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Abstract A 3D pendulum consists of a rigid body, supported at a fixed pivot, with
three rotational degrees of freedom. The pendulum is acted on by a gravitational
force. 3D pendulum dynamics have been much studied in integrable cases that arise
when certain physical symmetry assumptions are made. This paper treats the non-
integrable case of the 3D pendulum dynamics when the rigid body is asymmetric and
the center of mass is distinct from the pivot location. 3D pendulum full and reduced
models are introduced and used to study important features of the nonlinear dynam-
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ics: conserved quantities, equilibria, relative equilibria, invariant manifolds, local dy-
namics, and presence of chaotic motions. The paper provides a unified treatment of
the 3D pendulum dynamics that includes prior results and new results expressed in
the framework of geometric mechanics. These results demonstrate the rich and com-
plex dynamics of the 3D pendulum.

Keywords Pendulum · Rigid body · Nonlinear dynamics · Attitude · Equilibria ·
Relative equilibria · Stability · Chaos

Mathematics Subject Classification (2000) 70E17 · 70K20 · 70K42 · 65P20

1 Introduction

Pendulum models have been a rich source of examples in nonlinear dynamics and
in recent decades, in nonlinear control. The most common rigid pendulum model
consists of a mass particle that is attached to one end of a massless, rigid link; the
other end of the link is fixed to a pivot point that provides a rotational joint for the
link and mass particle. If the link and mass particle are constrained to move within a
fixed plane, the system is referred to as a planar 1D pendulum. If the link and mass
particle are unconstrained, it is referred to as a spherical 2D pendulum. Planar and
spherical pendulum models have been studied, for example, in Astrom and Furuta
(2000) and Furuta (2003). Spinning tops, such as the Lagrange top, also constitute an-
other special category of pendulum models (Bruno 2007; Cushman and Bates 1997;
Lewis et al. 1992).

Pendulum models are useful for both pedagogical and research reasons. They rep-
resent physical mechanisms that can be viewed as simplified academic versions of
mechanical systems that arise in, for example, robotics and spacecraft. In addition to
their important role in illustrating the fundamental techniques of nonlinear dynam-
ics, pendulum models have motivated new research directions and applications in
nonlinear dynamics.

This paper arose out of our continuing research on a laboratory facility, referred
to as the Triaxial Attitude Control Testbed (TACT). The TACT was constructed to
provide a testbed for physical experiments on attitude dynamics and attitude control.
The most important feature of the TACT design is that it is supported by a three-
dimensional air bearing that serves as an ideal frictionless pivot, allowing nearly un-
restricted three degrees of rotation. The TACT has been described in several prior
publications (Bernstein et al. 2001; Cho et al. 2001). Issues of nonlinear dynamics
for the TACT have been treated in Cho et al. (2001, 2003); issues of nonlinear con-
trol for the TACT have been treated in Shen et al. (2004). The present paper is partly
motivated by the realization that the TACT is, in fact, a physical implementation of a
3D pendulum.

2 Description of the 3D Pendulum

This paper treats 3D pendulum models, some of which were studied by Euler; see
Arnold et al. (1988) and Bruno (2007) and references therein for historical back-
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ground. A 3D pendulum is a rigid body supported by a fixed, frictionless pivot, acted
on by gravitational forces. The supporting pivot allows three degrees of rotational
freedom of the pendulum. Uniform, constant gravity is assumed. The terminology
3D pendulum refers to the fact that the pendulum is a rigid body with three spatial
dimensions and the pendulum has three rotational degrees of freedom.

Two reference frames are introduced. An inertial reference frame has its origin at
the pivot; the first two axes lie in the horizontal plane and the third axis is vertical
in the direction of gravity. A reference frame fixed to the pendulum body is also
introduced. The origin of this body-fixed frame is located at the pivot. In the body-
fixed frame, the inertia tensor of the pendulum is constant. This inertia tensor can
be computed from the traditional inertia tensor of a translated frame whose origin is
located at the center of mass of the pendulum using the parallel axis theorem. Since
the origin of the body-fixed frame is located at the pivot, principal axes with respect
to this frame can be defined for which the inertia tensor is diagonal. Note that the
center of mass of the 3D pendulum does not necessarily lie on one of the principal
axes. Throughout this paper, we assume that the 3D pendulum is asymmetric, that is
its three principal moments of inertia are distinct, and the center of mass of the 3D
pendulum is not at the pivot location.

Rotation matrices are used to describe the attitude of the rigid 3D pendulum. A ro-
tation matrix maps a representation of vectors expressed in the body-fixed frame to a
representation expressed in the inertial frame. Rotation matrices provide global rep-
resentations of the attitude of the pendulum, which is why they are utilized here.
Other attitude representations, such as exponential coordinates, quaternions, or Euler
angles, can also be used following standard descriptions, but each of the representa-
tions has the disadvantage of introducing an ambiguity or coordinate singularity. In
this paper, the attitude configuration of the pendulum is a rotation matrix R in the
special orthogonal group SO(3) defined as

SO(3) �
{
R ∈ R

3×3 : RRT = I3×3,det(R) = 1
}
.

The associated angular velocity of the pendulum, expressed in the body-fixed frame,
is denoted by ω in R

3. The constant inertia tensor of the rigid body pendulum, in the
body-fixed frame, is denoted by the symbol J . The constant body-fixed vector from
the pivot to the center of mass of the pendulum is denoted by ρ = [ρ1 ρ2 ρ3]T. The
symbol g denotes the constant acceleration due to gravity.

Three categories of 3D pendulum models are subsequently introduced and studied.
The “full” dynamics of the 3D pendulum is based on Euler’s equations that include
the gravity moment and the rotational kinematics, expressed in terms of the angu-
lar velocity and a rotation matrix; this model describes the dynamics that evolves
on TSO(3). Since the gravity moment depends solely on the direction of gravity
in the pendulum-fixed frame, it is possible to obtain a reduced model expressed in
terms of the angular velocity and a unit vector that defines the direction of grav-
ity in the pendulum-fixed frame; this model describes the dynamics that evolves on
TSO(3)/S1, and corresponds to the case of Lagrange–Poincaré reduction (Cendra
et al. 2001). Since there is a symmetry action given by a rotation about the grav-
ity direction, Lagrange–Routh reduction (Marsden et al. 2000) leads to a reduced
model expressed in terms of the unit vector that defines the direction of gravity in
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the pendulum-fixed frame and its derivative; this model describes the dynamics that
evolves on TS2. Each of these 3D pendulum models provides special insight into
the nonlinear dynamics. We develop each of these models in this paper, and we in-
vestigate the features of the nonlinear dynamics, namely invariants, equilibria, and
stability, for each model.

3 3D Pendulum Dynamics on TSO(3)

The dynamics of the 3D pendulum is given by the Euler equation that includes the
moment due to gravity:

J ω̇ = Jω × ω + mgρ × RTe3. (3.1)

The rotational kinematics equations are

Ṙ = Rω̂. (3.2)

Equations (3.1) and (3.2) define the full dynamics of a rigid pendulum on the
tangent bundle TSO(3). Throughout the paper, e1 = (1,0,0)T, e2 = (0,1,0)T, e3 =
(0,0,1)T. In the inertial frame, e1 and e2 are assumed to lie in a horizontal plane,
while e3 is assumed to be in the direction of gravity; consequently RTe3 is the di-
rection of gravity in the pendulum-fixed frame. The cross product notation a × b for
vectors a and b in R

3 is

a × b = [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1] = âb, (3.3)

where the skew-symmetric matrix â is defined as

â =
⎡

⎣
0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤

⎦ . (3.4)

3.1 Integrals of the 3D Pendulum Dynamics

There are two conserved quantities, or integrals of motion, for the 3D pendulum.
First, the total energy, which is the sum of the rotational kinetic energy and the gravi-
tational potential energy, is conserved. In addition, there is a symmetry corresponding
to rotations about the gravity direction through the pivot. This symmetry leads to con-
servation of the component of angular momentum about the gravity direction. These
two well-known results, summarized as follows, are easily proved.

Proposition 1 The total energy

E = 1

2
ωTJω − mgρTRTe3,
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and the component of the angular momentum vector about the vertical axis through
the pivot

h = ωTJRTe3.

are each constant along motions of the 3D pendulum.

Proof This result follows from direct computation of the time derivatives of the total
energy and the angular momentum about the vertical axis, by using (3.1) and (3.2). �

The assumption that the 3D pendulum is asymmetric and the center of mass is
not located at the pivot implies that there are no nontrivial integrals of motion other
than those given in the above proposition. That is, the 3D pendulum dynamics is not
integrable (Cushman and Bates 1997).

