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ON THE EXISTENCE OF SOLITARY TRAVELING WAVES FOR

GENERALIZED HERTZIAN CHAINS

ATANAS STEFANOV AND PANAYOTIS KEVREKIDIS

Abstract. We consider the question of existence of “bell-shaped” (i.e. non-increasing
for x > 0 and non-decreasing for x < 0) traveling waves for the strain variable of the
generalized Hertzian model describing, in the special case of a p = 3/2 exponent, the
dynamics of a granular chain. The proof of existence of such waves is based on the
English and Pego [Proceedings of the AMS 133, 1763 (2005)] formulation of the problem.
More specifically, we construct an appropriate energy functional, for which we show that
the constrained minimization problem over bell-shaped entries has a solution. We also
provide an alternative proof of the Friesecke-Wattis result [Comm. Math. Phys 161, 394
(1994)], by using the same approach (but where the minimization is not constrained over
bell-shaped curves). We briefly discuss and illustrate numerically the implications on the
doubly exponential decay properties of the waves, as well as touch upon the modifications
of these properties in the presence of a finite precompression force in the model.

1. Introduction

Localized modes on nonlinear lattices have been a topic of wide theoretical and exper-
imental investigation in a wide range of areas over the past two decades. This can be
seen, e.g., in the recent general review [1], as well as inferred from the topical reviews in
nonlinear optics [2], atomic physics [3] and biophysics [4] where relevant discussions have
been given of the theory and corresponding applications.

One of the areas in which the theoretical analysis has been especially successful in
describing experimental data and providing insights has been that of granular crystals [5].
These consist of closely-packed chains of elastically interacting particles, typically according
to the so-called Hertz contact law. The broad interest in this area has emerged due to the
wealth of available material types/sizes (for which the Hertzian interactions are applicable)
and the ability to tune the dynamic response of the crystals to encompass linear, weakly
nonlinear, and strongly nonlinear regimes [5, 6, 7, 8]. This type of flexibility renders these
crystals perfect candidates for many engeenering applications, including shock and energy
absorbing layers [9, 10, 11, 12], actuating devices [13], and sound scramblers [14, 15]. It
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should also be noted that another aspect of such systems that is of particular appeal is
their potential (and controllable) heterogeneity which gives rise to the potential not only
for modified solitary wave excitations [16], but also for discrete breather ones [17].

Another motivation for looking at waves in such lattices stems from FPU type problems
[18, 19]. In the prototypical FPU context, it has been rigorously proved that traveling
waves exist which can be controllably approximated (in the appropriate weakly supersonic
limit) by solitary waves of the Korteweg-de Vries equation [20]. However, in more strongly
nonlinear regimes, compact-like excitations have been argued to exist [5, 6, 8] (see also [21]
for breather type excitations) and have even been computed numerically through iterative
schemes [22, 23], but have not been rigorously proved to exist in the general case. In the
work of [24], the special Hertzian case was adapted appropriately to fit the assumptions
of the variational-methods’ based proof of the traveling wave existence theorem of [25] in
order to establish these solutions. However the proof does not give information on the
wave profile.

Our aim herein is to provide a reformulation and illustration of existence of “bell-shaped”
traveling waves in generalized Hertzian lattices. Our work is based on the iterative schemes
that have been previously presented in [23, 22] for the computation of traveling waves in
such chains of the form:

v̈n = [vn−1 − vn]
p
+ − [vn − vn+1]

p
+.(1)

Here vn denotes the displacement of the n-th bead from its equilibrium position. The
special case of Hertzian contacts is for p = 3/2, but we consider here the general case of
nonlinear interactions with p > 1. Notice that the “+” subscript in the equations indicates
that that the quantity in the bracket is only evaluated if positive, while it is set to 0,
if negative (reflecting in the latter case the absence of contact between the beads). The
construction of the traveling waves and the derivation of their monotonicity properties will
be based on the strain variant of the equation for un = vn−1 − vn such that:

ün = [un+1]
p
+ − 2[un]

p
+ + [un−1]

p
+,(2)

Our presentation will proceed as follows. In section 2, we will give a preliminary math-
ematical formulation to the problem, briefly illustrate its numerical solution and some of
its consequences. Then, we will proceed in section 3 to state and prove our main result.
Some technical aspects of the problem will be relegated to the appendices of section 4.

2. Preliminaries and Numerical Results

When seeking traveling wave solutions of the form un = u(x) ≡ u(n− ct), we are led to
the advance-delay equation (setting c = 1)

(3) u′′(x) = up(x+ 1)− 2up(x) + up(x− 1). x ∈ R1

where u is a smooth and positive function, with the desired monotonicity involving decay
in (0,∞) and increase in (−∞, 0).
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2.1. Fourier transform and Sobolev spaces. We introduce the Fourier transform and
its inverse via

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πixξdx

f(x) =

∫ ∞

−∞

f̂(ξ)e2πixξdξ

As is well-known, the second derivative operator ∂2x has a simple representation via the
Fourier transform, namely

d̂2

dx2
f(ξ) = −4π2ξ2f̂(ξ).

For every s ≥ 0, we may define ̂(− d2

dx2
)sf(ξ) = (4π2ξ2)sf̂(ξ) and the Sobolev spaces W s,p

via
‖f‖W s,p = ‖f‖L2 + ‖(−∆)s/2f‖Lp.

We will also consider the operator

∆discf(x) = f(x+ 1)− 2f(x) + f(x− 1)

on the space of L2(R1) functions. Using Fourier transform, we may write

∆discf(x) =

∫ ∞

−∞

f̂(ξ)(e2πiξ + e−2πiξ − 2)e2πixξdξ = −4

∫ ∞

−∞

sin2(πξ)f̂(ξ)e2πixξdξ.

In other words, ∆disc is given by the symbol −4 sin2(πξ), that is

(4) ∆̂discf(ξ) = −4 sin2(πξ)f̂(ξ).

2.2. The English-Pego formulation. We may rewrite the equation (3) in the form

(5) u′′(x) = ∆disc[u
p](x)

Taking Fourier transform on both sides of this (and using (4)), allows us to write
−4π2ξ2û(ξ) = −4 sin2(πξ)ûp(ξ) or

(6) û(ξ) =
sin2(πξ)

π2ξ2
ûp(ξ)

Equivalently, taking Λ : Λ̂(ξ) = sin2(πξ)
π2ξ2

,

u(x) = Λ ∗ up(x) =

∫ ∞

−∞

Λ(x− y)up(y)dy =: M[up].(7)

In other words, we have introduced the convolution operator M with kernel Λ(·). It is
easy to compute that Λ(x) = (1− |x|)+ or

Λ(x) =

{
1− |x| |x| ≤ 1,
0 |x| > 1.

