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Abstract

We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equa-
tion, which is the paradigm of an elliptic integrable PDE in two variables. We use the method
introduced by one of the authors, which provides a substantial generalization of the inverse
scattering transform and can be used for the analysis of boundary as opposed to initial-value
problems. We first express the solution in terms of a 2 × 2 matrix Riemann-Hilbert problem
whose “jump matrix” depends on both the Dirichlet and the Neumann boundary values. For
a well posed problem one of these boundary values is an unknown function. This unknown
function is characterised in terms of the so-called global relation, but in general this character-
isation is nonlinear. We then concentrate on the case that the prescribed boundary conditions
are zero along the unbounded sides of a semistrip and constant along the bounded side. This
corresponds to a case of the so-called linearisable boundary conditions, however a major dif-
ficulty for this problem is the existence of non-integrable singularities of the function qy at
the two corners of the semistrip; these singularities are generated by the discontinuities of the
boundary condition at these corners. Motivated by the recent solution of the analogous prob-
lem for the modified Helmholtz equation, we introduce an appropriate regularisation which
overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an
equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in
terms of a 2× 2 matrix Riemann-Hilbert problem whose “jump matrix” depends explicitly on
the width of the semistrip L, on the constant value d of the solution along the bounded side,
and on the residues at the given poles of a certain spectral function denoted by h(λ). The
determination of the function h remains open.
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Figure 1: The semistrip S

1 Introduction

A method for solving initial-boundary value problems for linear and integrable nonlinear PDEs
was introduced in [13, 14] and developed by several authors, see the survey [15] and the references
therein. This method has already been used for:
(a) linear and integrable nonlinear evolution PDEs formulated on the half line and on a finite
interval [4, 5, 11, 12, 17, 20, 21, 22, 23, 24, 27, 38, 39, 47];
(b) linear and integrable nonlinear hyperbolic PDEs [26, 40, 42];
(c) linear elliptic PDEs [1, 3, 8, 9, 16, 28, 29, 44, 45, 46].
The aim of this paper is to implement this method in the case of the prototypical integrable
nonlinear elliptic PDE, namely the celebrated elliptic sine-Gordon equation. This equation was
first analysed in [37] (see also [7, 30]); simple boundary value problems for this equation, using
the method of [13], have been considered in [41, 43]). For the case of nonlinear elliptic PDEs in
cylindrical coordinates, see [32, 34].
We will consider the sine-Gordon equation in the form

qxx + qyy = sin q, q = q(x, y), (1.1)

and we will analyze boundary value problems posed in the semi-infinite strip

S = {0 < x <∞, 0 < y < L}, (1.2)

where L is a positive finite constant. The sides {y = L, 0 < x < ∞}, {x = 0, 0 < y < L} and
{y = 0, 0 < x <∞} will be referred to as side (1), (2) and (3) respectively, see figure 1.
Suppose that (1.1) is supplemented with appropriate, compatible boundary conditions on the
boundary of the semistrip S, so that there exists a unique solution q(x, y). It will be shown in
section 2 that this solution can be expressed in terms of the solution of a 2 × 2 matrix Riemann-
Hilbert (RH) problem with a jump on the union of the real and imaginary axis of the λ complex
plane. The “jump matrix” is expressed in terms of certain functions, called spectral functions, which
will be denoted by {aj(λ), bj(λ)}, j = 1, 2, 3. These functions can be uniquely characterized via
the solution of certain linear Volterra integral equations, in terms of the Dirichlet and Neumann
boundary values. Namely, {a1, b1}, {a2, b2} and {a3, b3} are uniquely determined in terms of
{q(x, L), qy(x, L)}, {q(0, y), qx(0, y)} and {q(x, 0), qy(x, 0)} respectively. However, for a well posed
problem only a subset of these boundary values are prescribed as boundary conditions. Thus, in
order to compute the spectral functions in terms of the given boundary conditions, one must first
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determine the unknown boundary values, i.e. one must characterize the Dirichlet to Neumann
map. The solution of this problem, which makes crucial use of the so-called global relation, yields
in general a nonlinear map, see [6, 18, 25, 35, 36].
In the case of integrable nonlinear evolution PDEs, it has been shown in [17, 19, 23, 24, 33] that
there exists a particular class of boundary conditions, called linearizable, for which it is possible to
avoid the above nonlinear map. The main result of the present paper is the analysis of a particular
case of linearizable boundary conditions for the sine-Gordon equation on the semi-infinite strip. In
particular, the following boundary conditions will be investigated in detail:

q(x, L) = q(x, 0) = 0, 0 < x <∞; q(0, y) = d, 0 < y < L, (1.3)

where d is a finite constant. We assume that 0 < d < π. These boundary conditions are discontin-
uous at the corners (0, 0) and (0, L) of the domain. This implies that qy(x, y) has a non-integrable
singularity at the two corners of the semistrip. Using an appropriate gauge transformation, which
is motivated by the recent solution of the analogous problem for the modified Helmholtz equation
([2], see also Appendix A), we are able to overcome this difficulty and introduce well-defined spec-
tral functions. Furthermore, we show that the basic Riemann-Hilbert problem can be mapped to
a simpler Riemann-Hilbert problem whose jump matrix, instead of depending on the six unknown
spectral functions {aj(λ), bj(λ)}31, depends explicitly on the given constant d, on the width L of
the semistrip, and on the residues at the given poles of a certain spectral function, denoted by
h(λ). The rigorous analysis for the determination of h remains open.
This result, as well as the analogous result valid for the elliptic version of the Ernst equation
[32, 34], imply that the method of [13] provides a powerful tool for analyzing effectively a large
class of interesting boundary conditions.

2 Spectral analysis under the assumption of existence

In what follows we assume that (1.1) is supplemented with appropriate boundary conditions on
the boundary of the semistrip S, compatible at the corners of the domain, so that the existence of
a unique, smooth solution q(x, y) can be assumed. Furthermore, we assume the following:

q(x, L), qy(x, L), q(x, 0), qy(x, 0) ∈ L1(R+),
xq(x, L), xqy(x, L), xq(x, 0), xqy(x, 0) ∈ L1(R+), (2.1)
q(0, y), qx(0, y), yq(0, y), yqx(0, y) ∈ L1([0, L]).

The sine-Gordon equation is the compatibility condition of the following Lax pair [31] for the 2×2
matrix-valued function Ψ(x, y, λ), λ ∈ C:

Ψx +
Ω(λ)

2
[σ3,Ψ] = Q(x, y, λ)Ψ, (2.2)

Ψy +
ω(λ)

2
[σ3,Ψ] = iQ(x, y,−λ)Ψ, (2.3)

where

Ω(λ) =
1
2i

(
λ− 1

λ

)
, ω(λ) =

1
2

(
λ+

1
λ

)
, (2.4)
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Figure 2: The functions Ψ1, Ψ2 and Ψ3

Q(x, y, λ) =
i

4

 1
λ (1− cos q) qx − iqy + i sin q

λ

qx − iqy − i sin q
λ − 1

λ (1− cos q)

 , q = q(x, y). (2.5)

Equations (2.2) and (2.3) can be written as the single equation

d
(

e(Ω(λ)x+ω(λ)y)
cσ3
2 Ψ(x, y, λ)

)
= W (x, y, λ), (2.6)

where the differential form W is given by

W (x, y, λ) = e(Ω(λ)x+ω(λ)y)
cσ3
2 (Q(x, y, λ)Ψ(x, y, λ)dx+ iQ(x, y,−λ)Ψ(x, y, λ)dy) , (2.7)

and σ̂3 acts on a 2× 2 matrix A by
σ̂3A = [σ3, A].

Remark 2.1 Note that

Ω(λ̄) = −Ω(λ) = Ω
( 1
λ

)
, ω(λ̄) = ω(λ) = ω

( 1
λ

)
.

2.1 Bounded and analytic eigenfunctions

We define three solutions Ψj(x, y, λ), j = 1, 2, 3, of (2.6) by

Ψj(x, y, λ) = I +
∫ (x,y)

(xj ,yj)

e−(Ω(λ)x+ω(λ)y)
cσ3
2 W (ξ, η, λ), (2.8)

where
(x1, y1) = (∞, y), (x2, y2) = (0, L), (x3, y3) = (0, 0). (2.9)

Since the differential form W is exact, the integral on the right hand side of (2.8) is independent of
the path of integration. We choose the particular contours shown in figure 2. This choice implies
the following inequalities on the contours:

(x1, y1)→ (x, y) : ξ − x ≥ 0,
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(x2, y2)→ (x, y) : ξ − x ≤ 0, η − y ≥ 0,
(x3, y3)→ (x, y) : ξ − x ≤ 0, η − y ≤ 0.

The first inequality above implies that the exponential appearing in the second (first) column of the
right hand side of the equation defining Ψ1 is bounded and analytic for Im(λ) < 0 (Im(λ) > 0).
Similar considerations are valid for Ψ2 and Ψ3. Hence we denote the matrices Ψj as follows:

Ψ1 = (Ψ(12)
1 ,Ψ(34)

1 ), Ψ2 = (Ψ(4)
2 ,Ψ(2)

2 ), Ψ3 = (Ψ(3)
3 ,Ψ(1)

3 ),

where the superscript (12) denotes the union of the first and second quadrants of the λ complex
plane, and similarly for the other superscripts. The function Ψ(12)

1 is analytic for Im(λ) > 0 and
it has essential singularities at λ =∞ and λ = 0; furthermore,

Ψ(12)
1 =

(
1
0

)
+O

(
1
λ

)
, λ→∞, Im(λ) ≥ 0. (2.10)

Similar considerations are valid for the column vectors Ψ(34)
1 , Ψ(3)

3 and Ψ(1)
3 . The function Ψ2 is an

analytic function in the entire complex plane, except at λ = ∞ and λ = 0, where it has essential
singularities. In addition,

Ψ(4)
2 =

(
1
0

)
+O

(
1
λ

)
, λ→∞, 3π

2
≤ arg(λ) ≤ 2π,

Ψ(2)
2 =

(
0
1

)
+O

(
1
λ

)
, λ→∞, π

2
≤ arg(λ) ≤ π. (2.11)

2.2 Spectral functions

Any two solutions Ψ, Ψ̃ of (2.6) are related by an equation of the form

Ψ(x, y, λ) = Ψ̃(x, y, λ)e−(Ω(λ)x+ω(λ)y)
cσ3
2 C(λ). (2.12)

We introduce the notations

S1(λ) = Ψ1(0, L, λ), S2(λ) = Ψ2(0, 0, λ), S3(λ) = Ψ1(0, 0, λ). (2.13)

Then equation (2.12) implies the following equations:

Ψ1(x, y, λ) = Ψ2(x, y, λ)e−(Ω(λ)x+ω(λ)y)
cσ3
2 e

ω(λ)
2 Lcσ3S1(λ), λ ∈ R, (2.14)

Ψ2(x, y, λ) = Ψ3(x, y, λ)e−(Ω(λ)x+ω(λ)y)
cσ3
2 S2(λ), λ ∈ C \ {0}, (2.15)

Ψ1(x, y, λ) = Ψ3(x, y, λ)e−(Ω(λ)x+ω(λ)y)
cσ3
2 S3(λ), λ ∈ (R−,R+). (2.16)

The notation λ ∈ (R−,R+) means that the equation for the first column vector in (2.16) is valid
for λ ∈ R−, while the equation for the second vector is valid for R+.
Equations (2.13)-(2.16) suggest the following definitions:

S1(λ) = Φ1(0, λ), Φ1(x, λ) = I −
∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2 Q(ξ, L, λ)Φ1(ξ, λ)dξ,
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λ ∈ (C+,C−), 0 < x <∞, (2.17)

S2(λ) = Φ2(0, λ), Φ2(y, λ) = I − i
∫ L

y

eω(λ)(η−y)
cσ3
2 Q(0, η,−λ)Φ2(η, λ)dη,

λ ∈ C, 0 < y < L, (2.18)

S3(λ) = Φ3(0, λ), Φ3(x, λ) = I −
∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2 Q(ξ, 0, λ)Φ3(ξ, λ)dξ,

λ ∈ (C+,C−), 0 < x <∞. (2.19)

The matrix Q satisfies the symmetry properties

Q(λ)22 = Q(−λ)11, Q(λ)12 = Q(−λ)21. (2.20)

Hence the matrices Φi, i = 1, .., 3, can be represented in the form

Φ1 =
(
A1(x, λ) B1(x,−λ)
B1(x, λ) A1(x,−λ)

)
, Φ2 =

(
A2(y, λ) B2(y,−λ)
B2(y, λ) A2(y,−λ)

)
, Φ3 =

(
A3(x, λ) B3(x,−λ)
B3(x, λ) A3(x,−λ)

)
,

and therefore

Si(λ) =
(
ai(λ) bi(−λ)
bi(λ) ai(−λ)

)
, i = 1, 2, 3.

