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GROSS-PITAEVSKII EQUATION
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Abstract. We consider several solitons moving in a slowly varying external field. We
show that the effective dynamics obtained by restricting the full Hamiltonian to the finite
dimensional manifold of N -solitons (constructed when no external field is present) provides
a remarkably good approximation to the actual soliton dynamics. That is quantified as
an error of size h2 where h is the parameter describing the slowly varying nature of the
potential. This also indicates that previous mathematical results of Holmer-Zworski [8]
for one soliton are optimal. For potentials with unstable equilibria the Ehrenrest time,
log(1/h)/h, appears to be the natural limiting time for these effective dynamics. We
also show that the results of Holmer-Perelman-Zworski [7] for two mKdV solitons apply
numerically to a larger number of interacting solitons. We illustrate the results by applying
the method with the external potentials used in Bose-Einstein soliton train experiments
of Strecker et al [14].

1. Introduction

In many situations a wave moving in a slowly varying field, that is, a field described
by a potential whose derivatives are much smaller than the oscillations/width of the wave,
can be described using classical dynamics. This is the basis of the semiclassical/short wave
approximation, perhaps best known in the case of the linear Schrödinger equation,

(1.1) ih∂tu = −1

2
h2∂2

xu+ V (x)u ,

where V is an infinitely differentiable potential. A typical result concerns a propagation of
a coherent state

u(x, 0) = exp

(
i

h

(
(x− x0)ξ0 + i(x− x0)2/2

))
,

maximally concentrated near the point (x0, ξ0) in the position-momentum space. In that
case,

(1.2) u(x, t) = a0(x, t) exp

(
i

h
ϕ(x, t)

)
+O(h

1
2 ) , 0 < t < T (h) ,

where Im ∂2
xϕ > 0, Imϕ ≥ 0, and

Imϕ(x, t) = 0 ⇒ x = x(t) , ∂xϕ(x, t) = ξ(t) ,

where (x(t), ξ(t)) satisfy Newton’s equations:

(1.3) x′(t) = ξ(t) , ξ′(t) = −V ′(x) , x(0) = x0 , ξ(0) = ξ0 .1
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Figure 1. A side-by-side comparison of the effective dynamics versus the
exact solution of (1.6) for 4 solitons with the potential W (x) = −100ecosx.
The plot on the left shows the absolute value of the solutions up to time
t = 1. The plot on the right shows the real part of the solutions at times
t = 0.5 and t = 1. Compared to the solutions in Figures 4 and 5, much less
discrepancy between the two solutions is visible.

The time of the validity of (1.2), T (h), depends on the properties of the flow (1.3), and in
general it is limited by the Ehrenfest time,

(1.4) T (h) ∼ log

(
1

h

)
,

see [1] for a recent discussion on the case of one dimension.

The approximation (1.2) means that the solution is concentrated for logarithmically long
times on classical trajectories. The phase ϕ and the amplitude a0 can be described very
precisely and a0 can be refined to give an asymptotic expansion – see [6] for an early
mathematical treatment and [13] for more recent developments and references.

In this paper we consider the Gross-Pitaevski equation, which is the cubic non-linear
Schrödinger equation with a potential:

(1.5) ih∂tu = −1

2
h2∂2

xu− u|u|2 + V (x)u .

It provides a mean field approximation for the evolution of Bose-Einstein condensate in an
external field given by the potential V (x) – see the monograph [12] and references given
there. Questions about propagation of localized states are also natural in the setting of
(1.5) and have been much studied. One direction is described in a recent monograph [2].

In this note we present a numerical study of multiple soliton propagation for (1.5) and
show that it can be described very accurately using a natural effective dynamics – see
Figure 1. That effective dynamics is based on mathematical results of Holmer-Zworski
[8] and Holmer-Perelman-Zworski [7] and we refer to those papers for pointers to earlier
mathematical works on that subject.
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Following the convention of earlier papers – see Fröhlich et al [4] – we rescale equation
(1.5) so that the parameter h is in the potential which is now slowly varying:

(1.6) i∂tu = −1

2
∂2
xu− u|u|2 + V (x)u , V (x) = W (hx) .

