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A convenient measure of a map or flow’s chaotic action is the topological entropy.

In many cases, the entropy has a homological origin: it is forced by the topology of

the space. For example, in simple toral maps, the topological entropy is exactly equal

to the growth induced by the map on the fundamental group of the torus. However,

in many situations the numerically-computed topological entropy is greater than the

bound implied by this action. We associate this gap between the bound and the

true entropy with ‘secondary folding’: material lines undergo folding which is not

homologically forced. We examine this phenomenon both for physical rod-stirring

devices and toral linked twist maps, and show rigorously that for the latter secondary

folds occur.
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I. INTRODUCTION

In many industrial applications, fluid is stirred by moving rods to achieve homogeneity.
Such a simple system also serves as a testbed for ideas about mixing and transport bar-
riers. In the past few years, a topological description of rod-stirring has emerged (see for
example [1–4]). In this framework, the two-dimensional fluid lives in a surface with holes,
with the holes corresponding to moving rods and fixed baffles. This topological description
applies to all fluids, but is most useful for very viscous flows.

A consequence of the topological description is that we can compute lower bounds on the
topological entropy of the system. The topological entropy is, roughly speaking, the growth
rate of material lines in a fluid [5, 6]. The lower bound on the topological entropy is a
consequence of continuity – material lines cannot cross the rods, so they must grow at least
as fast as dictated by the motion of the rods.

We can then ask about the sharpness of this lower bound: we measure the actual growth
rate of material lines in the flow, and compare it to the lower bound. In many systems,
the ‘gap’ between the lower bound and the actual value is quite small – on the order of a
few percent of the value. In other cases, the gap is very large, so that the observed value
of the entropy is much larger than the lower bound. The central question of this paper is:
what accounts for the difference in these two cases? In both cases, much of the entropy
is ‘homological’ and arises from obstructions in the domain – the rods and baffles. This
homological entropy depends only weakly on the details of the physical system, and can be
deduced without actually solving the dynamical fluid equations. However, in the cases with
a large gap it seems clear that there is another, dynamical source of entropy, which can
depend more strongly on system parameters, such as the size of the stirring rods and the
fluid being considered. We propose that the so called dynamical entropy is predominately
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due to secondary folding, where material lines exhibit folds that are not directly associated
with a topological obstacle.

When the difference between the bound and the measured entropy is small, we refer to
those bounds as sharp. We will investigate the sharpness of the bound by considering simple
three-rod stirring devices. The motion of the rods is limited to a sequence of clockwise or
counter-clockwise exchanges with one of their neighbors, following circular paths [1]. These
types of motions map naturally to generators of the braid group [7]: a clockwise exchange
of the ith and (i + 1)th rod is denoted σi, and a counter-clockwise exchange by σ−1

i . A
sequence of σ±1

i is called a stirring protocol. Since the fluid we consider is highly viscous, the
stirring protocols define a periodic motion of the fluid elements, obtained by solving Stokes’
equation for incompressible flow. Figure 1 shows some examples of stirring protocols, as
well as their action on typical material lines.

We will illustrate the gap between the bound and measured value using two examples in
Section II. Because the disk with three punctures (rods) has such an intimate connection with
the torus, we will examine toral maps in Section III. We observe the same gap phenomenon
as in the fluid case, but because the map is a much simpler system we are able to prove some
explicit results about toral maps: in particular, we demonstrate the presence of secondary
folds, or ‘kinks.’ Finally, in Section IV we summarize our results and discuss future work.

II. SOME OBSERVATIONS

As an illustration of the gap phenomenon in hydrodynamic flows, consider a stirring
device with three rods that initially lie in a line. There are many ways to move the rods
and stir the fluid, but we are primarily interested in the topological aspects of the motion.
As discussed in the introduction, we focus on sequences of interchanges of neighboring rods,
which we label by generators of the braid group [1, 2]. Here, we consider two stirring
protocols, given in terms of generators by σ1σ

−1
2 and σ1σ

5
2, where generators are read left to

right. The rod motions are depicted in the insets in Figure 1. The exact details of how we
move the rods make no difference to the topology of the system, though it will in general
affect the measured growth rate of material lines. The speed of motion is irrelevant, since
we are in the Stokes flow regime. In the simulations below, we always use circular paths and
constant speed.