We do not further consider the integrable cases of the 3D pendulum dynamics,
which includes the free rigid body, the Lagrange top, the Kovalevskaya top, and the
Goryachev–Chaplygin top. These integrable cases have been extensively treated in
the existing literature (Arnold et al. 1988; Bruno 2007; Cushman and Bates 1997;
Karapetyan 2006).

Constant values of the total energy of the 3D pendulum and constant values of the
component of angular momentum of the 3D pendulum in the direction of gravity de-
fine invariant manifolds of the 3D pendulum. These invariant manifolds are important
characterizations of the 3D pendulum dynamics.

3.2 Equilibria of the 3D Pendulum

To understand the dynamics of the 3D pendulum, we study its equilibria. Equating
the RHS of (3.1) and (3.2) to zero yields conditions for an equilibrium (Re,ωe):

Jωe × ωe + mgρ × RT
ee3 = 0, (3.5)

Reω̂e = 0. (3.6)

Since Re ∈ SO(3) is non-singular, and ·̂ : R
3 → R

3×3 is a linear injection, Reω̂e = 0
if and only if ωe = 0. Substituting ωe = 0 in (3.5), we obtain ρ × RT

ee3 = 0. Hence,

RT
ee3 = ρ

‖ρ‖ (3.7)

or

RT
ee3 = − ρ

‖ρ‖ . (3.8)

An attitude Re is an equilibrium attitude if and only if the direction of gravity
resolved in the body-fixed frame, RT

ee3, is collinear with the vector ρ. If RT
ee3 is in

the same direction as the vector ρ, then (Re,0) is a hanging equilibrium of the 3D
pendulum; if RT

ee3 is in the opposite direction to the vector ρ, then (Re,0) is an
inverted equilibrium of the 3D pendulum.
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Thus, if Re defines an equilibrium attitude for the 3D pendulum, then a rotation
of the 3D pendulum about the gravity vector by an arbitrary angle is also an equi-
librium. Consequently, in TSO(3) there are two disjoint equilibrium manifolds of the
3D pendulum. The manifold corresponding to the first case in the above description
is referred to as the hanging equilibrium manifold, since the center of mass is always
below the pivot. The manifold corresponding to the second case in the above descrip-
tion is referred to as the inverted equilibrium manifold, since the center of mass is
always above the pivot.

Following (3.7) and (3.8) and the discussion above, we define

[R]h �
{
R ∈ SO(3) : RTe3 = ρ

‖ρ‖
}
, (3.9)

[R]i �
{
R ∈ SO(3) : RTe3 = − ρ

‖ρ‖
}
, (3.10)

as the hanging attitude manifold and the inverted attitude manifold, respectively.
From (3.7) and (3.8),

H �
{
(R,0) ∈ TSO(3) : R ∈ [R]h

}
, (3.11)

is the manifold of hanging equilibria and

I�
{
(R,0) ∈ TSO(3) : R ∈ [R]i

}
, (3.12)

is the manifold of inverted equilibria, and these two equilibrium manifolds are clearly
disjoint.

3.3 Local Analysis of the 3D Pendulum near an Equilibrium

A perturbation from a hanging equilibrium (Re,0) of the 3D pendulum can be ex-
pressed using an exponential representation and a perturbation parameter ε. Let
Rε(t) and ωε(t) represent the perturbed solution, corresponding to initial conditions

Rε(0) = Re exp εδ̂Θ and ωε(0) = εδω, where δΘ, δω ∈ R
3 are constant vectors.

Note that if ε = 0, then (R0(0),ω0(0)) = (Re,0) and hence
(
R0(t),ω0(t)

) ≡ (Re,0) (3.13)

for all time t ∈ R.
The perturbed solution satisfies the perturbed equations of motion for the 3D pen-

dulum:

J ω̇ε = Jωε × ωε + mgρ × (Rε)Te3, (3.14)

Ṙε = Rεω̂ε. (3.15)

Next, we differentiate both sides with respect to ε and substitute ε = 0, yielding

J ω̇0
ε = Jω0

ε × ω0 + Jω0 × ω0
ε + mgρ × (

R0
ε

)T
e3, (3.16)
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Ṙ0
ε = R0

ε ω̂
0 + R0ω̂0

ε , (3.17)

where the subscripts denote derivatives. Substituting R0 = Re and ω0 = 0 from (3.13)
into (3.16) and (3.17) yields

J ω̇0
ε = mgρ × (

R0
ε

)T
e3, (3.18)

Ṙ0
ε = Reω̂

0
ε . (3.19)

Now define perturbation variables �ω � ω0
ε and �̂Θ � RT

eR
0
ε . It can be shown that

�ω = �Θ̇ . Thus, (3.18) and (3.19) can be written as

J�Θ̈ − mgρ̂ 2

‖ρ‖ �Θ = 0. (3.20)

Note that (3.20) can be interpreted as defining a mechanical system with mass ma-

trix J , stiffness matrix −mgρ̂ 2

‖ρ‖ , but no damping. Since ρ̂ 2 is a negative-semidefinite
matrix with two negative eigenvalues and one zero eigenvalue, the stiffness matrix
is positive-semidefinite with two positive eigenvalues and one zero eigenvalue. The
zero eigenvalue corresponds to rotations about the vertical axis, for which gravity has
no influence.

As in Chaturvedi and McClamroch (2007), it can be shown that the linearization
given by (3.20) has four imaginary and two zero eigenvalues. Due to the presence
of imaginary and zero eigenvalues of the linearized equations, no conclusion can
be made about the stability of the hanging equilibrium or the hanging equilibrium
manifold of the 3D pendulum. Indeed, the local structure of trajectories in an open
neighborhood of the equilibrium is that of a center manifold; there are no stable or
unstable manifolds. We next show that the hanging equilibrium manifold of the 3D
pendulum is Lyapunov stable.

Proposition 2 Consider the 3D pendulum model described by (3.1) and (3.2). Then
the hanging equilibrium manifold H given by (3.11) is stable in the sense of Lyapunov.

Proof Consider the following positive-semidefinite function on TSO(3)

V (R,ω) = 1

2
ωTJω + mg

(‖ρ‖ − ρTRTe3
)
. (3.21)

Note that V (R,0) = 0 for all (R,ω) ∈ H and V (R,ω) > 0 elsewhere. Furthermore,
the derivative along a solution of (3.1) and (3.2) is given by

V̇ (R,ω) = ωTJ ω̇ − mgρTṘTe3

= ωT(
Jω × ω + mgρ × RTe3

) − mgρT(−ω̂RTe3
)

= mg
[
ωT(ρ × RTe3) + ρT(ω × RTe3)

] = 0.

Thus, V̇ is negative-semidefinite on TSO(3). Also, every sublevel set of the function
V is compact. Therefore, the hanging equilibrium manifold H is Lyapunov stable. �
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Similarly, one can linearize the 3D pendulum dynamics about an equilibrium in
the inverted equilibrium manifold.

Following the procedure in Chaturvedi and McClamroch (2007), the linearization
of the 3D pendulum about an inverted equilibrium can be shown to result in a lin-
ear system that has two positive eigenvalues, two negative eigenvalues and two zero
eigenvalues. Thus, the inverted equilibrium has a two-dimensional stable manifold,
a two-dimensional unstable manifold and a two-dimensional center manifold. It is
clear that due to the presence of the two positive eigenvalues, the inverted equilib-
rium is unstable. This result is summarized as follows.

Proposition 3 Consider the 3D pendulum model described by (3.1) and (3.2). Then
each equilibrium in the inverted equilibrium manifold I given by (3.12) is unstable.

4 Lagrange–Poincaré Reduced 3D Pendulum Dynamics on TSO(3)/S1

The equations of motion (3.1) and (3.2) for the 3D pendulum are viewed as a model
for the dynamics on the tangent bundle TSO(3) (Bloch 2003); these are referred to
as the full equations of motion since they characterize the full attitude dynamics of
the 3D pendulum. Since there is a rotational symmetry corresponding to the group of
rotations about the vertical axis through the pivot and an associated conserved angular
momentum component, it is possible to obtain a lower-dimensional reduced model
for the rigid pendulum. This Lagrange–Poincaré reduction is based on the fact that
the dynamics and kinematics equations can be written in terms of the reduced attitude
vector Γ = RTe3 ∈ S2, which is the unit vector that expresses the gravity direction in
the body-fixed frame (Lewis et al. 1992).