For V ≡ 0 this equation is completely integrable – see for instance [3]. One of the most
striking consequences of that is the existence of exact N -soliton solutions:

u(x, t) = qN(x, a+ tv, v, θ +
t

2
(µ2 + v2), µ) ,

a, v ∈ RN , θ ∈ (R/2πZ)N , µ ∈ RN
+ ,

(1.7)

where the construction of qN = qN(x, a, v, θ, µ) will be recalled in §2.

When V 6≡ 0 and
u(x, 0) = qN(x, a, v, θ, µ) ,

the exact dynamics (1.7) is replaced by

u(x, t) = qN(x, a(t), v(t), θ(t), µ(t)) +O(h2) ,(1.8)

where the precise meaning of the error, and its optimality, will be described below. The
parameters of the multisoliton approximation solve the system of ordinary differential equa-
tions:

v̇j = −µ−1
j (∂ajVN + vj∂θjVN) , ȧj = vj + µ−1

j ∂vjVN ,

µ̇j = ∂θjVN , θ̇j = v2
j/2 + µ2

j/2 + µ−1
j vj∂vjVN − ∂µjVN ,

(1.9)

and where

VN(a, v, θ, µ)
def
=

1

2

∫
R
V (x)|qN(x, a, v, θ, µ)|2 dx .

Although somewhat complicated looking, the equations (1.9) have a natural interpretation
in terms of Hamiltonian systems: they are the Hamilton-Jacobi equations for the full
Hamiltonian of (1.6) restricted to the symplectic 4N -dimensional manifold of N -solitons –
see §3 for details. Of course when V ≡ 0 the solutions correspond to the exact solutions of
(1.7). The mathematical results of [7], [8] suggest that the approximation (1.8) is valid up
to a (rescaled) Ehrenfest time (1.4):

(1.8) holds for 0 < t < C log(1/h)/h.

In other words, the equations (1.9) give the minimal exact effective dynamics valid up to
the Ehrenfest time log(1/h)/h, where h is the parameter controlling the small variation of
the potential, see (3.1). In this work, we show that the approximation errors O(h2) and the
Ehrenfest time bound are sharp. See [11] for a survey of soliton dynamics under integrable
systems that have been perturbed.

One motivation for this study is the experimental and theoretical investigation of soliton
trains in Bose-Einstein condensates [14]. We show that the effective dynamics described in
§3 is in qualitative agreement with the behaviour of the matter-wave soliton trains – see
Figure 2.

The paper is organized as follows: in §2 we recall the construction of N -soliton solutions
for V ≡ 0 and in §3, the Hamiltonian structure of the equation and the derivation of the
effective equations of motion. In §4 we compare the effective dynamics to the behaviour
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Figure 2. Four solitons with alternating phases bunching up and spreading
out in the potential V (x) = (x/2)6 . The full solution is plotted on the right
with a bird’s eye view. The figures on the left are snapshots of that solution.
Due to their alternating phases, the solitons repel and never pass through
each other.

of solutions to (1.6) and draw some quantitative conclusions. Specific potentials similar
to those in [14] are then discussed in §5. We investigate effective dynamics for the mKdV
equation in §6. Finally, in §7 we describe the numerical methods and compare to other
possible approaches.

2. N-solitons for cubic NLS

When V ≡ 0, we recover the nonlinear cubic one dimensional Schrödinger equation,
which has N -soliton solutions with explicit formulas that we now recall – see [3] for a
detailed presentation of this completely integrable equation.

We will construct functions qN(x) that depend on 4N parameters: positions, velocities,
phases, and masses:

(2.1) qN(x) = qN(x, a, v, θ, µ), a, v, θ ∈ RN , µ ∈ (0,∞)N .

