grained model.
This regime, after all, is the regime that all effective coarse-graining strategies should tar-
get, although, in practice, N, is seemingly much smaller than ideally, and even sometimes
of the same order of magnitude as V.. In short, the consideration of the asymptotic limit
N, — +00 makes tractable a computation which is not tractable for finite N, (unless sim-
plifications, as those mentioned above, are performed). We do not claim for originality in
our theoretical considerations on the thermodynamic limit of the free energy of atomistic
systems. We provide them here for consistency. However, our specific use of such theoret-
ical considerations as a computational strategy for approximating coarse-grained ensemble
averages in computational materials science seems, to the best of our knowledge, new. We
were not able to find any comparable endeavour in the existing literature we have access to.

Let us conclude this introduction by briefly describing our approach. Assume for sim-
plicity that there is only one repatom: N, = 1. Our idea to compute (A) in (6) is to change
variables, that is introduce y = (y1,...,yn) = ®(u), and recast (6) as

N
= [ 4 (% Zy> v(0) dy

for some probability density v(y) (see equation (17) below for an explicit example). We
N
1
next recognize (A) as the expectation value E lA N ZYZ , where Y = (Y1,...,Yn)
=1

are random variables distributed according to the probazbility v. A Law of Large Numbers
provides the limit of {(A) when N — +oo (which corresponds to N, — +o0, since N, = 1).
The rate of convergence may also be evaluated using the Central Limit Theorem.

The above approach bypasses the calculation of the free energy Ecg to compute the
ensemble average (8). But it is also interesting to try and evaluate Fcg in the same regime,
in order to, again, both provide an efficient numerical approach and assess the validity of
commonly used simplifying approaches. First, it is to be remarked that Fcg scales linearly
with the number N, of eliminated atoms. The relevant quantity is hence the free energy per
particle .

Fo(uy) = Nclinim EE@@(UT). (12)
This energy is related to the coarse-grained constitutive law of the material at finite temper-
ature (see |17, 36] for related approaches). Even if F is a good approximation of Ecg/N.
for large N, it can be seen that N F is not necessarily a good approximation of Fcg. It
is not clear to us how to use the probability measure Zg,cl exp(—fN.Fx) to compute in an
efficient manner an approximation of the average (A) (see Remark 6 below).

We develop our approach in the one-dimensional setting, for simple cases of pair inter-
actions. We first consider nearest neighbour (NN) interactions. In this case, we develop a

INRIA



Finite-temperature coarse-graining of one-dimensional models 7

computational strategy to approximate ensemble averages (see Section 2.1), and we next
address the computations of free energies (see Section 2.2). Numerical considerations are
collected in Section 2.3.

We next turn to next-to-nearest neighbour interactions, traditionally abbreviated as
NNN. For this model, we focus on the computation of ensemble averages (see Section 3.1).
As explained in Section 3.2, more complicated types of interaction potentials and "essentially
one-dimensional systems" (including polymer chains) may be treated likewise, although we
do not pursue in this direction.

A similar interpretation of ensemble averages as the one presented here, using a Markov
chain formalism, should lead to an analogous strategy for two-dimensional systems. Some
preliminary developments, not included in the present article, already confirm this. However,
definite conclusions are yet to be obtained, both on the formal validity of the approach and
on the best possible numerical efficiency accomplished. The fact that the two-dimensional
case is much more difficult than the one-dimensional case is corroborated by the literature
on this subject: only very simple cases, such as spin systems, or harmonic interactions (with
zero equilibrium length) are known to have explicit solutions in this context (see the reviews
[5, 39]). We therefore prefer to postpone considerations on the two-dimensional situation
until a future publication [11].

2 The nearest neighbour (NN) case

As mentioned in the introduction, our approach is based on the asymptotic limit N — +o0.
We therefore first rescale the problem with the interatomic distance h, such that Nh = L = 1.
The atomistic energy (2) in the rescaled NN case writes

E, (M,...,M):iw(%). (13)

We now impose u° = 0 to avoid translation invariance, and consider that only atoms 0 and
N are repatoms, while all the other atoms ¢ = 1,..., N — 1 are eliminated in the coarse-
graining procedure (see Figure 1). Our argument can be straightforwardly adapted to treat
the case of N, >> 2 repatoms (see Figure 2). See the end of Section 2.1 for this.

L

® 6 6 6 ¢ 6 6 6 ¢ 0 O
0 N

Figure 1: We isolate a segment between two consecutive repatoms (in red). All atoms
in-between (in blue) are eliminated in the coarse-graining procedure.

RR n°® 6544



8 X. Blanc, C. Le Bris, F. Legoll, C. Patz

0 N

Figure 2: The repatoms (in red) are explicitly treated, all other atoms (in blue) being
eliminated in the CG procedure.

In this simple situation, the average (6) reads

(A)y=2"1 /sz A (u™) exp (—ﬁi_v:w <“‘TUI)> du' ... du®, (14)

where we have explicitly mentioned the dependence of (A) upon N using a subscript. We
introduce

|
yizz%, i=1,...,N, (15)
and next remark that
N 1
N _ = .
u _hEyz—N;yz' (16)
The average rewrites as
1N N
_ -1 _ _ _ 1 N
(AN =2 /RNA<N;yl>exp< 5;W<y»>dy dy™, (17)

N
where now Z = / exp (—ﬁZW(yJ) dy* ... dy".
RY i=1

Remark 2 In (14), we let the variables u' vary on the whole real line. We do not constrain
them to obey u'~' < u’, which encodes the fact that nearest neighbours remain nearest
neighbours. The argument provided here and below carries through when this constraint is
accounted for, basically replacing the interaction potential W by

[ W(y) when y>0
We(y) = { +00  otherwise. 1)

Likewise, we could also impose that all the u® stay in a given macroscopic segment. If they

are ordered increasingly, it suffices to impose this constraint on u® and u’¥. This is again a
simple modification of our argument.