A. Computing hhom and hflow

Two types of topological entropy will be computed here. The first, called hhom, is the
entropy coming from the homology, i.e. the entropy due to the rod motion alone. This is the
lower bound alluded to in the introduction: it is the growth rate of a hypothetical ‘rubber
band’ caught on the rods, and is independent of both the type of fluid being stirred and the
specifics of the rod motion. This entropy is computed directly from the braid describing the
rod motion. The second entropy we compute, hflow, is obtained by directly measuring the
growth rate of material lines in the flow. We have hhom ≤ hflow, since material lines cannot
(asymptotically) grow slower than the minimum rate dictated by the rods. We now discuss
how to compute hhom and hflow.

Computing hhom can be difficult when dealing with a large number of rods or long se-
quences of generators, though rapid techniques have been developed [8, 9]. However, for
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(a) σ1σ
−1
2 (b) σ1σ

5
2

FIG. 1. The effect of two different stirring protocols on the same initial material line. The insets

show the motion of the rods. The images are after four and three periods, respectively. In (b)

boxes highlight some instances of secondary folding. There is no secondary folding visible in (a).

three rods the entropy is very easy to compute. In that case, the topological entropy is
equal to logarithm of the spectral radius (largest magnitude over all eigenvalues) of the
Burau representation matrix [10–14].1 For braids of the form σ`

1σ
−k
2 the Burau matrix is

[σk
1σ
−`
2 ] =

[
1 + k` `
k 1

]
. (1)

If hhom > 0, then, under repeated iterations, a rubber band caught on the rods will grow in
length at an exponential rate. In this case, the braid is called pseudo-Anosov. If hhom = 0,
the rubber band will not grow exponentially, and the braid is said to be finite-order. This
terminology comes from the Thurston–Nielsen theory of classification of surface homeomor-
phisms [16, 17]. There is a third case in the classification, called reducible, which is not
relevant here. Mixers with pseudo-Anosov stirring protocols are usually good at mixing;
the exponential stretching and folding of material lines leads to a growth in the interface
between solutes, which in turn allows diffusion or chemical reaction to act more rapidly.

Now for hflow: in theory it is computed by taking the supremum of growth rates over all
material lines in the fluid [6]. In practice, a typical material line will eventually grow at a
maximal rate, as long as some part of it is in the ergodic component with the fastest growth
rate. Thus, we can get a good measure of hflow for each protocol by computing the rate at
which a typical material line stretches. We do this by solving numerically for the motion
of the individual fluid elements making up a material line, taking care to interpolate new
points as the distance between neighbors becomes too large.

B. Stirring Protocol σ1σ
−1
2 vs. σ1σ

5
2

We compare two stirring protocols, given in braid form by σ1σ
−1
2 and σ1σ

5
2. Using the

matrix (1), we find that they both have hhom = log((3 +
√

5)/2) ' 0.962. Despite this, the
effect on material lines is quite different, as can be see by comparing Figures 1(a) and 1(b).

1 The (reduced) Burau representation is a representation of the braid group on n strings in terms of matrices

of dimension n − 1. The representation arises from an action on homology on the double-cover of the

punctured disk. See [7, 15] for more details.
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FIG. 2. Growth of the length of a material line for the two stirring protocols. Since they are both

pseudo-Anosov systems, the slope, i.e. the growth rate tends to a constant – namely the topological

entropy. The dashed line has slope equal to the lower bound, hhom = 0.962.