Put

(2.2) λj = vj + iµj , γj(x) = eiλjxei(θj−vjaj)eµjaj ,

and define matrices

M(x) ∈ RN×N , M1(x) ∈ R(N+1)×(N+1) ,
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Figure 3. A gallery of potentials used for the numerical experiments. Since
the solitons in the experiments have width approximately 1/10, the inter-
esting potentials should have size approximately 100. This is suggested by
the rescaling (3.9). The potentials vary on a scale comparable to 1, hence
the effective h is approximately 1/10. The exception is the upper right plot
where we intentionally chose a potential which will exhibit some failures of
effective dynamics. In the analysis of errors, for instance in Figure 6, only
relative sizes of h matter.

by

(2.3) Mjk(x) =
1 + γj(x)γ̄k(x)

λj − λ̄k
, M1 =

 M(x) γ

~1 0


where

(2.4) γ = [γ1, · · · , γN ]T , ~1 = [1, · · · , 1] ∈ RN .

Finally,

(2.5) qN(x)
def
=

detM1(x)

detM(x)
.

Remarkably, this gives a solution to (1.5) with V ≡ 0, the N -soliton solution:

(2.6) u(x, t) = qN(x, a+ tv, v, θ +
t

2
(µ2 + v2), µ) .

As one can see from the formula, some restrictions on the parameters apply, see [3].
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3. Effective Dynamics Equations

We consider potentials defined on R that are slowly varying in the sense that

(3.1) V (x) = W (hx)

where W (x) is C2 in x, and

|∂kxW (x)| ≤ C(1 + |x|)N , k ≤ 2 .

where C and N are independent of h. This means that h is the parameter controlling the
slow variation of V .

To obtain an effective dynamics for the evolution we use the Hamiltonian structure of
the equation. In the physics literature an approach using Lagrangians is more common –
see for instance Goodman-Holmes-Weinstein [5] and Strecker et al [14]. In the mathematics
treatments [4],[8],[7] the Hamiltonian approach was found easier to use, which we follow
here.

The basic claim is that an approximate evolution of qN is obtained by restricting the
Hamiltonian flow generated by the Gross-Pitaevskii equation to the manifold of N -solitons
described in §2. The Hamiltonian associated with the Gross-Pitaevskii equation is

(3.2) HV (u)
def
=

1

4

∫
(|∂xu|2 − |u|4) dx+

1

2

∫
V |u|2

with respect to the symplectic form

(3.3) ω(u, v) = Im

∫
uv̄ .

The manifold of solitons, MN , is 4N -dimensional and equipped with the restricted sym-
plectic form given by the sum of forms for single solitons:

(3.4) ωM
def
= ω|M =

N∑
j=1

(µjdvj ∧ daj + vjdµj ∧ daj + dθj ∧ dµj) .

HV restricted to MN is

(3.5) HN
def
= HV |MN

(a, v, θ, µ) =
N∑
j=1

(
µjv

2
j

2
−
µ3
j

6

)
+ VN(a, v, θ, µ) ,

(3.6) where VN(a, v, θ, µ)
def
=

1

2

∫
R
V (x)|qN(x, a, v, θ, µ)|2 dx .

The effective dynamics is given by the flow of the Hamilton vector field of HN on the
manifold MN . That vector field, ΞHN

, is defined using the symplectic form (3.4):

(3.7) dHN = ωM(·,ΞHN
) .



EFFECTIVE DYNAMICS FOR N -SOLITONS 7

A computation based on this gives the following ordinary differential equation for the
parameters a, v, θ and µ, called the effective dynamics:

v̇j = −µ−1
j ∂ajHN − µ−1

j vj∂θjHN = −µ−1
j (∂ajVN + vj∂θjVN) ,

ȧj = µ−1
j ∂vjHN = vj + µ−1

j ∂vjVN ,

µ̇j = ∂θjHN = ∂θjVN ,

θ̇j− = µ−1
j vj∂vjHN − ∂µjHN = v2

j/2 + µ2
j/2 + µ−1

j vj∂vJVN − ∂µjVN .

(3.8)

We remark that one can scale the Gross-Pitaevskii equation (1.6) in the following way:
Consider any function u(x, t), scaling parameter α, let x̃ = αx , t̃ = α2t, and define the new
function

(3.9) ũ(x̃, t̃)
def
=

1

α
u(x, t) .