INRIA



Finite-temperature coarse-graining of one-dimensional models 9

2.1 Limit of the average

It is evident on the expression (17) that

(A)y =E

1N
()
for independent identically distributed (i.i.d.) random variables Y;, sharing the common law

2~ Lexp(—BW (y))dy, with z = / exp(—BW (y))dy. A simple computation thus gives
R

Theorem 1 Assume that A : R — R is continuous, that for some p > 1, there exists a
constant C' > 0 such that

Yy € R, [A(y)] < C(1+ Jy["), (19)
and that
/R(l + [yP) exp (=W (y)) dy < +o0. (20)
Then,
S (A)y = A, where y" =2 /R y exp(—AW (y)) dy, (21)

with z = / exp(—BW (y))dy. In addition, if A is C? and if (19)-(20) hold with p = 2, then
R

(= (A o (). 2
with

2
(APt = A(y") + ;—NA”(y*), where 0% = 2’1/(11 —y*)? exp(—BW(y))dy. (23)
R

The proof of (21) is a direct application of the Law of Large Numbers, and that of (22) is
an application of the Central Limit Theorem. We skip them. The following considerations,
for more regular observables A, indeed contain the ingredients for proving (21)-(22), simply
by truncating the expansion at first order.

Note that if A is more regular than stated in Theorem 1, then it is of course possible
to proceed further in the expansion of (A)x in powers of 1/N. Indeed, assume for instance

RR n° 6544



10 X. Blanc, C. Le Bris, F. Legoll, C. Patz

that A is C, that A is globally bounded and that (19)-(20) hold with p = 6. Then

(wg) = alrsze)

I S A N S G AN
A(y)+A(y)NZDi+§A (") NZDi

i=1

1
where D; = Y; — y* and & lies between y* and (1/N) > Y;. We now take the expectation
value of this equality. Let us introduce

approx,2 * 1 * 1 2 1 3 % 1 3
(A)prre = Ay )+§A”(y )NE (D1)+6A( )y )mE(Dl)
1y, « 1 4 N -1 231 2
+57AY W) ( 3B (D) + —— (E(DD))
1 . 1 N-1
+aA(5)(y) i (DY) + E(D%)E(D%)). (24)
Then
1 1 & ‘
_ approx,2 - (6) . )
(Ahx = (AT < 2 4O E (N ZD> . (25)
We now use the fact that any i.i.d. variables D; with mean value 0 satisfy the following
bounds:
N P OZ if p is even;
weN, 3¢,>0, [E|(=3 D Ne (26)
PeS T2l N C
i=1 P if p is odd.

p+1
2

This is proved by developping the power p of the sum, and then using the fact that the
variables are i.i.d and have mean value zero. We hence infer from (24), (25) and (26) that

Ml = A+ S ) + 5 (24900 + Za06) ) +0(55) . @D
where o is defined by (23) and

a :Z_l _ *36)( _
. /R@ y*)? exp (AW () dy

INRIA



Finite-temperature coarse-graining of one-dimensional models 11

More generally, it is possible to expand (A)y at any order in 1/N, provided that A is
sufficiently smooth and exp(—GW) sufficiently small at infinity. In view of the bounds (26),
we can see that using a Taylor expansion of order 2p around y* for A gives an expansion of
(A)n of order p.

The practical consequence of Theorem 1 is that, for computational purposes, we may
take the approximation

(A)y ~ A <zl/RuN exp(—ﬁW(uN))duN> . (28)

As pointed out above, it is possible to improve this approximation if necessary by expanding
further in powers of 1/N.

We conclude this section by showing that our consideration of a single "segment" carries
through to the case when there are 3 repatoms, of respective index 0, My and M7 + Mo,
with Myh = Ly, Moh = Lo, Nh = L = 1 (see Figure 3). The average to compute writes

N i i1
(A = Zfl/ A (u™ MMz exp <—5ZW (%)) du' ... du".
RN i=1

In the regime h — 0, N, My, My — +oo with M; /N and My /N fixed, we have, using similar
arguments,

NETOO<A>N = A(L1y*, Lay™).

The generalization to N,. > 3 repatoms, in the appropriate asymptotic regime, easily follows.

L1 L2

o 6 ¢ & 6 ¢ 6 ¢ o 0o O
0 M1 M1+M2 N

Figure 3: When considering two consecutive segments -or more-, the argument may be
readily adapted. See the text.

Remark 3 (The small temperature limit) [t is interesting here to consider the small
temperature limit of the above expansion, that is, the limit 6 — +oo. In such a case, using
the Laplace method (see [6]), it is possible to compute the limit of the various terms that
appear in the expansion of (A)n (see (27)). We give as an exzample the first and the second

o Aly") = A() +0 (%) R %% o (%> |

RR n°® 6544



12 X. Blanc, C. Le Bris, F. Legoll, C. Patz

where a is the point where W attains its minimum (in this remark, we assume for simplicity
that W attains its minimum at a unique point). It is possible to recover these terms by ex-
panding the energy E,, around the equilibrium configuration corresponding to y; = a. Indeed,
if we assume that W(y) = W"(a) (y — a)?/2 in (14), then a simple explicit computation
gives

Ay = Aa) + o A"(a) + O s

(A = Ala) + s A @ 3Nz )
Hence, expanding the first terms of (23) in powers of 1/8 for large § gives an expansion
that agrees with that obtained using a harmonic approzimation of the energy. This provides
a quantitative evaluation of the latter approach in this asymptotic regime.

2.2 Limit of the free energy

We now look for a more demanding result. For clarity, let us return to the general coarse-
grained average (8), which of course equals (14) and (17) in our simple NN case. Instead of
searching for the limit of the average (A) for large N., we now look for the limit of the free
energy per particle (see (7) and (12)).

In the present section, wu,. is in fact equal to u¥ (the right end atom) since u® = 0,
although a repatom, is fixed to avoid translation invariance. Thus we wish to identify the
behaviour for N large of

N

Eca (uN):—%ln [/ exp (—BE, (ul,...,uN)) dut .. uN7H (29)
]RN*I

Note that Ecg is the free energy corresponding to integrating out N — 1 variables. From
Thermodynamics, it is expected that Fcg scales linearly with V. This is confirmed by the

consideration of an harmonic potential W(z) = 5(1‘ —a)?, for which

EN
Eca (UN) = T (UN — a)2 + C'(]\/:ﬂ7 k)7
1 1 N -1 2
where C(N, 3,k) = 3 (N — 5) InN — 5 In (6—7;) does not depend on uy (see the
details in [38]). Therefore, we introduce the free energy per particle
1
FN(?L‘) = NEC(;(CL'),
so that
(A)y = z;l/A(uN) exp (—ANFy (u)) du®. (30)
R

The limit behaviour of Fly is provided by the Large Deviations Principle. This claim is
made precise in the following theorem.