Note that we have the following formula for the convolution Λ ∗ f

(8) Mf = Λ ∗ f(x) =

∫ x+1

x−1

(1− |x− y|)f(y)dy.
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2.3. Numerical computations and other consequences of the English-Pego for-

mulation. For reasons of completeness and in order to appreciate the form of (suitably
normalized) solutions of Eq. (7), in Fig. 1, we used this equation as a numerical scheme
and proceed to iterate it until convergence. The figure illustrates the converged profile φ
of the solution and its corresponding momentum φt = −cφx (for c = 1). The results of
these computations are shown for different values of p (in order to yield a sense of the
p−dependence of the solution, namely for p = 3/2 (the Hertzian case), p = 2 and p = 3
(the FPU-motivated cases, in that they are the purely nonlinear analogs of α- and β-FPU
respectively) and finally p = 10 (as a large-p case representative). The figure shows the
solutions’ profile and corresponding momenta, as well as the semi-logarithmic form of the
profile, so as to clearly illustrate the doubly exponential nature of the decay (see below).
Notice that as p increases, the decay becomes increasingly steeper.

To corroborate the exact nature of such traveling wave solutions, once the solution
was obtained, then the “lattice ordinates” of both the solution and its time derivative
were extracted and inserted as initial conditions for the dynamical evolution of Eq. (2).
The results of the relevant time integration (using an explicit fourth-order Runge-Kutta
scheme) are shown in Fig. 2. It can be straightforwardly observed that excellent agreement
is obtained with the expectation of a genuinely traveling (without radiation) solution with
a speed of c = 1, so that its center of mass moves according to x = ct (the solid line in
the figure). This confirms the usefulness of the method (independently of the nonlinearity
exponent p, as long as p > 1) in producing accurate traveling solutions for this dynamical
system.

If the convergence to such a nontrivial profile is established (as we will establish it
in section 3 with the proper monotonicity properties based on our modified variational
formulation), there is an important immediate conclusion about the decay properties of
such a profile. In particular,

u(x+ 1) =

∫ 1

−1

Λ(y)up(x+ 1− y)dy ≤ up(x) ⇒ u(x+ n) ≤ u(x)p
n

,(9)

Hence, as was originally discussed in [26] and then more rigorously considered in [22] (see
also [23]), the solutions of Fig. 1 feature a doubly exponential decay. This very fast decay
(and nearly compact shape) of the pulses can be clearly discerned in the semi-logarithmic
plots of the figure.

As a slight aside to the present considerations, we should mention that a physically
relevant variant of the problem consists of the presence of a finite precompression force F0

at the end of the chain [5, 6]. In that case, the model of interest becomes (in the strain
formulation and with F0 = δp0)

ün = [δ0 + un+1]
p
+ − 2[δ0 + un]

p
+ + [δ0 + un−1]

p
+,(10)

The case of δ0 = 0 constitutes the so-called sonic vacuum [5], while that of finite δ0
features a finite speed of sound (and allows the existence and propagation of linear spectrum
excitations). It is worthy then to notice that for δ0 6= 0, the above decay estimate is
modified as:

u(x+ 1) ∼ δp−1
0 u(x) ⇒ u(x) ∼ δp−1

0 exp(n log r(x0))(11)
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Figure 1. Each one of the panels illustrates the numerically exact (up to a
prescribed tolerance which we set here to 10−8) solution profile of the iterative
scheme, as renormalized for use in Eq. (2). The solid (blue) line illustrates
the spatial form of the solution and the dashed (red) line the corresponding
momentum (for speed c = 1). The circles and stars denote respectively
the ordinates of the lattice nodes (extracted for use in Eq. (2). The inset
illustrates the profile in a semilog to highlight the doubly exponential nature
of the decay (notice also the steepening as p increases). The top left panel
is for p = 3/2, the top right for p = 2, the bottom left for p = 3 and finally
the bottom right for p = 10.

Namely, the solutions are no longer doubly exponentially localized but rather feature an ex-
ponential tail (and are progressively closer to regular solitary waves). This can be thought
of as a “compacton to soliton” transition that is worth exploring further (although the
case of δ0 6= 0 will not be considered further herein).

2.4. Some facts and definitions regarding distributions. We now turn to several
definitions, which will be useful in the sequel. Our space of test functions will be the
following. For V ⊂ R1 - an open set, let D(V ) = C∞

0 (V ) be the set of all C∞ functions
with compact support, contained inside V . We equip this with the usual topology of a
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Figure 2. Result of direct integration of Eq. (2), with rn(0) and ṙn(0) as
seeded from the iteration scheme’s convergent profile. The solid line in each
case illustrates the trajectory of x = ct (for c = 1) to which the solutions
correspond. One can notice for all values of p (p = 3/2: top left; p = 2: top
right; p = 3 bottom left and p = 10 bottom right) the agreement with the
expectation of a genuinely traveling (non-radiating) waveform of c = 1.

Frechet space, generated by a family of seminorms pN(f) = supx∈Vn
∑N

α=1 |∂
α
x f(x)|, where

{Vn}n is some fixed nested family of compact sets, so that ∪nVn = V . The distributions
over this space of functions, which we denote by D′(V ), is its dual space, namely all
continuous linear functionals over D(V ). The derivatives of such distributions are defined
in the usual way 〈h′, ψ〉 := −〈h, ψ′〉. One may also define a convolution of a distribution
h ∈ D(R1) with a given C∞ function χ, by 〈h ∗ χ, ψ〉 := 〈h, ψ ∗ χ(−·)〉.

We say that two distributions are in the relation h1 ≤ h2 in D′(V ) sense, if for all
ψ ∈ D(V ), ψ ≥ 0, we have 〈h1, ψ〉 ≤ 〈h2, ψ〉. In particular,

Definition 1. We say that a distribution h is non-increasing (non-decreasing) over a set
V , if h′ ≤ 0 (h′ ≥ 0) in D′(V ) sense.
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Of course, if h happens to have a locally integrable derivative h′ on an interval, then the
notion of non-increasing function coincides with the standard (pointwise) notion by the
fundamental theorem of calculus. More generally, we have the following

Lemma 1. Suppose that h is a locally integrable function in (a, b) and it satisfies h′ ≥ 0
(h′ ≤ 0) in D′(a, b) sense. Then, h is almost everywhere (a.e.) non-decreasing (non-
increasing, respectively) function on (a, b). That is, for almost all pairs x < y, h(x) ≤ h(y)
(h(x) ≥ h(y) respectively).