The spectral functions {a1(λ), b1(λ)}, {a2(λ), b2(λ)} and {a3(λ), b3(λ)} are defined in terms
of {q(x, L), qy(x, L)}, {q(0, y), qx(0, y)} and {q(x, 0), qy(x, 0)} respectively, through equations
(2.17)-(2.19).

These functions have the following properties:

• a1(λ), b1(λ) are analytic and bounded in C+.

a1(λ)a1(−λ)− b1(λ)b1(−λ) = 1, λ ∈ R.

a1(λ) = 1 +O
(

1
λ

)
, b1(λ) = O

(
1
λ

)
as λ→∞, Im(λ) ≥ 0.

• a2(λ), b2(λ) are analytic functions of λ for all λ ∈ C, except for essential singularities at
λ =∞ and λ = 0.

a2(λ)a2(−λ)− b2(λ)b2(−λ) = 1, λ ∈ C \ {0}.

a2(λ) = 1 +O
(

1
λ

)
, b2(λ) = O

(
1
λ

)
as λ→∞, 3π

2 ≤ arg(λ) ≤ 2π.

• a3(λ), b3(λ) are analytic and bounded in C+.

a3(λ)a3(−λ)− b3(λ)b3(−λ) = 1, λ ∈ R.

a3(λ) = 1 +O
(

1
λ

)
, b3(λ) = O

(
1
λ

)
as λ→∞, Im(λ) ≥ 0.

These properties follow from the analogous properties of the matrix-valued functions Φj , j = 1, 2, 3,
from the condition of unit determinant, and from the large λ asymptotics of these functions.
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2.3 The global relation

Evaluating equations (2.15) and (2.16) at x = 0, y = L, we find

I = Ψ3(0, L, λ)e−
ω(λ)

2 Lcσ3S2(λ)

and
S1(λ) = Ψ3(0, L, λ)e−

ω(λ)
2 Lcσ3S3(λ).

Eliminating Ψ3(0, L, λ) we obtain

e
ω(λ)

2 Lcσ3S1(λ) = S2(λ)−1S3(λ). (2.21)

The first column vector of this equation yields the following global relations:

a1(λ) = a2(−λ)a3(λ)− b2(−λ)b3(λ), λ ∈ C+, (2.22a)
b1(λ)e−ω(λ)L = a2(λ)b3(λ)− a3(λ)b2(λ), λ ∈ C+. (2.22b)

2.4 The Riemann-Hilbert problem

Equations (2.14)-(2.16), relating the various analytic eigenfunctions, can be rewritten in a form
that determines the jump conditions of a 2 × 2 RH problem, with unitary jump matrices on the
real and imaginary axes. This involves tedious but straightforward algebraic manipulations. The
final form is

M−(x, y, λ) = M+(x, y, λ)J(x, y, λ), λ ∈ R ∪ iR, (2.23)

where the matrices M± and J are defined as follows:

M+ =
(

Ψ(12)
1 ,

1
a3(λ)

Ψ(1)
3

)
, arg(λ) ∈

[
0,
π

2

]
,

M− =
(

Ψ(12)
1 ,

1
a1(λ)

Ψ(2)
2

)
, arg(λ) ∈

[π
2
, π
]
,

M+ =
(

1
a3(−λ)

Ψ(3)
3 ,Ψ(34)

1

)
, arg(λ) ∈

[
π,

3π
2

]
,

M− =
(

1
a1(−λ)

Ψ(4)
2 ,Ψ(34)

1

)
, arg(λ) ∈

[3π
2
, 2π
]
, (2.24)

J(x, y, λ) = Jα(x, y, λ), if arg(λ) = α, α = 0,
π

2
, π,

3π
2
, (2.25)

where, using the global relations (2.22), we find

J0 =


a2(λ)

a1(−λ)a3(λ)
b3(−λ)
a3(λ) e−θ(x,y,λ)

− e−ω(λ)Lb1(λ)
a1(−λ) eθ(x,y,λ) 1

 ,

Jπ/2 =

 1 b2(−λ)
a1(λ)a3(λ)e−θ(x,y,λ)

0 1

 , J3π/2 =

 1 0

b2(λ)
a1(−λ)a3(−λ)eθ(x,y,λ) 1


7



and
Jπ = J3π/2(J0)−1Jπ/2, (2.26)

where
θ(x, y, λ) = Ω(λ)x+ ω(λ)y. (2.27)

All the matrices Jα have unit determinant: for Jπ/2 and J3π/2 this is immediate, whereas for J0

we find

det(J0) =
a2(λ) + e−ω(λ)Lb1(λ)b3(−λ)

a1(−λ)a3(λ)
=
a1(−λ)a3(λ)
a1(−λ)a3(λ)

= 1,

where we have used the equation

a2(λ) = a1(−λ)a3(λ)− b3(−λ)b1(λ)e−ω(λ)L, λ ∈ R, (2.28)

which is a consequence of the global relations (2.22).

?

-

6

�

( 1
a1(−λ)Ψ(4)

2 ,Ψ(34)
1 )

(Ψ(12)
1 , 1

a3(λ)Ψ(1)
3 )(Ψ(12)

1 , 1
a1(λ)Ψ(2)

2 )

( 1
a3(−λ)Ψ(3)

3 ,Ψ(34)
1 )

J0Jπ

Jπ/2

J3π/2

Γ

Figure 3: The bounded eigenfunctions and the Riemann-Hilbert problem

The solution M(x, y, λ) of this RH problem is a sectionally meromorphic function of λ. The
possible poles of this function are generated by the zeros of the function a1(λ) in the region
{arg(λ) ∈ [π2 , π]}, by the zeros of a3(λ) in the region {arg(λ) ∈ [0, π2 ]}, and by the corresponding
zeros of a1(−λ), a3(−λ).
We assume

• The possible zeros of a1 in the region {arg(λ) ∈ (π2 , π)} are simple; these zeros are denoted
λj , j = 1, .., N1

(2.29)

• The possible zeros of a3 in the region {arg(λ) ∈ (0, π2 )} are simple; these zeros are denoted
ζj , j = 1, .., N3

The residues of the function M at the corresponding poles can be computed using equations
(2.14)-(2.16). Indeed, equation (2.16) yields

Ψ(12)
1 = a3Ψ(3)

3 + b3eθ(x,y,λ)Ψ(1)
3 ,
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hence

Resζj
Ψ(1)

3

a3
=

Ψ(1)
3 (ζj)
ȧ3(ζj)

=
Ψ(12)

1 (ζj)
ȧ3(ζj)b3(ζj)

e−θ(x,y,ζj), (2.30)

where ȧ3(λ) denotes the derivative of a3 with respect to λ.
Similarly, using (2.14),

Resλj
Ψ(2)

2

a1
=

Ψ(2)
2 (λj)
ȧ1(λj)

=
Ψ(12)

1 (λj)
ȧ1(λj)b1(λj)e−ω(λj)L

e−θ(x,y,λj). (2.31)

Using the notation [M ]1 for the first column and [M ]2 for the second column of the solution M of
the RH problem (2.23), the equations (2.30) and (2.31) imply the following residue conditions:

Resζj [M(x, y, λ)]2 =
e−θ(x,y,ζj)

ȧ3(ζj)b3(ζj)
[M(x, y, ζj)]1, 0 < arg λ <

π

2
,

(2.32)

Resλj [M(x, y, λ)]2 =
e−θ(x,y,λj)

ȧ1(λj)b1(λj)e−ω(λj)L
[M(x, y, λj)]1,

π

2
< arg λ < π.

Similar residue conditions are obtained in C− by letting λ→ −λ.

The inverse problem

Rewriting the jump condition, we obtain

M+ −M− = M+ −M+J = M+(I − J)⇒M+ −M− = M+J̃ , (2.33)

where J̃ = I − J. The asymptotic conditions (2.10)-(2.11) imply

M(x, y, λ) = I +
M∗(x, y)

λ
+O

(
1
λ2

)
, |λ| → ∞, λ ∈ C \ (R ∪ iR). (2.34)

Equation (2.33) and the condition (2.34) yield the following integral representation for the function
M :

M(x, y, λ) = I +
1

2πi

∫
Γ

M+(x, y, λ′)J̃(x, y, λ′)
λ′ − λ

dλ′, λ ∈ C \ Γ (2.35)

where
Γ = R ∪ iR.

Equations (2.34) and (2.35) imply

M∗ = − 1
2πi

∫
Γ

M+(x, y, λ)J̃(x, y, λ)dλ. (2.36)

Using (2.34) in the first ODE in the Lax pair (2.2), we find

− i
4

[σ3,M
∗] = i

qx − iqy
4

σ1 ⇒ qx − iqy = 2(M∗)21 = 2 lim
λ→∞

(λM21), (2.37)

where σ1, σ3 denote the usual Pauli matrices.
In order to obtain an expression in terms of q rather than its derivatives, we consider the coefficient
in (2.2) of the term λ−1. The (1,1) element of this coefficient yields

cos q(x, y) = 1 + 4i(M∗x)11 + 2(M∗)2
21. (2.38)
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3 Spectral theory assuming the validity of the global rela-
tion

3.1 The spectral functions

The above analysis motivates the following definitions for the spectral functions.

The spectral functions at the y = 0 and y = L boundaries

Definition 3.1 Given the functions q(x, L), qy(x, L) satisfying conditions (2.1), define the map

S1 : {q(x, L), qy(x, L)} → {a1(λ), b1(λ)}

by (
a1(λ)
b1(λ)

)
= [Φ1(0, λ)]1, λ ∈ C+,

where [Φ1(x, λ)]1 denotes the first column vector of the unique solution Φ1(x, λ) of the Volterra
linear integral equation

Φ(x, λ) = I −
∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2 Q(ξ, L, λ)Φ(ξ, λ)dξ, (3.1)

and Q(x, L, λ) is given in terms of q(x, L) and qy(x, L) by equation (2.5).

In what follows, we also assume that the function a1(λ) may have N1 simple poles λj in C+.
Similarly for a3(λ).

Proposition 3.1 The spectral functions a1(λ), b1(λ) have the following properties.

(i) a1(λ), b1(λ) are continuous and bounded for Im(λ) ≥ 0, and analytic for Im(λ) > 0.