Then if u(x, t) satisfies (1.6) with the potential V (x), ũ(x̃, t̃) also satisfies (1.6) with the
new potential

(3.10) Ṽ (x̃) =
1

α2
V

(
x̃

α

)
.

This means that if we deal with a soliton of width comparable with α, the potentials for
which interesting dynamics should appear should have size approximately α−2 and the
slowly varying factor replaced by h/α.

The effective dynamics equations (3.8) scale similarly: if (a(t), v(t), θ(t), µ(t)) satisfies

(3.8) and we define x̃, t̃, and Ṽ as above, then
(
ã(t̃), ṽ(t̃), θ̃(t̃), µ̃(t̃)

)
also satisfies (3.8) with

(3.11) ã(t̃) = αa(t) , ṽ(t̃) =
v(t)

α
, θ̃(t̃) = θ(t) , µ̃(t̃) =

µ(t)

α
.

The scalings (3.9) and (3.11) are related in the following way: if

u(x, t) = qN(x, a(t), v(t), θ(t), µ(t)) ,

then

ũ(x̃, t̃) = qN(x̃, a(t̃), v(t̃), θ(t̃), µ(t̃))/α = qN(x, ã(t̃), ṽ(t̃), θ̃(t̃), µ̃(t̃)) .

4. Comparison of effective and exact dynamics

For given values a0, v0, θ0, µ0 in RN , we consider the solution u(·, t) of (1.6) with ini-
tial data qN(·, a0, v0, θ0, µ0) and the solutions a(t), v(t), θ(t), µ(t) of the effective dynamics
equations (3.8) with initial values a0, v0, θ0, µ0. In the following discussions we will refer to
u(·, t) as the exact solution and qN(·, a(t), v(t), θ(t), µ(t)) as the effective dynamics.

Holmer and Zworski [8] proved that in the case N = 1,

(4.1) ‖u(·, t)− qN(·, a(t), v(t), θ(t), µ(t))‖H1 = Ch2−δ , for t <
δ log(1/h)

Ch
,
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Figure 4. A side-by-side comparison of the absolute value of the exact
solution of (1.6) versus the effective dynamics (3.8) for 1,2,3, and 4 solitons
with potential W (x) = −100 sech2(5x)+10x4 . The sharpness of the sech2(5x)
term creates clearly visible discrepancy between the two solutions.

where δ ∈ (0, 1/2) can be chosen, and where C depends only on the potential and initial
velocity of the soliton, but not on δ. The H1 norm measures the size of the function and
its spatial derivative in L2:

‖v‖2
H1

def
= ‖v‖2

L2 + ‖∂xv‖2
L2 , ‖v‖2

L2

def
=

∫
R
|v(x)|2dx .

This norm measures the energy of the solution.

The limiting time log(1/h)/h is the Ehrenfest time discussed int §1.

It is expected that this result also holds for N > 1. This is suggested by [7], which
proves the analagous theorem for the modified Korteweg-de Vries (mKdV) equations for
case N = 1, 2, see §6 below. However, the methods of [7] do not fully apply to the case of
the Gross-Pitaevsky equation (1.5). Also, even in the case of mKdV and N = 2, multiple
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soliton interactions are not theoretically understood. All these considerations provided a
strong motivation for this numerical study.

We note that for N > 1, it was conjectured in [7] that the error bounds (4.1) will hold
not only in the H1 norm, but for the HN norm, which measures the the size of a function
and its first N derivatives, where N is the number of solitons. This has been proven in the
mKdV case with N = 2 [7]. For our numerical experiments, we consider only the H1 norm.

We present numerical simulations to show that the result (4.1) holds for N > 1 in the
following three sections: In §4.1 we choose initial data and two potentials that demonstrate
the power and limitations of the effective dynamics equations, regardless of the number
of solitons. Using the same initial data and one of the potentials from §4.1, in §4.2 we
verify that the O(h2−δ) error estimate in (4.1) holds as h→ 0 for a fixed time interval. We
then turn to the log(1/h)/h timescale, or Ehrenfest timescale, in §4.3 to show that it is the
appropriate timescale for which we can expect (4.1) to hold.