Proof. It is well-known by the Lebesgue differentiation theorem that for a locally integrable

function h, one has h(x) = limδ→0
1
δ

∫ x+δ
x

h(y)dy a.e. All such points x are called Lebesgue
points for h. Denote this full measure set by L. We will show that for all a < c1 < c2 < b :
c1, c2 ∈ L, we have h(c1) ≤ h(c2). Indeed, let δ > 0 be so that δ < min(c2−c1, c1−a, b−c2).
Define a function ψ,

ψ =





0 x < c1 − δ
x− (c1 − δ) c1 − δ < x ≤ c1
δ c1 < x ≤ c2
c2 + δ − x c2 < x ≤ c2 + δ
0 c2 + δ ≤ x.

Clearly ψ ≥ 0 is not smooth, but is continuous and it can be approximated well by test
functions. Moreover ψ′ = 1 on (c1 − δ, c1), ψ

′(x) = −1 on (c2, c2 + δ) and zero otherwise.
Since 0 ≤ 〈h′, ψ〉 = −〈h, ψ′〉 (and these are well-defined quantities), we obtain

〈h, ψ′〉 =

∫ c1

c1−δ

h(y)dy −

∫ c2+δ

c2

h(y)dy ≤ 0.

This is true for all δ > 0, which are sufficiently small. Thus, dividing by δ > 0 and taking
limit as δ → 0+ (and taking into account that both c1, c2 are Lebesgue points), we conclude
that h(c1) ≤ h(c2). �

We find the following trick useful, which allows us to reduce non-increasing/non-decreasing
distrubutions to non-increasing/non-decreasing functions.

More precisely, let us fix a positive even C∞
0 function Φ, so that supp Φ ⊂ (−1, 1) and∫

Φ(x)dx = 1. Let Φδ(x) := 1
δ
Φ(x

δ
) and define hδ = h ∗ Φδ. The following lemma has a

standard proof.

Lemma 2. Let h be a non-increasing (non-decreasing) distribution. Then for every δ >
0, hδ is a C∞ function, which is non-increasing (non-decreasing respectively). Moreover
hδ → h in the sense of distributions.

Next

Definition 2. We say that a distribution h ∈ D′(R1) is bell-shaped, if h is non-decreasing

in D′(−∞, 0) and h is non-increasing in D′(0,∞).

In the sequel, we need the following technical result.

Lemma 3. Suppose that f is an even distribution, so that f is non-increasing in D′(0,∞)
and non-decreasing in D′(−∞, 0). Then Λ ∗ f is non-increasing in (0,∞) and non-
decreasing in (−∞, 0).
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Assume that g is non-increasing in D′(a,∞) for some a ∈ R1. Then Λ ∗ g(x) is non-
increasing in (a + 1,∞).

Assume that h is non-decreasing in (−∞, a). Then, Λ∗h is non-decreasing in (−∞, a−
1).

Proof. By Lemma 2, it suffices to consider functions instead of ditributions with the said
properties. We have the following computation for the derivative of the function Λ ∗ g

(12) (Λ ∗ g)′(x) =

∫ x+1

x

g(y)dy −

∫ x

x−1

g(y)dy

which follows by differentiating (8).
It is immediate from (12) that the claims for the functions Λ ∗ g and Λ ∗ h hold true.

Regarding Λ ∗ f , it is clear that Λ ∗ f is non-increasing in (1,∞) and non-decreasing in
(−∞,−1). Thus, we need to show that for x ∈ (0, 1), (Λ ∗ g)′(x) ≤ 0 and for x ∈ (−1, 0),
(Λ ∗ g)′(x) ≥ 0. We only verify this for x ∈ (0, 1), since the other inequality follows in a
similar manner. Indeed, using f(x) = f(−x),

(Λ ∗ f)′(x) =

∫ x+1

x

f(y)dy −

∫ x

x−1

f(y)dy =

∫ x+1

x

f(y)dy − (

∫ x

0

f(y)dy +

∫ 1−x

0

f(y)dy).

Since f is non-increasing in (0,∞),
∫ x

0

f(y)dy ≥

∫ x

0

f(y + x)dy =

∫ 2x

x

f(y)dy,

∫ 1−x

0

f(y)dy ≥

∫ 1−x

0

f(y + 2x)dy =

∫ x+1

2x

f(y)dy

Going back to the expression for (Λ ∗ f)′(x), this implies (Λ ∗ f)′(x) ≤ 0, which was the
claim. �

We will also need the following multiplier in our considerations

Q̂f(ξ) =
sin(πξ)

πξ
f̂(ξ).

It is actually easy to see that since χ̂[− 1

2
, 1
2
](ξ) =

sin(πξ)
πξ

, we have also the representation

(13) Qf(x) =

∫ x+1/2

x−1/2

f(y)dy.

Noted that by our definition of the operator M, we have M = Q2.

3. Statement and Proof of the Main Result

Theorem 1. The equation (3) has a positive solution u, so that

• u is even,
• u is bell-shaped,
• u ∈ H∞(R1)



SOLITARY WAVES FOR HERTZIAN CHAINS 9

Notice that the fundamental contribution of our work to the setting of generalized
Hertzian lattices is the characterization of the (monotonically decaying on each side) na-
ture of the traveling waves. We first explain the possible approaches to this problem. One
approach is to use the form (8), to show that the map φ → Λ ∗ φp has a fixed point. We
shall pursue a different route, more in line with the work of Friesecke and Wattis [25].
Namely, we shall consider a constrained minimization problem associated with (3). We
should note here, that the existence result of Friesecke-Wattis is based on the equivalent
via the change of variables u(x) = z(x− 1)− z(x) (as discussed in section 1) formulation

(14) z′′(x) = [z(x− 1)− z(x)]p+ − [z(x)− z(x+ 1)]p+.

We will in fact consider a different representation of (5). To that end, introduce a
positive function w : w1/p = u, whence (5) reduces1 to

(w1/p)′′ = ∆disc(w).

This is easily seen to be equivalent to ŵ1/p(ξ) = sin2(πξ)
π2ξ2

ŵ(ξ). Undoing the Fourier transform
yields

(15) w1/p = Mw = Q2w = Λ ∗ w.