(ii) a1(λ) = 1 +O
(

1
λ

)
, b1(λ) = O

(
1
λ

)
as λ→∞, Im(λ) ≥ 0.

(iii) a1(λ) = cos q(0,L)
2 +O (λ), b1(λ) = i sin q(0,L)

2 +O (λ) as λ→ 0, Im(λ) ≥ 0.

(iv) a1(λ)a1(−λ)− b1(λ)b1(−λ) = 1, λ ∈ R.

(v) The map Q1 : {a1, b1} → {q(x, L) qy(x, L)}, inverse to S1, is given

cos q(x, L) = 1 + 4i lim
λ→∞

(λMx)11 + 2
(

lim
λ→∞

(λM)21

)2

,

qy(x, L) = −iqx(x, L) + 2i lim
λ→∞

(λM)21,

where M is the solution of the following Riemann-Hilbert problem:

• The function

M(x, λ) =
{
M+(x, λ) λ ∈ C+

M−(x, λ) λ ∈ C−

is a sectionally meromorphic function of λ ∈ C.
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• M = I +O
(

1
λ

)
as λ→∞, and

M−(x, λ) = M+(x, λ)J1(x, λ), λ ∈ R,

where

J1(x, λ) =

(
1 − b1(−λ)

a1(λ) e−Ω(λ)x

b1(λ)
a1(−λ)eΩ(λ)x 1

a1(λ)a1(−λ)

)
, λ ∈ R. (3.2)

• Let [M ]i denote the i-th column vector of M , 1 = 1, 2. The possible poles of M+ occur
at λj, and the possible poles of M− occur at −λj in C−, and the associated residues are
given by

Resλj [M(x, λ)]2 =
e−Ω(λj)x

ȧ1(λj)b1(λj)
[M(x, λj)]1,

Res−λj [M(x, λ)]1 =
eΩ(λj)x

ȧ1(−λj)b1(−λj)
[M(x,−λj)]2. (3.3)

The spectral functions {a3, b3} are defined similarly:

Definition 3.2 Given the functions q(x, 0), qy(x, 0), satisfying conditions (2.1), define the map

S3 : {q(x, 0), qy(x, 0)} → {a3(λ), b3(λ)}

by (
a3(λ)
b3(λ)

)
= [Φ3(0, 0)]1, λ ∈ C+,

where [Φ3(x, 0)]1 denotes the first column vector of the unique solution Φ3(x, 0) of the Volterra
linear integral equation

Φ(x, λ) = I −
∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2 Q(ξ, 0, λ)Φ(ξ, λ)dξ, (3.4)

and Q(x, 0, λ) is given in terms of q(x, 0) and qy(x, 0) by equation (2.5).

Proposition 3.2 The spectral functions a3(λ), b3(λ) have the properties (i)-(v) of proposition
(3.1), provided a1 is replaced by a3, b1 is replaced by b3, S1 is replaced by S3 and L in replaced by
0 in all expressions.

The spectral functions at the x = 0 boundary

Definition 3.3 Given the functions q(0, y), qx(0, y), satisfying conditions (2.1), define the map

S2 : {q(0, y), qx(0, y)} → {a2(λ), b2(λ)}

by (
a2(λ)
b2(λ)

)
= [Φ2(0, 0)]1, λ ∈ C+,
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where [Φ2(0, y)]1 denotes the first column vector of the unique solution Φ2(0, y) of the Volterra
linear integral equation

Φ(y, λ) = I − i
∫ L

y

eω(λ)(η−y)
cσ3
2 Q(0, η,−λ)Φ(η, λ)dη, (3.5)

and Q(0, y, λ) is given in terms of q(0, y) and qx(0, y) by equation (2.5).

Proposition 3.3 The spectral functions a2(λ), b2(λ) have the following properties.

(i) a2(λ), b2(λ) are analytic functions of λ, except for essential singularities at λ = 0 and λ =∞,
bounded for Re(λ) ≥ 0.

(ii) a2(λ) = 1 +O
(

1
λ

)
, b2(λ) = O

(
1
λ

)
as λ→∞, Re(λ) ≥ 0.

(iii) a2(λ) = cos q(0,0)
2 +O (λ), b2(λ) = i sin q(0,0)

2 +O (λ) as λ→ 0, Re(λ) ≥ 0.

(iv) a2(λ)a2(−λ)− b2(λ)b2(−λ) = 1, λ ∈ C.

(v) The map Q2 : {a2, b2} → {q(0, y) qy(0, y)}, inverse to S2, is given by

cos q(0, y) = 1− 4 lim
λ→∞

(λMy)11 − 2
(

lim
λ→∞

(λM)21

)2

qx(0, y) = iqy(0, y) + 2 lim
λ→∞

(λM)21,

where M is the solution of the following Riemann-Hilbert problem:

• The function

M(y, λ) =
{
M+(y, λ) Reλ ≥ 0
M−(y, λ) Reλ ≤ 0

is a sectionally meromorphic function of λ ∈ C.
• M = I +O

(
1
λ

)
as λ→∞, and

M−(y, λ) = M+(y, λ)J2(y, λ), λ ∈ iR,

where

J2(y, λ) =

(
1 − b2(−λ)

a2(λ) e−ω(λ)x

b2(λ)
a2(−λ)eω(λ)x 1

a2(λ)a2(−λ)

)
, λ ∈ iR.

• M satisfies appropriate residue conditions at the zeros of a2(λ).

Proof of propositions (3.1)-(3.3)

The proof of properties (i)-(iv) follows from the discussion in Section 2.2. In particular, property
(iii) follows from the asymptotic behaviour at λ→ 0, which can be derived by analysing equations
(2.2)-(2.3) (see [41]), and is given by

Ψ = Ψ0 +O (λ) , |λ| → 0, Ψ0(x, y) =

(
cos q(x,y)

2 i sin q(x,y)
2

i sin q(x,y)
2 cos q(x,y)

2

)
. (3.6)
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To prove (v), we note that the function Φ1(x, λ) given by (2.17) is the unique solution of the ODE

Φx +
Ω(λ)

2
σ̂3Φ = Q(x, L, λ)Φ(x, λ),

lim
x→∞

Φ(x, λ) = I.

Furthermore, Φ3(x, λ) given by (2.19) is the solution of the same ODE problem, with Q(x, L, λ)
replaced by Q(x, 0, λ).
Similarly, Φ2(y, λ) given by (2.18) is the unique solution of the ODE

Φy +
ω(λ)

2
σ̂3Φ = iQ(0, y,−λ)Φ(y, λ),

Φ(L, λ) = I.

The spectral analysis of the above ODEs yields the desired result.
Regarding the rigorous derivation of the above results, we note the following: If {q(x, L), qy(x, L)},
{q(x, 0), qy(x, 0)} and {q(y, 0), qx(y, 0)} are in L1, then the Volterra integral equations (3.1), (3.4)
and (3.5) respectively, have a unique solution, and hence the spectral functions {aj , bj}, j = 1, .., 3,
are well defined. Moreover, under the assumption (2.1) the spectral functions belong to H1(R) ,
hence the Riemann-Hilbert problems that determine the inverse maps can be characterized through
the solutions of a Fredholm integral equation, see [10, 50].
QED

3.2 The Riemann-Hilbert problem

Theorem 3.1 Suppose that a subset of the boundary values {q(x, L), qy(x, L)}, {q(x, 0), qy(x, 0)},
0 < x < ∞, and {q(y, 0), qx(y, 0)}, 0 < y < L, satisfying (2.1), are prescribed as boundary
conditions. Suppose that these prescribed boundary conditions are such that the global relations
(2.22) can be used to characterize the remaining boundary values.
Define the spectral functions {aj , bj}, j = 1, .., 3, by definitions (3.1)-(3.3). Assume that the
possible zeros {λj}N1

j=1 of a1(λ) and {ζj}N3
j=1 of a3(λ) are as in assumption 2.29.

Define M(x, y, λ) as the solution of the following 2× 2 matrix Riemann-Hilbert problem:

• The function M(x, y, λ) is a sectionally meromorphic function of λ away from R ∪ iR.

• The possible poles of the second column of M occur at λ = ζj, j = 1, ..., N3, in the first
quadrant and at λ = λj, j = 1, ..., N1, in the second quadrant of the complex λ plane.

The possible poles of the first column of M occur at λ = −λj (j = 1, ..., N1) and λ = −ζj
(j = 1, ..., N3).

The associated residue conditions satisfy the relations (2.32).

• M = I +O
(

1
λ

)
as λ→∞, and

M−(x, y, λ) = M+(x, y, λ)J(x, y, λ), λ ∈ R ∪ iR,

where M = M+ for λ in the first or third quadrant, and M = M− for λ in the second or
fourth quadrant of the complex λ plane, and J is defined in terms of {aj , bj} by equations
(2.26).
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Then M exists and is unique, provided that the H1 norm of of the spectral functions is sufficiently
small.

Define q(x, y) is terms of M(x, y, λ) by

qx − iqy = 2 lim
λ→∞

(λM)21, (3.7)

cos q(x, y) = 1 + 4i( lim
λ→∞

(λMx)11) + 2( lim
λ→∞

(λM)21)2. (3.8)

Then q(x, y) solves (1.1). Furthermore, q(x, y) evaluated at the boundary, yields the functions used
for the computation of the spectral functions.

Proof: Under the assumptions (2.1), the spectral functions are in H1.
In the case when a1(λ) and a3(λ) have no zeros, the Riemann-Hilbert problem is regular and it
is equivalent to a Fredholm integral equation. However, we have not been able to establish a
vanishing lemma, hence we require a small norm assumption for solvability.
If a1(λ) and a3(λ) have zeros, the singular RH problem can be mapped to a regular one coupled
with a system of algebraic equations [21]. Moreover, it follows from standard arguments, using
the dressing method [48, 49], that if M solves the above RH problem and q(x, y) is defined by
(3.7)-(3.8), then q(x, y) solves equation (1.1). The proof that q evaluated at the boundary yields
the functions used for the computation of the spectral functions follows arguments similar to the
ones used in [23].
QED

4 Linearizable boundary conditions

We now concentrate on the particular boundary conditions (1.3). We note that these boundary
conditions are symmetric with respect to the line y = L

2 . Hence, if q(x, y) is a solution, so is
q(x, L− y). Assuming that the solution is unique, we can conclude that

q(x, y) = q(x, L− y), 0 < x <∞, 0 < y < L. (4.1)

These boundary conditions are not compatible at the corners of the domain, and therefore introduce
a discontinuity at each corner. It turns out that these discontinuities imply that if q(x, y) is the
solution of the resulting boundary value problem, then the function qy(x, 0) = −qy(x, L) is not
integrable near x = 0. Similarly, qx(0, y) is not integrable near y = 0 and y = L. Hence we cannot
guarantee that the results of propositions 3.1-3.3 hold. In particular, the spectral functions as
given by (2.17)-(2.19) and the resulting Riemann-Hilbert problem are not well defined.
To overcome this lack of regularity, we will employ a gauge transformation to define a modified
Lax pair. This transformation is motivated by the recent analysis of the linearised problem [2],
which we summarize in Appendix A. For the linear case, it can be shown that the behaviour of the
boundary function qy(x, 0) as x→ 0 is given by qy(x, 0) ∼ 2d

πx . The contribution of this term can be
eliminated by an appropriate gauge transformation. The advantage of the new Lax pair we define
below by adapting the linear gauge transformation to the nonlinear setting, is that the spectral
functions and the Riemann-Hilbert problem are well defined, indicating that in the nonlinear case,
as in the linear, the singular behaviour introduced by the terms qy(x, 0) and qx(0, y) is eliminated.
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4.1 A new Lax pair

The linearised version of the elliptic sine-Gordon equation, namely the modified Helmholtz equa-
tion, with the boundary conditions (1.3), is discussed in Appendix A, where we show how, by
incorporating appropriately in the differential form associated with the linear equation the term

κ(x, y) = −1
4

∫ ∞
x

qy(ξ, y)dξ, (4.2)

the spectral problem is regularized.
Motivated by the linear analysis, we now introduce a new eigenfunction Φ via the gauge transfor-
mation

gΦ = Ψ, g(x, y) := eκ(x,y)σ1 =
(

coshκ(x, y) sinhκ(x, y)
sinhκ(x, y) coshκ(x, y)

)
, (4.3)

where Ψ denotes the solution of the Lax pair (2.2)-(2.3) and κ(x, y) is given by (4.2). Note that

κx(x, y) =
1
4
qy(x, y), κy(x, y) = −1

4

∫ ∞
x

sin q(ξ, y)dξ − 1
4
qx(x, y).