Notice that for the σ1σ
−1
2 protocol (Fig. 1(a)) the material line forms very smooth and

regular layers; the only large visible folds are due to wrapping around the rods. On the
other hand, for the σ1σ

5
2 protocol (Fig. 1(b)), the material line has extra folds that are

not due to wrapping around a rod, as highlighted by the boxes. These are what we call
‘secondary folds.’

From simulations2 we can measure hflow for each stirring protocol. Figure 2 shows the
measured length of a material line during several periods of the flow. The length is plotted
on a log scale, and the (asymptotic) slope of the line is hflow. In this way, we measure
hflow = 0.991 for the σ1σ

−1
2 protocol, and hflow = 1.61 for the σ1σ

5
2 protocol. For σ1σ

−1
2 , the

rod entropy and the flow entropy agree well (roughly a 3% difference). However, for σ1σ
5
2,

the flow entropy is much larger than the rod entropy (hhom accounts for roughly 61% of
hflow). We hypothesize that the larger measured entropy is due to additional stretching of
the material line due to the secondary folds.

III. TORAL LINKED TWIST MAP

It is problematic to define secondary folding rigorously in a practical context, which also
makes it difficult to identify its causes. To make headway, we look at a simpler system
– a map instead of a hydrodynamic flow – which can be analyzed more thoroughly. The
class of maps we’ll examine are toral linked twist maps. Linked twist maps (or LTMs) have
been studied extensively [18–25]. They are non-uniformly hyperbolic, and are especially
relevant here because of an intimate connection to the three-rod stirring protocols above.
The connection arises through the orientable double cover [1, 26]: the torus can be regarded
as a double cover of the disk with three punctures. The double cover branches at each of
the punctures and at the disk’s outer boundary. The interchange of rods given by σ1 and σ2

2 The computer simulation were performed using Matthew D. Finn’s code for solving Stokes’ equation. This

code uses complex variable methods to guarantee an accurate solution.
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FIG. 3. The toral LTM consists of two linear shears. The first shear (left image) is in a vertical

strip on the torus. The left edge of the strip remains fixed, while the right edge is translated by

k units. The second shear (right image) is in a horizontal strip. The bottom edge remains fixed,

while the top edge is translated by ` units. Here, the shears are shown with k = ` = 1.

in the three-rod system correspond to the vertical and horizontal Dehn twists in the toral
LTM.

The domain of the toral LTM is an L-shaped subset of the flat torus formed by two
overlapping orthogonal strips. One full application of the map consists of two consecutive
linear shears. The first shear takes place in the vertical strip of width α, and the second
shear is in the horizontal strip of height β (Figure 3). The integer parameters k and ` are
the strengths of each shear. In the limit α = β = 1, toral LTMs reduce to toral maps with
uniform stretching. These are often called generalized Arnold cat maps: the cat map is
the toral LTM with α = β = k = ` = 1. Toral LTMs can also be defined more generally
with non-linear shears [18], but we do not deal with those here. If k` > 0 we say that the
system is counter-rotating ; if k` < 0 we say that it is co-rotating. This naming convention
is the opposite of the one used by some other authors, for instance [18]. In the present
context, given the rod-stirring applications, it is more natural to define co-rotating and
counter-rotating as we do here.

Although we don’t have a true fluid flow here, we can still compare the topological entropy
measured from the stretching rate of a material line to a lower bound for the topological
entropy of the map. This lower bound arises from a semi-conjugacy between the toral LTM
and the generalized Arnold cat map with the same k and ` [27]. The generalized Arnold
cat map acts on the full torus with the same matrix given in (1). For k and ` such that the
matrix is hyperbolic, the topological entropy is again the log of the magnitude of the largest
eigenvalue.