Thus, we need to find a solution w to (15), which is as stated in Theorem 1.
Let ε > 0 be chosen appropriately small momentarily. Let q = 1+ 1

p
∈ (1, 2) and consider

the following constrained optimization problem

(16)

∣∣∣∣∣∣

Jε(v) =
∫ ε−1

−ε−1 |Qv(x)|
2dx→ max

subject to I(v) =
∫
R1 v

q(x)dx = 1,
v ≥ 0, v − bell-shaped

Solving (16) will eventually lead us to a solution of (15).

3.1. Constructing a maximizer for (16). Let us first show that the expression Jε(v) is
bounded from above, if v satisfies the constraints. Indeed, we have by Sobolev embedding

Jε(v) ≤ ‖Qv‖2L2 ≤ Cq‖Qv‖
2
Ẇ 1/q−1/2,q .

By Gagliardo-Nirenberg inequality, we further bound

‖Qv‖Ẇ 1/q−1/2,q ≤ ‖Qv‖
1/q−1/2

Ẇ 1,q ‖Qv‖
3/2−1/q
Lq .

But by the definition of Q (see (13)), we have

‖Qv‖Ẇ 1,q = ‖∂x[Qv]‖Lq = ‖v(·+ 1/2)− v(· − 1/2)‖Lq ≤ 2‖v‖Lq = 2,

‖Qv‖qLq ≤

∫ ∞

−∞

(

∫ x+1/2

x−1/2

v(y)dy)qdx ≤ ‖v‖qLq = 1.

Thus, Jε(v) ≤ 2Cq and hence Jmax
ε = supv J(v) ≤ 2Cq, where Cq is the square of the

Sobolev embedding constant Ẇ 1/q−1/2,q(R1) →֒ L2(R1).

1Note that this is a good transformation, since we are interested in positive solutions of (5).
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We will now select ε0 so small that Jmax
ε = supv J(v) (which we have just shown exists)

is positive for all 0 < ε < ε0. Indeed, take v0(x) = cqe
−x2, so that cqq

∫∞

−∞
e−qx

2

dx = 1.
Thus, the function v0 satisfies the constraints and therefore

Jmax
ε ≥ J(v0) = c2q

∫ ε−1

−ε−1

|

∫ x+1/2

x−1/2

e−2y2dy|2dx.

Clearly, as ε→ 0, we have that the right hand side converges to

c2q
∫∞

−∞
|
∫ x+1/2

x−1/2
e−2y2dy|2dx > 0. Thus, there exists ε0, so that for all ε ∈ (0, ε0), J

max
ε > 0.

In fact, we can select the ε0, so that

(17) Jmax
ε ≥

c2q
2

∫ ∞

−∞

|

∫ x+1/2

x−1/2

e−2y2dy|2dx,

whenever ε < ε0. For the rest of this section, fix ε < ε0. Construct a maximizing sequence
vn ∈ Lq(R1) : ‖vn‖Lq = 1, so that Jε(v

n) → Jmax
ε . Namely, we take vn satisfying the

constraints, so that Jε(v
n) > Jmax

ε − 1
n
. We only consider n large enough, so that 1

n
< Jmax

ε ,
in which case Jε(v

n) > 0.
By the compactness of the unit ball of Lq in the weak topology, we may take a weak

Lq limit v = limn vn. Clearly, weak limits preserve the property that v is even and that v
is a bell-shaped function. We now need to show that v satisfies the constraint ‖v‖Lq = 1,
which is non-trivial since norms are in general only lower semicontinuous with respect to
weak limits (and hence, we can only guarantee ‖v‖Lq ≤ 1).

We show now that, there exists a subsequence {nk}k so that

(18) lim
k

∫ ε−1

−ε−1

|Qvnk(x)|2dx =

∫ ε−1

−ε−1

|Qv(x)|2dx

Indeed, we check that

‖Qvn‖W 1,q = ‖∂x[Qv
n]‖Lq + ‖Qvn‖Lq = ‖vn(·+ 1/2)− vn(· − 1/2)‖Lq + ‖Qvn‖Lq

≤ C‖vn‖Lq = C

Thus, by the compactness of the embedding W 1,q(R1) ⋐ L2(−ε−1, ε−1) we conclude that
there is a subsequence {nk}k and z ∈ L2, so that ‖Qvnk − z‖L2 → 0. By uniqueness of
weak limits, (note that Qvnk ⇀ Qv), it follows that z = Qv and hence (18).

Clearly now

Jmax
ε = lim sup

k
Jε(v

nk) = lim sup
k

(

∫ ε−1

−ε−1

|Qvnk(x)|2dx) = (

∫ ε−1

−ε−1

|Qv(x)|2dx) = Jε(v).

On the other hand, ‖v‖Lq ≤ 1, by the lower semicontinuity of ‖ · ‖Lq with respect to
weak limits, but clearly v 6= 0, since Jε(v) = Jmax

ε > 0. We will show that in fact
‖v‖Lq = 1. Indeed, assume the opposite 0 < ρ = ‖v‖Lq < 1 and consider the function
v/ρ : ‖v/ρ‖Lq = 1. Observe that

Jε(
v

ρ
) = Jε(v)ρ

−2 = Jmax
ε ρ−2 > Jmax

ε .

Thus, ‖v‖Lq = 1 (otherwise, we get a contradiction with the constrained maximization
problem (16)). This implies that Jε(v) = Jmax

ε , otherwise, we get a contradiction with the
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definition of Jmax
ε . Thus, we have shown that the weak limit v is indeed a maximizer for

(16).

3.2. Euler-Lagrange equations for the maximizer of (16). Before we proceed to the
actual proof, it is relevant to mention a few words about our strategy. We will have no
essential difficulties in deriving the Euler-Lagrange equation (see (20) below) on the set2

Ω ∼ {x : v′(x) < 0} using the standard calculus of variations arguments. The reason is that
on the compact subsets of Ω, the maximizer v is already a strictly decreasing function and
therefore, for each fixed z, with support inside Ω and regardless of its increasing/decreasing
behavior, there will be λ = λ(z) > 0, so that v + λz will be an acceptable function for the
maximization problem (16).

On the other hand, we will have issues deriving appropriate equations on R1 \ Ω, the
reason being that on every non-trivial interval of the set, we will have v = const. and hence
the perturbations z must be increasing in this interval, in order for v + λz, λ > 0 to be an
acceptable function for the maximization problem (16).

We will show that the set R1 \ Ω consists of isolated points. To that end, under the
assumption that there are non-trivial intervals inside R1 \Ω, we derive an Euler-Lagrange
equation for v on such intervals (see (29) below), which in turn will imply that the maxi-
mizer v is trivial, a contradiction.