The transformation matrix g(x, y) has unit determinant, and is chosen to satisfy the property

g−1gx = gxg
−1 =

1
4

(
0 qy(x, y)

qy(x, y) 0

)
.

Let the function Φ satisfy the Lax pair

Φx +
Ω(λ)

2
[σ3,Φ] = V1(x, y, λ)Φ, (4.4)

Φy +
ω(λ)

2
[σ3,Φ] = V2(x, y, λ)Φ, (4.5)

with

V1(x, y, λ) = −g−1gx + g−1Q(x, y, λ)g − Ω(λ)
2

g−1[σ3, g] (4.6)

= i

(
cosh(2κ)λ2−λ2−cosh(2κ−iq)+1

4λ
sinh(2κ)λ2+qxλ−sinh(2κ−iq)

4λ
− sinh(2κ)λ2+qxλ+sinh(2κ−iq)

4λ
− cosh(2κ)λ2+λ2+cosh(2κ−iq)−1

4λ

)
,

V2(x, y, λ) = −g−1gy + g−1iQ(x, y,−λ)g − ω(λ)
2

g−1[σ3, g] (4.7)

=

(
− cosh(2κ)λ2−λ2+cosh(2κ−iq)−1

4λ − sinh(2κ)λ2−(
R∞
x

sin qdξ+iqy)λ+sinh(2κ−iq)
4λ

sinh(2κ)λ2+(
R∞
x

sin qdξ+iqy)λ+sinh(2κ−iq)
4λ

cosh(2κ)λ2−λ2+cosh(2κ−iq)−1
4λ

)
.

We now use the eigenfunctions determined by the Lax pair (4.4)-(4.5) to define new spectral
functions. Namely, in analogy with (2.17)-(2.19), we define

S1(λ) = ϕ1(0, λ), ϕ1(x, λ) = I −
∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2 V1(ξ, L, λ)ϕ1(ξ, λ)dξ,
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λ ∈ (C+,C−), 0 < x <∞, (4.8)

S2(λ) = ϕ2(0, λ), ϕ2(y, λ) = I −
∫ L

y

eω(λ)(η−y)
cσ3
2 V2(0, η, λ)ϕ2(η, λ)dη,

λ ∈ C, 0 < y < L, (4.9)

S3(λ) = ϕ3(0, λ), ϕ3(x, λ) = I −
∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2 V1(ξ, 0, λ)ϕ3(ξ, λ)dξ,

λ ∈ (C+,C−), 0 < x <∞. (4.10)

Note that V1 does not involve qy(x, y), and V2 does not involve qx(x, y), the terms respectively
responsible, at least in the linear case, for the non-integrable behaviour.
Note also that, since the symmetry relation (2.20) holds for V1, V2 in place of Q, we can represent
the matrices ϕi in the form

ϕ1 =
(
A1(x, λ) B1(x,−λ)
B1(x, λ) A1(x,−λ)

)
, ϕ2 =

(
A2(y, λ) B2(y,−λ)
B2(y, λ) A2(y,−λ)

)
,

ϕ3 =
(
A3(x, λ) B3(x,−λ)
B3(x, λ) A3(x,−λ)

)
, (4.11)

and set

Si(λ) =
(
ai(λ) bi(−λ)
bi(λ) ai(−λ)

)
, i = 1, 2, 3. (4.12)

The rest of the general construction of sections 2.3-3.2 is formally valid with the spectral functions
aj(λ), bj(λ), j = 1, 2, 3 as defined by (4.12), except for the statement (i)-(iii) and (v) of propositions
3.1-3.3.

Symmetry conditions

Given the boundary conditions (1.3), equations (4.8)-(4.10) are written explicitly as follows:

ϕ1(x, λ) = I − Ω(λ)
2

∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2

(
1− cosh 2κ − sinh 2κ

sinh 2κ cosh 2κ− 1

)
(ξ, L)ϕ1(ξ, λ)dξ,

0 < x <∞, λ ∈ (C+,C−), (4.13)

ϕ2(y, λ) = I −
∫ L

y

eω(λ)(η−y)
cσ3
2(

− cosh(2κ)λ2−λ2+cosh(2κ−id)−1
4λ

− sinh(2κ)λ2+λ
R∞
x

sin qdξ−sinh(2κ−id)

4λ
sinh(2κ)λ2+λ

R∞
x

sin qdξ+sinh(2κ−id)

4λ
cosh(2κ)λ2−λ2+cosh(2κ−id)−1

4λ

)
(0, η)ϕ2(η, λ)dη,

0 < y < L, λ ∈ C, (4.14)

ϕ3(x, λ) = I − Ω(λ)
2

∫ ∞
x

eΩ(λ)(ξ−x)
cσ3
2

(
1− cosh 2κ − sinh 2κ

sinh 2κ cosh 2κ− 1

)
(ξ, 0)ϕ3(ξ, λ)dξ,

0 < x <∞, λ ∈ (C+,C−). (4.15)
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Using that κ(x, 0) = −κ(x, L), we can immediately conclude that(
A1(x, λ)
B1(x, λ)

)
=
(

A3(x, λ)
−B3(x, λ)

)
=⇒ a1(λ) = a3(λ), b1(λ) = −b3(λ), (4.16)

where Ai, B1, ai, bi are as in (4.11)-(4.12).
In equations (4.13) and (4.15), the only dependence on λ is through Ω(λ). Thus, since Ω(− 1

λ ) =
Ω(λ), it follows that the vector functions (A1, B1) and (A3, B3) satisfy the same symmetry prop-
erties. Hence,

aj

(
− 1
λ

)
= aj(λ), bj

(
− 1
λ

)
= bj(λ), j = 1, 3, Im(λ) ≥ 0. (4.17)

It turns out that the vector function (A2, B2) also satisfies a certain symmetry condition, as stated
in the following proposition.

Proposition 4.1 Let qx(0, y) be a sufficiently smooth function. Then the vector solution of the
linear Volterra integral equation (4.14) satisfies the following symmetry conditions:

A2

(
y,

1
λ

)
=
A2(y, λ)− F (λ)B2(y, λ) + F (λ)eω(λ)(y−L)B2(y,−λ)− F (λ)2eω(λ)(y−L)A2(y,−λ)

1− F (λ)2
,

B2

(
y,

1
λ

)
=
B2(y, λ)− F (λ)A2(y, λ) + F (λ)eω(λ)(y−L)A2(y,−λ)− F (λ)2eω(λ)(y−L)B2(y,−λ)

1− F (λ)2
,

0 < y < L, λ ∈ C, (4.18)

where the function F (λ) is defined by

F (λ) = i
1− λ2

1 + λ2
tan

d

2
. (4.19)

Proof: Define a function φ2(y, λ) by

ϕ2(y, λ) = φ2(y, λ)e
ω(λ)

2 σ3(y−L) (4.20)

where ϕ2 is defined by (4.14). It follows that φ2 satisfies the ODE

(φ2)y = V φ2, (4.21)
φ2(L, λ) = I, 0 < y < L,

where

V (y, λ) = V2(0, y, λ)− ω(0, y, λ)
2

σ3. (4.22)

We seek a nonsingular matrix R(λ), independent of y, such that

V
(
y,

1
λ

)
= R(λ)V (y, λ)R(λ)−1. (4.23)
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It can be verified that such a matrix is given by

R(λ) =
(

1 −F (λ)
−F (λ) 1

)
, (4.24)

where F is defined by (4.19).
Replacing in equation (4.21) λ by 1

λ , and using (4.23), we find the following equation:(
R(λ)−1φ2

(
y,

1
λ

))
y

= V (y, λ)
(
R(λ)−1φ2

(
y,

1
λ

))
,

hence

R(λ)−1φ2

(
y,

1
λ

)
= φ2(y, λ)C(λ),

where C is a y-independent matrix. Using the second of equations (4.21), it follows that C = R−1,
and therefore

φ2

(
y,

1
λ

)
= R(λ)φ2(y, λ)R(λ)−1.

This equation and equation (4.20) imply

ϕ2

(
y,

1
λ

)
= R(λ)ϕ2(y, λ)

(
e−ω(λ)

cσ3
2 (y−L)R(λ)−1

)
. (4.25)

The first column vector of this equation implies (4.18).
QED

Remark 4.1 Recalling that a2(λ) = A2(0, λ), and b2(λ) = B2(0, λ), equations (4.18) immediately
imply the following important relations:

a2

(
1
λ

)
=
a2(λ)− F (λ)b2(λ) + F (λ)e−ω(λ)Lb2(−λ)− F (λ)2e−ω(λ)La2(−λ)

1− F (λ)2
,

b2

(
1
λ

)
=
b2(λ)− F (λ)a2(λ) + F (λ)e−ω(λ)La2(−λ)− F (λ)2e−ω(λ)Lb2(−λ)

1− F (λ)2
,

λ ∈ C \ {0}. (4.26)

In summary, the basic equations characterizing the spectral functions are:

(a) the symmetry relations (4.16), (4.17) and (4.26);

(b) the global relations (2.22);

(c) the conditions of unit determinant.