As a parallel to our σ1σ
−1
2 and σ1σ

5
2 examples above, we look at toral LTMs with k = 1,

` = 1 (counter-rotating) and k = 1, ` = −5 (co-rotating). Figure 4 shows, for both
the counter-rotating and co-rotating maps, the image of an initial line segment after two
iterations. As with the hydrodynamic flow examples, they both have a lower bound of
hhom = 0.962. Numerically measuring the stretching of the line yields hflow = 0.962 for
the counter-rotating LTM and hflow = 1.91 for the co-rotating case. As for the three-rod
mixers, the entropy agrees well with the lower bound for the counter-rotating example (< 1%
difference), but there is a large gap for the co-rotating example (hhom accounts for roughly
49.6% of hflow). Looking again at Figure 4, we notice visible secondary folding in the co-
rotating case (indicated by boxes), but none in the counter-rotating case. This holds in
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(a) counter-rotating (b) co-rotating

FIG. 4. Images of the same initial line segment after two iterations for (a) a counter-rotating toral

LTM (k = ` = 1), and (b) a co-rotating toral LTM (k = 1, ` = 5). The small boxes highlight

examples of secondary folding (acute angles) in the co-rotating case.
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1

FIG. 5. The three regions given by Equation (2), shown here with k = 1.

general for toral LTMs. To prove this, we take a closer look at the toral LTM map.

A. Secondary Folding in Toral LTMs

Recall that the toral LTM is the composition of a shear in a vertical strip of the torus
and a shear in a horizontal strip on the torus. As a result, the domain is partitioned into
three regions: points that undergo the vertical shear, but not the horizontal; points that
undergo the horizontal shear, but not the vertical; and points that undergo both shears. We
label these three regions RV , RH , and R L as follows (see Figure 5):

RV = {(x, y) mod 1 | 0 ≤ x ≤ α, β < y + xkα−1 < 1}; (2a)

RH = {(x, y) mod 1 | α < x < 1, 0 ≤ y ≤ β}; (2b)

R L = {(x, y) mod 1 | 0 ≤ x ≤ α, 0 ≤ y + xkα−1 ≤ β}, (2c)

and also define R = RV ∪RH ∪R L. More specifically, for a point z = (x, y)T, the toral LTM
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map is given by

M(z) =


V z mod 1, if z ∈ RV ;

Hz mod 1, if z ∈ RH ;

Lz mod 1, if z ∈ RL,

(3)

where V , H, and  L are the matrices

V =

[
1 0
κ 1

]
, H =

[
1 λ
0 1

]
,  L = HV =

[
1 + κλ λ
κ 1

]
, (4)

with κ = kα−1 and λ = `β−1. The toral LTM is continuous and piecewise linear.
Because of the piecewise nature of linear toral LTMs, the image of a line segment that

crosses from one region to another will be a segmented line. This is the origin of all bends
in iterates of line segments. Bends can be either obtuse or acute. We conjecture that obtuse
bends do not contribute to the topological entropy, and so we ignore them; however, acute
bends (also called kinks) always appear associated with an increased topological entropy.
These kinks are the manifestation of secondary folds on the torus. To show the existence (or
non-existence) of kinks, we examine the unstable manifold. This is sufficient since, under
repeated iteration, a line segment will align with the unstable manifold and stretch in that
direction.

A subtle but important point here is that there is a set of singularities, S ∈ R, where the
unstable (and stable) manifolds don’t exist [18, 28]. This set consists of all points on the
boundaries of the RL, RV , and RH regions, as well as all (forward and backward) images
of these points. These singularities exist because the toral LTM is continuous, but not
differentiable, on the boundaries of the regions, so the tangent vector is not well-defined
at those points. (These singular points eventually become the vertices of bends in line
segments.) Fortunately, S is a set of measure zero [28], and tangent vectors are well defined
in the neighborhood of the singularities. So, using continuity, we will speak of having an
‘unstable’ manifold at each singular point, even though it may be the vertex of a bend.
Then, since line segments tend to align with the unstable manifold, if a system has a kinked
unstable manifold then any line segment will also develop kinks.

The following lemma gives the slope of the unstable manifold at any (non-singular) point.

Lemma 1. For a toral LTM, the slope of the unstable manifold at a point z ∈ R\S is given
by

Su(z) =
1

λn1 +
1

κm1 +
1

λn2 +
1

κm2 + . . .