First, we start with a technical issue. Since v ≥ 0 and v ↓ in (0,∞), there is σ = inf{x >
0 : v(x) = 0} ≤ ∞. If σ < ∞, we henceforth restrict our attention to (−σ, σ). Clearly
v(y) = 0 for all y ≥ σ.

Consider perturbations of v of the form v + λz, where λ > 0 and z ∈ C∞
0 (R1), so that

supp z ⊂ (−ε−1 + 1, ε−1 − 1) ∩ (−σ, σ). We have

∫ ∞

−∞

(v(x) + λz(x))qdx =

∫ ∞

−∞

vq(x)dx+ λq

∫ ∞

−∞

vq−1(x)z(x)dx+O(λ2),

= 1 + λq

∫ ∞

−∞

vq−1(x)z(x)dx+O(λ2),

Jε(v + λz) = 〈Q(v + λz), Q(v + λz)〉L2(−ε−1,ε−1) =

= Jε(v) + 2λ〈Q2v, z〉+O(λ2).

We now define the set Ω. Roughly speaking, we would like to define
Ω = {x : v′(x) < 0}. This is however impossible, since v′ is merely a distribution.

Instead, we define Ω+ to be the maximal open subset of (0,∞), so that for every com-
pact subinterval of it [c, d] ⊂ Ω+, there is δc,d > 0 with v′(x) ≤ −δc,d in D′(c, d) sense.
Equivalently, we may define

Ω+ = {x0 > 0 : ∃r0, δ > 0, 〈v′, ψ〉 ≤ −δ

∫
ψ : ∀ψ ≥ 0 ∈ D(x0 − r0, x0 + r0)}

Define Ω− = {−x : x ∈ Ω+} and finally Ω = Ω− ∪ Ω+.

2for the precise definition of Ω see below
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3.2.1. Euler-Lagrange on Ω. Due to our requirement for bell-shaped test functions in (16),
we need to impose extra restrictions on the function z. To that end, note that Ω is an
open set and fix an interval [a, b] ⊂ Ω. By the definition of Ω and compactness, it is clear
that there exists δ = δa,b, so that v′ ≤ −δ in D′(a, b) sense.

Fix a function z ∈ C∞
0 (a, b). Clearly, for each such z, there exists λ0 = λ0(z, δa,b), so

that for all 0 < λ < λ0, (v + λz)/‖v + λz‖Lq satisfy all constraints. That is, we do not
need to restrict over z in terms of positivity or bell-shapedness3. Thus, we have that for
all 0 < λ < λ0(z),

Jε

(
v + λz

‖v + λz‖Lq

)
=

Jε(v + λz)

‖v + λz‖2Lq

=
Jmax
ε + 2λ〈Mv, z〉+O(λ2)

(1 + λq
∫∞

−∞
vq−1(x)z(x)dx+O(λ2))2/q

=

=
Jmax
ε + 2λ〈Mv, z〉+O(λ2)

1 + 2λ
∫∞

−∞
vq−1(x)z(x)dx+O(λ2)

=

= Jmax
ε + 2λ(〈Mv, z〉 − Jmax

ε 〈vq−1, z〉) +O(λ2)

Since Jε

(
v+λz

‖v+λz‖Lq

)
≤ Jmax

ε , we conclude that for all z ∈ C∞
0 (a, b)

(19) 〈Mv − Jmax
ε vq−1, z〉 ≤ 0.

Since there are no rectrictions on z (other than compact support), it follows that
〈Mv − Jmax

ε vq−1, z〉 = 0 and hence

(20) Mv − Jmax
ε vq−1 = 0,

in the D′(a, b) sense. This is the Euler-Lagrange equation that we were looking for. Note
that according to our derivation, it holds in the compact subsets of Ω. Note that from

here, we obtain v =
(

1
Jmax
ε

Mv
) 1

q−1

, which is smooth. These could be iterated further to

show that v ∈ C∞ on open sets (a, b), whenever [a, b] ⊂ Ω.

3.2.2. Euler-Lagrange over non-trivial intervals of Ωc. Our goal will be to show that such
non-trivial intervals do not exist. To that end, we will first assume that they do exist and
then, we will be able to derive an Euler-Lagrange equation on them, which will then lead
to a contradiction. Take such an interval, say [a0, a1] ⊂ Ωc, 0 ≤ a0 < a1.

Claim: v = const. in D′[a0, a1] sense, i.e. v is constant on connected components4 of
Ωc.

Proof. To prove that, assume the opposite, namely that v is not a constant in D′(a0, a1).
Thus (since we know v′ ≤ 0), there exists a test function 0 ≤ ψ0 ∈ D(a0, a1), so that
〈v′, ψ0〉 = −α < 0. For some small κ ∈ (0, 1), the set Vκ = {x ∈ (a0, a1) : ψ0(x) > κ}
will be nonempty and open. Take an interval (ã0, ã1) ⊂ Vκ, so that ã1 − ã0 < 1. Take an
arbitrary function ψ ∈ D(ã0, ã1), so that 0 ≤ ψ(y) < κ for y ∈ (ã0, ã1). It follows that

3which will be the case in the Section 3.2.2 below
4But it may be a different constant on a different component
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ψ(y) < κ < ψ0(y) and hence 〈v′, ψ〉 ≤ 〈v′, ψ0〉 = −α < 0. Also
∫
ψ(y)dy ≤ κ(ã1 − ã0) < 1,

whence

(21) 〈v′, ψ〉 ≤ −α < −α

∫
ψ(y)dy,

for all ψ ∈ D′(ã0, ã1), with 0 ≤ ψ < κ. One can now extend (21) to hold for all 0 ≤ ψ ∈
D′(ã0, ã1). Hence, (ã0, ã1) ⊂ Ω in contradiction with (ã0, ã1) ⊂ (a0, a1) ⊂ Ωc. �

Now that we have established that v is a.e. constant on any non-trivial interval (a0, a1) ⊂
Ωc, we will derive the Euler-Lagrange equation for (16) on it. We will consider first the
case a0 > 0, the other case will be considered separately.
Case I: a0 > 0
To fix the ideas, we consider first the case when the interval [a0, a1] is isolated from the
rest of Ωc, that is, there exists r > 0, so that (a0 − r, a0) ⊂ Ω and (a1, a1 + r) ⊂ Ω.