4.1. A numerical case study. We consider initial data qN(·, āN , v̄N , θ̄N , µ̄N), where āN =
(a1, . . . , aN) , N = 1, 2, 3, 4 and v̄N , θ̄N , and µ̄N are similarly defined with

(a1, a2, a3, a4) = (−1,−1.5, 0, 1)

(v1, v2, v3, v4) = (−2, 0, 3, 0)

(θ1, θ2, θ3, θ4) = (π/3, 0,−3,−5)

(µ1, µ2, µ3, µ4) = (17, 25, 23, 19)

(4.2)

The positions and masses are chosen to satisfy a numerical requirement that qN(·, āN , v̄N , θ̄N , µ̄N)
is close to 0 outside of (−π, π), our numerical domain (see §7). Rescaling the solution as in
(3.9) or enlarging the numerical domain allows for data that does not satisfy this numerical
requirement. The initial data is otherwise chosen arbitrarily.

We first consider the potential

V1(x) = −100 ecosx ,

see Figure 3. The factor −100 is chosen to create a deep enough well so that the solutions
remain in (−π, π), but the potential is otherwise chosen arbitrarily.

We compute the exact solution and the effective dynamics solution for N = 1, 2, 3, 4
up to time t = 1, which is chosen to allow for multiple soliton interactions. We plot the
solution for 4 solitons in Figure 1, where we observe very little difference between the exact
and effective dynamics solutions. An equally small amount of discrepancy between the
solutions was observed for N = 1, 2, 3.

Next, we consider the same initial data as above with the potential

V2(x) = −100 sech2(5x) + 10 x4 ,

see Figure 3. This potential is chosen to be outside of the slowly varying regime for which
the effective dynamics give good approximations. This is due to the −100sech2(5x) term,
which creates a sharp dip roughly the width of the solitons we are studying; thus we do
not expect the exact solution to maintain its soliton structure very well. This causes the
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Figure 5. The plot on the left is a different view of the exact solution with
3 solitons shown in Figure 4. The plot on the right compares the real parts
of the N = 3 exact solution with the effective dynamics solution at times
t = 0.35 and t = 0.658.

clearly visible discrepancies between the effective dynamics and the exact solution in Figure
4. The 10x4 term ensures the solutions remain on the interval (−π, π).

We compute the solutions for N = 1, 2, 3, 4 up to time t = 0.7, which is again chosen to
allow for multiple soliton interactions. Figure 4 displays these solutions and demonstrates
that the effective dynamics captures the true motion, regardless of the number of solitons
and regardless of multiple soliton interactions. In the experiments presented in this paper,
we only consider N ≤ 4, but we have observed good agreement between the exact solution
and the effective dynamics for N ≤ 7. We did not investigate futher due to increasing
computational time needed to solve (3.8).

We note that for N ≥ 2 the phases of the solitons are crucial in determining the inter-
action between solitons. In Figure 4, we see that for N = 3, at approximately t ≈ 0.65,
two solitons that appear to bounce off each other in the exact solution instead appear to
cross in the effective dynamics. This discrepancy seems to be due to differences between
exact phases and effective phases. In Figure 5 we are able to see large deviation in the
phases between the exact solution and effective dynamics by comparing the real part of the
solutions.

4.2. Quantitative study of the error as h → 0. We investigate the O(h2−δ) error
between the exact solution and the effective dynamics on a fixed time interval. The estimate
that gives rise to (4.1) is

(4.3) ‖u(·, t)− qN(·, a(t), v(t), θ(t), µ(t))‖H1 ≤ Ch2eCht .

If t = δ log(1/h)/(Ch), then the RHS reduces to Ch2−δ. When dealing with fixed length of
time or even time of size O(1/h) the RHS is O(h2) and that form of error will be shown to
be optimal.
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Figure 6. A log-log plot of the H1 error, relative to the H1 norm of the
initial data, between the exact solution of 1.6 and the N -soliton evolving
according to the effective dynamics equations 3.8, as function of h. Here,
the potential is V (x) = W (hx), where W (x) = −100 sech2(5x) + 10x4 . For
smaller values of h, the slope of the lines approaches 2, in agreement with
the theoretical upper bound on the error in (1.8).