(5)

where mi, ni > 0 if z is in the horizontal strip, and mi, ni > 0 but n1 = 0 otherwise. The mi

and ni are unique integers that result from iterating z backwards along its orbit.

(Note that this continued fraction was derived in a slightly different manner in [28].)

Proof. We use the fact that under repeated forward iterations, all line segments converge to
the unstable manifold. To approximate the unstable manifold at point z, we first follow z
backwards along its orbit to some point z′. Then, we can take (almost) any vector in the
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tangent space, Tz′R = R2, and map it forward to z. The image of the vector at z will be
approximately tangent to the unstable manifold at z. (This fails only when the initial vector
is exactly aligned with the stable manifold.)

Each iteration of the inverse linked twist map, M−1(z), leads multiplication by either V −1,
H−1, or L−1 = V −1H−1, depending on the location of z. So repeated backward iterations
can be written as

z′ = M−N(z) = V −mjH−nj . . . V −m1H−n1(z) (6)

where N =
∑j

i=1(mi + ni − 1). (The value of j depends on both N and z.) In general,
mi, ni > 0. However, for some points, the first action of the inverse map is V −1, not H−1,
so for these points, n1 = 0. These are exactly the points that are not in the horizontal strip.
(Additionally, for a given N and z, we might have mj = 0. In this case, (9) below ends
with λnj; this does not change the argument.)

Let w′ be a vector in Tz′R = R2. Since DV = V and DH = H, w and z′ evolve according
to exactly the same matrix multiplication. That is, w ∈ TzR can be written as

w = Hn1V m1Hn2V m2 . . . HnjV mjw′ . (7)

Now consider how multiplication by HnV m affects the slope of a vector. If the vector initially
has slope s, then after multiplication by HnV m it has slope

s′ =
s+ κm

1 + λn(s+ κm)
=

1

λn+
1

κm+ s

. (8)

Repeated iteration to find the slope at w gives the finite continued fraction

slope(w) =
1

λn1 +
1

κm1 +
1

λn2 +
1

κm2 +
1

· · ·+
1

κmj

. (9)

To find the exact slope, let N → ∞. This means j → ∞ and the finite continued
fraction becomes the infinite continued fraction given in (5). So it only remains to show
that the continued fraction converges. In the counter-rotating case, κλ > 0, and we have
κmi ≥ 1 and λni ≥ 1. Hence

∑
(κmi + λni) diverges, and the continued fraction converges

to a finite value by the Seidel–Stern Theorem [29].

By definition, the co-rotating toral LTM must have k` < 0, or equivalently κλ < 0.
However, we add another restriction and require κλ < −4. This condition ensures that
matrix  L is hyperbolic and, consequently, that the toral LTM has an ergodic partition [28].
(With a slightly stronger condition, the toral LTM will also be Bernoulli [19].) To show
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convergence in this case, we transform the continued fraction into the form

Su(z) =
(λn1)−1

1 +
(κλm1n1)−1

1 +
(κλm1n2)−1

1 +
(κλm2n2)−1

1 + . . .

. (10)

Note that since κλ < −4, each of the numerators (except for the first) has magnitude less
than 1/4. The continued fraction then converges to a finite value by Worpitzky’s Theo-
rem [29]. (The case where n1 = 0 follows similarly.)

We intend to show that counter-rotating toral LTMs do not have kinks, while co-rotating
toral LTMs do. Therefore, we proceed by investigating each type separately. For conve-
nience, we assume in both cases that k > 0.

1. Counter-rotating

Since we are only considering maps with k > 0, we have ` > 0 as well. Then every part
of the continued fraction (5) is positive, and we conclude that the slope of the unstable
manifold, Su, is positive at every point z ∈ R \ S. Furthermore, it is easy to show that the
orientation of the unstable manifold is preserved under the action of the map.