INRIA



Finite-temperature coarse-graining of one-dimensional models 13

Theorem 2 Assume the potential W satisfies
veek [ e (er— W) dy < +oo, (31)
R

and exp(—BW) € HY(R \ {0}). Then the limit behaviour of Fx is given by the following
Legendre transform:

Jlim <FN(:1:) + %m i) = Fo(2) (32)
" Foo(z) := %Sgp (696 —1In [2‘1 /Rexp(Sy - W (y)) dy]) (33)

and z = /Rexp(—ﬁW(y)) dy.

Remark 4 The assumption exp(—BW) € H*(R\ {0}) allows for W to be piecewise con-
tinuous, with discontinuity at the origin. This in particular allows to deal with the type of
potentials mentioned in Remark 2.

Proof: Let us first rewrite the free energy Fn(z) as follows:

N-1 i i1
Fn(z) _BLN In l/RNl exp(—ﬁ w (%)
=1

N1 . N-1
- _6—Nlnh—6—N1n[/RNleXp<—ﬁW (Nf— ;yl>

N-1
_5 Z w (y1)> dyl .. .dyN1‘|

i=1

1 1 1
——=Inh—=Inz——=—1n ),
3 3 3N N ()

where py is the law of the random variable (1/N) Zﬁl Y;, and Y; is a sequence of i.i.d.
random variables with law p = 2z~ exp(—8W (y)). Actually, we have

pn(z) =N p*™ (Nz),

where p*V denotes the (N — 1)-fold convolution product of u (u*? = p * p).
The sequence of measures uy satisfies a large deviations property (see for instance [23,
24, 25, 46]). We are going to use it in order to compute the limit of % In ppn. We first prove a

RR n°® 6544



14 X. Blanc, C. Le Bris, F. Legoll, C. Patz

lower bound, which is a simple consequence of the results of [46]. The upper bound is more
involved: we need to reproduce the corresponding proof of [46], and use a refined version of
the Central Limit Theorem [32].

We introduce the function

1
Gn(z) = BN In pn (z), (34)
which satisfies, in view of the above computation,
Fy(@) = —~ 2 + G () (35)
N(Z) = 3N N(Z).
First step: lower bound. We write
pavaale) =V + 1) [ (NG =0+ ) de. (36)
R

Let us define .
JIn(t) = —Nlnu(N(a: —t)+x).

This function clearly satisfies the following convergence:

+oo ift#x,
0 ift = .

u—t,N—+4o0

liminf Jy(u) = J(t) := {
Hence, we may apply Theorem 2.3 of [46], which implies that

liminf (—% In / exp (=N Jn (1)) MN(t)dt) > inf (Joo(t) + FFoc(t) = BFac(a).  (37)

In(N +1)
N

liminf Gy (2) 2 Foo(2). (38)

N+1
Since the left-hand side of (37) is equal to %GNH@) +

, we infer

Second step: upper bound. We now aim at bounding Gy from above. We recall that the
function we maximize in (33) is concave, so there exists a unique &, € R such that

Foo(2) = % <§mx —1In [21 /Rexp (&xy — BW (y)) dy]) :

The Euler-Lagrange equation of the maximization problem also implies

/Ryexp (Exy — BW (y)) dy

xTr =

/RGXP (Exy — BW (y)) dy |

INRIA



Finite-temperature coarse-graining of one-dimensional models 15

We introduce the notations
() = exp (&t — BW (1))
[ exvleot - e

and M(¢) = 21 / exp(&t — W (t)) dt
R
and compute
pn(x) = N (fo - Z yz) (yn—1) dy1 .. .dyn—1
RN-1

N-1 N-1
= N M(&)N /wal I (Nf - y) exp (—& > yz)
=1

i=1
Xp(y1) .. plyn—1) dy1 ...dyn—1

N-1
N M(&)N ! Nz — i
(&) /| Zyi<5‘u< ’ ;y>
X exp ( £ Z yz> (yn—1) dyr ... dyn—1

NM@W*Q%O&W@M—mW

Y

Y

X/ (Y1) - - fi(yn—1) dyi ... dyn—1.
‘ Zy1|<6

Hence,

fac 1
ﬁN BN ( (51)) 5 +|§x|ﬁ_N_ﬁ_N1n< 1112]#)

N—
___mp( <_>, (40)

Z —
where the random variables Y; are i.i.d. of law fi. The equation (39) implies that E(Y;) =
x. According to the hypotheses on W, we have i € H' (R\ {0}), hence we may apply
N

Gn(z)

IN

Theorem 5.1 of [32]. It implies that the law 0 of the variable Z Y; — Nz | /V/N converges
i=1
in H*(R) to some normal law. In particular, we have convergence in L°°, hence

1Nfl
]P’(N;Y—

z+6

/ t)dt > 279 :
zs N -1
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16 X. Blanc, C. Le Bris, F. Legoll, C. Patz

for N large enough, where v > 0 does not depend on N. Inserting this inequality into (40),
we find

Gy(z) < —leN—Nﬂj_\]1 ln(M(ﬁm))+&—x+|§m|i—iln ([inf u)

BN g BN BN \[-6.4)
1 270
———In|—. 41
BN ( N - 1) =
Hence,
. 1 &
limsup Gy (z) < —=In(M (&) + =,
N — 400 ﬁ ﬁ
which implies, according to the definition of M and &,, that
limsup Gy (z) < Foo(2). (42)

N—+4o00
Estimates (38) and (42) imply Nlim Gn(x) = Fx(z). In view of (35), this implies (32). $
— 400
Remark 5 (The small temperature limit) As in Remark 3, it is possible to compute

the expansion of Foo(x) as § — +oo. Using the Laplace method, and assuming that W is
convez, one finds that

Foo(z) = W(x) + L InW"(z)+ O (i) :

20 B2
Let us now consider another strategqy to find an approzimation of Fy. In the spirit of the
QuasiContinuum Method, we expand Eu(ul, ...,ulN) around the equilibrium configuration

' = iuN /N, for a given u™. More precisely, we set u' = u’ + &;, assume that &; is small,
and expand the energy at second order with respect to &;, as explained in the Introduction
(see (11)). We next insert this approzimated energy E in (29). Due to the harmonic
approzimation, the resulting coarse-grained energy, that we denote FEqcwm, 45 analytically
computable and writes

N-1 N-1. 3 1
E =N —1 " ——In— + —1InN. 4
QoM () W(x)+ % nW"(x) + 57 n2w+2ﬁn (43)
Hence,
Foeu(®) = lim —Eqe(z) = W(a) + m= W’ (2) + —= In 2 (44)
Qom(r) = A N reoMlr) = WAT) T ag W) g o

Thus, up to a constant, Focm(x) corresponds to the first-order approzimation (in powers of

1/B) of Fus ().