Specifically, let Φθ denote the group action of S1 on SO(3), given by Φθ : S1 ×
SO(3) → SO(3), Φθ(R) = exp(θ ê3)R. This induces an equivalence class by identi-
fying elements of SO(3) that belong to the same orbit; explicitly, for R1,R2 ∈ SO(3),
we write R1 ∼ R2 if there exists a θ ∈ S1 such that Φθ(R1) = R2. The orbit space
SO(3)/S1 is the set of equivalence classes,

[R] �
{
Φθ(R) ∈ SO(3) : θ ∈ S1}. (4.1)

For this equivalence relation, it is easy to see that R1 ∼ R2 if and only if RT

1e3 = RT

2e3
and hence the equivalence class in (4.1) can alternately, be expressed as

[R] �
{
Rs ∈ SO(3) : RT

se3 = RTe3
}
. (4.2)

Thus, for each R ∈ SO(3), [R] can be identified with Γ = RTe3 ∈ S2 and hence
SO(3)/S1 ∼= S2. This group action induces a projection Π : SO(3) → SO(3)/S1 ∼= S2

given by Π(R) = RT e3.

Proposition 4 (Chaturvedi and McClamroch 2007) The dynamics of the 3D pendu-
lum given by (3.1) and (3.2) induces a flow on the quotient space TSO(3)/S1, through
the projection π : TSO(3) → TSO(3)/S1 defined as π(R,Ω) = (RT e3,Ω), given by
the dynamics

J ω̇ = Jω × ω + mgρ × Γ, (4.3)
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and the kinematics for the reduced attitude

Γ̇ = Γ × ω. (4.4)

Furthermore, TSO(3)/S1 is identified with S2 × R
3.

Equations (4.3) and (4.4) are expressed in a non-canonical form; they are re-
ferred to as the Lagrange–Poincaré reduced attitude dynamics of the 3D pendulum
on S2 × R

3.

4.1 Integrals of the Lagrange–Poincaré Reduced Model

In a previous section, we presented two integrals of motion for the full model of the
3D pendulum. In this section we summarize similar well-known results on integrals
for the Lagrange–Poincaré reduced model of the 3D pendulum.

Proposition 5 The total energy

E = 1

2
ωTJω − mgρTΓ, (4.5)

and the component of the angular momentum vector about the vertical axis through
the pivot

h = ωTJΓ.

are each constant along trajectories of the Lagrange–Poincaré reduced model of the
3D pendulum given by (4.3) and (4.4).

Constant values of the total energy of the 3D pendulum and constant values of
the component of angular momentum of the 3D pendulum in the direction of gravity
define invariant manifolds of the Lagrange–Poincaré reduced model of the 3D pendu-
lum. These invariant manifolds are important characterizations of the 3D pendulum
dynamics.

4.2 Equilibria of the Lagrange–Poincaré Reduced Model

We study the equilibria of the Lagrange–Poincaré reduced equations of motion of the
3D pendulum given by (4.3) and (4.4). Equating the RHS of (4.3) and (4.4) to zero,
we obtain conditions that are satisfied by any equilibrium (Γe,ωe):

ωe = kΓe, k2JΓe × Γe + mgρ × Γe = 0, (4.6)

for some k ∈ R. If k = 0, then ωe = 0 gives two static equilibria of the 3D pendulum;
if k �= 0 then relative equilibria (Hernández-Garduño et al. 2005) of the 3D pendulum
are obtained.

We assume without loss of generality that the inertia tensor is diagonal, i.e. J =
diag(J1, J2, J3), where J1 > J2 > J3 > 0 and ρ �= 0. The following result describes
the generic equilibria structure of the Lagrange–Poincaré reduced equations without
further assumptions.
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Proposition 6 Consider the Lagrange–Poincaré model of the 3D pendulum given by
(4.3) and (4.4). The Lagrange–Poincaré model on S2 × R

3 has the following equilib-
ria and relative equilibria:

1. There is a hanging equilibrium: (
ρ

‖ρ‖ ,0) ∈ S2 × R
3.

2. There is an inverted equilibrium: (− ρ
‖ρ‖ ,0) ∈ S2 × R

3.

3. There are two relative equilibria in S2 × R
3:

(
− J−1ρ

‖J−1ρ‖ ,

√
mg

‖J−1ρ‖J−1ρ

)
,

(
− J−1ρ

‖J−1ρ‖ ,−
√

mg

‖J−1ρ‖J−1ρ

)
. (4.7)

4. There are one-dimensional relative equilibria manifolds in S2 × R
3 described by

the parameterizations:

(
− nα

‖nα‖ ,

√
mg

‖nα‖nα

)
,

(
− nα

‖nα‖ ,−
√

mg

‖nα‖nα

)
, (4.8)

where nα = (J − 1
α
I3×3)

−1ρ ∈ R
3 corresponding to α ∈ Li , i ∈ {1,2,3,4,5} with

intervals of the reals defined by

L1 = (−∞,0), L2 =
(

0,
1

J1

)
, L3 =

(
1

J1
,

1

J2

)
, L4 =

(
1

J2
,

1

J3

)
,

L5 =
(

1

J3
,∞

)
.

Proof From (4.6), an equilibrium (Γe,ωe) satisfies

k2JΓe + mgρ = k1Γe, (4.9)

for some constant k1 ∈ R. We solve this equation to obtain the expression for an equi-
librium attitude Γe for two cases; when k1 = 0 and when k1 �= 0. The corresponding
value of the constant k yields the expression for the equilibrium angular velocity as
ωe = kΓe.

Equilibria 3: Suppose k1 = 0. It follows that k �= 0 from (4.9). Thus, we have
Γe = −mg

k2 J−1ρ. Since ‖Γe‖ = 1, we obtain k2 = mg‖J−1ρ‖, which gives (4.7).
Equilibria 1, 2, 4: Suppose k1 �= 0. If k = 0, (4.9) yields the hanging and the

inverted equilibrium. Suppose k �= 0. Define α = k2

k1
∈ R\{0}, and v = k1Γe ∈ R

3.
Then (4.9) can be written as

(αJ − I3×3)v = −mgρ. (4.10)

Note that for α ∈ R\{0, 1
J1

, 1
J2

, 1
J3

} the matrix (J − 1
α
I3×3) is invertible. Then (4.10)

can be solved to obtain v = −mg
α

(J − 1
α
I3×3)

−1ρ. Since ‖Γe‖ = 1, we have ‖v‖ =
‖k1Γe‖ = |k1|. We consider two sub-cases; when k1 > 0, and k1 < 0.
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If k1 > 0, we have k1 = ‖v‖ and α > 0. Thus, we obtain the expression for values
of the equilibria attitudes as

Γe = v

‖v‖ = − 1
α
nα

| − 1
α
|‖nα‖ = − nα

‖nα‖ , (4.11)

where nα = (J − 1
α
I3×3)

−1ρ ∈ R
3. Since k2 = αk1 = α‖v‖, we obtain the expression

for values of the equilibria angular velocities as

ωe = kΓe = ∓√
α‖v‖ nα

‖nα‖ = ∓
√

mg

‖nα‖nα. (4.12)

Thus, (4.11) and (4.12) correspond to the families of equilibria given by (4.8) for
α > 0.

Similarly, if k1 < 0, we have k1 = −‖v‖, α < 0, and k2 = −α‖v‖. Thus, we obtain
the expression for the values of the relative equilibria as

Γe = − v

‖v‖ =
1
α
nα

| − 1
α
|‖nα‖ = − nα

‖nα‖ , ωe = ∓
√

mg

‖nα‖nα, (4.13)

which corresponds to the families of equilibria given by (4.8) for α < 0.
Equation (4.10) for α ∈ R characterizes the equilibria of (4.3) and (4.4). Condition

(4.8) presents solutions of (4.10) for all α ∈ R\{0, 1
J1

, 1
J2

, 1
J3

}. The parameter value
α = 0 yields the hanging and the inverted equilibria. �

The first three statements in Proposition 6 are self-explanatory. The fourth state-
ment describes parameterizations for one-dimensional relative equilibria manifolds;
these parameterizations are expressed in terms of the real parameter α that lies in one
of the four defined intervals. The intervals exclude only the real values 0, 1

J1
, 1

J2
, 1

J3
at which the parameterizations are not continuous.

Denote

Γh � ρ

‖ρ‖ , Γi � − ρ

‖ρ‖ , and Γ∞ � − J−1ρ

‖J−1ρ‖ .

Then it follows from Proposition 6 that (Γh,0) and (Γi,0) are equilibria of the
Lagrange–Poincaré reduced model of the 3D pendulum. These are called the hanging
equilibrium and the inverted equilibrium of the Lagrange–Poincaré reduced model,
respectively. We refer to Γh and to Γi as the hanging equilibrium attitude and the in-
verted equilibrium attitude, respectively. As shown subsequently, Γ∞ is a vector that
is used to define the limit of two of the relative equilibrium manifolds in (4.8).

Convergence properties of the relative equilibria as the parameter α tends to each
of the distinguished real values 0, 1

J1
, 1

J2
, 1

J3
are addressed in the following proposi-

tion.