Define two cones in tangent space TR = R2 by

C1 = {(u, v) | u > 0, v > 0}, (11)

C3 = {(u, v) | u < 0, v < 0}. (12)

(The subscripts refer to the standard quadrant numbering.) Note that the definitions are
independent of z.

Lemma 2. For k, ` > 0, the cones C1 and C3 are invariant under both the vertical twist
(V ) and the horizontal twist (H).

Proof. Take a vector w = (u, v). Then V w = (u, v + uκ), and Hw = (u+ vλ, v). Clearly, if
w ∈ C1 then both V w and Hw are also in C1 (and therefore  Lw ∈ C1). Similarly, if w ∈ C3

then both V w and Hw are also in C3.

Corollary 3. A line segment with positive slope will never kink under applications of M .

Proof. Consider a line segment, γ, with positive slope passing through a point z. Let w1

and w3 be vectors in TzR that are tangent to γ and such that w1 ∈ C1 and w3 ∈ C3.
Then from Lemma 2, DM(w1) ∈ C1 and DM(w3) ∈ C3 regardless of which region z is in.
Consequently, the angle between the vectors is obtuse, and no kink has formed.

Theorem 4. The unstable manifold of a counter-rotating toral LTM has no kinks.

Proof. Suppose that there is a kink in the unstable manifold. Then there must be a portion
of the unstable manifold that is a straight line, crosses a region boundary, and maps to the
kink. But Su > 0 for counter-rotating toral LTMs, which contradicts Corollary 3. Hence,
there are no kinks in the unstable manifold.
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2. Co-rotating

Next we consider co-rotating toral LTM, and again restrict attention to ones with k > 0
and κλ < −4, so that the matrix L is hyperbolic. For such toral LTMs, we prove that the
unstable manifold is kinked.

We begin by using the eigenvectors of L to define two pairwise-invariant cones (as in [18]).
For each point z ∈ R, we define two cones in the tangent space TzR by

C(z) = {(u, v) | m∗ ≤ v/u ≤ 0}, (13)

C̃(z) = {(u, v) | 0 < m∗ + κ ≤ v/u}, (14)

where m∗ is the slope of the expanding eigenvector of L and for co-rotating maps:

m∗ =
2κ

κλ−
√
κλ(κλ+ 4)

= −
κλ+

√
κλ(κλ+ 4)

2λ
< 0. (15)

Note that cone definitions are independent of z, so we can refer to them simply as C and

C̃. For convenience, we let IC = [m∗, 0] and IC̃ = [m∗ + κ,∞) denote the range of slopes in

cones C and C̃ respectively. The following lemma shows that tangent vectors to the unstable
manifold lie precisely in these cones.

Lemma 5. For κλ < −4 and z ∈ R \ S, the slope of the unstable manifold, Su(z), lies in C

if z is in the horizontal strip, and lies in C̃ otherwise.

Proof. This follows from a modification of a theorem by Hillam and Thron regarding conver-
gence regions of continued fractions [30]. They look at a sequence of maps, Fi = f1◦f2◦· · ·◦fi,
where fi has the form fi(τ) = ai/(bi + τ), and the sequence {Fi(0)} gives successive conver-
gents of a continued fraction. They prove that if there exists a diskD = {w ∈ C | |w−c| ≤ r},
with |c| < r and fi(D) ⊆ D, then the continued fraction converges to a value in D.

We modify this proof for our purposes so that fi(τ) has the form

fi(τ) =
1

λni +
1

κmi + τ

. (16)

Now the sequence {Fi(0)} gives the even numbered convergents of the continued fraction
(5). Since we know that the continued fraction converges (Lemma 1), these even numbered
convergents will converge to the same value as the continued fraction.