In the next lemma, we collect some important consequences of these conditions. For simplicity, we
will use the notations

f := f(λ), f̂ := f(−λ).
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Lemma 4.1 The spectral functions satisfy the following relations:

a3â3 − b3b̂3 = 1, λ ∈ R, (4.27)

â3b3 − a3b̂3 = G, λ ∈ R, (4.28)
b2 =

(
1 + e−ω(λ)L

)
â3b3, λ ∈ R, (4.29)

where the function G(λ) is defined by

G(λ) := F (λ) tanh
(Lω

2

)
= i tan

(d
2

)1− λ2

1 + λ2

eω(λ)L − 1
eω(λ)L + 1

. (4.30)

Proof: Equation (4.27) is just the condition of unit determinant.
Using the symmetry condition (4.16) to eliminate a1 and b1 from the global relations (2.22), we
find

a3[â2 − 1] = b̂2b3, λ ∈ R, (4.31a)
b3
[
e−ω(λ)L + a2

]
= a3b2, λ ∈ R. (4.31b)

The equations (4.31) together with the equations obtained by letting λ → −λ in (4.31) are four
equations which can be solved for the four functions {a2, b2, â2, b̂2} with the result that

a2 =
(
1 + e−ω(λ)L

)
a3â3 − e−ω(λ)L, λ ∈ R, (4.32a)

b2 =
(
1 + e−ω(λ)L

)
â3b3, λ ∈ R. (4.32b)

This proves (4.29).
Replacing λ by −1/λ in (4.31) and using the symmetry (4.17), we find

a3(λ)
[
a2

(
1
λ

)
− 1
]

= b2
(

1
λ

)
b3(λ), λ ∈ R, (4.33a)

b3(λ)
[
eω(λ)L + a2

(
− 1
λ

)]
= a3(λ)b2

(
− 1
λ

)
, λ ∈ R. (4.33b)

Consider the two equations (4.33) together with the two equations obtained by letting λ→ −λ in
(4.33). We can eliminate a2

(
± 1
λ

)
and b2

(
± 1
λ

)
from these four equations by using the symmetry

relations (4.26) as well as the symmetry relations obtained by letting λ → −λ in (4.26). The
resulting four equations can then be solved for the four functions {a2, b2, â2, b̂2} with the result
that

a2 =
(a3F + b3)(â3F − b̂3)e−Lω − (a3 − b3F )(â3 + b̂3F )

F 2 − 1
, (4.34a)

b2 =
(a3 + b3F )(â3F − b̂3)e−Lω − (a3 − b3F )(â3F + b̂3)

F 2 − 1
. (4.34b)

Comparing (4.32a) with (4.34a), we find (4.28). QED

The functions a3(λ) and b3(λ) are defined by (4.12) only for λ in the upper half-plane. However,
equation (4.29) implies that a3(λ) and b3(λ) can be analytically extended to the whole complex
plane. Indeed, equation (4.29) provides the analytic continuation of a3(λ) into C−:

a3(−λ) =
b2(λ)

b3(λ)[1 + e−ω(λ)L]
, λ ∈ C+. (4.35)
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Similarly, equation (4.29) with λ replaced with −λ provides the analytic continuation of b3(λ) into
C−:

b3(−λ) =
b2(−λ)

a3(λ)[1 + eω(λ)L]
, λ ∈ C+. (4.36)

Adopting these extended definitions of a3(λ) and b3(λ), analytic continuation implies that the
relations (4.27)-(4.29) and the global relations (4.31) are valid in the whole complex plane.

Proposition 4.2 The spectral functions satisfy the equations

a3â3 − b3b̂3 = 1, λ ∈ C, (4.37)

â3b3 − a3b̂3 = G, λ ∈ C, (4.38)
b2 =

(
1 + e−ω(λ)L

)
â3b3, λ ∈ C, (4.39)

as well as the global relations

a3[â2 − 1] = b̂2b3, λ ∈ C, (4.40a)
b3
[
e−ω(λ)L + a2

]
= a3b2, λ ∈ C, (4.40b)

where the known function G(λ) is given by (4.30).

5 Spectral theory in the linearisable case

In appendix A we give the solution of the linear case. In this case, the dependence on the unknown
spectral function B(λ) is resolved by mapping the basic Riemann-Hilbert problem to an equivalent
but simpler one. To define this mapping, in the linear case, it is convenient to employ the two
equations (A.19) and (A.20).
For the nonlinear problem, we will use the following equations, which provide the nonlinear ana-
logues of equations (A.19) and (A.20):

b3(λ)
a3(λ)h(λ)

− b3(−λ)
a3(λ)

=
G(λ)
h(λ)

, λ ∈ C, (5.1)

and
b2(λ)

a3(−λ)2
− (1 + e−ω(λ)L)

b3(−λ)
a3(−λ)h(−λ)

= (1 + e−ω(λ)L)
G(λ)
h(−λ)

, λ ∈ C, (5.2)

where the unknown function h(λ) is defined by

h(λ) = a3(λ)2 − b3(λ)2, λ ∈ C, (5.3)

and the known function G(λ) is defined by (4.30). Note that from the above properties it follows
that b3(−λ)

a3(λ) is well defined at the zeros of the function h(λ). Moreover, in the linear limit,

b3(λ)→ B3(λ), a3(λ)→ 1, h(λ)→ 1, tan
d

2
→ d

2
,

and equations (5.1) and (5.2) become equations (A.19) and (A.20).
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Equation (5.1) and (5.2) are a direct consequence of (4.37)-(4.39). Indeed,

a3(λ)G(λ) = a3(λ) [a3(−λ)b3(λ)− a3(λ)b3(−λ)]
= −a3(λ)2b3(−λ) + b3(λ) [1 + b3(λ)b3(−λ)]
= b3(λ)−

[
a3(λ)2 − b3(λ)2

]
b3(−λ),

which is equivalent to equation (5.1) (in the first and second equations above we have used equations
(4.38) and (4.37) respectively). Furthermore,

b2(λ)
a3(−λ)2

=
(

1 + e−ω(λ)L
) b3(λ)
a3(−λ)

=
(

1 + e−ω(λ)L
)[ b3(−λ)

a3(−λ)h(−λ)
− G(−λ)
h(−λ)

]
,

which, using G(−λ) = −G(λ), becomes equation (5.2) (in the first and second equations above we
have used the relation (4.39) and equation (5.1) with λ replaced by −λ).

The properties of the functions G(λ) and h(λ)

We give a summary of some of the properties of the function G(λ) given by (4.30) and of the
unknown function h given by (5.3).
The set of poles of G(λ), denoted by PG ⊂ C, is given by

PG = {λ| eω(λ)L + 1 = 0}

=
{
λn =

i

L

(
π(2n+ 1)±

√
L2 + (2n+ 1)2π2

)∣∣∣∣n ∈ Z
}
. (5.4)

Note that G(λ) has no poles at λ = ±i since the term eωL − 1 vanishes at these points.

Proposition 5.1 The following statements hold:

(a) G(λ) admits the symmetries G(λ) = −G(−λ) = −G(1/λ), λ ∈ C.

(b) G(λ) has essential singularities at ∞ and at 0 and a countable number of simple poles on the
imaginary axis accumulating at ±i∞ and at 0. G(λ) has no other singularities.

(c) Each of the functions 1 ± G(λ) has a countable number of zeros. All these zeros lie on the
imaginary axis and they accumulate only at ±i∞ and at 0.

(d) The set of zeros of the function 1−G(λ) is the disjoint union of the set of zeros of a3(λ)−b3(λ)
and the set of zeros of a3(−λ) + b3(−λ).

(e) The set of zeros of the function 1+G(λ) is the disjoint union of the set of zeros of a3(λ)+b3(λ)
and the set of zeros of a3(−λ) + b3(−λ).

(f) The set of zeros of the function 1 − G2(λ) is the disjoint union of the set of zeros of h(λ)
and the set of zeros of h(−λ).

(g) The function h(λ) has a double pole at each point in the set PG ∩ C−. The function h(−λ)
has a double pole at each point in the set PG ∩ C+. The functions h(λ) and h(−λ) do not
have any other poles.
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Figure 4: (a) The graph of G(λ) for λ on the imaginary axis when L = 10 and d = 1. (b)
The corresponding picture of the poles of G(λ) and the zeros of G(λ) ± 1. The poles and zeros
accumulate at the origin and at infinity.

Proof: The proof of (a) follows from the definition (4.30). The proof of (b) follows from the same
definition and from equation (5.4).
In order to prove (c), we note that the function G is purely real for λ ∈ iR:

G(iλI) = −1 + λ2
I

1− λ2
I

tan
(d

2

)
tan
(
L
λ2
I − 1
4λI

)
, λI ∈ R.

As λI increases from 0 to +∞, the argument Lλ
2
I−1
4λI

increases from −∞ to ∞. It follows that
each of the functions 1 + G(λ) and 1 − G(λ) has an infinite number of zeros on the imaginary
axis, see figure 4. More precisely, if ip1 and ip2 are two consecutive poles of G on the positive
imaginary axis, then, unless p1 < 1 < p2, there is exactly one zero of 1 − G(λ) and one zero of
1 + G(λ) belonging to the interval (ip1, ip2). If p1 < 1 < p2, then there are no zeros of 1 + G(λ)
in the interval (ip1, ip2) and there are two (counted with multiplicity) or no zeros of 1 − G(λ) in
this interval depending on whether G(i) = L

2 tan(d/2) is ≤ 1 or > 1. Since the poles of G(λ)
accumulate at 0 and at ±i∞, the same is true for the zeros of 1±G(λ). This proves (c).
Taking the sum and difference of (4.37) and (4.38) we find

(a3 ± b3)(â3 ∓ b̂3) = 1±G, λ ∈ C. (5.5)

It follows that
h(λ)h(−λ) = 1−G2(λ), λ ∈ C. (5.6)
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Equation (5.5) implies that either a3 − b3 or â3 + b̂3 vanishes whenever 1−G = 0. Since all zeros
of 1 − G are simple, the functions a3 − b3 and â3 + b̂3 cannot simultaneously vanish at one of
these zeros. In order to prove (d), it only remains to show that 1 − G vanishes whenever a3 − b3
or â3 + b̂3 does. Equation (5.5) suggests that this is true; however, it is conceivable that a zero
(pole) of a3 − b3 could coincide with a pole (zero) of â3 + b̂3 in such a way that the product
(a3 − b3)(â3 + b̂3) = 1−G remains nonzero. We show now that this cannot occur.
Suppose λ0 is a zero of a3(λ) − b3(λ). The unit determinant condition (4.37) implies that a3(λ)
and b3(λ) cannot simultaneously vanish. Thus,

a3(λ0) = b3(λ0) 6= 0.

The global relations (4.40) yield

a2(−λ0)− 1 = b2(−λ0), e−ω(λ0)L + a2(λ0) = b2(λ0). (5.7)

Using these equations to eliminate b2(λ) and b2(−λ) from the determinant condition

a2(λ0)a2(−λ0)− b2(λ0)b2(−λ0) = 1,

we find

a2(λ0)− e−ω(λ0)La2(−λ0) = 1− e−ω(λ0)L. (5.8)

If λ0 is a zero of a3(λ)− b3(λ), then, by (4.17), so is −1/λ0, and hence we also have

a2

(
− 1
λ0

)
− eω(λ0)La2

( 1
λ0

)
= 1− eω(λ0)L. (5.9)

On the other hand, the symmetry condition (4.26) for a2(λ) implies that

a2

( 1
λ

)
+ e−ω(λ)La2

(
− 1
λ

)
= a2(λ) + e−ω(λ)La2(−λ), λ ∈ C. (5.10)

Indeed, if we use (4.26) to eliminate a2(±1/λ) from the left-hand side of (5.10) and then simplify,
we find the right-hand side of (5.10). Evaluating (5.10) at λ = λ0 and using (5.8) and (5.9) to
eliminate a2(−1/λ0) and a2(−λ0) from the resulting equation, we find

a2(λ0) = a2

( 1
λ0

)
. (5.11)

In view of (5.7), (5.8), and (5.11), the symmetry equation (4.26) for a2(λ) evaluated at λ = λ0

reduces to
0 = −1− e−ω(λ0)L + F (λ0)(1− e−ω(λ0)L), i.e. G(λ0) = 1.