We reconsider our second potential from §4.1, but add the slowly varying parameter, h:

V (x) = W (hx) , W (x) = −100 sech2(5x) + 10x4 ,

and explore the H1 error, relative to the H1 norm of the initial data, between the exact
solution and effective dynamics as h→ 0. We expect that as h becomes small enough, the
equation will enter the slowly varying regime and display O(h2) error. Indeed, the log-log
plot in Figure 6 demonstrates the error is bounded by CNh

2 as h→ 0, where the constant
CN varies only slightly between different values of N .

We fit the data from Figure 6 to a line using the 6 smallest values of h.

N 1 2 3 4
Slope 1.86 1.76 1.91 1.86
CN -1.07 -1.46 -1.27 -1.37

Thus, we conclude that the error is approximately O(h2).

4.3. Ehrenfest time. We now investigate the length of time for which the effective dynam-
ics approximation is accurate. In (4.3), we recalled that the error is bounded by Ch2eCht

and hence the approximation breaks down at the Ehrenfest time,

T (h) ∼ log(1/h)/h .

We have already verified for small h and fixed time this error behaves as O(h2). Thus we
focus on observing exponential growth in the error as a function of time, and verifying that
it is of the form O(eCht).

For this we must choose a potential and initial data to exhibit exponential instability.
We are motivated by Newton’s equations for V (a) = −a2/2:

(4.4) ȧ = v , v̇ = a , v = v0 cosh t+ a0 sinh t , a = a0 cosh t+ v0 sinh t .
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Figure 7. The plot on the left shows H1 error, relative to the H1 norm
of the initial data, between the exact solution of (1.6) and the effective
dynamics for a single soliton sliding down the concave potential V (x) =
W (hx) , where W (x) = 1000x2 . The error is plotted as a function of time
and for several values of the parameter h. On the right sight, B is plotted as
a function of the parameter h, when the errors from the plot on the left are
fitted to a curve of the form A(eBt +C). We expect B to depend linearly on
h.

In this case, we have exponential instability of classical dynamics. This suggests choosing
potentials with a non-degenerate maximum and working near the unstable equilibrium
points.

Hence we will investigate solutions to (1.6) with potential

V (x) = W (hx) , where W (x) = −1000x2 .

Figure 7 below demonstrates exponential divergence between the exact solution to (1.6)
and the effective dynamics for several values of h and a single soliton initial condition
q1(x, .1, 0, 0, 15).

We fit the plots shown in Figure 7 to a function of the form A(eBt + C), for the time
period when the soliton’s position was between x = .15/h and x = 1.2/h. This range was
observed to be a region where exponential increase dominated the error and before the
soliton approached the numerical boundary.

In Figure 7 we observe a linear dependence of B on h, in agreement with (4.3). This
indicates that for certain potentials the Ehrenfest time C log(1/h)/h is the appropriate
bound for the length time we expect the effective dynamics to give a good approximation
to (1.6). We note that in our experiments with other potentials we often observe a linear
increase in error which would correspond to a timescale of C/h2 instead of the Ehrenfest
time C log(1/h)/h.
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Figure 8. Surface plots of the error between the exact solution of (1.6) and
the effective dynamics for a single soliton sliding down the concave portion
of the potential V (x) = W (hx) , where W (x) = 1000x2 , as in Figure 7.
We have plotted the absolute value of the difference between the spatial
derivatives between the two solutions.

5. Application to Bose-Einstein Condensates

Strecker, Partridge, Truscott and Hulet [14] discovered that Bose-Einstein condensates
form stable soliton trains while confined to one-dimensional motion. When set into motion
in a suitably chosen optical trap, a Bose-Einstein condensate forms multiple soliton forma-
tions which exist for multiple oscillatory cycles without being destroyed by dispersion or
diffraction. We can observe this same behavior numerically, using the effective dynamics
equations. We choose a potential of the type described in [14]

V (x) =
(x

2

)6

and set N = 4, which was the most frequent case in their experiment. Strecker et al inferred
that the repulsive behavior of the solitons indicated alternating phases. Their argument
was based on considering a certain reduced Lagrangian.

