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ON THE DYNAMICS OF SPACE DEBRIS: 1:1 AND 2:1

RESONANCES

ALESSANDRA CELLETTI AND CĂTĂLIN GALEŞ

Abstract. We study the dynamics of the space debris in the 1:1 and 2:1 resonances,
where geosynchronous and GPS satellites are located. By using Hamiltonian formalism,
we consider a model including the geopotential contribution for which we compute the
secular and resonant expansions of the Hamiltonian.

Within such model we are able to detect the equilibria and to study the main features
of the resonances in a very effective way. In particular, we analyze the regular and
chaotic behavior of the 1:1 and 2:1 resonant regions by analytical methods and by
computing the Fast Lyapunov Indicators, which provide a cartography of the resonances.
This approach allows us to detect easily the location of the equilibria, the amplitudes of
the libration islands and the main dynamical stability features of the resonances, thus
providing an overview of the 1:1 and 2:1 resonant domains under the effect of Earth’s
oblateness.

The results are validated by a comparison with a model developed in Cartesian
coordinates, including the geopotential, the gravitational attraction of Sun and Moon
and the solar radiation pressure.

1. Introduction

Since humankind started the conquest of space, a number of debris accumulated and

now populate the sky, from the near atmosphere to the geostationary region. Such debris,

whose size runs from a few millimeters to several centimeters, are remnants of spacecraft

explosions or collisions, non-operative satellites, rocket upper stages, etc. ([17]). Current

estimates show that there exist about 3·108 objects with size larger than 1 mm and about

3.5 · 105 objects larger than 1 cm. The impact of such debris with operative spacecraft

or satellites could result in a dangerous or even dramatic situation; the accumulation of

debris in specific regions of the sky - where most of operative satellites are positioned

- cannot be neglected anymore. Understanding the dynamics and evolution of space

debris is essential for maintenance and control strategies, as well as to assess mitigation

procedures ([22], [23]).
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2 A. CELLETTI AND C. GALEŞ

The aim of this work is to provide a detailed study of a model describing the main

resonant regions, precisely where GEO and GPS satellites1 are positioned. Our models

are valid for spherical objects, typically space debris, while the study of satellites requires

the analysis of more complex effects, like the shape or flexibility of the spacecraft. In

particular, we introduce the Hamiltonian function describing the effect of the Earth’s

gravity field and we expand it to get the secular and resonant terms.

Our main goal is to obtain an accurate, though computationally fast, description of

the resonant regions, using an approximation of the 1:1 and 2:1 resonant Hamiltonians,

so to be able to discern between regular and chaotic behaviors (compare with [9], [26],

[27]). We stress that the mathematical tools adopted in the present work, although being

elementary, allow us to reach a twofold aim: to get a deeper insight in the dynamics of

resonant motions of space debris and, at the same time, to obtain the main features of

the dynamical behavior in a reasonable computational time, especially when compared

to dynamical studies based on Cartesian equations. We claim that the results provided

by the Hamiltonian formalism describing the geopotential effects can be used as starting

point to get a more detailed description of the dynamics. Furthermore, we stress that

the study presented in this work turns out to be very effective also for the investigation

of minor resonances (e.g. 3:1, 3:2, 4:1, etc.), whose size is typically very small, sometimes

amounting to a few hundreds meters (compare with [4]) and therefore extremely difficult

to find with the Cartesian formalism.

To describe the regions that will be the object of investigation of our study, let us intro-

duce the following (nowadays standard) classification of the sky, according to the altitude

from the Earth, in three main regions, referred to as LEO (acronym of Low–Earth–Orbit),

MEO (Medium–Earth–Orbit) and GEO (Geostationary–Earth–Orbit); the altitude of

such regions varies according to the following description. LEO is the region between

0 and 2 000 km, which is mainly affected by the Earth’s attraction (including the effect

of the oblateness) and by the air drag. In this work we shall analyze objects in MEO

(the region between 2 000 and 30 000 km) and GEO (at altitudes larger than 30 000 km,

where the decay mechanisms are absent). Objects in MEO are mainly affected (in order

of importance) by the GME term, Earth’s oblateness J2 and J22, the attraction of the

Moon, the influence of the Sun and the solar radiation pressure (hereafter SRP; see, e.g.,

[6], [7], [21], [24]). In GEO the effects of Sun and Moon are bigger than Earth’s oblateness

1GEO stands for geostationary orbit, located at about 42 164 km from Earth’s center, while GPS is
the acronym for Global Positioning System, a network of satellites at about 26 560 km from Earth’s
center.
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J22 (see [18], [26], [27], [28]). In the case of a large area–to–mass ratio, the solar radiation

pressure is important and induces long periodic (yearly) variations in the eccentricity.

GPS orbits are located at about 26 560 km from Earth’s center; here satellites move

with a period of 12h (sidereal time), namely half of the period of rotation of the Earth.

We shall refer to this situation as a 2:1 gravitational resonance. Much of the present

work is devoted to the study of the 2:1 resonance, whose typical effect is to provoke

long–period changes of the eccentricity.

A geostationary orbit is situated on the equatorial plane at about 42 164 km from

Earth’s center. Here, an object has an orbital period equal to the Earth’s rotational

period (one sidereal day), and thus it appears motionless, at a fixed position in the sky,

to ground observers. This situation corresponds to a 1:1 gravitational resonance.