Fix θ > 0 be so small that (a0 − θ, a0), (a1, a1 + θ) ⊂ Ω. Consider a test function
z ∈ C∞

0 (a0 − θ, a1 + θ).
Clearly, since v = const on (a0, a1), we need to require that the function z′ ≤ 0 on (a0, a1),

in order for v + λz to be bell-shaped function5 (recall λ > 0). Denote

(22) G(x) = Mv − Jmax
ε vq−1.

Since v = const. a.e. on (a0, a1), G is a continuous function on (a0, a1). Following the
approach of the previous section, we derive the equation (19), which in the new notation
says that

(23) 〈G, z〉 ≤ 0,

for all z, so that v + λz is an admissible entry for (16). We will show that (23) implies
∫ b

a0

G(x)dx ≤ 0(24)

∫ a1

b

G(x)dx ≥ 0.(25)

for all b ∈ (a0, a1). Applying (24) for b = a1− and (25) for b = a0+ and taking limits,
yields

∫ a1
a0
G(x)dx = 0.

Claim: From (24) and (25), one can infer that G = 0 on (a0, a1).

Proof. By the definition of G, the fact that v = const. and Lemma 3, we conclude that G
is non-increasing and continuous function on (a0, a1). Now, we have several cases. If there

exists a b ∈ (a0, a1), so that
∫ b
a0
G(x)dx < 0 and

∫ a1
b
G(x)dx > 0, then by continuity, there

will be b0 ∈ (a0, b), so that G(b0) < 0 and b1 ∈ (b, a1), so that G(b1) > 0, a contradiction
with the fact that G is non-increasing. Otherwise, for all b ∈ (a0, a1), we have that either∫ b
a0
G(x)dx = 0 or

∫ a1
b
G(x)dx = 0. But since

∫ a1
a0
G(x)dx = 0,

∫ a1

b

G(x)dx =

∫ a1

a0

G(x)dx−

∫ b

a0

G(x)dx = −

∫ b

a0

G(x)dx.

5so that it is acceptable entry for the minimization problem (16)
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Thus,
∫ b
a0
G(x)dx = 0 for all b ∈ (a0, a1). Thus, for any b0, b1 ∈ (a0, a1), we get

∫ b1
b0
G(x)dx =∫ b1

a0
G(x)dx−

∫ b0
a0
G(x)dx = 0 and hence G(x) ≡ 0 in (a0, a1). �

Thus, the Euler-Lagrange equation is in the form G(x) = 0 for x ∈ (a0, a1) or

(26) Mv − Jmax
ε vq−1 = 0,

if we can show (24) and (25).
We show only (24), the proof of (25) is similar. Fix b : a0 < b < a1. For all 0 < δ << 1,

introduce an even test function, which for x > 0 is given by

zδ(x) =





0 0 < x < a0 − 2δ
1 a0 − δ < x < b+ δ
0 x > b+ 2δ

so that zδ ∈ C∞, zδ is strictly increasing in (a0 − 2δ, a0 − δ) and zδ is strictly decreasing in
(b+ δ, b+ 2δ).

Note that v + λzδ is acceptable for the maximization problem (16) for6 0 < λ < λδ.
According to (23), 〈G, zδ〉 ≤ 0. Hence

∫ b

a0

G(x)dx = lim sup
δ→0

∫ b+2δ

a0−2δ

G(x)zδ(x)dx ≤ 0,

which is (24).
The general case, in which [a0, a1] is not isolated from Ωc (i.e. there is no r > 0, so that

(a0 − r, a0) ∪ (a1, a1 + r) ⊂ Ω) is treated in the same way. Indeed, this was needed only in
the very last step, in the construction of the function zδ. But clearly, one can carry out a
similar construction of zδ, if one has a sequence of intervals Iδj = (cδj−δj , cδj) ⊂ Ω, cδj < a0,
so that lim cδj = a0. Similarly, for the proof of (25), one needs a sequence of intervals
Jδj = (dδj , dδj + δj) ⊂ Ω, dδj > a1, so that lim dδj = a1.

Finally, it remains to observe that every non-trivial interval of Ωc is contained in [a0, a1] ⊆
Ωc with the property dist(a0,Ω) = 0 = dist(a1,Ω) and hence, we can carry the construc-
tions of zδ and hence the validity of (24) and (25) follows. We then derive (26) on every
such interval (a0, a1).
Case II: a0 = 0
This case is similar to the previous one. We again assume that there exists r > 0, so that
(−a1 − r,−a1)∪ (a1, a1 + r) ⊂ Ω, the general case being reduced to this one by arguments
similar to those in the case a0 > 0.

Again, G is even, we have that v = const. on the interval (−a1, a1) and G is non-
increasing in (0, a1). We will show that for every b ∈ (0, a1), we have

∫ a1

b

G(x)dx ≥ 0,(27)

∫ b

0

G(x)dx ≤ 0(28)

6Here even though zδ is increasing in (a0 − 2δ, a0 − δ), this is acceptable since (a0 − 2δ, a0− δ) ⊂ Ω and
hence, we have no restrictions over the test functions, as long as λδ << 1
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Let us first prove that assuming (27) and (28), one must have G = 0. Indeed, if we apply
(27) for b→ 0+ and (28) for b → a1−, we see that

∫ a1
0
G(x)dx = 0.

Again, if we assume that
∫ b
0
G(x)dx = 0 for all b ∈ (0, a1), we again conclude by the

continuity of G that G(x) = 0 : 0 ≤ x ≤ a1. If one has
∫ b0
0
G(x)dx < 0 for some

b0 ∈ (0, a1), we have that
∫ a1
b0
G(x)dx > 0 (since

∫ a1
0
G(x)dx = 0) and hence, G cannot be

non-increasing function (as in Case I), a contradiction. Thus G(x) = 0 in (0, a1).
Thus, it remains to show (27) and (28). Fix b > 0 and let 0 < δ << 1. For (28), select

zδ(x) =





0 x < −b− 2δ
1 −b− δ < x < b+ δ
0 x > b+ 2δ

and zδ is C∞, even and increasing in (−b − 2δ,−b − δ) and decreasing in (b + δ, b + 2δ).
Clearly, for λ > 0, v + λzδ is admissible for (16), for some small λ > 0. Thus, applying
(23) for this zδ and passing to appropriate limits as δ → 0+, we obtain, as above

2

∫ b

0

G(x)dx =

∫ b

−b

G(x)dx = lim inf
δ→0+

∫
G(x)zδ(x)dx ≤ 0.