Slightly improving the proof of Theorem 2 above, it is also possible to prove the con-
vergence of the derivative of the free energy, a quantity which is indeed practically relevant
(e.g. for the simulation of (10)):

INRIA



Finite-temperature coarse-graining of one-dimensional models 17

Corollary 1 Assume that the hypotheses of Theorem 2 are satisfied. Then, we have

1 z . »
Fy(z)+ 3 In (N) — Fo(z) in L,

In particular, this implies that F}; converges to F._ in ngcl’p.

Vp € [1,+00). (45)

Proof: According to Theorem 2, we already know the pointwise convergence of Gy (x) =
Fy(z)+ 37 In(z/N). We therefore only need to prove that Gy is bounded in LS to prove
our claim.

Lower bound: We go back to (36), and point out that p < 1/z. Hence,

N+1 N +1
pn+1(x) < /MN = ;
z R z
which implies, using (34), that
1 N+1
G r) > — In ,

which is bounded from below independently of N.

Upper bound: We return to (41), and notice that according to the definition of &, the
function x — &, is continuous. In addition, the constant 7 in (41) is a continuous function
of &,. Therefore, (41) provides an upper bound on Gy.

As a conclusion, Gy is bounded in L{,, which allows to conclude. &

Remark 6 Considering the above theoretical results, it could be tempting to approach the
average (30), that is,

(Ayy = 271 /R A (M) exp (~BNFy (uV)) du,
by
zZ ! / A (uN) exp (—BNFi (uN)) du™ . (46)
R

Note that F has been replaced by F in the exponential factor. This strategy is not efficient
since this approzimation does not provide the expansion (22)-(23) of (A)n in powers of
1/N. Indeed, it is possible to use the Laplace method to compute the expansion of (46) as
N — +oo. It reads

* 1 2 A % d3 1/ % 1
A+ 57 (24700 + B ) +o 5 ).
where o is defined by (23) and dz = 2~ * /(y —y*)? exp(—BW (y))dy. This expansion co-

R
incides with (22)-(23) only for the first term, that is A(y*). The second one differs, unless
d3 A/(y*) =0.
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18 X. Blanc, C. Le Bris, F. Legoll, C. Patz

To improve the approzimation (46), one may use the precised large deviations principle
(see [16, Th. 3.7.4] or [4]). In such a case, one replaces (46) by

/ A (u F! (uN) exp (BN Fx (u)) du®. (47)

This quantity is well-defined since Fy is a convex function. Then it is seen that the expansion
of (47) in powers of 1/N agrees with (22)-(23) up to the second term. Note however that
using (47) leads to a much more expensive computation than using (23).

The above convergence of the free energy F is useful e.g. for the computation of the
free energy of a chain of atoms with a prescribed length. Indeed, in such a case, we impose

where ¢ is fixed, and aim at computing the free energy Fy as a function of ¢, in the limit

N — 4o00. We have
wt — it
w du' ... du™¥ 7!
/RNlexp< ﬂz ( )) U U ,

where Y = ¢. The limit of Fy is provided by Theorem 2.

Another interest of the approach is to provide an approximation of Fy (¢), a quantity
related to the constitutive law of the material under consideration, at the finite temperature
1/8. Indeed, note that
(AN)N—1
(Bn)n-1’

where (-)n_1 is the average with respect to the Gibbs measure associated to the energy

Fy() = (48)

—1 i i1
Z w (%), and the observables Ay and By are defined by

By (u',...,uNY) = exp (=W (N (£ —uN71))),
Ax (0¥ = W () exp (<A (N (¢ - uN ).
Hence F};(¢) can be interpreted as the average force between atoms N —1 and N, when the

positon of atom N is prescribed at u¥ = ¢. Corollary 1 provides the convergence of Fj (¢)
to F'o(¢) in a weak norm.

Remark 7 Note that, in (48), both observables An and By depend on N. Hence, the
results of Section 2.1 (obtained using the Law of Large Numbers and not involving the Large
Deviations Principle) do not apply to compute the large N limit of (An)n—1 and (BN)N—1.
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Finite-temperature coarse-graining of one-dimensional models 19

2.3 Numerical tests
For our numerical tests, we choose the pair interaction potential

Wi(x) = l(:10 —1)*+ 1:102 (49)
2 2
shown on Figure 4. Note that W (z) grows fast enough to +00 when |z| — +oo, such that
assumptions (20) and (31) are satisfied. Note also that we have made no assumption on
the convexity of W in Theorems 1 and 2. We consider here a convex potential. At the end
of this section, we will consider a non-convex example (see (50)), and show that we obtain
similar conclusions.

O =N W TS

-05 0 051 1.5 2 25

x
Figure 4: The potential W chosen for the tests.

We first consider the computation of ensemble averages, and we again restrict ourselves
to the case of two repatoms u® = 0 and «”. This is just for simplicity and for the sake of
demonstrating the feasibility and the interest of our approach. The case of N,. repatoms may
be treated likewise. It is of course more computationally demanding, although affordable.

We choose an observable A(x), and we compare the following four quantities:

(i) the exact average (A)n defined by (14). Following (4)-(5), this quantity is computed
as the long-time average of A(u” (¢)) along the full system dynamics

du=—V,E,(u)dt+/2/BdB; in RY.

This equation is numerically integrated with the forward Euler scheme, with a small
time step. In practice, we have simulated many independent realizations of this SDE,
in order to compute error bars for (A) .