The 1:1 (in GEO) and 2:1 (in MEO) resonances will be the main object of this work,

as, outside LEO, most of the satellites (and therefore most of the debris) are currently

found in these regions. Sometimes we will refer to these resonances as GEO and MEO

resonances, with clear reference to the satellites that populate the corresponding resonant

regions. The identification of the dynamical character around the 1:1 and 2:1 resonances

is of seminal importance for the following reasons: stable regions allow us to minimize

the eccentricity growth, while chaotic behaviors can be skilfully exploited for mitigation

strategies, either moving the debris in graveyard regions or aiming at its re–enter and

destruction into the atmosphere.

Most of the works available in the literature use Cartesian equations to describe the

dynamics of space debris. The advantage of the Cartesian approach (see Section 2) is that

one can easily include all effects (geopotential, lunisolar perturbations and solar radiation

pressure; for other important effects, like Earth’s shadowing, see [15]). The disadvantage

is that it is difficult to catch the resonances, due to their limited size (often just of a few

kilometers), and to get a description of the dynamics inside the librational regions. The

present work aims to exploit the full power of the Hamiltonian formalism, which provides

a careful and detailed description of the resonant regions, once the main harmonics are

taken into account. Since the Hamiltonian approach contains some approximations, the

results are validated by a comparison with the integration of the complete Cartesian

equations of motion.

Within the Hamiltonian formalism, we compute the secular and resonant parts (see

Section 3), considering only the effect of Earth’s oblateness and disregarding all other

effects. For these terms we provide explicit (sometimes long) expressions, which can be
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handled analytically or integrated numerically. While providing such expansions, we ana-

lyze the dominant terms (namely those terms with magnitude bigger than other terms of

the expansion) as a function of the eccentricity and the inclination. This procedure pro-

vides a very efficient way to recognize which terms prevail in specific regions in the orbital

parameters. The outcoming analysis shows a marked difference between the 1:1 and 2:1

resonances, since for the 1:1 resonance a term of order J22 dominates almost everywhere,

while for the 2:1 resonance different terms are dominant according to the value of the

eccentricity and the inclination. An expansion of the Hamiltonian around the resonant

location and simple canonical transformations allow us to reduce the Hamiltonian to a

pendulum-like system with one single harmonic, which provides the computation of the

amplitude of the libration region around the resonance (see Section 4). Though yielding

an elementary estimate of the libration amplitudes, the results are in good agreement

with the integrations performed using the complete Cartesian equations (i.e. including

the luni–solar attraction and the solar radiation pressure).

A cartography of the 1:1 and 2:1 resonances is provided in Section 5 through the

computation of the Fast Lyapunov Indicators (hereafter FLIs). The FLIs provide an

efficient tool to study the stable and chaotic behavior of a dynamical system by comparing

the values of the FLIs as the initial conditions or parameters are varied. Such analysis

has been shown to be very effective in distinguishing between regular, resonant or chaotic

motions ([11], [10], see also [13], [14], [12]). Using the FLIs, different cartographic studies

are performed in Section 5 to describe the 1:1 and 2:1 resonances (see also [25] where a

different chaos indicator has been used).

For the 1:1 resonance we investigate the effects of Earth’s gravitational perturbations

up to degree and order four. In particular, we see that the location of the equilibrium

points is not influenced by the longitude of the ascending node, but it depends on the

argument of perigee. However, since for the 1:1 resonance a term of order J22 dominates

almost everywhere, this dependence on the argument of perigee is negligible, except for

some specific regions in eccentricity and inclination, where more dominant terms coexist.

As far as the 2:1 resonance is concerned, by using a toy model including the secular

term and a reduced number of dominant terms, we show that there is a superposition

of harmonics. For inclinations different than the critical inclination i = 63.4o (at which

so–called frozen orbits are found), we observe that the resonance splits into a triplet of

resonances with a complex interplay of regular and chaotic motions due to the interaction

between the different harmonics. It is also remarkable that, for i = 70.53o, a transcritical
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bifurcation phenomenon takes place: the stability of the equilibria reverses for small

changes in the inclination, thus allowing to move a debris from a stable to an unstable

zone (or viceversa). An exhaustive analysis of transcritical bifurcations for different

resonances is performed in [4].

This work is organized as follows. In Section 2 we introduce the Cartesian equations

of motion including the effects of the Earth’s oblateness, the gravitational attraction of

Sun and Moon, and the solar radiation pressure (see also Appendix 6). The Hamiltonian

approach is presented in Section 3, which provides also the analysis of the resonant and

dominant terms. The reduction to a pendulum–like structure is given in Section 4, where

an estimate of the resonant amplitudes is provided. The cartographic study based on the

computation of the FLIs is presented in Section 5.

Acknowledgements. We are grateful to Alessandro Rossi for very useful discussions

and his constant encouragement; we also thank Christoph Lhotka for helpful suggestions.

We thank the reviewers for several comments which helped to improve this work.

2. Geopotential, lunisolar and solar radiation pressure effects

In this section we introduce the Cartesian equations of motion of a space debris S

under the influence of the Earth, taking into account the oblateness and the rotation of

our planet, the effects of the Moon and of the Sun as well as the solar radiation pressure.

We refer to [1], [5] for further details.