Proposition 7 The equilibria and relative equilibria of the 3D pendulum given in the
parameterizations (4.8) have the following convergence properties:
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1. lim
α→∞Γe = Γ∞, lim

α→∞ωe = ∓
√

mg

‖J−1ρ‖J−1ρ;
2. lim

α→0− Γe = Γi, lim
α→0− ωe = 0;

3. lim
α→0+ Γe = Γh, lim

α→0+ ωe = 0;
4. for i ∈ {1,2,3} : lim

α→ 1
Ji

− Γe = sgn(ρi)ei, lim
α→ 1

Ji

− ωe = ±∞ ei;

5. for i ∈ {1,2,3} : lim
α→ 1

Ji

+ Γe = −sgn(ρi)ei, lim
α→ 1

Ji

+ ωe = ±∞ ei .

Proof Consider the limiting case when α → ∞. Since α > 0, we have, from (4.11)
and (4.12),

lim
α→∞Γe = lim

α→∞− nα

‖nα‖ = lim
α→∞− (J − I3×3/α)−1ρ

‖(J − I3×3/α)−1ρ‖ = − J−1ρ

‖J−1ρ‖ = Γ∞.

Similarly,

lim
α→∞ωe = lim

α→∞

√
mg

‖nα‖nα =
√

mg

‖J−1ρ‖J−1ρ.

Thus, as α → ∞, the relative equilibria converge to the relative equilibria given in
(4.7). It can be similarly shown that the relative equilibria also converge to the relative
equilibria given in (4.7) when α → −∞.

Next, consider (4.8) as α → 0. Expressing nα = α(αJ − I3×3)
−1ρ, we obtain

lim
α→0− Γe = lim

α→0− − nα

‖nα‖ = lim
α→0− − α(αJ − I3×3)

−1ρ

‖α(αJ − I3×3)−1ρ‖ = − ρ

‖ρ‖ = Γi,

which corresponds to the inverted attitude. Similarly,

lim
α→0+ Γe = lim

α→0+ − nα

‖nα‖ = lim
α→0+ − α(αJ − I3×3)

−1ρ

‖α(αJ − I3×3)−1ρ‖ = ρ

‖ρ‖ = Γh,

which corresponds to the hanging attitude. Also,

lim
α→0− ωe = lim

α→0−

√
mg

‖nα‖nα = lim
α→0−

√
mg‖nα‖ nα

‖nα‖ = − ρ

‖ρ‖ lim
α→0−

√
mg‖αρ‖ = 0.

Similarly,

lim
α→0+ ωe = 0.

Now, it follows that

lim
α→1/J1

− Γe = lim
α→1/J1

− − [ ρ1
J1−1/α

,
ρ2

J2−J1
,

ρ3
J3−J1

]T
‖[ ρ1

J1−1/α
,

ρ2
J2−J1

,
ρ3

J3−J1
]‖ = sgn(ρ1)e1,
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and

lim
α→1/J1

− ωe = lim
α→1/J1

−
√

mg
[ ρ1
J1−1/α

,
ρ2

J2−J1
,

ρ3
J3−J1

]T
√

‖[ ρ1
J1−1/α

,
ρ2

J2−J1
,

ρ3
J3−J1

]T ‖
= [−sgn(ρ1)∞, 0, 0

]T
.

The remaining cases are analyzed in a similar way. �

If additional assumptions are made about the location of the center of mass, then
additional relative equilibria exist. The following results summarize this situation.

Proposition 8 Consider the 3D pendulum and assume that the location of the center
of mass vector ρ satisfies the indicated property.

1. Assume there is exactly one index i ∈ {1,2,3} for which ρi = 0. There are one-
dimensional relative equilibria manifolds in S2 × R

3 described by the parameter-
izations:

(
− pi

‖pi‖ ,

√
mg

‖pi‖pi

)
,

(
− pi

‖pi‖ ,−
√

mg

‖pi‖pi

)
for any γ ∈ R,

where p1 = (γ,
ρ2

J2−J1
,

ρ3
J3−J1

), p2 = (
ρ1

J1−J2
, γ,

ρ3
J3−J2

), p3 = (
ρ1

J1−J3
,

ρ2
J2−J3

, γ ).

2. Assume ρi = 0 for exactly two indices i ∈ {1,2,3}. There are one-dimensional
relative equilibria manifolds in S2 × R

3 described by the parameterizations:

(ei, γ ei), (−ei, γ ei), for any γ ∈ R.

Proof Consider the first statement. It is easy to see that for α = 1/J1, (4.10) has a
solution iff ρ1 = 0. In this case, (4.10) can be written as

⎡

⎣
0 0 0
0 J2 − J1 0
0 0 J3 − J1

⎤

⎦v = −mgJ1

⎡

⎣
0
ρ2
ρ3

⎤

⎦ .

Since α > 0, it can be shown as in (4.11) that Γe = − p1‖p1‖ and ωe = ±
√

mg
‖p1‖p1,

where p1 = (γ,
ρ2

J2−J1
,

ρ3
J3−J1

) and γ ∈ R. Similarly, one can obtain solutions of (4.10)
for the case where α = 1/J2 and α = 1/J3 iff ρ2 = 0 and ρ3 = 0, respectively.

Now consider the second statement. The assumption guarantees that the vector
ρ can be expressed as ρ = sei , for some s ∈ R. Then for all α ∈ R\{0, 1

J1
, 1

J2
, 1

J3
} it

follows that nα = 1
α
(αJ −I3×3)

−1ρ = s
α(αJi−1)

ei . Thus the description of the relative
equilibria given in (4.8) can be parameterized as {(ei, γ ei), (−ei, γ ei)} for γ ∈ R. �

This proposition includes the result for an asymmetric 3D pendulum that if the
center of mass lies on a principal axis, then there exist relative equilibria defined by a
constant angular velocity vector with arbitrary magnitude and direction that is aligned
with that principal axis.
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The geometric description of relative equilibria of the Lagrange–Poincaré model
given in Proposition 6 and Proposition 8 provides important insight into the equilib-
ria structure of the 3D pendulum. This geometric description is consistent with the
implicit characterization of relative equilibria given in Maddocks (1991).

We now relate the equilibria structure for the Lagrange–Poincaré reduced model,
as described in this section, to the equilibria structure for the full model, as described
in the previous section. Let (Re,0) denote an equilibrium in either the hanging equi-
librium manifold or the inverted equilibrium manifold of the full equations (3.1) and
(3.2) and π : TSO(3) → TSO(3)/S1 be the projection as in Proposition 4. Then it can
be shown that either π(Re,0) = (Γh,0) or π(Re,0) = (Γi,0). Thus, we obtain the
following.

Proposition 9 (Chaturvedi and McClamroch 2007) The hanging equilibrium man-
ifold and the inverted equilibrium manifold of the 3D pendulum given by the full
equations (3.1) and (3.2) are identified with the hanging equilibrium (Γh,0) and the
inverted equilibrium (Γi,0) of the Lagrange–Poincaré reduced equations given by
(4.3) and (4.4).

4.3 Visualization of Equilibria and Relative Equilibria

We examine the equilibrium structure of a particular 3D pendulum model, demon-
strating how this equilibrium structure can be visualized. We choose an elliptic
cylinder with its semi-major axis a = 0.8 m, semi-minor axis b = 0.2 m, and
height 0.6 m. The pivot point is located at the surface of the upper ellipse, and
it is offset from the center by [− a

6 , b
2 ,0]. The inertia tensor is given by J =

diag(0.3061,0.2136,0.1159) kg·m2 and the vector from the pivot to the mass center
is ρ = [−0.0160, 0.2077, 0.2727] m.

Figures 1(a)–1(c) show the equilibrium and relative equilibrium attitudes on S2.
Figure 1(a) provides a 3D perspective; Fig. 1(b) provides a top view, with the inverted
equilibrium attitude located at the center and Fig. 1(c) provides a bottom view, with
the hanging equilibrium attitude located at the center.

The inverted equilibrium attitude Γi and the limiting relative equilibrium attitude
Γ∞ described by (4.7) are denoted by circles in Fig. 1(b); the hanging equilibrium
attitude Γh is denoted by a circle in Fig. 1(c). The one-dimensional manifolds of
relative equilibrium attitudes described in (4.8) are shown by five curve segments
illustrated by the solid lines corresponding to α ∈ Li for i ∈ {1,2,3,4,5}, where the
increasing value of α is denoted by arrows on each segment.