For (27), we construct zδ to be an even function, so that

zδ(x) =





0 x < b− 2δ
−1 b− δ < x < a1 + δ
0 x > a1 + 2δ

Now, we require that zδ is decreasing in (b−2δ, b−δ) and it is increasing from (a1+δ, a1+2δ).
Note that zδ is still acceptable as a perturbation - in the sense that v+λzδ is non-increasing
in (0,∞) for all λ = λ(δ) > 0 small enough (for this, recall that (a1 + δ, a1 + 2δ) ⊂ Ω and
hence, there exists σ(δ), so that v′ < −σ in D′(a1 + δ, a1 + 2δ) sense). We have again

−

∫ a1

b

G(x)dx = lim sup
δ→0+

∫
G(x)zδ(x)dx ≤ 0.

Thus, we have established (27) and (28) and thus the Euler-Lagrange equation

(29) 0 = G(x) = Mv − Jmax
ε vq−1.

3.2.3. The set Ωc consists of isolated points only. We will now show that if an equation
like (29) holds in a non-trivial interval, say (a, b) and v is a bell-shaped, locally integrable
function, which is constant on (a, b), then v(x) = const. a.e. on R1 (which would be a
contradiction).

Indeed, Mv is in fact a differentiable function on (a, b), which is non-increasing on
(0,∞), according to Lemma 3. Thus, taking a derivative of (29) (and taking into account
that v = const on (a, b)) leads to

(30) 0 = (Mv)′(x) =

∫ x+1

x

v(y)dy −

∫ x

x−1

v(y)dy.

for all x ∈ (a, b).
If b > 1, we see that since v is non-increasing in (0,∞) (by Lemma 1), it follows that

x →
∫ x+1

x
v(y)dy is non-increasing and continuous. By (30), it follows that

∫ x+1

x
v(y)dy =
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const. for x ∈ (a, b). Hence, we must have v = const. a.e. in every interval in the form
(x− 1, x+ 1) (for all x ∈ (a, b)). By iterating this argument in all (0,∞), a contradiction.
If (a, b) ⊂ (0, 1), we can again argue as in Lemma 3 to establish that again v = const. in
(0,∞). Thus, we cannot have non-trivial intervals (a, b) ⊂ Ωc and hence Ωc consists of
isolated points only.

3.2.4. The Euler-Lagrange equation on R1. Before deriving the Euler-Lagrange equation
for the maximizer v, let us recapitulate what we have shown so far for v. We managed to
show that Ω is a dense open set, so that Ωc consists of isolated points only. Finally, on Ω,
v is a continuous function, and the equation (20) holds on every interval (a, b) ⊂ Ω.

We will now show that (20) holds for almost all x ∈ Ωc. First of all, recall that

G = Mv − Jmax
ε vq−1 is locally integrable function (as a sum of an Lq function and L

q
q−1

functions) and hence, almost all points are Lebesgue points for it.
Let x0 > 0, x0 ∈ Ωc, so that x0 is a Lebesgue point for G. We have shown that x0 is an

isolated point of Ωc, which implies the existence of intervals inside Ω, which approximate x0.
That is, there are (aj−δj , aj+δj) ⊂ Ω+, (bj−δj , bj+δj) ⊂ Ω+, so that aj+δj < x0 < bj−δj
and limj aj = limj bj = x0. In addition, we can clearly select these intervals to be very short,

namely we require limj
δj

bj−aj
= 0. Construct now a sequence of even C∞ test functions,

given by

zj(x) =





0 0 < x < aj − δj/2
1 aj < x < bj
0 x > bj + δj/2

where zj is strictly increasing in (aj−δj/2, aj) ⊂ Ω and strictly decreasing in (bj , bj+δj/2).
We have already shown that functions of the form v± λzj will be non-increasing in (0,∞)
and it will otherwise satisfy all the restrictions of the optimization problem (16), provided
0 < λ << 1. Thus, accoridng to (19), we have 〈G, zj〉 ≤ 0 and −〈G, zj〉 ≤ 0 and hence

∫ bj

aj

G(x)dx+

∫ aj

aj−δj/2

G(x)zj(x)dx+

∫ bj+δj/2

bj

G(x)zj(x)dx = 〈G, zj〉 = 0

Dividing both sides by bj − aj, and taking lim as j → ∞ (noting that x0 is a Lebesgue
point), we get

(31) G(x0) + lim
δj

(bj − aj)
[
1

δj

∫ aj

aj−δj/2

G(x)zj(x)dx+
1

δj

∫ bj+δj/2

bj

G(x)zj(x)dx] = 0.

Thus, we need to show that the limit above exists and it is equal to zero. To that end,
note that ‖zj‖∞ ≤ 1 and

|
1

δj

∫ aj

aj−δj/2

G(x)zj(x)dx+
1

δj

∫ bj+δj/2

bj

G(x)zj(x)dx| ≤ ‖G‖L∞

x
≤ (‖v‖L∞ + Jmax

ε ‖v‖q−1
L∞ )

≤ (v(0) + Jmax
ε v(0)q−1),

since v is non-increasing a.e. in (0,∞). The last inequality, combined with limj
δj

bj−aj
= 0

shows that (31) implies G(x0) = 0. Hence, for all Lebesgue points of G, we have G(x) = 0.
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Thus,

(32) Mv − Jmax
ε vq−1 = 0 a.e.

3.3. Taking a limit as ε → 0: Constructing a solution to (5). From (32),

(33) Mvε − Jmax
ε vq−1

ε = 0,

which is satisfied a.e. and also inD′(0, ε−1−1) sense. From it, we learn that vε isH
4(0, ε−1−

1) and consequently, by iterating this argument, H∞(0, ε−1 − 1) =
⋂∞
s=1H

s(0, ε−1 − 1)
function. Recall also that by construction ‖vε‖Lq(R1) = 1 and there exists ε0 > 0, so that
infε<ε0 J

max
ε > 0, see (17). We will now take several consecutive subsequences of ε→ 0, in

order to ensure that the limit satisfies (5).
First, take εn → 0+, so that limn J

max
εn = lim supε→0 J

max
ε := J0 > 0. Second, out of this

constructed sequence εn, take a subsequence, say εnk
, so that vεnk

⇀ v in a weak Lq sense,
for some v ≥ 0, v ∈ Lq. This is possible, by the sequential compactness of the unit ball
in the weak Lq topology7. By the uniqueness of weak limits (by eventually taking further

subsequence), we also get vq−1
εnk

⇀k v
q−1 in weak L

q
q−1 sense. We also have Mvεnk

⇀Mv in

the weak Lq topology, since for every test function ψ ∈ C∞
0 , we have by the self-adjointness

of M and M : Lr → Lr, 1 ≤ r ≤ ∞,

〈Mvεnk
, ψ〉 = 〈vεnk

,Mψ〉 →k 〈v,Mψ〉 = 〈Mv, ψ〉.