The equations of motion are provided by the sum of the contributions of the Earth’s

gravitational influence, computed over the whole volume VE of the Earth and including

the oblateness effect, the solar and lunar attractions, proportional to the masses mS and

mM of Sun and Moon, and the solar radiation pressure:

r̈ = −G

∫

VE

ρ(rp)
r− rp

|r− rp|3
dVE −GmS

( r− rS

|r− rS|3
+

rS

|rS|3
)

− GmM

( r− rM

|r− rM |3 +
rM

|rM |3
)
+ CrPra

2
S (

A

m
)

r− rS

|r− rS|3
, (2.1)

where G is the gravitational constant, ρ(rp) is the density at some point rp inside the

Earth, r, rS, rM are the position vectors of the debris, the Sun and the Moon with

respect to the Earth’s center, Cr is the reflectivity coefficient, depending on the optical

properties of the space debris surface, Pr is the radiation pressure for an object located

at aS = 1 AU, A
m

is the area–to–mass ratio with A being the cross–section of the space

debris and m its mass. The vectors rS, rM can be found in [1], [20] as a function of time.



6 A. CELLETTI AND C. GALEŞ

We introduce two reference frames centered in the Earth, the quasi–inertial frame with

unit vectors {e1, e2, e3} fixed and the synodic frame with unit vectors {f1, f2, f3} rotating

with the same angular velocity of the Earth. We choose the orientation of these vectors

such that e3 = f3 is perpendicular to the equatorial plane and f1, f3 are in the Greenwich

meridian plane.

Denoting by (r, λ, φ) the spherical coordinates in the synodic frame, the geopoten-

tial associated to the first term at the right hand side of (2.1), expanded in spherical

harmonics, can be written as ([1], [16], [20])

V (r, φ, λ) =
GME

r

∞∑

n=0

(RE

r

)n
n∑

m=0

Pm
n (sinφ) (Cnm cosmλ + Snm sinmλ) ,

where ME , RE are the mass and equatorial radius of the Earth, the quantities Pm
n are

defined in terms of the Legendre polynomials:

Pn(x) ≡
1

2nn!

dn

dxn
{(x2 − 1)n} , Pm

n (x) ≡ (1− x2)
m
2

dm

dxm
{Pn(x)} ,

while Cnm, Snm are the spherical harmonic coefficients of the geopotential ([16]).

For reasons which will be clear in the following sections, in our computations we

consider a model with Earth’s gravity harmonics up to degree and order n = m = 3.

Since the corresponding system of equations involves long expressions, in the following

we present a simplified system obtained by taking into account just the Earth’s gravity

harmonics up to degree and order two; for self–consistency we provide in the Appendix

some details on the derivation of the equations of motion. The reader can easily use the

results presented there in order to get the full system of the equations that we use in this

paper. Denoting by (x, y, z) the coordinates in the quasi–inertial frame, the equations of

motion, in which the Earth’s gravity harmonics are considered up to n = m = 2, are:

ẍ = −GMEx

r3
+

GMER
2
E

r5
{C20(

3

2
x− 15

2

xz2

r2
) + 6C−

S x+ 6C+
S y

+
15x

r2
[C−

S (y
2 − x2)− 2xyC+

S ]} −GmS

( x− xS

|r− rS|3
+

xS

r3S

)

− GmM

( x− xM

|r− rM |3 +
xM

r3M

)
+ CrPra

2
S (

A

m
)

x− xS

|r− rS|3

ÿ = −GMEy

r3
+

GMER
2
E

r5
{C20(

3

2
y − 15

2

yz2

r2
) + 6C+

S x− 6C−
S y

+
15y

r2
[C−

S (y
2 − x2)− 2xyC+

S ]} −GmS

( y − yS
|r− rS|3

+
yS
r3S

)

− GmM

( y − yM
|r− rM |3 +

yM
r3M

)
+ CrPra

2
S (

A

m
)

y − yS
|r− rS|3
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z̈ = −GMEz

r3
+

GMER
2
E

r5
{C20(

9

2
z − 15

2

z3

r2
) +

15z

r2
[C−

S (y
2 − x2)− 2xyC+

S ]}

− GmS

( z − zS
|r− rS|3

+
zS
r3S

)
−GmM

( z − zM
|r− rM |3 +

zM
r3M

)

+ CrPra
2
S (

A

m
)

z − zS
|r− rS|3

, (2.2)

where C−
S ≡ C22 cos 2θ − S22 sin 2θ, C

+
S ≡ C22 sin 2θ + S22 cos 2θ, and θ is the sidereal

time.

3. Hamiltonian formulation of the resonances under the geopotential

In this section we provide the Hamiltonian formulation of the equations of motion by

considering just the effect of the geopotential. We give explicit expressions for the secular

part as well as the 1:1 and 2:1 resonant Hamiltonians. We use action–angle Delaunay

variables (L,G,H,M, ω,Ω), which are related to the orbital elements (a, e, i,M, ω,Ω) by

the expressions

L =
√
µEa , G = L

√
1− e2 , H = G cos i , (3.1)

where µE = GME , a is the semimajor axis, e the eccentricity, i the inclination, M the

mean anomaly, ω the argument of perigee, Ω the longitude of the ascending node (see,

e.g., [3]). Recalling that θ is the sidereal time, the Hamiltonian can be written as

H(L,G,H,M, ω,Ω, θ) = − µ2
E

2L2
+Rearth(a, e, i,M, ω,Ω, θ) , (3.2)

where Rearth denotes the disturbing function, whose explicit expression will be given in

Section 3.1.