The disk we use is D = {w ∈ C | |w − m∗/2| ≤ −m∗/2}. This is the smallest disk
possible, because when ni = mi = 1, fi(m∗) = m∗. To see that fi(D) ⊆ D, re-write fi(τ) as

fi(τ) =
τ + κni

λniτ + κλnimi + 1
(17)

and view it as a Möbius transformation. Then fi(∂D) is a circle with center and radius
given by:

center =
1

2

(
κmi

1 + κλmini

+
m∗ + κmi

1 + λni(m∗ + κmi)

)
(18)

radius =
m∗

2(1 + κλmini)|1 + λni(m∗ + κmi)|
. (19)
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FIG. 6. A (possibly jointed) line segment passing through a point on the boundary of R L and RH ,

with slope m ∈ (−κ− λ−1, 0], will form a kink after one iteration of M .

From these, it is easy to check that fi(D) ⊆ D. The intersection of D with the real axis is
the interval IC = [m∗, 0], i.e. exactly the range of slopes in C. Thus, for ni > 0, Su(z) ∈ IC
and the unstable manifold is in C.

When n1 = 0, equation (5) has the form

Su(z) = κm1 +
1

λn2 +
1

κm2 +
1

λn3 + . . .

(20)

and Su(z) ∈ IC̃ follows in the same manner.

The following lemma shows how a kink may be formed after one application of the toral
LTM.

Lemma 6. Take a point z ∈ S ⊂ R on the boundary between the R L and RH regions (i.e.

z ∈ RL ∩ RH). Then a line segment passing through z (possibly with a bend at z) and with
the segments on either side of z having slope s ∈ (−κ − λ−1, 0] will form an acute angle,
with vertex at M(z), after one application of M .

Proof. Suppose for simplicity that z is on the right-hand boundary of RL, as in Figure 6.
(The case where z is on the left-hand boundary is proved in an identical manner.) The
portion of the line segment that lies to the left of point z is in the region R L. Let u = (u1, u2)
be a vector that is parallel to the line segment and points left. That is, u1 < 0 and, because
u2/u1 ∈ (−κ − λ−1, 0], we have u2 ≥ 0. In this region the action of the toral LTM is
multiplication by the matrix  L = HV . So if the segment left of z is initially parallel
to u, then it will be parallel to u′ =  Lu after M has been applied. We can compute
u′ = (u1 + u1κλ+ u2λ, u2 + u1κ), and it is easy to see that u′ points strictly into the 4th
quadrant.

Meanwhile, the portion of the line segment that lies to the right of point z is in the
region RH . Let v = (v1, v2) be a vector that is parallel to the line segment and points right.
That is, v1 > 0 and v2 ≤ 0. Since we are in region RH , the action of the toral LTM is
multiplication by the matrix H. So after M is applied, the line segment will be parallel to
v′ = Hv. Simple computation yields v′ = (v1 + v2λ, v2), and we can see that v′ points either
horizontally or into the 4th quadrant. Thus, M(z) is the vertex of an acute angle and a kink
has formed.
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Theorem 7. The unstable manifold of a co-rotating toral LTM with κλ < −4 has kinks.

Proof. Lemma 5 shows that for non-singular points in the horizontal strip, the unstable
manifold is in cone C. Since IC ⊂ (−κ− λ−1, 0], pieces of the unstable manifold that cross
the boundaries between RL and RH satisfy the hypotheses of Lemma 6. Thus, these pieces
kink after one application of M . Since pieces of unstable manifold map to other pieces of
unstable manifold, this implies that there already existed kinks in the unstable manifold.

IV. DISCUSSION

We set out to explain the gap between the homological lower bound on the topological
entropy and its numerically-observed value. We observed that, in both fluid-dynamical
systems and toral LTMs, the presence of a gap appeared associated with ‘secondary folding’
– the presence of extra folds in material lines, not associated with topological obstacles such
as rods. Though we have not been able to rigorously show that the gap is due to the folds,
we were able to show that counter-rotating toral LTMs never have folds, while hyperbolic
co-rotating toral LTMs always have folds. This correlates perfectly with the presence or
absence of a gap in the topological entropy. Future work will aim to show that secondary
folding is the direct cause of the extra entropy.
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