In our numerical experiment we put θ̄ = (0, π, 0, π) and then set the four solitons in
motion with the same velocity near the center of the potential. Similar to [14], we observe
bunching and spreading of the soliton train for several oscillations. See Figure 2.

6. Effective dynamics for the mKdV equation

The mKdV equation

(6.1) ∂tu = −∂x(∂2
xu+ 2u3) ,
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Figure 9. The left plot shows a side-by-side comparison of the exact solu-
tion of the mKdV equation (6.2) and the effective dynamics solution for 3
solitons with potential b(x) = 300 cos2 x. No discrepancy between the two
solutions is visible. The right plot displays the exact solution from a different
angle.

like the nonlinear Schrödinger equation, has soliton solutions and a Hamiltonian structure.
Holmer, Perelman, and Zworski [7] derived effective dynamics equations for the mKdV
equation with a slowly varying potential

(6.2) ∂tu = −∂x(∂2
xu− b(x, t)u+ 2u3), b(x, t) = b0(hx, ht)

and proved a result analogous to the (4.1) for N = 1, 2: the HN error between the solution
of (6.2) and its associated effective dynamics with N -soliton initial data is bounded by

(6.3) Ch2eCht , for t <
C

h
log

1

h
,

Similarly to §4.2, we have conducted a numerical study verifying that the H1 error is
O(h2) as h→ 0 for multiple soliton initial conditions. See Figures 9 and 10.

7. Numerical methods

We now describe the numerical methods we employ to compute the Gross-Pitaevskii PDE
(1.6) and the ODE (3.8) arising from the effective dynamics. When comparing a solution
of (1.6) with a solution of (3.8), we refine our numerical solutions until the error between
sucessive refinements of solutions to the same equation is several orders of magnitude
smaller than the error between solutions of the two equations.
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Figure 10. A log-log plot of the H1 error, relative to the H1 norm of the
initial data, between the exact solution to the mKdV equation (6.2) and the
N -soliton evolving according to the effective dynamics, as a function of h.
For smaller values of h, the slope of the lines approaches 2, in agreement with
the theoretical upper bound on the error. The theoretical upper bound has
only been proven for N = 1, 2, but this figure gives evidence that it holds for
all N .

Numerically solving the ODE arising from the effective dynamics (3.8) necessitates com-
puting qN(x, a, v, θ, µ) and its derivatives with respect to the parameters a, v, θ,and µ effi-
ciently. For this we note that an equivalent definition of qN in (2.5)

(7.1) qN(x) = −~1M−1γ ,

where ~1,M , and γ are as in (2.5). Since iM is Hermitian, M−1γ can be efficiently computed
using the Cholesky factorization. Differentiating qN numerically, for larger values of N , is
too costly. Instead we used (7.1) to obtain explicit formulas for the derivatives of qN and
again used Cholesky factorizations to efficiently compute them. With this we compute the
integrand in (3.6), and then numerically integrate it using the trapezoidal method. Once
we can efficiently compute the RHS of the effective dynamics equations (3.8), the standard
fourth-order Runge Kutta method was found to be suitable to solve to the ODE.

In order to solve the PDE (1.6) we used a Fourier spectral method to study the evolution
on the numerical domain (−π, π). This requires our solution u(x, t) to be periodic in space,
so we choose initial conditions such that u(x, t) decays to zero, to machine precision, before
the endpoints −π and π. Arbitrary initial data can be handled by either extending the
numerical domain or rescaling the equation (see (3.9)).

One difficulty arises in that a non-trivial potential W (hx) cannot be periodic for all h.
However, the potential W (hx) need not be periodic on (−π, π) so long as the product
W (hx)u(x, t) is periodic on (−π, π), which is achieved if u(x, t) decays fast enough at
the endpoints −π and π. If W (x) is periodic on (−π, π) and one wishes to consider a
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solution u(x, t) that doesn’t decay before the endpoints −π and π, the rescaling (3.9) may
be employed with α = h:

(7.2) x̃ = hx , t̃ = h2t , ũ(x̃, t̃)
def
=

1

h
u(x, t) .