3.1. The disturbing function Rearth. In the geocentric quasi–inertial frame, the dis-

turbing function Rearth is given by (see [16])

Rearth = −µE

a

∞∑

n=2

n∑

m=0

(RE

a

)n
n∑

p=0

Fnmp(i)

∞∑

q=−∞

Gnpq(e) Snmpq(M,ω,Ω, θ) . (3.3)

The functions Fnmp, Gnpq are given by the following relations (see [16]):

Fnmp(i) =
∑

w

(2n− 2w)!

w!(n− w)!(n−m− 2w)!22n−2w
sinn−m−2w i

m∑

s=0

(
m
s

)
coss i

×
∑

c

(
n−m− 2w + s

c

)(
m− s

p− w − c

)
(−1)c−k , (3.4)
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where k = [n−m
2

], w is summed from zero to the lesser of p and k, c is summed over all

values for which the binomial coefficients are not zero; the functions Gnpq are defined as

Gnpq(e) = (−1)|q|(1 + β2)nβ |q|

∞∑

k=0

PnpqkQnpqkβ
2k , (3.5)

where

β =
e

1 +
√
1− e2

Pnpqk =
h∑

r=0

(
2p′ − 2n
h− r

)
(−1)r

r!
(
(n− 2p′ + q′)e

2β
)r ,

with h = k + q′ when q′ > 0 and h = k when q′ < 0;

Qnpqk =

h∑

r=0

(
−2p′

h− r

)
1

r!
(
(n− 2p′ + q′)e

2β
)r ,

where h = k when q′ > 0 and h = k − q′ when q′ < 0, p′ = p and q′ = q when p ≤ n/2,

p′ = n− p and q′ = −q when p > n/2. It is worth mentioning that Gnpq(e) = O(e|q|).

To complete the description of (3.3), we provide the expression of Snmpq. If we introduce

the quantities Jnm and λnm defined by

Jnm =
√
C2

nm + S2
nm if m 6= 0 , Jn0 ≡ Jn = −Cn0 ,

Cnm = −Jnm cos(mλnm) , Snm = −Jnm sin(mλnm) ,

then we can write Snmpq in the form

Snmpq =

{
−Jnm cos Ψ̃nmpq if n−m is even

−Jnm sin Ψ̃nmpq if n−m is odd ,
(3.6)

where

Ψ̃nmpq = (n− 2p)ω + (n− 2p+ q)M +m(Ω− θ)−mλnm . (3.7)

3.2. Expansion of the Hamiltonian. With reference to (3.2), the long term variation

of the orbital elements is governed by the secular and resonant terms associated to the

perturbing function Rearth, once we average over the non–resonant terms.

Therefore, in the rest of this section we focus our attention on the secular and resonant

parts up to terms of degree and order n = m = 4. We will see in Section 5 that the

fourth degree provides a sufficiently accurate description of the dynamics. Therefore, we

approximate Rearth by

Rearth = Rsec
earth +Rres

earth +Rnonres
earth

∼= −
4∑

n=2

4∑

m=0

Vnm ,
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where Rsec
earth, R

res
earth, R

nonres
earth are, respectively, the secular, resonant and non-resonant

parts of the Earth’s potential and

Vnm =
µER

n
E

an+1

n∑

p=0

Fnmp(i)

∞∑

q=−∞

Gnpq(e)Snmpq(M,ω,Ω, θ) .

In order to define the resonant contributions, we need the following definition.

Definition 1. A p : q gravitational resonance for p, q ∈ Z\{0} occurs when the orbital

period of the object and the period of Earth’s rotation are commensurable in the ratio p
q
,

namely the following relation holds:

q Ṁ − p θ̇ = 0 , (3.8)

where Ṁ provides the mean motion of the object and θ̇ is the angular speed of the Earth’s

rotation.

We stress that (3.8) can be satisfied only approximately, namely within a specific accu-

racy, as it happens, e.g., in spin–orbit or mean–motion resonances in Celestial Mechanics.

Since the frequencies ω̇, Ω̇ are small but not zero, then for a specific resonance the

resonant angles Ψ̃nmpq in (3.7) for different n, m, p, q have zero derivative at different

locations, thus providing that each resonance splits into a multiplet of resonances. The

exact location of the resonance for each component of the multiplet is obtained by using

the exact relation
˙̃
Ψnmpq = 0.

In the following sub-sections we provide the explicit expansions of the secular and

1:1 resonant parts of Rearth up to the second order in the eccentricity, while the 2:1

resonant contribution is expanded up to the fourth order in the eccentricity, due to the

fact that many highly eccentric satellites are located in the 2:1 resonant region. Though it

would suffice to provide the formulae given in Sections 3.1, 3.2 to compute the secular and

resonant parts of Rearth, we believe worthwhile to give the explicit expressions, since their

forms are seminal for the discussion of the dominant terms as well as for the introduction

of toy models, which will help to explain some features of the resonant dynamics.

3.2.1. The secular part of the disturbing function Rearth. Recalling the expression for

Snmpq given in (3.6), the secular terms correspond to m = 0 and n− 2p + q = 0. Using

(3.3), the values for the functions F and G obtained from (3.4), (3.5), and the formula

(3.6) for Snmpq, we get the following expression for the secular part of the geopotential
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up to second order in the eccentricity:

Rsec
earth

∼= µER
2
EJ2

a3

(3
4
sin2 i− 1

2

)
(1− e2)−3/2

+
2µER

3
EJ3

a4

(15
16

sin3 i− 3

4
sin i

)
e(1− e2)−5/2 sinω

+
µER

4
EJ4

a5

[(
−35

32
sin4 i+

15

16
sin2 i

)3e2
2

(1− e2)−7/2 cos(2ω)

+
(105
64

sin4 i− 15

8
sin2 i+

3

8

)
(1 +

3e2

2
)(1− e2)−7/2

]
. (3.9)

We remark that since J2 ≫ J3 and J2 ≫ J4, the J2-term is dominant.