(ii) a QuasiContinuum type approximation of (A)y, based on the ’interpolation + har-
monic expansion’ procedure outlined above. That is, we introduce Eqcm defined by
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20 X. Blanc, C. Le Bris, F. Legoll, C. Patz

(43), and we approximate (A) N by
[ Atw) exp[-0Eqou ()] do
QCM , R ]

(AN
Y /Rexp [—BEqcm(z)] dx

(iii) a Law of Large Numbers (LLN) type approximation of (A4)y, which consists in ap-
proximating (A)x by A(y*), following Theorem 1.

(iv) a refined approximation, which consists in approximating (A)x by (A)3PP*" defined
by (23), following Theorem 1.

Note that only one-dimensional integrals are needed for approximations (ii), (iii) and (iv).
They can be computed with a high accuracy.

We plot on Figure 5 these four quantities, for increasing values of N (the temperature
is fixed at 1/6 = 1), for the observable A(x) = exp(z). On Figure 6, we compare the same
quantities, now as functions of the temperature, for N = 100 and for N = 10. We here work
with A(x) = 22, for which (A)y = (A)PPr1,

2.3 | C— T T 1.95 T T T T T
exact + exact H—+—
LLN 1.94 |-\ LLN —
221 refined LLN ------ 7 refined LLN ------
QCM oo 193 F ° -

T | 1.92 |- } -
L _ R I

191 |- =

1.9 L ; L 1.9
20 40 60 80 100 20 40 60 80 100

N N

Figure 5: Convergence, as N increases, of (A(u™))n (exact), of (A(u))3PP*! (refined
LLN) and of (A(uN)>J%CM (QCM) and comparison to A(y*) (LLN) (temperature 1/8 =1,
observable A(x) = exp(z); we have performed computations for N = 10, 25, 50 and 100; on

the right graph, we show error bars for (A(u™))n).

As expected, the thermodynamic limit strategies (iii) and (iv) better agree with the full
atom calculation, whatever the temperature, provided the number of eliminated atoms is
large (note that the strategy (iv) is very accurate even for the small value N = 10, at
the temperature 1/8 = 1). Approximation (ii) is clearly ineffective for high temperatures.
On the other hand, for a sufficiently small temperature and a sufficiently small number of
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0.7 T T T
exact

0.6 - LLN -
QCM ------

0.5 I -

0.2 0.4 0.6 0.8 1

Figure 6: We plot (A(u™))n = (A(u™))PPr! (exact), (Au™)I™M (QCM) and A(y*)
(LLN) as functions of the temperature 1/3: on the left, N = 100; on the right, N = 10
(observable A(z) = z?).

eliminated atoms, this approximation is close to the full atom result. However, even for the
small values N = 10 and 1/8 = 0.2, our asymptotic result (A(u™N))3PP" = 1.6299 (for
A(z) = exp(z)) is closer to the exact result (A(uY))xy = 1.6303 £ 0.0008 than the QCM
result <A(uN)>%CM = 1.6469.

Remark 8 As in Remark 2, we emphasize that the computations reported on here do not
account for the constraints on the positions of atoms. Analogous computations, that account
for constraints, may be performed. They provide similar conclusions, as can be seen on
Figure 7, which is very similar to Figure 6.

We now consider the computation of free energies, more precisely, of the derivatives of
free energies. The full atom value F} (z) is computed as a ratio of ensemble averages (see
(48)). We compare this quantity with

(i) its large N limit F_(x), where F, is defined by (33), on the one hand,

(ii) and, on the other hand, its QuasiContinuum type approximation Ff oy (z), where
Focw is defined by (44). It reads

Rhon(2) = W/) + 550 .

We briefly detail how we compute F’_(x). Let & be the unique real number at which the
supremum in (33) is attained. We have

F! (z) = %
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0.7 T T T
exact

0.6 - LLN -
QCM ------

0.5 I -

0.2 | | |
0.2 0.4 0.6 0.8 1

1/

Figure 7: We plot (A(u™))n = (A(u™))PP! (exact), (Au™)[™M (QCM) and A(y*)
(LLN) as functions of the temperature 1/3 (N = 100, observable A(z) = 22). The potential
energy is of type (18): it is equal to W(z) defined by (49) if > 0, and 400 otherwise.

The Euler-Lagrange equation solved by &, is (39), that we recast as

/ (z — y) exp(éay) exp(—BW (y)) dy = 0.
R

Let us introduce G(y,§) = (x—y) exp({y). We hence look for &, such that E, [G(y,&:)] =0,
where the random variable y is distributed according to the probability measure u(y) =
2 Yexp(—BW (y)). The Robbins-Monroe algorithm [28] can be used to compute &, hence

We first study the convergence of Fj (x) to F. (z) as N increases, for a fixed chain length
x = 1.4 and a fixed temperature 1/ = 1. Results are shown on Figure 8. We indeed observe
that Fy(z) — F. (z) when N — +o0.

We now compare the two approximations (i) and (ii) of Fj(z), for N = 100 and 1/5 = 1.
Results are shown on Figure 9. We observe that F/_ (z) is a very good approximation of
F}(z). As expected, the temperature is too high for the harmonic approximation to provide
an accurate approximation of Fj ().

On Figure 10, we plot F_(x) for several temperatures, as well as its zero temperature
limit, which is W’ (z) (see Remark 5).

Up to here, we have used the convex potential (49). For the sake of completeness, we
now briefly consider the case of a non-convex potential W. We choose the toy-model

W(z) = (z* = 1)%, (50)

which corresponds to a double-well potential. On Figure 11, we plot F/ (z) for several
temperatures, for this double-well potential. Although we have not yet compared these
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2.15 T T T T

213 -

212 - —

21 ] ] ] ] ]

Figure 8: Convergence of F () (shown with error bars) to F. (z) as N increases (temper-
ature 1/08 = 1, fixed chain length x = 1.4).

Figure 9: We plot Fy (), Fi (z) and F{c (), for the temperature 1/3 =1 and N = 100.

7 o0
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Figure 10: F/ (z) for different temperatures.

coarse-grained computations with the full atom computations, the numerical results reported
here are consistent with the small temperature limit %imo Fl (z) = (W*)'(z), where W* is

the convex envelop of W.

Figure 11: F/_(z) for different temperatures, in the case of the double-well potential (50).