Then if ũ(x̃, t̃) satisfies (1.6) with periodic potential Ṽ (x̃) = W (x̃)/h2, u(x, t) also satisfies
(1.6) with potential V (x) = W (hx).

This rescaling also makes it clear that as h → 0, a soliton solution becomes sharper
relative to the potential. This requires higher resolution in order to apply our numerical
method to solve the PDE (1.6), while the effective dynamics equations (3.8) are unaf-
fected. Indeed, our numerical experiments confirmed that increased computational effort
was needed to resolve the PDE as h→ 0, but not the effective dynamics ODE.

We now describe the method to solve a general solution u(x, t) of (1.6) on a periodic
domain with periodic initial data and potential V (x). The Fourier modes ûk(t) of a solution
u(x, t) to (1.6) evolve according to

(7.3) ∂tûk = − i
2
k2ûk + i(ûv)k, v = |u|2 − V

Discretizing space and replacing the Fourier Transform with the Discrete Fourier Transform
gives rise to a finite dimensional system of ODE, which we now represent in the general
form

(7.4) ut = Lu+N (u)

where L is a stiff linear transformation corresponding to the first term of (7.3) (represented
by a diagonal matrix in our case) and N is a non-linear operator from the second term
of (7.3). To solve (7.4) we compared the fourth order implicit-explicit (IMEX) method
ARK4(3)6L[2]SA proposed by Kennedy and Carpenter [10] with the exponential time dif-
ferencing (ETD) method ETDRK4 proposed by Kassam and Trefethen [9]. The IMEX
scheme update formula is

(7.5) un+1 = un + ∆t(b1(k1 + l1) + · · ·+ bs(ks + ls)) ,

where ∆t is the time step and ki and li are chosen such that

(7.6) ki = L(un + ∆t(Ai1k1 + · · ·+ Aisks + Âi1l1 + · · ·+ Âisls))

(7.7) li = N (un + ∆t(Ai1k1 + · · ·+ Aisks + Âi1l1 + · · ·+ Âisls)) .

Here A, Â are s× s lower triangular matrices with Â having zeros along its diagonal.. This
allows us to solve for the ki and li one stage at a time, only inverting the diagonal linear
operators I −∆tAiiL. The implicit treatment of the L term mitigates the stiffness arising
from the k2 factor in (7.3), while the li can be computed explicitly, so non-linear equations
involving N need not be solved.

The ETD method, on the other hand, uses an exact formula for obtaining the next step
un+1 from un based on solving the linear portion exactly:

(7.8) un+1 = eL∆tun + eL∆t

∫ ∆t

0

e−LτN (u(tn + τ), tn + τ) dτ
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Figure 11. Log-log plots of the convergence of the fourth order schemes
ETDRK4 and ARK4(3)6L[2]SA as a function of the timesteps and compu-
tational time, respectively. ARK4(3)6L[2]SA is slightly more efficient per
timestep, but ETDRK4 is significantly more computationally efficient.

The integral in (7.8) can then be numerically approximated using matrix exponents of L
and evaluations of N . Thus as with the IMEX method, we do not need to solve non-linear
equations, and computations involving L (namely computing e∆tL) are efficient because
L is diagonal. Stiffness is mitigated by solving the linear portion of (7.4) exactly. We
found that the ETDRK4 scheme computed a solution of a desired accuracy nearly twice
as fast as the ARK4(3)6L[2]SA scheme. While the ARK4(3)6L[2]SA scheme had a slightly
smaller error rate per step, more computations per step made it significantly less efficient.
Neither method demonstrated any instability in the range of step sizes required for our
solutions. Below, we plot the convergence of the two schemes as the timestep goes to zero.
To obtain the results in the figures, we used the same potential and initial data as in §4.1:
W (x) = −100 sech2(5x) + 10x4 .
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