We report in Table 1 the values obtained according to the EGM2008 model of Cnm,

Snm and Jnm in units of 10−6, as well as the values of λnm ([8], see also [5], [20]).

3.2.2. Resonance 1:1. The 1:1 resonant terms correspond to n − 2p + q = m, m > 0.

Retaining just the terms up to second order in eccentricity, we obtain:

Rres1:1
earth

∼= µER
2
EJ22

a3

{3

4
(1 + cos i)2(1− 5

2
e2) cos[2(M − θ + ω + Ω− λ22)]

+
27

8
e2 sin2 i cos[2(M − θ + Ω− λ22)]

}

+
µER

2
EJ21

a3

{3

4
sin i(1 + cos i)(−e

2
) cos(M − θ + 2ω + Ω− λ21)

+
3

2
e(−3

2
sin i cos i) cos[M − θ + Ω− λ21]

}

+
µER

3
EJ31

a4

{
−15

16
sin2 i(1 + cos i)

e2

8
cos(M − θ + 3ω + Ω− λ31)

+
(15
16

sin2 i(1 + 3 cos i)− 3

4
(1 + cos i)

)
(1 + 2e2) cos(M − θ + ω + Ω− λ31)

+
(15
16

sin2 i(1− 3 cos i)− 3

4
(1− cos i)

)11e2
8

cos(M − θ − ω + Ω− λ31)
}

+
µER

3
EJ32

a4

{
−15

8
sin i(1 + cos i)2e sin(2M − 2θ + 3ω + 2Ω− 2λ32)

+
45

8
sin i(1− 2 cos i− 3 cos2 i)e sin(2M − 2θ + ω + 2Ω− 2λ32)

}

+
µER

3
EJ33

a4

{15

8
(1 + cos i)3(1− 6e2) cos[3(M − θ + ω + Ω− λ33)]

+
45

8
sin2 i(1 + cos i)

53e2

8
cos(3M − 3θ + ω + 3Ω− 3λ33)

}

+
µER

4
EJ41

a5

{(35
16

sin3 i(1 + 2 cos i)− 15

8
(1 + cos i) sin i

)e
2
sin(M − θ + 2ω + Ω− λ41)

+ cos i
(15
4

sin i− 105

16
sin3 i

)5e
2
sin(M − θ + Ω− λ41)

}
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+
µER

4
EJ42

a5

{
−105

32
sin2 i(1 + cos i)2

e2

2
cos[2(M − θ + 2ω + Ω− λ42)]

+
(105

8
sin2 i cos i(1 + cos i)− 15

8
(1 + cos i)2

)
(1 + e2) cos[2(M − θ + ω + Ω− λ42)]

+
(105
16

sin2 i(1 − 3 cos2 i)− 15

4
sin2 i

)
5e2 cos[2(M − θ + Ω− λ42)]

}

+
µER

4
EJ43

a5

{105

16
sin i(1 + cos i)3

(
−3e

2

)
sin(3M − 3θ + 4ω + 3Ω− 3λ43)

+
105

8
sin i(1 − 3 cos2 i− 2 cos3 i)

(9e
2

)
sin(3M − 3θ + 2ω + 3Ω− 3λ43)

}

+
µER

4
EJ44

a5

{105

16
(1 + cos i)4

(
1− 11e2

)
cos[4(M − θ + ω + Ω− λ44)]

+
105

4
sin2 i(1 + cos i)2

(53e2
4

)
cos(4M − 4θ + 2ω + 4Ω− 4λ44)

}
.

(3.10)

From Table 1 we see that the leading coefficients are J22, J31. Therefore, with reference

to (3.10), let us introduce the following notation:

T1 = g1(L,G,H) cos[2(λ− λ22)]

T2 = g2(L,G,H) cos[2(λ− ω − λ22)]

T3 = g3(L,G,H) cos(λ− λ31) ,

(3.11)

where

g1 =
µER

2
EJ22

a3
3

4
(1 + cos i)2(1− 5

2
e2)

g2 =
µER

2
EJ22

a3
27

8
e2 sin2 i

g3 =
µER

3
EJ31

a4

{15

16
sin2 i(1 + 3 cos i)− 3

4
(1 + cos i)

}
(1 + 2e2) ,

(3.12)

and

λ = M − θ + ω + Ω,

is the so–called stroboscopic mean node.

The magnitude of each term in (3.10) varies with the eccentricity and the inclination.

In order to compare the effects produced by the terms of Rres1:1
earth and to provide an

analytical argument for the numerical results which will be presented in Section 5, we

introduce the following heuristic definition of dominant term.
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Definition 2. For given values of (a, e, i), equivalently for given values of (L,G,H), we

say that a specific term, say Tk for some k ∈ Z, of the expansion of Rres1:1
earth is domi-

nant with respect to the other harmonic terms of the resonant part, if the magnitude of

|gk(L,G,H)| is greater than the magnitude of any other term of the expansion.

n m Cnm Snm Jnm λnm

2 0 -1082.6261 0 1082.6261 0
2 1 -0.000267 0.0017873 0.001807 −81◦· 5116
2 2 1.57462 -0.90387 1.81559 75◦· 0715
3 0 2.53241 0 -2.53241 0
3 1 2.19315 0.268087 2.20947 186◦· 9692
3 2 0.30904 -0.211431 0.37445 72◦· 8111
3 3 0.100583 0.197222 0.22139 80◦· 9928
4 0 1.6199 0 -1.619331 0
4 1 -0.50864 -0.449265 0.67864 41◦· 4529
4 2 0.078374 0.148135 0.16759 121◦· 0589
4 3 0.059215 -0.012009 0.060421 56◦· 1784
4 4 -0.003983 0.006525 0.007644 −14◦· 6491

Table 1. Values of Cnm, Snm, Jnm (in units of 10−6), computed from [8].