3 The NNN case and some extensions

In this Section, we first consider the case of a NNN interacting system. The analysis is
detailed in Section 3.1. In Section 3.2, we point out some possible extensions, first the
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NNNN case (still for one-dimensional systems) and second the case of linear polymer chains,
where atoms sample the physical space R3.

3.1 The next-to-nearest neighbour (NNN) case

We now consider the next-to-nearest neighbour case. It turns out that, for the computation
of ensemble averages as well as for other questions, this case is significantly more intricate
than the NN case. Our strategy, based on the Law of Large Numbers, will be similar to that
used for the NN case, but the object manipulated are not independent random variables any
longer. Markov chains are the right notion formalizing the situation mathematically.

We begin by introducing the rescaled atomistic energy, similarly to (13):

) N N W — i1 N-1 witl — i1
B, (u',...,uN) =) "W — +y W, — (51)

As above, we introduce the change of variables (15), replacing (u’ — u*~!)/h by the inter-
N
1
atomic distances y;. Recall from (16) that u” = N Zyl The ensemble average (A)y of
i=1
an observable that depends only on the right-end atom therefore writes

(A)y = Zil/ A (™) exp (—BE, (u',...,u")) du' ... du"™
RN
| X
= 7! /N A <N Z%) e PLiWiWi) =B Walvitvinn) gy, dyn. (52)
R i=1

The key ingredient is now to see the above expression, as IV goes to infinity, as an asymptotics
for a discrete-time Markov chain. The asymptotics of Markov chains being a mathematical
problem much more involved than that of i.i.d. sequences, we restrict ourselves to the
computation of the average of an observable. The asymptotic behaviour of the free energy
may be studied, applying a Large Deviations Principle for Markov chains (see for instance
[26, Th. IV.3]). We will not pursue in this direction.

Section 3.1.1 deals with the case of two repatoms (namely u® = 0 and »V), while Sec-
tion 3.1.2 indicate the changes in order to deal with more than two repatoms. Numerical
results will be reported in Section 3.1.3.

3.1.1 Limit of the average, the case of two repatoms

In order to compute Nlim (A) N, we introduce the notation
— 400

f(x,y) = exp(—=pWa(x +y)) exp(—LBWi(y)).
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Equation (52) rewrites

(A)nv=2" / <N2y> TP fyrye) - flyn—1yn) dyn - dyn. (53)

Our method consists in considering the sequence of variables (y1,...,yn) in (53) as a real-
ization of a Markov chain with kernel f(-,-). However, the slight technical difficulty at this
stage is that the kernel f is not normalized, since in general

/f(yl,yz)dyz = / exp(—BWa(y1 +y2)) exp(—BWi(y2)) dy2 # 1.
R R

A standard trick of Probability theory allows to circumvent this difficulty. Introduce

Fasy) o= exp | ~Wa(o +3) ~ @) = TWilw)].

Note that f is a symmetric function (whereas f is not), hence the operator

- / (v, 2)b(z) dz (54)
R

is self-adjoint on L?*(R). Consider then

wimargmax{ [ 0 v6) fn2) ayas [ war=1}, (55)

and set
g (y) ¥1(2)f(y, 2) dyd=. (56)
R
Using standard tools of spectral theory of self-adjoint compact operators, it is possible to

prove that the eigenvalue A and the eigenvector ¢ exist, and that, up to changing v; into
—1p1, they are unique. In addition, one can choose 1, such that v, > 0. They satisfy

A1 (y /f Y, 2)h1 (2

We now define

oly,7) = ;f;ffy)) 7(v,2) 67)

/Rg( /w1 2)dy = ¥3(2).

By construction,
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The average (53) now reads

N
_ 1 s
(v = 2 1/RNA<NZ%> Yi(y)e 2" W) g(yr,ya) . g(yn—1,un)
=1

e_gwl (UN)
Y1(yn)

where (y1,...,yn) may now be seen as a realization of a normalized Markov chain of kernel
g, with invariant probability measure ¥?. We assume that f decays fast enough at infinity
(which ensures for instance that (55) is well-posed) and that it is positive. This latter
assumption ensures that the Markov chain satisfies the following accessibility condition: for
all z € R, and for all measurable set B C R of positive Lebesgue measure, we have

dy,

/ g(x,y)dy > 0.
B

Under this property, combined with the existence of an invariant probability measure, it is
known (see [33, Th. 17.1.7]) that the Markov chain satisfies a Law of Large Numbers with
respect to the measure 7. We now state a direct corollary of this general result that applies
to our context.

Theorem 3 Assume that A is continuous, and satisfies the following conditions:

Ip>0, IC>0, VreR, |Ax) <O+ |zP).
Under the assumptions that Wy, Ws € Llloc(R) are bounded from below, that e W1 e=FW2 ¢
VVIEC1 (R) and that

Vg > 0, / |z|7e =P (@) 4z < 400 and / || 7e PW2(2) gz < 400, (58)
R R

the ergodic theorem for Markov chains [33] yields

Jim () = A()

where

y* ::/y Vi (y) dy.
R

Remark 9 Note that, for the result to hold true, (58) is not needed. The existence of the
moment of order p is sufficient. However, assumption (58) will be useful for Theorem 4
below.
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Remark 10 It might sound a little strange that 1 is the eigenvector of the transition
operator P defined by (54), whereas the invariant measure of the chain is ¥?. This is
explained by the following fact: the expectation value of y; is equal to

E(y:) = / r (Pioo)(x) (PN~gy) (z) da,

for some initial laws pg and 1. Hence, if 1 < i < N, then Pipy and PN"%p, converge to
the eigenvector of P associated with the largest eigenvalue, that is, 11. This is explained in
more details in Section 3.2.1 below in the case of a non self-adjoint transition operator P.

Here again, it is possible to compute the next terms in the expansion of (A)y in powers
of 1/N. However, the computations are much more intricate than in the i.i.d. case. The
terms of the expansion here contain covariance terms, together with terms containing the
initial state of the Markov chain. We give as an example the first term of the expansion in
the following theorem.

Theorem 4 Assume that A is of class C3. Then, under the assumptions of Theorem 3, we
have

(A = Al +— A’ )Y E(Y;

i>1
s 00| [Pt

F 3B (- -10)] +0 (55 (59)

i>2

where (Y;),~, and (f’z) are Markov chains of initial law Zl—1¢1e—§W1 and % respec-
= i>1

tively, and of transition kernel g. Moreover, the series appearing in (59) converge exponen-
tially fast.