This shows that 1 − G(λ) = 0 whenever a3(λ) − b3(λ) = 0. A similar argument shows that
1−G(λ) = 0 also whenever a3(−λ) + b3(−λ) = 0. This proves (d). The proof of (e) is similar.
The statement (f) follows from (d) and (e) since h = (a3 − b3)(a3 + b3).
Since h(λ) is analytic in C+ and h(λ) does not vanish at any point λ ∈ PG by (f), equation (5.6)
implies that h(−λ) has a double pole at each point in the set PG ∩ C+. This proves (g). QED
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5.1 An equivalent Riemann-Hilbert problem

Using the relations (4.16) and (4.32a), the jump matrices (2.26) become

J0(x, y, λ) =

 1 + b3(λ)b3(−λ)
a3(λ)a3(−λ)e−ω(λ)L b3(−λ)

a3(λ) e−θ(x,y,λ)

b3(λ)
a3(−λ)e−ω(λ)Leθ(x,y,λ) 1

 ,

Jπ/2(x, y, λ) =

 1 b2(−λ)
a3(λ)2 e−θ(x,y,λ)

0 1

 , J3π/2(x, y, λ) =

 1 0

b2(λ)
a3(−λ)2 eθ(x,y,λ) 1

 ,

and
Jπ = J3π/2(J0)−1Jπ/2, eθ(x,y,λ) = eΩ(λ)x+ω(λ)y. (5.12)

Let M(x, y, λ) be defined by (2.24) with Ψj replaced with Φj , j = 1, 2, 3. Let Dj denote the jth
quadrant of the complex plane,

Dj =
{
λ ∈ C

∣∣∣(j − 1)
π

2
< arg(λ) < j

π

2

}
, j = 1, ..., 4,

and let Mj denote the restriction of M to Dj .
The jump matrices (5.12) involve the unknown spectral functions b2(λ), a3(λ), and b3(λ). We there-
fore seek matrices Aj(x, y, λ), j = 1, ..., 4, defined for λ ∈ Dj , such that the functions {M̃j(x, y, λ)}41
by

M̃j(x, y, λ) = Mj(x, y, λ)Aj(x, y, λ), λ ∈ Dj , j = 1, ..., 4, (5.13)

satisfy a modified Riemann-Hilbert problem whose jump matrices involve only known functions.
We would like Aj to be bounded and analytic (or at least meromorphic) for λ ∈ Dj .
The requirement that Aj is bounded in the j-th quadrant implies that A1 and A2 are upper
triangular, while A3 and A4 are lower triangular. The requirement that Aj has unit determinant
implies that the diagonal elements of Aj are dj and 1

dj
. The (2, 2) components of equations (5.18)

imply that
d1 = d2 = d3 = d4.

On the other hand, the four exponential factors

e−θ(x,y,λ), e−θ(x,y,λ)eω(λ)L, eθ(x,y,λ), eθ(x,y,λ)e−ω(λ)L (5.14)

are bounded in the first, second, third and fourth quadrant of the complex λ-plane, respectively.
This suggests choosing the matrices Aj in the following form:

A1 =

 1 α1(λ)e−θ(x,y,λ)

0 1

 , λ ∈ D1, (5.15a)

A2 =

 1 α2(λ)eω(λ)Le−θ(x,y,λ)

0 1

 , λ ∈ D2, (5.15b)
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A3 =

 1 0

α3(λ)eθ(x,y,λ) 1

 , λ ∈ D3, (5.15c)

A4 =

 1 0

α4(λ)e−ω(λ)Leθ(x,y,λ) 1

 , λ ∈ D4. (5.15d)

where αj(λ), j = 1, ..., 4, is a scalar valued function of λ ∈ Dj .
Substituting (5.13) into the jump relations

M4 = M1J
0, M2 = M1J

π/2, M4 = M3J
3π/2, (5.16)

we find the equations

M̃4 = M̃1J̃
0, M̃2 = M̃1J̃

π/2, M̃4 = M̃3J̃
3π/2, (5.17)

provided that the matrices J̃0, J̃π/2, J̃3π/2 satisfy the following equations:

J0A4 = A1J̃
0, Jπ/2A2 = A1J̃

π/2, J3π/2A4 = A3J̃
3π/2. (5.18)

We analyse the first of equations (5.18). The (2, 2) element of this equation is satisfied identically
and the (1, 1) element is a consequence of the (1, 2) and (2, 1) elements, as well as of the requirement
that all matrices in (5.18) have unit determinant. Denoting the (1, 2) and (2, 1) components of J̃0

by e−θ(x,y,λ)Ũ0(λ) and eθ(x,y,λ)e−ω(λ)LṼ 0(λ) respectively, we find that the (1, 2) and (2, 1) elements
of the first of equations (5.18) yield

b3(−λ)
a3(λ)

− α1(λ) = Ũ0(λ) (5.19)

and
b3(λ)
a3(−λ)

+ α4(λ) = Ṽ 0(λ). (5.20)

Comparing equation (5.19) with the identity (5.1) we find that a simple choice for the function α1

(and hence for Ũ0) is α1(λ) = b3(λ)
a3(λ)h(λ) and Ũ0(λ) = −G(λ)

h(λ) . Note that these functions are well
defined on R since h does not have any real zero. However, with these choices the functions α1(λ)
and Ũ0(λ) have (i) poles at the (unknown) zeros of h(λ) along the imaginary axis and (ii) poles at
the (known) poles of G(λ) along the imaginary axis. To ensure that the poles in (i) are removable
singularities we define a function G̃(λ) as follows:

G̃(λ) = G(λ)(h(λ) + 1). (5.21)

This function takes value 1 and −1 exactly where G(λ) does. Indeed, if h(λ) = 0, then a3(λ) =
±b3(λ) and correspondingly, in view of (5.5), G(λ) = G̃(λ) = ±1.
The above discussion suggests that a suitable choice for the functions α1(λ) and Ũ0(λ) is

α1(λ) =
b3(λ)

a3(λ)h(λ)
− G̃(λ)
h(λ)

, Ũ0(λ) = −G(λ)− G̃(λ)
h(λ)

= G(λ). (5.22)
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Similarly, equation (5.20) suggests

α4(λ) = − b3(−λ)
a3(−λ)h(−λ)

+
G̃(−λ)
h(−λ)

, Ṽ 0(λ) = −G(−λ)− G̃(−λ)
h(−λ)

= −G(λ). (5.23)

We next analyse the second of equations (5.18). The (1, 2) element of this equation yields

α2(λ)eω(λ)L +
b2(−λ)
a3(λ)2

=
b3(λ)

a3(λ)h(λ)
− G̃(λ)
h(λ)

+ Ũπ/2(λ),

where Ũπ/2(λ)e−θ(x,y,λ) denotes the (1, 2) component of J̃π/2. Using the identity (5.2), we find

α2eω(λ)L + eω(λ)L b3(λ)
a3(λ)h(λ)

− (1 + eω(λ)L)
G(λ)
h(λ)

+
G̃(λ)
h(λ)

= Ũπ/2(λ).

This suggests that we define

α2(λ) = − b3(λ)
a3(λ)h(λ)

+
G̃(λ)
h(λ)

, Ũπ/2(λ) = (1 + eω(λ)L)G(λ). (5.24)

A similar analysis of the third of equations (5.18) yields

α3(λ) =
b3(−λ)

a3(−λ)h(−λ)
− G̃(−λ)
h(−λ)

, Ṽ 3π/2(λ) = (1 + e−ω(λ)L)G(−λ), (5.25)

where V 3π/2(λ)eθ(x,y,λ) denotes the (2, 1) component of J̃
3π
2 . Note that the relations α2(λ) =

α4(−λ) and α3(λ) = α1(−λ) are consistent with the symmetry (2.20).
We define the matrices Aj , j = 1, . . . , 4, by equations (5.15) and (5.22)-(5.25). Henceforth, we
assume that (x, y) lies in the interior of the semistrip (1.2) so that x > 0 and 0 < y < L. Then
the jth exponential factor in (5.14) has exponential decay as λ→∞ and λ→ 0 for λ ∈ Īj . Thus,
although the analysis of the linear problem suggests that the spectral functions aj(λ), bj(λ) could
have some minor growth as λ → ∞ and λ → 0 caused by the jumps in the boundary data at
the corners of the semistrip (in the linear case this growth is logarithmic, see Appendix A), this
ensures that the Aj ’s are bounded as λ→∞ and as λ→ 0 in the corresponding domains Dj .
In fact, since the Aj ’s have removable singularities at the zeros of the function h(λ) along the
imaginary axis, the only remaining difficulty is that the Aj ’s have singularities at the known poles
of G(λ). To deal with these singularities, we add small indentations to the jump contour along the
imaginary axis so that it passes to the right of the poles of G. Thus, instead of the four quadrants
Dj of the complex plane, we consider the deformed domains D̃j defined in such a way that all
λ ∈ PG ∩ C+ lie in D̃1 and all λ ∈ PG ∩ C− lie in D̃3, see Figure 5.
We next determine the residue conditions at these poles. Let λ∗ ∈ PG ∩C+ be a pole of α1 in D̃1.
In what follows, we use the notation M(x, y, λ) = ([M(x, y, λ)]1, [M(x, y, λ)]2) to denote the first
and second column vector of a given matrix M(x, y, λ). Then the relation M̃1 = M1A1 implies
that

[M̃1(x, y, λ)]1 = [M1(x, y, λ)]1, [M̃1(x, y, λ)]2 = α1(λ)e−θ(x,y,λ)[M1(x, y, λ)]1 + [M1(x, y, λ)]2.
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J̃0J̃π

J̃π/2

J̃3π/2

Figure 5: The contour for the modified Riemann-Hilbert problem satisfied by M̃ . The contour has
small indentations bypassing the poles of G(λ).

Taking the residue of the second of these equations at λ∗, we find

Res
λ∗

[M̃1(x, y, λ)]2 =
(

Res
λ∗

α1

)
e−θ(x,y,λ

∗)[M1(x, y, λ∗)]1

= −
(

Res
λ∗

G
)(

1 +
1

h(λ∗)

)
e−θ(x,y,λ

∗)[M̃1(x, y, λ∗)]1,

where the residue of G(λ) at λ∗ is known from the definition (4.30) whereas the number h(λ∗)
remains unknown.
Similarly, the relation M̃3 = M3A3 implies that

[M̃3(x, y, λ)]1 = [M3(x, y, λ)]1 + α3(λ)eθ(x,y,λ)[M3(x, y, λ)]2, [M̃3(x, y, λ)]2 = [M3(x, y, λ)]2.

Taking the residue of the first of these equations at λ∗ ∈ PG ∩ C−, we find

Res
λ∗

[M̃3(x, y, λ)]1 =
(

Res
λ∗

α3

)
eθ(x,y,λ

∗)[M3(x, y, λ∗)]2

=
(

Res
λ∗

G
)(

1 +
1

h(−λ∗)

)
eθ(x,y,λ

∗)[M̃3(x, y, λ∗)]2,

In summary, we have derived the following result.