We proceed to provide an analysis of the dominant terms, which turns out to be a

simple, but essential tool to perform fast computations. In particular, we underline

which are the most important terms to be taken into account in the expansion of the

geopotential, thus avoiding the integration of very long expressions, like those given in

(3.10). With reference to (3.11), in Figure 1 left we represent the index of the dominant

term as a function of eccentricity and inclination, where the colors are set as follows: black

means that max{|g1|, |g2|, |g3|} = |g1|, brown shows that |g2| has the highest value, yellow
expresses the fact that T3 dominates. From the analysis of Figure 1 left we conclude that

T1 dominates in almost all regions of the plane, except for some high eccentricities and

inclinations. A refined analysis shows that for small inclinations and eccentricities the

magnitude of T1 is much greater than the magnitude of any other term in the expansion.

This will be the main reason for getting a pendulum like behavior with the stable point

located at λ = λ22, see Remark 3 and compare with Figure 3 below. In conclusion, for

given values of eccentricity and inclination, Figure 1 provides the dominant term of the

expansion (3.10). Of course the analysis can be extended by considering more terms of

the expansion (3.10), but we limit our discussion to the most relevant ones leaded by the

coefficients J22, J31, whose size is the highest one, as it is shown in Table 1.
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Figure 1. Left: dominant terms in Rres1:1
earth as a function of (e, i): T1–

black, T2–brown, T3–yellow, where T1, T2, T3 are defined in (3.11). Right:
dominant terms in Rres2:1

earth as a function of (e, i): t1–black, t2–brown, t3–
yellow, where t1, t2, t3 are defined in (3.13). The blue dot at (e, i) ≃
(0o, 70o) corresponds to a fourth degree harmonic term.

3.2.3. Resonance 2:1. The 2:1 resonant terms correspond to 2(n− 2p+ q) = m, m > 0.

In this case we extend the computations up to the fourth order in the eccentricity, since

in the GPS region there are satellites (e.g., Molniya satellites) with very high values of

the eccentricity, say e ∈ (0.5, 0.75). Thus, we obtain the following expansion:

Rres2:1
earth

∼= µER
2
EJ22

a3

{3

4
(1 + cos i)2

(
−e

2
+

e3

16

)
cos(M − 2θ + 2ω + 2Ω− 2λ22)

+
3

2
sin2 i

(3
2
e +

27

16
e3
)
cos(M − 2θ + 2Ω− 2λ22)

+
3

4
(1− cos i)2

67e3

48
cos(M − 2θ − 2ω + 2Ω− 2λ22)

}

+
µER

3
EJ32

a4

{15

8
sin i(1 + cos i)2

(e2
8
+

e4

48

)
sin(M − 2θ + 3ω + 2Ω− 2λ32)

+
15

8
sin i(1− 2 cos i− 3 cos2 i)

(
1 + 2e2 +

239e4

64

)
sin(M − 2θ + ω + 2Ω− 2λ32)

− 15

8
sin i(1 + 2 cos i− 3 cos2 i)

(11e2
8

+
49e4

16

)
sin(M − 2θ − ω + 2Ω− 2λ32)

− 15

8
sin i(1− cos i)2

131e4

128
sin(M − 2θ − 3ω + 2Ω− 2λ32)

}

+
µER

4
EJ42

a5

{105

32
sin2 i(1 + cos i)2

19e3

48
cos(M − 2θ + 4ω + 2Ω− 2λ42)

+
(105

8
sin2 i cos i(1 + cos i)− 15

8
(1 + cos i)2

)(e
2
+

33e3

16

)
cos(M − 2θ + 2ω + 2Ω− 2λ42)

+
(105
16

sin2 i(1− 3 cos2 i)− 15

4
sin2 i

)(5e
2

+
135e3

16

)
cos(M − 2θ + 2Ω− 2λ42)

−
(105

8
sin2 i cos i(1− cos i) +

15

8
(1− cos i)2

)49e3
48

cos(M − 2θ − 2ω + 2Ω− 2λ42)
}



14 A. CELLETTI AND C. GALEŞ

+
µER

4
EJ44

a5

{105

16
(1 + cos i)4

(e2
2
− e4

3

)
cos[2(M − 2θ + 2ω + 2Ω− 2λ44)]

+
105

4
sin2 i(1 + cos i)2

(
1 + e2 +

65e4

16

)
cos[2(M − 2θ + ω + 2Ω− 2λ44)]

+
315

8
sin4 i

(
5e2 +

155e4

12

)
cos[2(M − 2θ + 2Ω− 2λ44)]

+
105

4
sin2 i(1− cos i)2

67e4

48
cos[2(M − 2θ − ω + 2Ω− 2λ44)]

}
.

Definition 2 of dominant terms can be straightforwardly extended to any resonance.

In particular, by comparing the magnitude of each harmonic in Rres2:1
earth , we note that the

most important terms in Rres2:1
earth are t1, t2 and t3, where

t1 =
µER

2
EJ22

a3

{3

4
(1 + cos i)2

(
−e

2
+

e3

16

)
cos[2(λ+

ω

2
− λ22)]

}

t2 =
µER

2
EJ22

a3

{3

2
sin2 i

(3
2
e +

27

16
e3
)
cos[2(λ− ω

2
− λ22)]

}

t3 =
µER

3
EJ32

a4

{15

8
sin i(1− 2 cos i− 3 cos2 i)

(
1 + 2e2 +

239

64
e4
)
sin[2(λ− λ32)]

}
(3.13)

and λ is the stroboscopic mean node defined in the case of the 2 : 1 resonance by

λ =
1

2

[
M + ω − 2(θ − Ω)

]
. (3.14)

The right panel of Figure 1 is the analogue of the left one for the 2:1 resonance and it

shows the dominant term as a function of eccentricity and inclination, where the colors

are set as follows: black means that t1 dominates, brown shows that t2 has the highest

magnitude, yellow expresses the fact that t3 is the dominant term.