Remark 11 Let us mention that the term multiplying A” (y*) is exactly the variance ap-
pearing in the Central Limit Theorem for Markov chains [33, Th. 17.0.1], namely:

02:/]1{( y*) 2y dz+2ZE( Yl—y))

In addition, we see that in the special case of i.i.d. random variables, the second term of
the right-hand side of (59) vanishes, together with the last one. We then recover estimate

(22)-(23).

Remark 12 The assumptions of Theorem 3 and Theorem 4 are not sharp. However, they
allow for simple proofs, and for a wide variety of interaction potentials W1 and Ws.
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Remark 13 Again, as in Remark 2, constraints on the positions of the atoms may be ac-
counted for.

Note that Theorem 4 suggests a strategy for numerically computing the terms of (59).
Indeed, it is possible to compute numerically ¥; using its definition (55). Numerical integra-

tion then allows to compute y* and the variance /(x —y*)*yi(x)dx. The computation of

R
the infinite sums in (59) is then performed using a simulation of the corresponding Markov
chains and taking the expectation value. Note that the law of Y; converges exponentially
fast to the invariant measure ¥? due to the existence of a spectral gap for the transition op-

erator. Hence, the terms E (Y; — y*) and E ((}7Z — ) (Y] — y*)) that appear in the sums in

(59) decay exponentially fast, and only a few terms are needed in practice. We will observe
in Section 3.1.3 that, on our test example, A(y*) is already a good approximation of (A)y.
Hence, we have not implemented the strategy just described.

3.1.2 More than two repatoms

We explain in this Section how the results of Section 3.1.1 can be adapted to the case when
more than two repatoms are considered.

We thus consider the following setting: we have N + M + 1 atoms of positions u?,
0<i<M+N,and u°, vV and VM are the repatoms. To remove translation invariance,
we set u® = 0. Since the atoms on the right of 4" will not play the same role as those on
the left, we denote their distance differently:

i i—1 WitIHN _ i tN

Yy =——— VI<i<N, Zi::f V1l <i< M,

where h = 1/(N + M). We assume that the observable A is a function of u’¥ — u° and
uNtM _ N Hence, the expectation value of A reads:

N M

1 3 1 3 7
| - ) AL . —EWi(y1)
(A) N, ~/]RN+M <N+Mi—1y7N+Mi—lz>e 2

N-1
H f(y“ yi_i_l)e*gwl(yN)e*ﬁWﬂyNJrzl)efgwl(zl)
=1
M—-1 B .
F(ziy ziq1)e” 2" V) dy dz, (60)
=1

where, as before, we have set f(x,y) = exp [—ﬁWg(x—i—y) - ng(x) - ng (y)} Here

again, we may use ¢; defined in (55) in order to rewrite (60) as the expectation value of a
function of two independent Markov chains. Indeed, 11 and g being defined as before (see
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(55) and (57)), we have

N M
1 1 8
A - g1 A i i —5Wi(y1)
W = 20 [ <N+M2y,N+M;z>wl<yl>e :
N-1 W1(UN)
—sz(yN-i'Zl) —BWi(=1)
9(Yi, Yi+1) Yi(z1)e 2
1 i 1/1 Cdilyn)
M-1 *§W1(ZM)
Ziy Zia1) ———— dy dz,
I 9(zis2is0) o Y

=1
e~ EWL(YN) =3 W1 (Zan) —BWa (YN +21)

= E <N+MZ Z’N—i—MZ ) V1(YN)UV1(Zr)

where the sequences (Y;);>1 and (Z;);>1 are two independent realizations of a Markov chain
ew
5 W1

(61)

e_§W1(YN)—§W1(ZM)—BW2(YN+Z1) -1
V1(YN)1(Zm) ’

of initial law 1e™ , and of transition kernel g. These Markov chains have exactly the
same properties as the chain of Section 3.1.1. Hence, we may use again the ergodic theorem
as before to prove that:

N M
1
}/i L *7 Zi L *7
N+M; sy N+M; T

almost surely, with L; = N/(N + M) and Ly = M/(N + M). Thus, the expectation values
in (61) simplify, allowing to prove:

Theorem 5 Assume that A, W1 and Wy satisfy the assumptions of Theorem 3. Assume in
addition that L1 = a7 8 fived, and set Ly = Li. Then, we have

N-i-M_1

hm <A>N7M :A(Lly*uLQy*)7

N,M—+4o00
= / Y1 (y) dy
R

Here again, it is possible to use an expansion in powers of 1/N and 1/M of the expectation
value (A)n ar. For simplicity, we restrict ourselves to the expansion at first order, and
consider the case N = M. We assume that the hypotheses of Theorem 4 and Theorem 5

where
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are satisfied. We then have

1
(A = AL, Lay") + 5 (1 A(Lay", Lay™) + 2 A(Lry”, Lay”) ) E(Y;

i>1
1 1
+NAA(L1y*, Loy™) [5 /(:1: - y*)%/)f(aj)d:c
R

+Z]E( Yl_y)>:|+0<]$2>

i>2

with Ly = Lo = 1/2. We have not implemented this formula, since, on our test example,
A (L1y*, Loy™) is already a good approximation of (A)y .

3.1.3 Numerical results
For the NNN model, we choose the potentials

1(:10 — 1)+ lx2 and Wh(z) = l(90 —2.1)%

2 2 4

Note that other choices are possible, such as Wi = Wa, or Wa(z) = Wi(z/2) (such that
the equilibrium distances of W7 and W5 are compatible). We have chosen W5 such that
we observe a significant dependence of ensemble averages (for instance of the mean length
(uN) N of the chain) with respect to temperature.

It is important that W7 and W5 grow fast enough at infinity, such that assumptions of
Theorem 3 are satisfied (in particular assumption (58)). As in the NN case, we do not need
any convexity assumption on Wy and Ws.

We counsider two cases:

W1 (JJ) =

e the chain consists of N + 1 atoms, there are two repatoms v = 0 and «”, and the
observable only depends on the right end atom u’. We aim at computing (A(u™))y.
This is the situation of Section 3.1.1.

e the chain consists of 2N + 1 atoms, there are three repatoms ©° = 0, v and »?", and
the observable depends on v’V and 2V — u". We aim at computing (A(u™,u?N —

u¥))an. This is a situation covered by Section 3.1.2.