The relative equilibrium attitudes for α ∈ L1 = (−∞,0) are shown by a segment
of a thick line in Fig. 1(b), which starts from Γ∞, and converges to the inverted
equilibrium attitude Γi as α increases, according to Proposition 7. For α ∈ L2 =
(0,1/J1), the line of relative equilibrium attitudes starts from Γh, and ends at −e1
in Fig. 1(c), since ρ1 < 0 for the given pendulum model. Similarly, for α ∈ L3 =
(1/J1,1/J2), the line of relative equilibrium attitudes begins at e1 and tends to e2,
and for α ∈ L4 = (1/J2,1/J3) the line of relative equilibrium attitudes begins from
−e2 and ends at e3, as α increases. The relative equilibrium attitudes for α ∈ L5 =
(1/J3,∞) are shown by a segment of a thin line in Fig. 1(b), which begins at −e3, and
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ends at Γ∞. Therefore, the line of relative equilibrium attitudes for α ∈ L1 and the
line of relative equilibrium attitudes for α ∈ L5 are connected. Since no component
of the center of mass vector vanishes, there are no additional relative equilibria.

In summary, we have provided a graphical illustration of the hanging equilibrium
attitude, the inverted equilibrium attitude, the relative equilibrium attitude given by
(4.7), and the four mutually disjoint one–dimensional relative equilibrium attitude
curve segments.

4.4 Local Analysis of the Lagrange–Poincaré Reduced Model Near an Equilibrium

In the last section, we showed that the Lagrange–Poincaré reduced model of the 3D
pendulum has exactly two static equilibria, namely the hanging equilibrium and the
inverted equilibrium. As stated in Proposition 9, these equilibria correspond to the
disjoint equilibrium manifolds of the full equations of the 3D pendulum.

We focus on these static equilibria of the Lagrange–Poincaré reduced equations.
The identification mentioned in Proposition 9 relates properties of the equilibrium
manifolds of the full equations and the equilibria of the Lagrange–Poincaré reduced
equations. We can deduce the stability of the hanging and the inverted equilibrium
manifolds of the full equations from the stability property of the hanging equilibrium
and the inverted equilibrium of the Lagrange–Poincaré reduced equations.

Proposition 10 The hanging equilibrium (Γh,0) = (
ρ

‖ρ‖ ,0), of the Lagrange–

Poincaré reduced dynamics of the 3D pendulum described by (4.3) and (4.4) is stable
in the sense of Lyapunov.

Proof Consider the Lyapunov function

V (Γ,ω) = 1

2
ωTJω + mg

(‖ρ‖ − ρTΓ
)
. (4.14)

Note that V (Γh,0) = 0 and V (Γ,ω) > 0 elsewhere. Furthermore, the derivative
along a solution of (4.3) and (4.4) is given by

V̇ (Γ,ω) = ωTJ ω̇ − mgρTΓ̇

= ωT(Jω × ω + mgρ × Γ ) − mgρT(Γ × ω)

= ωTmgρ × Γ − mgρTΓ × ω = 0.

Thus, the hanging equilibrium is Lyapunov stable. �

Note that combining Proposition 10 with Proposition 9 immediately confirms the
stability result for the hanging equilibrium manifold in Proposition 2.

We next examine the local properties of the Lagrange–Poincaré reduced equations
of the 3D pendulum near the inverted equilibrium (Γi,0). Consider the linearization
of (4.3)–(4.4) about an equilibrium (Γi,0) = (RT

ee3,0), where (Re,0) is an equilib-
rium in the inverted equilibrium manifold I.
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As in Chaturvedi and McClamroch (2007), the inverted equilibrium of the
Lagrange–Poincaré reduced equations can be shown to have two negative eigenval-
ues, two positive eigenvalues and a zero eigenvalue. Thus, the inverted equilibrium
(Γi,0) is unstable and locally there exists a two-dimensional stable manifold, a two-
dimensional unstable manifold and a one-dimensional center manifold. This is sum-
marized as follows.

Proposition 11 The inverted equilibrium (Γi,0) = (− ρ
‖ρ‖ ,0) of the Lagrange–

Poincaré reduced model of the 3D pendulum described by (4.3) and (4.4) is unstable.

Note that combining Proposition 11 with Proposition 9 immediately recovers the
result that the inverted equilibrium manifold I of the full equations for the 3D pen-
dulum given by (3.1)–(3.2) is unstable.

We have analyzed the local stability properties of the hanging equilibrium and of
the inverted equilibrium of the Lagrange–Poincaré model. We have not analyzed lo-
cal stability properties of other equilibrium solutions, namely the relative equilibria
of the Lagrange–Poincaré model. Such an analysis can easily be carried out using the
constrained variations that respect the Lie group structure of the attitude configura-
tions following the methods introduced in this paper. Alternatively, an analysis of the
stability of the relative equilibria of the Lagrange–Poincaré model has been provided
in Maddocks (1991) using constrained second variation methods that enforce the Lie
group constraints using Lagrange multipliers.

5 Lagrange–Routh Reduced 3D Pendulum Dynamics on TS2

In the previous sections we studied the full dynamics and the Lagrange–Poincaré
reduced dynamics of the 3D pendulum. These involved the study of the dynamics of
the 3D pendulum on TSO(3) and on S2 ×R

3, respectively, using variables (R,ω) and
(Γ,ω) to express the equations of motion. In this section, we present Lagrange–Routh
reduction of the 3D pendulum, and we study the equations of motion that describe
the evolution of (Γ, Γ̇ ) ∈ TS2.

5.1 Lagrange–Routh Reduction of the 3D Pendulum

Lagrange–Routh reduction involves identifying trajectories that are related by the
symmetry group action, and further restricting the dynamics to a level set of the
associated momentum map. Since the symmetry group is abelian, the dynamics on
the configuration manifold SO(3) can be reduced to the shape manifold, which is the
quotient manifold associated with the symmetry action. The resulting equations of
motion on the quotient manifold are described not in terms of the Lagrangian but in
terms of the Routhian (Holmes and Marsden 1983; Lewis et al. 1992; Marsden et al.
2000).

The 3D pendulum has a S1 symmetry given by a rotation about the vertical axis.
The symmetry action Φθ : S1 × SO(3) → SO(3) is given by

Φθ(R) = exp(θ ê3)R,
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for θ ∈ S1 and R ∈ SO(3). It can be shown that the Lagrangian of the 3D pendulum
is invariant under this symmetry action. Thus, the configuration manifold SO(3) is
reduced to the shape manifold SO(3)/S1 ∼= S2, and the reduced dynamics of the
3D pendulum is described on the tangent bundle TS2. This reduction procedure is
interesting and challenging, since the projection Π : SO(3) → S2 given by Π(R) =
RT e3 together with the symmetry action has a nontrivial principal bundle structure.
In other words, the angle of the rotation about the vertical axis is not a global cyclic
variable.

Here we present expressions for the Routhian and the reduced equations of motion.
The detailed description and development can be found in Appendix.

Proposition 12 (Marsden et al. 2000) We identify the Lie algebra of S1 with R. For
(R,ω) ∈ TRSO(3), the momentum map J : TSO(3) → R

∗, the locked inertia tensor
I(R) : R → R

∗, and the mechanical connection A : TSO(3) → R for the 3D pendu-
lum are given as follows:

J(R, ω̂) = eT
3 RJω, (5.1)

I(R) = eT
3 RJRT e3, (5.2)

A(R, ω̂) = eT
3 RJω

eT
3 RJRT e3

. (5.3)

The value of the momentum map μ = J(R, ω̂) corresponds to the vertical compo-
nent of the angular momentum. Noether’s theorem states that the symmetry of the
Lagrangian implies conservation of the corresponding momentum map. This is an
alternative method of establishing the invariance properties of the 3D pendulum dy-
namics, as opposed to the direct computation in Sect. 3.1.

Based on the above expressions, Lagrange–Routh reduction is carried out to obtain
the following result.

Proposition 13 For a given value of the momentum map μ, the Routhian of the 3D
pendulum is given by

Rμ(Γ, Γ̇ ) = 1

2
(Γ̇ × Γ ) · J (Γ̇ × Γ ) − 1

2

(
b2 + ν2)(Γ · JΓ ) + mgΓ · ρ, (5.4)

where b = JΓ ·(Γ̇ ×Γ )
Γ ·JΓ

, ν = μ
Γ ·JΓ

, and the magnetic two form can be written as

βμ(Γ × η,Γ × ζ ) = − μ

(Γ · JΓ )2

[−(Γ · JΓ )tr[J ] + 2‖JΓ ‖2]Γ · (η × ζ ). (5.5)

The Routhian satisfies the Euler–Lagrange equation, with the magnetic term given by

δ

∫ T

0
Rμ(Γ, Γ̇ )dt =

∫ T

0
iΓ̇ βμ(δΓ )dt. (5.6)

This yields the reduced equation of motion on TS2:

Γ̈ = −‖Γ̇ ‖2Γ + Γ × Σ(Γ, Γ̇ ), (5.7)
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where

Σ(Γ, Γ̇ ) = bΓ̇ + J−1[(J (Γ̇ × Γ ) − bJΓ
) × (

(Γ̇ × Γ ) − bΓ
)

+ ν2JΓ × Γ − mgΓ × ρ − cΓ̇
]
, (5.8)

c = ν

{
tr[J ] − 2

‖JΓ ‖2

Γ · JΓ

}
, b = JΓ · (Γ̇ × Γ )

Γ · JΓ
, ν = μ

Γ · JΓ
.