Thirdly, we show that the limiting function v is non-zero. To that end, it will suffice to
establish that

(34) lim inf
ε→0+

‖vε‖Lq(−ε−1,ε−1) > 0.

Assuming that (34) is false, we will reach a contradiction. Indeed, let δj → 0+ be a
sequence so that limj ‖vδj‖Lq(−δ−1

j ,δ−1

j ) = 0. Thus,

Jmax
δj

= Jδj(vδj ) ≤

∫ δ−1

j

−δ−1

j

|Qvδj (x)|
2dx =

∫ δ−1

j

−δ−1

j

|

∫ x+1/2

x−1/2

vδj (y)dy|
2dx.

We now use a refined version of the Gagliardo-Nirenberg estimate that we have used before.
∫ δ−1

j

−δ−1

j

|

∫ x+1/2

x−1/2

vδj (y)dy|
2dx =

∫ δ−1

j

−δ−1

j

|

∫ x+1/2

x−1/2

vδj (y)χ(−δ−1

j −1,δ−1

j +1)dy|
2dx ≤

≤ ‖Q[vδjχ(−δ−1

j −1,δ−1

j +1)]‖
2
L2

and hence

‖Q[vδjχ(−δ−1

j −1,δ−1

j +1)]‖L2 ≤ ‖Q[vδjχ(−δ−1

j −1,δ−1

j +1)]‖
1/q−1/2

Ẇ 1,q ‖Q[vδjχ(−δ−1

j −1,δ−1

j +1)]]‖
3/2−1/q
Lq .

While a simple differentiation shows that on one hand,

‖Q[vδjχ(−δ−1

j −1,δ−1

j +1)]‖Ẇ 1,q ≤ 2‖vδj‖Lq = 2,

7But again, this argument, so far, does not guarantee that v 6= 0
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we also have by Cauchy-Schwartz

‖Q[vδjχ(−δ−1

j −1,δ−1

j +1)]‖
q
Lq ≤

∫ ∞

−∞

(

∫ x+1/2

x−1/2

vδj (y)χ(−δ−1

j −1,δ−1

j +1)(y)dy)
qdx ≤

≤

∫ δ−1

j +1

−δ−1

j −1

vqδj (y)dy ≤ 2‖vδj‖
q

Lq(−δ−1

j ,δ−1

j )
→ 0.

The last inequality here follows by the fact that vδj is non-increasing in (0,∞) and therefore
∫ δ−1

j +1

δ−1

j

vqδj (y)dy ≤
∫ δ−1

j

0 vqδj (y)dy, if δ
−1
j ≥ 1, which we have assumed anyway. Thus, we will

have proved that

lim inf
j

Jmax
δj

≤ 0,

which is in contradiction with (17). Thus, we have established (34).
We are now ready to take a limit as ε → 0 in (33). Indeed, take (33) for ε = εnk

, k =
1, 2, . . .. Fix a test function ψ ∈ C∞

0 . There exists k0, so that for k ≥ kψ, supp ψ ⊂ (0, ε−1
nk
).

Thus, for k ≥ kψ, we get8

〈Mvεnk
, ψ〉 − Jmax

εnk
〈vq−1
εnk

, ψ〉 = 0.

Take a limit as k → ∞. By our constructions, we have that Jmax
εnk

〈vq−1
εnk

, ψ〉 → J0〈v
q−1, ψ〉,

since Jmax
εnk

→ J0, 〈v
q−1
εnk

, ψ〉 → 〈vq−1, ψ〉 by the weak L
q

q−1 convergence.

We also have 〈Mvεnk
, ψ〉 = 〈vεnk

,Mψ〉 →k 〈v,Mψ〉 = 〈Mv, ψ〉. Thus, we have estab-
lished the desired identity

(35) Mv − J0v
q−1 = 0

valid for all x > 0. By the symmetry, it is also valid for x < 0. It is clear that v is now
infinitely smooth9 function on (0,∞). Recall though, that for Theorem 1 we needed to
solve Mw − wq−1 = 0. One can easily construct w, based on the solution v of (35). More

precisely, if we take w := J
− 1

2−q

0 v, then w will satisfy (15). Theorem 1 is proved.

4. An alternative proof of the Friesecke-Wattis theorem

We quickly indicate how our ideas can be turned into a new proof of the Friesecke-
Wattis theorem. Specifically, as we saw in the previous section, it is clear that if we are
just interested in the existence of traveling waves for (5) (but not in bell-shaped solutions),
it is a good idea to consider following constrained maximization problem (compare to (16))

(36)

∣∣∣∣∣
Jε(v) =

∫ ε−1

−ε−1 |Qv(x)|
2dx→ max

subject to v ≥ 0; I(v) =
∫
R1 v

q(x)dx = 1.

First off, the arguments in Section 3.1 apply unchanged (by just skipping the bell-shapedness
of v) to prove that (36) has a maximizer, say v.

8by testing (33), which is valid on the support of ψ
9starting with v ∈ Lq(R1), it is easy to conclude that Mv is smooth, which in turn implies that

v ∈ C1(R1) etc.



SOLITARY WAVES FOR HERTZIAN CHAINS 19

Following the argument of Section 3.2 and more specifically, the following identities

‖v + λz‖qLq = ‖v‖qLq + λq〈vq−1, z〉 +O(λ2)

Jε(v + λz) = Jε(v) + 2λ〈Q2v, z〉+O(λ2),

Jε

(
v + λz

‖v + λz‖Lq

)
= Jmax

ε + 2λ(〈Mv, z〉 − Jmax
ε 〈vq−1, z〉) +O(λ2) ≤ Jε(v),

which were established there, it follows that

〈Mv − Jmax
ε vq−1, z〉 ≤ 0

for all test functions10 z. It follows that v satisfies

Mv − Jmax
ε vq−1 = 0.

This of course produces a family vε : supp vε ⊂ (−ε−1 − 1, ε−1 + 1), which easily can be
shown to converge11 (after an eventual subsequence) to a v : supp v ⊂ R1, which solves

Mv − J0v
q−1 = 0.

Setting w := J
− 1

2−q

0 v again provides a solution to w1/p = Mw as is required by (15).
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