In contrast to the 1 : 1 resonance, where a single term, precisely T1, prevails over

a large region of the domain, we have a different balance between the three terms. In

particular, for many eccentricities and inclinations the magnitude of T1 in Figure 1 left

was greater than the magnitude of any other term of Rres1:1
earth , while for the 2 : 1 resonance

we do not have such a prominent term. Each of the terms t1, t2 or t3 dominates (in the

sense of Definition 2) in some specific region of the domain (e, i). However, for the 2:1

resonance if one term dominates, it does not mean that its magnitude is much greater

than the magnitude of the other two terms. Indeed, there are large regions of the domain,

where t1, t2 and t3 are comparable in magnitude. In this respect the results for the 2:1

resonance are much different than in the case of the 1 : 1 resonance.

There is a special case where a fourth degree harmonic term dominates. This case

stems from the fact that all terms (except t3 and a J44–term) are of order O(e) and
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therefore they are zero for e = 0; however, since t3 is zero for i = 70.53o, a blue dot

in Figure 1 right, having the coordinates (e = 0, i = 70.53o), indicates that the fourth

degree harmonic term is dominant.

However, this is a singular case and usually one of the terms t1, t2 or t3 dominates.

Excluding this singular case, it is important to point out that for small and moderate

eccentricities, t1, t2, t3 are dominant not just in the sense of the above definition, but at

least one of them has its magnitude much larger than the magnitude of any other term

of the expansion. For such eccentricities, all major features of the resonance patterns are

due to these three terms and any other harmonic plays a less relevant role.

Remark 3. We add an elementary remark about the determination of the equilibrium

points associated to the resonances and their stability. In the case of the 1:1 resonance,

with reference to (3.11) and (3.12), we write the equations of motion associated, e.g. to

the term g1, for the variables λ and L as

λ̇ =
µ2

L3
− θ̇ +

∂g1
∂L

cos(2λ− 2λ22)

L̇ = 2g1 sin(2λ− 2λ22) . (3.15)

The equilibrium points are given by λ = λ22 or λ = λ22 + π/2 (so that L̇ = 0) for a

suitable L = L0 (so that λ̇ = 0). The stability is computed by looking at the eigenvalues

of the derivative of the vector field (3.15) at the equilibrium points. For λ = λ22 we

obtain that the eigenvalues are purely imaginary and therefore the equilibrium is stable;

on the contrary, for λ = λ22 + π/2 we obtain real eigenvalues, thus leading to a linear

instability of the equilibrium position. A similar discussion holds for the other terms of

the 1:1 resonance as well as for the determination of the equilibria associated to other

resonances.

4. A measure of the amplitude of resonant islands

In this section we provide an elementary computation to estimate the amplitude aris-

ing around a given p : q resonance. We stress that the formulae we shall derive can be

implemented without any computational effort and yet provide a very reliable estimate

of the size of the resonant islands. This analysis, complemented with that of the dom-

inant terms presented in Section 3, provides a fast description of the dynamics in the

neighborhood of a resonance.

Having denoted by Rsec
earth the secular part of the geopotential (see (3.9)), we consider

the Hamiltonian corresponding to the p : q resonance (for some p, q coprime integers),
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where the non–resonant terms have been averaged out. We expand the resonant part in

Fourier series up to finite orders, say N1, N2, N3, and we denote by R
(p,q)
k the Fourier

coefficients of the resonant part. The resulting resonant Hamiltonian is thus given by

Hp:q
res(L,G,H, qM − pθ, ω,Ω) = − µ2

E

2L2
+Rsec

earth(L,G,H, ω)

+

N1∑

k1=1

N2∑

k2=1

N3∑

k3=1

R
(p,q)
k (L,G,H) cs(k1(qM − pθ) + k2ω + k3Ω) , (4.1)

where cs could be either cosine or sine. We recall that the p : q resonance corresponds

to the relation qṀ − pθ̇ = 0; taking into account that θ̇ = 1 (in normalized units) and

denoting by Lres the resonant value of the Delaunay action L, we have

Ṁ =
p

q
=

µ2
E

L3
res

,

so that the resonant value Lres is obtained as

Lres =
(q
p
µ2
E

) 1

3

. (4.2)

Using that a = L2/µE, we get that the resonant value of the semimajor axis is

ares =
(q
p

) 2

3

µ
1

3

E .