(5.9)

Proof See Appendix. �

The function Σ(Γ, Γ̇ ) is an exceedingly complicated function of its arguments.
This makes direct analysis of (5.7) a challenge.

5.2 Lagrange–Routh Reconstruction of the 3D Pendulum

For a given value of the momentum map μ, let Γ (t) ∈ S2 be a curve in the reduced
space S2 satisfying the Lagrange–Routh reduced model given by (5.7). The recon-
struction procedure is to find the curve R(t) ∈ SO(3) that satisfies Π(R(t)) = Γ (t)

and J(R(t),R(t)T Ṙ(t)) = μ.
This can be achieved in two steps. First, we choose any curve R̃(t) ∈ SO(3) such

that its projection is equal to the reduced curve, i.e. Π(R̃(t)) = Γ (t). Then the curve
R(t) can be written as R(t) = Φθ(t)(R̃(t)) for some θ(t) ∈ S1. We find a differential
equation for θ(t) so that the value of the momentum map for the reconstructed curve
is conserved. In order to simplify the differential equation for θ(t), we restrict our
discussion to the horizontal lift Rhor(t), which is a particular reconstruction curve that

has the additional property that A(
˙̃
R(t)) = 0, where A is the mechanical connection

in (5.3).

Proposition 14 Suppose that the integral curve of the Lagrange–Routh reduced
equation (5.7) is given by (Γ (t), Γ̇ (t)) ∈ TS2 and the value of the momentum map
μ is known. The following procedure reconstructs the motion of the 3D pendulum to
obtain (R(t),ω(t)) ∈ TSO(3) such that Π(R(t)) = Γ (t) and J(R(t),ω(t)) = μ.

1. Horizontally lift Γ (t) to obtain Rhor(t) by integrating the following equation with
Rhor(0) = R(0):

Ṙhor(t) = Rhor(t)ω̂hor(t), (5.10)

where

ωhor(t) = Γ̇ (t) × Γ (t) − b(t)Γ (t). (5.11)

2. Determine θdyn(t) ∈ S1 from:

θdyn(t) =
∫ t

0

μ

Γ (s) · JΓ (s)
ds. (5.12)
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3. Reconstruct the desired curve in TSO(3) from:

R(t) = Φθdyn(t)(Rhor(t)) = exp
[
θdyn(t)ê3

]
Rhor(t), (5.13)

ω(t) = ωhor(t) + ν(t)Γ (t). (5.14)

Proof See Appendix. �

This leads to the geometric phase formula that expresses the rotation angle about
the vertical axis along a closed integral curve of the Lagrange–Routh reduced equa-
tions.

Proposition 15 Assume the value of the momentum map μ = 0. Let Γ (t),
t ∈ R, define a closed curve in S2, i.e. Γ (0) = Γ (T ) for some T . The geomet-
ric phase θgeo(T ) ∈ S1 of the 3D pendulum is defined by the relationship R(T ) =
Φθgeo(T )(R(0)) where

θgeo(T ) =
∫

B

2‖JΓ (t)‖2 − tr[J ](Γ (t) · JΓ (t))

(Γ (t) · JΓ (t))2
dA, (5.15)

and B is a surface in S2 with boundary Γ (t).

5.3 Integral of the Lagrange–Routh Reduced Model

In this section we find an integral of motion for the Lagrange–Routh reduced model
of the 3D pendulum, namely the total energy of the system. Note that the Lagrange–
Routh reduced equations of motion are derived by eliminating the conserved vertical
component of the body-fixed angular momentum. In a later section, we make use of
the constant energy surfaces to visualize the dynamics of the 3D pendulum.

Proposition 16 Assume the constant value of the momentum map is μ. The total
energy

E = 1

2

(
Γ̇ × Γ + (ν − b)Γ

)T
J
(
Γ̇ × Γ + (ν − b)Γ

) − mgρT Γ (5.16)

is constant along solutions of the Lagrange–Routh reduced equations for the 3D pen-
dulum given by (5.7).

Proof Substituting the reconstruction equations for the angular velocity (5.11), (5.14)
into the total energy expression (4.5), we obtain (5.16). The time derivative expres-
sion for the total energy is given by

Ė = (
Γ̇ × Γ + (ν − b)Γ

)T
J
(
Γ̈ × Γ + (ν̇ − ḃ)Γ + (ν − b)Γ̇

) − mgρT Γ̇ .

Substituting the reduced equation of motion (5.7) into the above equation and rear-
ranging, we can show that Ė = 0. �
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5.4 Equilibria of the Lagrange–Routh Reduced Model

The Lagrange–Routh reduced model is related to the Lagrange–Poincaré reduced
model through a projection of TSO(3)/S1 onto TS2. Thus, the equilibria structure of
the Lagrange–Routh reduced model is equivalent to the Lagrange–Poincaré reduced
model, but it is represented in terms of the reduced attitude Γe and the value of the
momentum map μ instead of (Γe,ωe).

We summarize the equilibria structure of the Lagrange–Routh reduced model us-
ing (5.7), showing its equivalence to the equilibria structure presented in Proposi-
tion 6.

Proposition 17 Consider the Lagrange–Routh reduced model of the 3D pendulum
given by (5.7). For the indicated values of the momentum map μ, the Lagrange–Routh
model on TS2 has the following equilibria and relative equilibria:

1. If μ = 0 there is a hanging equilibrium: (
ρ

‖ρ‖ ,0) ∈ TS2.

2. If μ = 0 there is an inverted equilibrium: (− ρ
‖ρ‖ ,0) ∈ TS2.

3. If the momentum map has one of the values

μ = ±
√

mg

‖J−1ρ‖3
ρT J−1ρ, (5.17)

there is a relative equilibria in TS2:
(

− J−1ρ

‖J−1ρ‖ ,0

)
. (5.18)

4. If the momentum map has one of the values

μ = ±
√

mg

‖nα‖3
nT

α Jnα, (5.19)

there are one-dimensional relative equilibrium manifolds in TS2 described by the
parameterization:

(
− nα

‖nα‖ ,0

)
for α ∈ Li , i ∈ {1,2,3,4,5}, (5.20)

where nα = (J − 1
α
I3×3)

−1ρ ∈ R
3 and the intervals of the reals defined by

L1 = (−∞,0), L2 =
(

0,
1

J1

)
, L3 =

(
1

J1
,

1

J2

)
, L4 =

(
1

J2
,

1

J3

)
,

L5 =
(

1

J3
,∞

)
.

Proof Substituting Γ̇e = 0 into (5.7)–(5.9), we obtain a condition for an equilibrium
Γe:

Γe × J−1[ν2JΓe × Γe − mgΓe × ρ
] = 0.
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This is equivalent to

[
ν2JΓe × Γe − mgΓe × ρ

] = k2JΓe (5.21)

for some constant k2 ∈ R. Taking the dot product of this and Γe implies that 0 =
k2Γ

T
e JΓe. Since Γ T

e JΓe > 0 as the inertia tensor J is positive definite and Γe ∈ S2,
it follows that k2 = 0. Thus, (5.21) is equivalent to

ν2JΓe + mgρ = k1Γe (5.22)

for some constant k1 ∈ R. Note that this is equivalent to the equilibrium condition
for the Lagrange–Poincaré reduced model given by (4.9): for any solution (Γe, k, k1)

of (4.9), we can choose μ such that k2 = ν2 = μ2

(Γ T
e JΓe)2 , which gives a solution of

(5.22), and vice versa. Thus, the equilibria structure of the Lagrange–Routh reduced
model is equivalent to the equilibria of the Lagrange–Poincaré reduced model. For
an equilibrium (Γe,ωe) of the Lagrange–Poincaré reduced model, the value of the
momentum map at the corresponding equilibrium of the Lagrange–Routh model is
given by

μ = k
(
Γ T

e JΓe
) = ωT

e Γe
(
Γ T

e JΓe
)
. (5.23)

Substituting this into the equilibria expressions in Proposition 6, we obtain the stated
results. �

According to Proposition 7, the following results hold for the Lagrange–Routh
reduced model of the 3D pendulum.

Proposition 18 The equilibria of the 3D pendulum given in the parameterizations
(5.20) have the following convergence properties:

1. lim
α→∞Γe = Γ∞;

2. lim
α→0− Γe = Γi;

3. lim
α→0+ Γe = Γh;

4. for i ∈ {1,2,3} : lim
α→ 1

Ji

− Γe = sgn(ρi)ei;

5. for i ∈ {1,2,3} : lim
α→ 1

Ji

+ Γe = −sgn(ρi)ei .