Theorem 5.1 The RH problem defined in theorem 3.1 and characterized by the jump matrices
{Jπ/2, J3π/2, J0, Jπ} defined in equation (5.12), can be mapped to a new RH problem with the
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following jump matrices:

J̃π/2(x, y, λ) =

 1 (1 + eω(λ)L)G(λ)e−θ(x,y,λ)

0 1

 ,

J̃3π/2(x, y, λ) =

 1 0

−(1 + e−ω(λ)L)G(λ)eθ(x,y,λ) 1

 ,

J̃0(x, y, λ) =

 1−G2(λ)e−ω(λ)L G(λ)e−θ(x,y,λ)

−G(λ)e−ω(λ)Leθ(x,y,λ) 1

 , (5.26)

where the known function G(λ) is defined in (4.30). This is achieved by using the matrices (5.15),
with

α1(λ) =
b3(λ)

a3(λ)h(λ)
− G̃(λ)
h(λ)

, α2(λ) = − b3(λ)
a3(λ)h(λ)

+
G̃(λ)
h(λ)

,

α3(λ) = α1(−λ), α4(λ) = α2(−λ). (5.27)

where the functions h(λ) and G̃(λ) are defined by (5.3) and (5.21) respectively. The solution M̃ of
the new RH problem is a sectionally meromorphic function with simple poles at each point in the
set PG given in (5.4). At these points the following residue conditions are valid:

Res
λ∗

[M̃(x, y, λ)]2 = −
(

Res
λ∗

G
)(

1 +
1

h(λ∗)

)
e−θ(x,y,λ

∗)[M̃(x, y, λ∗)]1, λ∗ ∈ PG ∩ C+, (5.28)

Res
λ∗

[M̃(x, y, λ)]1 =
(

Res
λ∗

G
)(

1 +
1

h(−λ∗)

)
eθ(x,y,λ

∗)[M̃(x, y, λ∗)]2, λ∗ ∈ PG ∩ C−. (5.29)

The solution q(x, y), x > 0, 0 < y < L, of the boundary value problem determined by the boundary
conditions (1.3) is given by

(qx − iqy)(x, y) = 2 lim
λ→∞

λ(M̃)12, (5.30)

cos q(x, y) = 1 + 4i( lim
λ→∞

λ(M̃11)x + 2 lim
λ→∞

λ(M̃)12)2. (5.31)

Proof: We only need to show how to represent the solution q(x, y) of the boundary value problem
in terms of the solution of the RH problem characterised by the jump matrices given by (5.26).
Recall that if M(x, y, λ) denotes the solution of the RH problem defined in theorem 3.1 then
q(x, y) is defined in terms of M by equations (3.7)-(3.8). Using M̃j = AjMj in the j-th quadrant,
j = 1, ..., 4, by choosing λ in the first quadrant we obtain

(qx − iqy)(x, y) = 2 lim
λ→∞

λ(M̃)12,

cos q(x, y) = 1 + 4i
(

lim
λ→∞

λ
[
M̃11 − α1(λ)e−θ(x,y,λ)(M̃)21

]
x

+ 2 lim
λ→∞

λ(M̃)12

)2

.

Since e−θ(x,y,λ) decays exponentially as λ → ∞ in the first quadrant, the term involving the
unknown coefficient α1 does not contribute to the limit and we find (5.30)-(5.31).
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6 Conclusions and open problems

We have analyzed the elliptic sine-Gordon equation in a semistrip for general boundary data
(sections 2 and 3) and in the particular case of a linearisable boundary value problem (sections
4 and 5). The linearizable problem has the novelty that the function qy(x, 0) possesses a non-
integrable singularity as x → 0 while the function qx(0, y) possesses a non-integrable singularity
as y → 0. Motivated by the recent solution of an analogous problem for the modified Helmholtz
equation presented in [2], we have been able to bypass this problem by employing a suitable gauge
transformation. Furthermore, we have shown that the RH problem characterizing the solution
q(x, y) can be mapped to a modified RH problem whose “jump matrix” is determined only by the
width L of the semistrip and the given constant value d of the boundary condition prescribed at
x = 0 (see theorem 5.1). However, the modified RH problem also includes residue conditions at
the points λ ∈ PG, where the set PG consists of a countable number of points on the imaginary
axis. The formulation of these residue conditions requires the knowledge of h(λ) for λ ∈ PG, where
h(λ) is an unknown meromorphic function defined in terms of the spectral functions. It remains
an open problem to characterize the values of h(λ) for λ ∈ PG in terms of L and d alone; progress
in this direction is likely to rely on the analyticity properties of h(λ) as well as on relations derived
from the symmetry properties of the spectral functions, such as the relation (5.6), and the known
structure of the poles of h.
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A The modified Helmholtz equation

The basic differential form associated with the modified Helmholtz equation

∂2u(x, y)
∂x2

+
∂2u(x, y)
∂y2

− u(x, y) = 0,

is given by

WB(x, y, λ) =
e−Ω(λ)x−ω(λ)y

4

[
i

(
ux − iuy −

iu

λ

)
dx−

(
ux − iuy +

iu

λ

)
dy

]
,

where Ω(λ) and ω(λ) are defined in (2.4). Indeed, it can be verified that

dWB = −e−Ω(λ)x−ω(λ)y

4
[uxx + uyy − u] dx ∧ dy.

Suppose that uy(x, y) has non-integrable singularities at (0, 0) and (0, L). In order to eliminate
these singularities we consider the differential form

W (x, y, λ) = WB(x, y, λ)− d
(

e−Ω(λ)x−ω(λ)yκ(x, y, λ)
)
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Figure 6: The contours of integration used to define Φj(x, y, λ), j = 1, 3, 4.

and choose κ in such a way that the term uy cancels. Noting that

W =
e−Ωx−ωy

4

{
[iux + uy +

u

λ
− 4κx + 4Ωκ]dx− [ux − iuy + i

u

λ
+ 4κy − 4ωκ]dy

}
(A.1)

we choose κ as in (4.2):

κ(x, y, λ) = −1
4

∫ ∞
x

uy(ξ, y)dξ.

Then

W =
e−Ωx−ωy

4

{
[iux +

u

λ
− Ω

∫ ∞
x

uy(ξ, y)dξ]dx+ [iuy − i
u

λ
+
∫ ∞
x

u(ξ, y)dξ − ω
∫ ∞
x

uy(ξ, y)dξ]dy
}

(A.2)
where we have used

κy = −1
4

∫ ∞
x

uyy(ξ, y)dξ = −1
4

(∫ ∞
x

u(ξ, y)dξ + ux(x, y)
)
.

We define Φj(x, y, λ), j = 1, 3, 4, as the solutions of the equation

d
(
Φje−Ωx−ωy) = W, j = 1, 3, 4, (A.3)

with
Φ1(∞, y, λ) = 0, Φ3(0, 0, λ) = 0, Φ4(0, L, λ) = 0, (A.4)

see Figure 6.
The difference of any two of the above functions equals eΩx+ωyρ(λ), where ρ(λ) can be computed
by evaluating the difference at any convenient point (x, y). Hence

Φ4(x, y, λ)− Φ1(x, y, λ) = −eΩx+ωye−ωLB1(λ), λ ∈ C+,

Φ4(x, y, λ)− Φ3(x, y, λ) = eΩx+ωyB2(λ), λ ∈ C, (A.5)
Φ1(x, y, λ)− Φ3(x, y, λ) = eΩx+ωyB3(λ), λ ∈ C+,

where
B1(λ) = Φ1(0, L, λ), B2(λ) = Φ4(0, 0, λ), B3(λ) = Φ1(0, 0, λ), (A.6)
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and the above choice for the domains of validity with respect to λ in equations (A.5) will be justified
below.
Equations (A.3) and the first of equations (A.4) imply that

Φ1(x, y, λ) = −1
4

∫ ∞
x

eΩ(x−ξ)
[
iuξ +

u

λ
− Ω

∫ ∞
ξ

uy(ξ′, y)dξ′
]
dξ, λ ∈ C+. (A.7)

Hence the first and the third of equations (A.6) imply that

B3(λ) = −1
4

∫ ∞
0

e−Ωξ

[
iuξ(ξ, 0) +

u(ξ, 0)
λ

− Ω
∫ ∞
ξ

uy(ξ′, 0)dξ′
]
dξ, λ ∈ C+, (A.8)

B1(λ) = −1
4

∫ ∞
0

e−Ωξ

[
iuξ(ξ, L) +

u(ξ, L)
λ

− Ω
∫ ∞
ξ

uy(ξ′, L)dξ′
]
dξ, λ ∈ C+. (A.9)

In order to compute Φ4(0, 0, λ) we compute Φ4 along the y-axis from (0, L) to (0, 0):

Φ4(0, 0, λ) =
1
4

∫ 0

L

e−ωη
[
iuη(0, η)− iu(0, η)

λ
+
∫ ∞

0

u(ξ, η)dξ − ω
∫ ∞

0

uη(ξ, η)dξ
]
dη. (A.10)

The last integral of this equation is given by

ω

4

∫ L

0

e−ωη
[
∂η

∫ ∞
0

u(ξ, η)dξ
]
dη =

ω

4

[
e−ωL

∫ ∞
0

u(ξ, L)dξ −
∫ ∞

0

u(ξ, 0)dξ
]

+
ω2

4

∫ L

0

e−ωη
(∫ ∞

0

u(ξ, η)dξ
)
dη.

Hence, using this equation, as well as the identity Ω2 + ω2 = 1, equation (A.10) together with the
second of equations (A.6) yields

B2(λ) =
1
4

∫ L

0

e−ωη
[
−iuη(0, η) +

iu(0, η)
λ

− Ω2

∫ ∞
0

u(ξ, η)dξ
]
dη

+
ω

4

[
e−ωL

∫ ∞
0

u(ξ, L)dξ −
∫ ∞

0

u(ξ, 0)dξ
]
, λ ∈ C. (A.11)

Subtracting the second of equations (A.5) from the sum of the other two equations in (A.5) we
find the global relation

e−ω(λ)LB1(λ)−B3(λ) +B2(λ) = 0, λ ∈ C+. (A.12)

A.1 Example

Let
u(x, 0) = u(x, L) = 0, 0 < x <∞; u(0, y) = d, 0 < y < L.

The expressions in (A.8) and (A.11) simplify as follows:

B3(λ) = Ω(λ)
∫ ∞

0

e−Ω(λ)ξf3(ξ)dξ, f3(ξ) =
1
4

∫ ∞
ξ

uy(ξ′, 0)dξ′, λ ∈ C+, (A.13)
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B2(λ) =
id(1− e−ω(λ)L)

2(1 + λ2)
− Ω2

∫ L

0

e−ω(λ)ηf2(η)dη, f2(η) =
1
4

∫ ∞
0

u(ξ, η)dξ, λ ∈ C. (A.14)

Note that ω(±i) = 0, thus the first term of the right hand side of equation (A.14) has removable
singularities at ±i.
The overall symmetry u(x, y) = u(x, L− y) implies

B1(λ) = −B3(λ), λ ∈ C+. (A.15)

Thus the global relation (A.12) becomes

B2(λ) = (1 + e−ω(λ)L)B3(λ), λ ∈ C+. (A.16)

The only dependence of B3 on λ is through Ω(λ), which remains invariant under the transformation
λ→ − 1

λ , thus

B3(λ) = B3

(
− 1
λ

)
, λ ∈ C+. (A.17)

The second term of the right hand side of the first of equations (A.14) involves Ω2(λ) and ω(λ),
which are invariant under the transformation λ→ 1

λ . Thus we find

B2(λ)− id(1− e−ω(λ)L)
2(1 + λ2)

= B2

( 1
λ

)
− idλ2(1− e−ω(λ)L)

2(1 + λ2)
,

therefore

B2

( 1
λ

)
= B2(λ)− id

2
1− λ2

1 + λ2
(1− e−ω(λ)L), λ ∈ C. (A.18)

In summary, taking into account that B1 = −B3, it follows that the modified Helmholtz equation
in the semistrip, with the boundary conditions (1.3), involves the two unknown spectral functions
B3(λ) and B2(λ), defined in terms of the two unknown functions f2(λ) and f3(λ) by equations
(A.13) and (A.14). These two spectral functions satisfy the global relation (A.16) as well as the
symmetry relations (A.17) and (A.18).
In what follows, we will show that the unknown functions B2 and B3 yields a zero contribution
to the representation of the solution u(x, y). In order to prove this fact, we need the following
identities, which are a consequence of equations (A.16)-(A.18):

B3(λ)−B3(−λ) = G1(λ), G1(λ) =
id

2
1− λ2

1 + λ2

eω(λ)L − 1
eω(λ)L + 1

, λ ∈ R, (A.19)

B2(λ)− (1 + e−ω(λ)L)B3(−λ) = G2(λ), G2(λ) =
id

2
1− λ2

1 + λ2
(1− e−ω(λ)L), λ ∈ C−. (A.20)

Indeed, letting λ→ 1
λ in the global relation (A.16) we find

B2

( 1
λ

)
= (1 + e−ω(λ)L)B3

( 1
λ

)
, λ ∈ C−.