Theorems 3 and 5 respectively provide the asymptotics

1 .1
li AN — Aly* li AN2N_N — Al Zo* Zu* ).
Jm (A@D)y = Aly7),  lim (AT, w™ = aT )y 59" 5Y

We first study the convergence of ensemble averages at the temperature 1/8 = 1, as
N increases. Results are shown on Figure 12, for a particular choice of observable (we
have performed the same tests with other observables, with similar conclusions). We indeed
observe that the ensemble averages of the full atom system converge to their Law of Large
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Numbers (LLN) limit, in both cases of two and three repatoms. Note that the exact result
for N = 10 is already very well approximated by the asymptotic limit, A(y*) in the two
repatoms case, A (y*/2,y*/2) in the three repatoms case.

2402 r T T T T T 1 28 1T T T T T 1
oL . LLN
. 2.175 exact —
2.3975 = 217 —
2.395 - —
2.165 —
2.3925 - —
939 | ] 2.16 -
LLN — - _
2.3875 [~ exact - 2.155
gggs bl 1 1 1 11 1 | op 1 1 1 1 1 1 |
10 20 30 40 50 60 70 80 5 10 15 20 25 30 35 40 45
N N

Figure 12: Left graph: convergence, as N increases, of (A(u’V))y (exact) to A(y*) (LLN),
at the temperature 1/8 = 1, for A(x) = exp(x). Right graph: convergence, as N increases,
of (A(u™,u?N —ulV))an (exact) to A (y*/2,y*/2) (LLN), at the temperature 1/8 = 1, for
A(z,y) = exp(2z(z + ).

We next study the averages as functions of the temperature, for N = 100. Results are
shown on Figure 13. We observe an excellent agreement between the full atom value and
the asymptotic limit, in both cases of two and three repatoms, whatever the temperature.

3.2 Extensions

In this Section, we briefly explain that our strategy carries out to more general cases.

3.2.1 The NNNN case

The case of any finite range interaction may be treated in the same way as we treated the
NNN case in Section 3.1.1. Indeed, consider for instance the case of next to next to nearest
neighbour interaction (NNNN). In such a case, we are lead to consider (we go back here to
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2.7 T T T 2.7 M T T T T
26 F — 26 F —
25 F — 25 F —

Figure 13: Left graph: we plot (A(u™))n, (A(uN)>%CM and A(y*) as functions of the
temperature 1/3 (N = 100, A(z) = exp(x)). Right graph: we plot (A(u™,u?N —u™))ay,
(AN, u?N — uN)>2QJ$M and A (y*/2,y*/2) as functions of the temperature 1/ (N = 100,

A(z,y) = exp(22)).

the case of 2 repatoms for the sake of clarity):

N N
1
_ gl . _ .
(v = 2 /RN A (N§y> eXP[ ﬁ;Wl(yz)
N-1 N2
—B>  Walyi+yir1) =B Y Walyi + i1 + yi+2)} dyy ...dyn
=1 =1
L X N2
= z! /N A (N Z%) byn—1,y8) ] F@Wirvis1,viva) dyr . dyn,
R i=1 i=1

where we have set f(z,y,2) = exp [-Wi(x) — fWa(z + y) — BWs(z + y + 2)], and used the
notation b(yn—1,yn) = exp|—OWi(yn—1) — W1 (yn) — BWa(yn—1+yn)| for the boundary

term. We assume, for the sake of simplicity, that N is even, i.e.
N =2M,
and define the new variables

& = (y2i-1,92i), 1<i< M.
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Hence, we have

M

(An = Z_l/RW A (2]1\4 > & '(171)> VW1 y2,93) F(y2nr—2, yanr—1, yanr)

EH

X b(yani-1,Y2nr) H Fl& &) da .. dur, (62)

where

fl(.y), =V f(@,y,2)f(y, 2, 1).
Hence, this change of variables allows to manlpulate again a Markov chain, but in dimension
2. However, the renormalization trick we have used in the NNN case (see Section 3.1.1)
cannot be used here, because it relies on the fact that the transition operator is self-adjoint.

It is nevertheless possible to use the above structure in the following way: define the operator
(on L2(R?))

Pel ) = [Tl (ot e
together with its adjoint

[Prel(z,t) = . (2. 0), (2, 9)]p(x, y)dady.

Before studying the average (62), let us consider the average

(By=2z"" /RW BV F W1 y2,ys) f(yani—2, Y2na—1, Yans)

M—1
X b(yanr—1,Y2) H (&) &iv1]dEr ... dEns
=1

for a continuous and bounded function B. Then

(By=27" | B(&) [P"l(&) (P)M¥I(€) de,

R2

where

o(2t) = | VF@y,2) [l(z,9), (2, 0)] do dy,
R
vlt:2) = [ V) o) e, (0] dady,
R
We assume that the operators P and P* have a simple and isolated largest eigenvalue (which

can be proved for many interactions, using for instance Krein-Rutman theorem [40]). Let
us denote by ¢ and ¢* the corresponding eigenvectors in L?(R?), namely

Py =Xp, PT¢" = Ao,
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where A = supo(P) =supo(P*). If 1 < i < M, we have the convergence

B)— 2 [ BO6© @ ds
R
where Z,, = / ¢ ¢*. The argument may be adapted to prove that the expectation value
R2
(A)n defined by (62) converges:

Ay — AW,

where

[ @+ e06.0)0 (66 de o
Y= -

/11&2 d(&1, &) 0" (&1, &2) d&y dés

3.2.2 Polymer chains

The considerations of Section 2 and Section 3.1 may be easily generalized to the case when
the positions u’ of the atoms are not restricted to be in the real line, but are vectors of R? or
R3. The only important thing here is that they are indexed by a one dimensional parameter
(here, 1 <i < N).

Figure 14: An example of polymer chain. The corresponding model is the same as the
present one, except that the positions u* are in R3.

This is the case for instance if one considers a polymer chain (see Figure 14). In such
a case, NN or NNN approximations are commonly used, in order to compute the average
length of the chain (see [12] for instance). Our approximation strategy carries out to this
case.
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