As previously, if additional assumptions are made about the location of the center
of mass, then additional relative equilibria exist. The following results summarize
this situation.

Proposition 19 Consider the 3D pendulum and assume that the location of the center
of mass vector ρ satisfies the indicated property.
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1. Assume there is exactly one index i ∈ {1,2,3} for which ρi = 0. If the momentum
map has one of the values

μ = ±
√

mg

‖pi‖3
pT

i Jpi,

there are one-dimensional relative equilibrium manifolds in TS2 described by the
parameterizations:

(
− pi

‖pi‖ ,0

)
for any γ ∈ R,

where p1 = (γ,
ρ2

J2−J1
,

ρ3
J3−J1

), p2 = (
ρ1

J1−J2
, γ,

ρ3
J3−J2

), p3 = (
ρ1

J1−J3
,

ρ2
J2−J3

, γ ).
2. Assume ρi = 0 for exactly two indices i ∈ {1,2,3}. There are one-dimensional

relative equilibrium manifolds in TS2 described by the parameterizations:

(ei,0), (−ei,0) for any μ ∈ R.

This proposition includes the result for an asymmetric 3D pendulum that if the
center of mass lies on a principal axis, then for any value of the angular momentum
map there exist relative equilibria defined by a constant angular velocity vector that
is aligned with that principal axis.

The geometric description of relative equilibria, based on the Lagrange–Routh
model, provides additional insight into the equilibria structure of the 3D pendulum.

5.5 Local Analysis of the Lagrange–Routh Reduced Model on TS2

We showed that when the angular momentum map is zero, μ = 0, the Lagrange–
Routh reduced model of the 3D pendulum has two isolated equilibria, namely the
hanging equilibrium and the inverted equilibrium. These equilibria correspond to the
disjoint equilibrium manifolds of the full equations of the 3D pendulum.

We next focus on these isolated equilibria of the Lagrange–Routh reduced equa-
tions. Using Proposition 17, the stability properties of the equilibrium manifolds of
the 3D pendulum can be deduced by studying the Lagrange–Routh reduced equi-
libria for the case μ = 0. Compared to the Lagrange–Poincaré reduced model, the
Lagrange–Routh reduction procedure results in a set of complicated equations that
are a challenge to analyze.

Proposition 20 Assume the value of the momentum map is zero, μ = 0. The hanging
equilibrium (Γh,0) = (

ρ
‖ρ‖ ,0) of the Lagrange–Routh reduced dynamics of the 3D

pendulum described by (5.7) is stable in the sense of Lyapunov.

Proof Consider the Lyapunov function

V (Γ, Γ̇ ) = 1

2

(
Γ̇ ×Γ +(ν −b)Γ

)T
J
(
Γ̇ ×Γ +(ν −b)Γ

)+mg
(‖ρ‖−ρTΓ

)
. (5.24)
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Note that V (Γh,0) = 0 and V (Γ, Γ̇ ) > 0 elsewhere. Furthermore, the derivative
along a solution of (4.3) and (4.4) is given by

V̇ (Γ, Γ̇ ) = (
Γ̇ × Γ + (ν − b)Γ

)T
J
(
Γ̈ × Γ + (ν̇ − ḃ)Γ + (ν − b)Γ̇

) − mgρTΓ̇ .

Substituting the reduced equation of motion (5.7) into the above equation and rear-
ranging, we can show that V̇ (Γ, Γ̇ ) = 0. Thus, the hanging equilibrium of (5.7) is
Lyapunov stable. �

Note that combining Proposition 20 with Proposition 17 immediately yields the
result in Proposition 2.

The linearization of (5.7) at the inverted equilibrium can be shown to have two
negative eigenvalues and two positive eigenvalues. Thus, the inverted equilibrium
(Γi,0) of the Lagrange–Routh reduced model is unstable and locally there exists a
two-dimensional stable manifold and a two-dimensional unstable manifold.

Proposition 21 Assume the value of the momentum map is zero, μ = 0. The inverted
equilibrium (Γi,0) = (− ρ

‖ρ‖ ,0) of the Lagrange–Routh reduced dynamics of the 3D
pendulum described by (5.7) is unstable.

Note that combining Proposition 21 with Proposition 17 immediately yields the
result that the inverted equilibrium manifold I of the 3D pendulum given by (3.1)–
(3.2) is unstable.

5.6 Poincaré Map on the Lagrange–Routh Reduced Model

A Poincaré map describes the evolution of successive intersection points of a trajec-
tory with a transversal hypersurface of codimension one. Typically, one chooses a
hyperplane, and considers a trajectory with initial conditions on the hyperplane. The
points at which this trajectory returns to the hyperplane are then observed, which
provides insight into the stability of periodic orbits or the global characteristics of the
dynamics.

The Lagrange–Routh reduced equations for the 3D pendulum on TS2 are a partic-
ularly suitable choice for analysis using a Poincaré map, since it has dimension 4. On
the manifold defined by a constant total energy as in (5.16) a Poincaré section on TS2

defines a three-dimensional subspace of TS2 on which the corresponding Poincaré
map evolves. We define a Poincaré section on TS2 for the Lagrange–Routh dynamics
of the 3D pendulum given by (5.7) as follows.

P = {
(Γ, Γ̇ ) ∈ TS2

∣∣ eT
3 Γ̇ = 0, eT

3 (Γ × Γ̇ ) > 0, and E(Γ, Γ̇ ) = constant
}
.

Suppose Γ ∈ P is given. The tangent space TΓ S2 is a plane that is tangential to
S2 and perpendicular to Γ . The first condition of the Poincaré section, eT

3 Γ̇ = 0
determines a line in which the tangent vector Γ̇ ∈ TΓ S2 should lie, and the constraint
of total energy conservation fixes the magnitude of the tangent vector in that line.
Thus, the tangent vector is uniquely determined up to sign. The second condition of
the Poincaré section resolves this ambiguity. It also excludes two reduced attitudes
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Γ = ±e3 for which the first condition is trivial; eT
3 Γ̇ = 0 for any Γ̇ ∈ Te3S

2 ∪T−e3S
2.

Thus, P can be equivalently identified as

P = {
Γ ∈ S2

∣∣ eT
3 Γ̇ = 0, eT

3 (Γ × Γ̇ ) > 0, and E(Γ, Γ̇ ) = constant
}
,

where (Γ, Γ̇ ) satisfies (5.7).
This Poincaré section in TS2 is well defined in the sense that for each element, the

corresponding tangent vector is uniquely determined. The attitude and the angular
velocity in TSO(3) can be obtained by using the reconstruction procedure for the
given value of the momentum map μ.

Although the Poincaré map is best explained in terms of the Lagrange–Routh re-
duced model as above, successive intersection points of a trajectory need not be com-
puted directly from the complicated Lagrange–Routh reduced model. In particular,
trajectories can be computed directly from the full 3D pendulum model given by
(3.1) and (3.2) or from the Lagrange–Poincaré reduced model given by (4.3) and
(4.4); the Poincaré map is obtained by a projection onto S2.

5.7 Visualization of Poincaré Map

We examine the Poincaré map that describes dynamics features of a particular 3D
pendulum model, demonstrating how this Poincaré map can be visualized. The
3D pendulum is chosen as an elliptic cylinder with properties of m = 1 kg, J =
diag[0.13,0.28,0.17] kg·m2, ρ = [0,0,0.3] m. The initial condition are given by
R0 = I3×3 and ω0 = c[1,1,1] rad/s, where the constant c is varied to give different
total energy levels as specified in Fig. 2; the specific values of the momentum map
are not required since the Lagrange–Poincaré equations need not be formed. The Lie
group variational integrator introduced in Lee et al. (2005) is used to numerically in-
tegrate the full 3D pendulum equations (3.1) and (3.2), thereby obtaining the Poincaré
map on S2 numerically.

Since the center of mass lies on the third principal axis of the 3D pendulum, there
is a relative equilibrium in which the angular velocity vector is aligned with the body-
fixed principal axis e3 axis and the value of the angular momentum map is arbitrary.
Figure 2 shows particular examples of the Poincaré map on S2 corresponding to five
different trajectories with various values of the total energy; the values of successive
values of Γ in S2 are shown. Each of these trajectories can be viewed as a perturba-
tion of a relative equilibrium whose angular velocity vector is along the principal axis
e3. In Fig. 2 the center of each Poincaré map is defined by the body-fixed principal
axis e3 representing this relative equilibrium. That is, the origin of the body-fixed
axes in Fig. 2 is located at the center of S2 with the e1 axis pointing to the right in
the plane of the page, the e2 axis pointing to the top in the plane of the page, and e3
is perpendicular to the plane of the page pointing outward.