Using in the above equation the symmetry relation (A.17) with λ→ −λ, as well as the symmetry
relation (A.18), we find equation (A.20). Subtracting equation (A.20) from the global relation
(A.16) we find equation (A.19). The functions G1(λ), G2(λ) have removable singularities at λ = ±i.
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Figure 7: The contour for the Riemann-Hilbert problem.

The functions Φj(x, y, λ), j = 1, 3, 4, define a Riemann-Hilbert problem with jumps on the real
and negative imaginary axis, see figure 7.
In order to map this Riemann-Hilbert problem to a problem with known jump conditions, we
introduce the functions Φ̃j(x, y, λ), j = 1, 3, 4, through the following equations:

Φ1 = Φ̃1, λ ∈ C+,

Φ3 = Φ̃3 − eθ(x,y,λ)B3(−λ), π ≤ arg(λ) ≤ 3π
2
, (A.21)

Φ4 = Φ̃4 + eθ(x,y,λ)e−ω(λ)LB3(−λ),
3π
2
≤ arg(λ) ≤ 2π.

It is shown in remark A.1 at the end of this appendix that the function B3(λ) has a logarithmic sin-
gularity as λ→ 0 and λ→∞. In particular, assuming that (x, y) lies in the interior of the semistrip
(1.2) so that x > 0 and 0 < y < L, it follows that eθ(x,y,λ)B3(−λ) and eθ(x,y,λ)e−ω(λ)LB3(−λ) are
bounded and analytic for λ in the third and fourth quadrant of the λ plane, respectively.
Using the definitions (A.21) in equation (A.5), we find

Φ̃4(x, y, λ)− Φ̃1(x, y, λ) = eθ(x,y,λ)e−ω(λ)L(B3(λ)−B3(−λ)), λ ∈ R+, (A.22)
Φ̃4(x, y, λ)− Φ̃3(x, y, λ) = eθ(x,y,λ)(B2(λ)− (1 + e−ω(λ)L)B3(−λ)), λ ∈ −iR+,

Φ̃1(x, y, λ)− Φ̃3(x, y, λ) = eθ(x,y,λ)(B3(λ)−B3(−λ)), λ ∈ R−.

Equations (A.19) and (A.20) imply that the jump conditions appearing in (A.22) can be expressed
in terms of the known functions G1 and G2.
Equation (A.3) implies that the function Φ satisfies the equation

Φx − ΩΦ =
1
4

[
iux +

u

λ
− Ω

∫ ∞
x

uy(ξ, y)dξ
]
. (A.23)

This equation suggests that

Φ1(x, y, λ) =
1
4

∫ ∞
x

uy(ξ, y)dξ +O

(
1
λ

)
, λ→∞. (A.24)
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This estimate can be verified using equation (A.7) and integration by parts. The first of equations
(A.21) shows that Φ̃1 satisfies the same estimate (A.24). Solving the Riemann-Hilbert problem
with the jump conditions (A.22) and the estimate (A.24) (for Φ̃1) we find

Φ̃(x, y, λ) =
1
4

∫ ∞
x

uy(ξ, y)dξ +
1

2πi

[∫ 0

−∞
eΩ(λ′)x+ω(λ′)yG1(λ′)

dλ′

λ′ − λ

+
∫ 0

∞
eΩ(λ′)x+ω(λ′)(y−L)G1(λ′)

dλ′

λ′ − λ
+
∫ −i∞

0

eΩ(λ′)x+ω(λ′)yG2(λ′)
dλ′

λ′ − λ

]
, λ ∈ C, λ /∈ R ∪ iR.

(A.25)
Hence taking the limit of this equation as λ→ 0 we find

lim
λ→0

[
Φ̃(x, y, λ)− 1

4

∫ ∞
x

uy(ξ, y)dξ
]

=
1

2πi

[∫ 0

−∞
eΩ(λ)x+ω(λ)yG1(λ)

dλ

λ

+
∫ 0

∞
eΩ(λ)x+ω(λ)(y−L)G1(λ)

dλ

λ
+
∫ −i∞

0

eΩ(λ)x+ω(λ)yG2(λ)
dλ

λ

]
. (A.26)

On the other hand, equation (A.23) implies that

u(x, y) = −2i lim
λ→0

[
Φ(x, y, λ)− 1

4

∫ ∞
x

uy(ξ, y)dξ
]
.

Noting that Φ = Φ̃ for λ ∈ C+, we find

u(x, y) = − 1
π

[∫ 0

−∞
eΩ(λ)x+ω(λ)yG1(λ)

dλ

λ
+
∫ 0

∞
eΩ(λ)x+ω(λ)(y−L)G1(λ)

dλ

λ
+

+
∫ −i∞

0

eΩ(λ)x+ω(λ)yG2(λ)
dλ

λ

]
. (A.27)

In summary, the solution of the BVP obtained by taking the linear limit of (1.1) and (1.3) is given
by equation (A.27) where G1 and G2 are defined by (A.19) and (A.20).
In what follows we verify that the function u(x, y) defined by (A.27) satisfies the given boundary
conditions.

u(x,0) = 0

Evaluating equation (A.27) at y = 0 we find

u(x, 0) = − 1
π

[∫ 0

−∞
eΩ(λ)xG1(λ)

dλ

λ
+
∫ 0

∞
eΩ(λ)xe−ω(λ)LG1(λ)

dλ

λ
+
∫ −i∞

0

eΩ(λ)xG2(λ)
dλ

λ

]
.

(A.28)
The integrands of the second and third integrals of the right hand side of (A.28) are bounded and
analytic in the fourth quadrant of the complex λ plane. In order to map the first integral to an
integral whose integrand is also bounded and analytic n the fourth quadrant, we replace in the
first integral λ by − 1

λ : ∫ 0

−∞
eΩ(λ)xG1(λ)

dλ

λ
= −

∫ ∞
0

eΩ(λ)xG1(λ)
dλ

λ
.
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Then combining this term with the second integral we find an integral involving

(1 + e−ω(λ)L)G1 = e−ω(λ)L(1 + eω(λ)L)G1.

Hence (A.28) becomes

u(x, 0) = − id
2π

[∫ 0

∞
+
∫ −i∞

0

]
eΩ(λ)x 1− λ2

1 + λ2
(1− e−ω(λ)L)

dλ

λ
.

By Jordan’s lemma, the right hand side of this equation vanishes (λ = −i is a removable singularity)
and hence u(x, 0) = 0.

u(x,L) = 0

Evaluating equation (A.27) at y = L, we find

u(x, L) = − 1
π

[∫ 0

−∞
eΩ(λ)xeω(λ)LG1(λ)

dλ

λ
+
∫ 0

∞
eΩ(λ)xG1(λ)

dλ

λ
+
∫ −i∞

0

eΩ(λ)xeω(λ)LG2(λ)
dλ

λ

]
.

(A.29)
The integrands of the first and third integrals of the right hand side of (A.29) are bounded and
analytic in the third quadrant of the complex λ plane. In order to map the second integral to
an integral whose integrand is also bounded and analytic in the third quadrant, we replace in the
second integral λ by − 1

λ : ∫ 0

∞
eΩ(λ)xG1(λ)

dλ

λ
=
∫ 0

−∞
eΩ(λ)xG1(λ)

dλ

λ
.

Then combining this term with the first integral we find an integral involving (1+eω(λ)L)G1. Hence
(A.29) becomes

u(x, L) = − id
2π

[∫ 0

−∞
+
∫ −i∞

0

]
eΩ(λ)x 1− λ2

1 + λ2
(eω(λ)L − 1)

dλ

λ
.

By Jordan’s lemma, the right hand side of this equation vanishes, hence u(x, L) = 0.

u(0,y) = d

Evaluating equation (A.27) at x = 0, we find

u(0, y) = − id
2π

[∫ 0

−∞
eω(λ)y 1− λ2

1 + λ2

eω(λ)L − 1
eω(λ)L + 1

dλ

λ
+
∫ 0

∞
eω(λ)(y−L) 1− λ2

1 + λ2

eω(λ)L − 1
eω(λ)L + 1

dλ

λ
+

+
∫ −i∞

0

eω(λ)y 1− λ2

1 + λ2
(1− e−ω(λ)L)

dλ

λ

]
. (A.30)

The first and second terms of the integrand of the the third integral on the right hand side are
analytic in the third and fourth quadrant of the λ complex plane, respectively. Before considering
these terms separately, in order to take care of the singularity at λ = −i in the denominator, we
deform the contour of integration of the third integral to the curve L depicted in figure 8.
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L

Figure 8: The contour for the Riemann-Hilbert problem.

Rewriting the term eω(λ)L−1
eω(λ)L+1

in the first and second integrals on the right hand side of (A.30) in
the form, respectively,

eω(λ)L − 1
eω(λ)L + 1

= 1− 2
eω(λ)L + 1

= −1 +
2eω(λ)L

eω(λ)L + 1

equation (A.30) becomes

u(0, y) =
id

2π

{(∫ 0

∞
+
∫
L

)
eω(λ)(y−L) 1− λ2

1 + λ2

dλ

λ
+

−
(∫ 0

−∞
+
∫
L

)
eω(λ)y 1− λ2

1 + λ2

dλ

λ
+ 2

∫ ∞
−∞

eω(λ)y

1 + eω(λ)L

1− λ2

1 + λ2

dλ

λ

}
. (A.31)

Jordan’s lemma implies that the first integral in the right hand side of (A.31) vanishes. Further-
more, the integrand of the third integral in the right hand side of (A.31) remains invariant under
the transformation λ→ 1

λ , thus this integral also vanishes. The second integral on the right hand
side of (A.31) has a pole at λ = −i with residue −1. Hence, u(0, y) = d.

Remark A.1 - The asymptotics of B3(λ) as λ→ 0 and λ→∞
Using equation (A.27), it is possible to show (see [2]) that

1
4

∫ ∞
x

uy(x′, 0)dx′ = − d

2π
lnx+O(1), x→ 0. (A.32)

Hence, the definition (A.13) of B3(λ) implies that

B3(λ) = Ω(λ)
∫ ∞

0

e−Ω(λ)x

[
1
4

∫ ∞
x

uy(x′, 0)dx′ +
d

2π
lnx
]
dx

− Ω(λ)
d

2π

∫ ∞
0

e−Ω(λ)x lnxdx. (A.33)
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Integration by parts implies that the first term of the rhs of (A.33) is of O(1) as λ→∞ and λ→ 0.
The second term in the rhs of equation (A.33) can be computed explicitly,∫ ∞

0

e−Ω(λ)x lnxdx = −γ + ln Ω
Ω

, Re Ω > 0.

Hence

B3(λ) =
d

2π
ln Ω +O(1), λ→∞ or λ→ 0, λ ∈ C+. (A.34)

In particular,

B3(λ) =
d

2π
lnλ+O(1), λ→∞, λ ∈ C+, (A.35a)

and

B3(λ) = − d

2π
lnλ+O(1), λ→ 0, λ ∈ C+. (A.35b)
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