It is interesting to see the transition of the Poincaré maps with varying total energy
levels. The attitude dynamics of the 3D pendulum is periodic in Fig. 2(a), but it ex-
hibits chaotic behavior with increased energy level in Figs. 2(b) and 2(c). If the total
energy is increased further, the attitude dynamics becomes periodic again in Fig. 2(e).
This demonstrates the highly nonlinear, and possibly chaotic, characteristics of the
3D pendulum dynamics.
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6 Conclusions

The asymmetric 3D pendulum, assuming the center of mass is distinct from the pivot
location, exhibits rich dynamics with nontrivial geometric structure; this dynamics is
much richer and more complex than the dynamics of a 1D planar pendulum, a 2D
spherical pendulum, or any of the integrable cases such as the Lagrange top. This
paper has demonstrated that the methods of geometric mechanics and the methods of
nonlinear dynamics can be combined to obtain a unified perspective of the complex,
non-integrable dynamics of the 3D pendulum.

The main contribution of the paper is that we have introduced three different mod-
els for the asymmetric 3D pendulum, including the full model defined on TSO(3), the
Lagrange–Poincaré reduced model on TSO(3)/S1 obtained by identifying configura-
tions in the same group orbit, and the Lagrange–Routh reduced model on TS2 where
one additionally utilizes the fact that the dynamics evolves on a constant momentum
level set. Relationships between the various representations are discussed in the con-
text of conservation properties, equilibria and their stability properties, and invariant
manifolds.

In addition, we illustrate that the use of the Lagrange–Routh reduced equations
of motion, together with the energy conservation properties, allow the construction
of a Poincaré map that can be readily visualized, thereby providing a graphical tool
for obtaining insight into the rich nonlinear dynamical properties of the 3D pendu-
lum.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

In this appendix, we summarize Lagrange–Routh reduction and reconstruction pro-
cedures for the 3D pendulum.

A.1 Reduction

A description of Lagrange–Routh reduction can be found in Marsden et al. (2000)
including expressions for the mechanical connection and the Routhian of the 3D pen-
dulum given by (5.3) and (5.4), respectively. Here we derive the reduced equation of
motion (5.7) using the Euler–Lagrange equation with magnetic terms for the given
Routhian (5.4). These details are not provided in Marsden et al. (2000).

Variation of Routhian The Routhian satisfies the variational Euler–Lagrange equa-
tion with the magnetic term given by (5.6). We use a constrained variations of Γ ∈ S2:

δΓ = Γ × η, (A.1)

δΓ̇ = Γ̇ × η + Γ × η̇. (A.2)
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Here we assume that η ·Γ = 0, since the component of η parallel to Γ has no effect on
δΓ . These expressions are essential for developing the reduced equation of motion.

Using (A.1), (A.2), and the properties Γ · Γ̇ = 0, Γ · η = 0, the variation of the
Routhian is given by

δRμ = η̇ · J (Γ̇ × Γ − bΓ ) − η · Γ × [−Γ̇ × J (Γ̇ × Γ ) + (
b2 + ν2)JΓ

− bJ (Γ̇ × Γ ) + b(Γ̇ × JΓ ) + mgρ
]
. (A.3)

Magnetic 2-form From the given mechanical connection A and a value of the mo-
mentum map μ ∈ R

∗, define a 1-form Aμ on TSO(3) by

Aμ(R) · (R, ω̂) = 〈
μ, A(R, ω̂)

〉 = μ
eT

3 RJω

eT
3 RJRT e3

.

The magnetic 2-form βμ in (5.5) is the exterior derivative of Aμ, which can be ob-
tained by using the identity dAμ(X,Y ) = X[Aμ(Y )] − Y [Aμ(X)] − Aμ([X,Y ])
for X = Rη̂,Y = Rζ̂ ∈ TRSO(3). Suppose that Γ̇ = Γ × ω. Since Γ · (ω × η) =
η · (Γ × ω) = η · Γ̇ , the interior product of the magnetic 2-form is given by

iΓ̇ βμ(δΓ ) = βμ(Γ × ω,Γ × η) = ν

{
tr[J ] − 2

‖JΓ ‖2

Γ · JΓ

}
Γ̇ · η, (A.4)

where ν = μ
Γ ·JΓ

.

Euler–Lagrange Equation with Magnetic 2-form Substituting (A.3) and (A.4) into
(5.6), and integrating by parts, the Euler–Lagrange equation for the reduced Routhian
(5.4) is written as

−
∫ T

0
η · [J (Γ̈ × Γ − bΓ̇ − ḃΓ ) + Γ × X + cΓ̇

]
dt = 0, (A.5)

where

X = −Γ̇ × J (Γ̇ × Γ ) + (
b2 + ν2)JΓ − bJ (Γ̇ × Γ ) + b(Γ̇ × JΓ ) + mgρ,

(A.6)

and c is given by (5.9). Since (A.5) is satisfied for all η with Γ · η = 0, we obtain

J (Γ̈ × Γ − bΓ̇ − ḃΓ ) + Γ × X + cΓ̇ = λΓ, (A.7)

for λ ∈ R. This is the reduced equation of motion. However, this equation has an
ambiguity since the value of λ is unknown; this equation is implicit for Γ̈ since the
term ḃ is expressed in terms of Γ̈ . The next step is to determine expressions for λ and
ḃ using the definition of b and some vector identities.

We first find an expression for λ in terms of Γ, Γ̇ . Taking the dot product of (A.7)
with Γ , we obtain

Γ · J (Γ̈ × Γ − bΓ̇ − ḃΓ ) = λ. (A.8)
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From the definition of b, we obtain the following identity: Γ · J (Γ̇ × Γ − bΓ ) = 0.
Differentiating this with respect to time and substituting into (A.8), we find an ex-
pression for λ in terms of Γ, Γ̇ as

λ = −Γ̇ · J (Γ̇ × Γ − bΓ ). (A.9)

Substituting (A.9) into (A.7), and taking the dot product of the result with Γ , we
obtain an expression for ḃ in terms of Γ, Γ̇ as

ḃ = Γ · J−1{Γ × X + cΓ̇ + (
Γ̇ · J (Γ̇ × Γ − bΓ )

)
Γ

}
. (A.10)

Substituting (A.10) into (A.7), and using the vector identity Y − (Γ · Y)Γ = (Γ ·
Γ )Y − (Γ · Y)Γ = −Γ × (Γ × Y) for any Y ∈ R

3, we obtain the following form for
the reduced equation of motion:

Γ̈ × Γ − bΓ̇ − Γ × [
Γ × J−1{Γ × X + cΓ̇ + (

Γ̇ · J (Γ̇ × Γ − bΓ )
)
Γ

}] = 0.

Reduced Equation of Motion This equation has no ambiguity. Now, we simplify
this equation. The above expression is equivalent to the following equation

Γ × [
Γ̈ × Γ − bΓ̇ − Γ × [

Γ × J−1{Γ × X + cΓ̇ + (
Γ̇ · J (Γ̇ × Γ − bΓ )

)
Γ

}]]

= 0.

Since Γ · Γ̈ = −‖Γ̇ ‖2, the first term is given by

Γ × (Γ̈ × Γ ) = (Γ · Γ )Γ̈ − (Γ · Γ̈ )Γ = Γ̈ + ‖Γ̇ ‖2Γ.

Using the property Γ × (Γ × (Γ ×Y)) = −(Γ ·Γ )Γ ×Y = −Γ ×Y for Y ∈ R
3, the

third term of the above equation can be simplified. Substituting (A.6) and rearranging,
the reduced equation of motion for the 3D pendulum is given by

Γ̈ = −‖Γ̇ ‖2Γ + Γ × Σ, (A.11)

where Σ = bΓ̇ +J−1[(J (Γ̇ ×Γ )−bJΓ )× ((Γ̇ ×Γ )−bΓ )+ν2JΓ ×Γ −mgΓ ×
ρ − cΓ̇ ].
A.2 Reconstruction

For a given integral curve of the reduced equation (Γ (t), Γ̇ (t)) ∈ TS2, we find a curve
R̃(t) ∈ SO(3) that is projected into the reduced curve, i.e. Π(R̃(t) = Γ (t). The recon-
structed curve can be written as R(t) = Φθ(t)(R̃(t)) for some θ(t) ∈ S1. The conser-
vation of the momentum map yields the following reconstruction equation (Marsden
et al. 2000)

θ(t)−1θ̇ (t) = I
−1(R̃(t)

)
μ − A

( ˙̃
R(t)

)
.

The particular choice of R̃(t), the horizontal lift given by (5.10), simplifies the above
equation, since the horizontal part of the tangent vector is annihilated by the me-
chanical connection, and as such the second term in the above equation vanishes.
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Furthermore, since the group S1 is abelian, the solution reduces to a quadrature as in
(5.12). The reconstructed curve is given by (5.13).
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