Let us proceed to expand (4.1) around Lres up to second order:

Hp:q
res(L,G,H, qM − pθ, ω,Ω) = − µ2

E

2L2
res

+
µ2
E

L3
res

(L− Lres)−
3µ2

E

2L4
res

(L− Lres)
2

+ Rsec
earth(Lres, G,H, ω) +Rsec,L

earth(Lres, G,H, ω) (L− Lres)

+
1

2
Rsec,LL

earth (Lres, G,H, ω) (L− Lres)
2

+

N1∑

k1=1

N2∑

k2=1

N3∑

k3=1

R
(p,q)
k (Lres, G,H) cs(k1(qM − pθ) + k2ω + k3Ω) , (4.3)

where Rsec,L
earth, R

sec,LL
earth denote first and second derivatives with respect to L of Rsec

earth. Set-

ting Λ ≡ L−Lres and neglecting constant terms as well as the term Rsec
earth(Lres, G,H, ω),

we rewrite (4.3) retaining only the largest term in the resonant Hamiltonian:

Hp:q,max
res (Λ, G,H, qM − pθ, ω,Ω) = αΛ− βΛ2 +A cs(kmax

1 (qM − pθ) + kmax
2 ω + kmax

3 Ω) ,

(4.4)



ON THE DYNAMICS OF SPACE DEBRIS: 1:1 AND 2:1 RESONANCES 17

where we have introduced the quantities

α = α(Lres, G,H, ω) ≡ µ2
E

L3
res

+Rsec,L
earth(Lres, G,H, ω)

β = β(Lres, G,H, ω) ≡ 3µ2
E

2L4
res

− 1

2
Rsec,LL

earth (Lres, G,H, ω)

A = A(Lres, G,H) ≡ max
k1,k2,k3

R
(p,q)
k (Lres, G,H) (4.5)

and kmax ≡ (kmax
1 , kmax

2 , kmax
3 ) is the index at which the maximum defining A is reached.

Since the second term in β is much smaller than the first term, in practical computa-

tions we replace β with

β ≡ 3µ2
E

2L4
res

. (4.6)

Let us find the quantities B, C such that

αΛ− βΛ2 = −(B + CΛ)2 + B2 ;

we immediately find

B = − α

2
√
β

, C =
√
β .

Neglecting again constant terms, we write (4.4) as

Hp:q
res(Λ, G,H, qM − pθ, ω,Ω) = −(B + CΛ)2 + A cs(kmax

1 (qM − pθ) + kmax
2 ω + kmax

3 Ω) .

(4.7)

Next, we define Γ ≡ B + CΛ, so that (4.7) becomes

Hp:q
res(Γ, G,H, qM − pθ, ω,Ω) = −(

√
2Γ)2

2
+ A cs(kmax

1 (qM − pθ) + kmax
2 ω + kmax

3 Ω) .

Then, we obtain that the excursion in Γ, say ∆Γ, is equal to (compare with [19]) ∆Γ =√
2A, which provides

∆Λ =
1

C

√
2A =

√
2A

β
.

Going back to the Delaunay action L, we get ∆L =
√

2A/β; taking into account that

a = L2/µE, we have

∆a =
L2

µE

− L2
res

µE

=
1

µE

(∆L2 + 2Lres ∆L) .

Therefore, we obtain that the full amplitude of the p : q resonant island, measured in

terms of the semimajor axis, is given by

2 ∆a =
2

µE
(∆L2 + 2Lres ∆L) =

2

µE
(
2A

β
+ 2Lres

√
2A

β
)
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with A, β as in (4.5), (4.6) and Lres as in (4.2).

Figure 2 provides the amplitudes of the 1:1 and 2:1 resonances as the eccentricity varies

between 0 and 0.5, while the inclination ranges between 0o and 90o (we took ω = 0 and

Ω = 0). The color bar indicates the size of the amplitude in kilometers. All values are in

agreement with the amplitudes shown in the figures of the forthcoming Section 5, either

when the results are obtained through Hamiltonian or Cartesian formalism. The method

for computing the resonant amplitudes extends very well to other resonances of different

order, even if the size is small (see [4]). Notice that the peculiar behavior in Figure 2,

right panel, at about i = 40o is due to the fact that such inclination corresponds to

the boundary of the regions where the terms t1 and t2 are dominant. The analytical

determination of this value will be given through equation (5.6) in Section 5.4.
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Figure 2. The amplitude of the resonances for different values of the
eccentricity and the inclination; the color bar provides the measure of the
amplitude in kilometers. Left: the 1:1 resonance; right: the 2:1 resonance.

5. Cartography

In this section we describe the results about the analysis of the 1:1 and 2:1 resonances

using the FLIs, whose definition is provided below in Section 5.1. Each region shows a

peculiar cartography, where the main zones of resonant, stable and chaotic motions are

highlighted.

5.1. Fast Lyapunov Indicator. The FLI can be defined as the largest Lyapunov char-

acteristic exponent at a fixed time, say t = T ([10]). More precisely, let us consider the

n–dimensional differential system

ẋ = f(x) ,
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where x ∈ R
n and the n–dimensional vector function f : Rn → R

n represents the vector

field. Let the corresponding variational equations be written as

v̇ =
(∂f(x)

∂x

)
v ,

where v is an n-dimensional vector.

Given the initial conditions x(0) ∈ R
n, v(0) ∈ R

n, the FLI at the time T > 0 is given

by

FLI(x(0),v(0), T ) ≡ sup
0<t≤T

log ||v(t)|| .

In the following sections (Section 5.2 for the 1:1 resonance and Section 5.4 for the 2:1

resonance) we present results in the plane of coordinates or in the parameter plane,

providing the value of the FLI through a color scale, where darker colors will denote

a regular dynamics, either periodic or quasi–periodic, while lighter colors will denote

chaotic motions. We remark that in each plot the color scale may be different.

The results of Sections 5.2 and 5.4 will provide information on the regular or chaotic

character of the dynamics, on the dependence of the resonances on the parameters, on the

location of the equilibrium points. Our study will be mainly based on the Hamiltonian

formulation for the 1:1 and 2:1 resonances, but we will also provide results using the

Cartesian approach including, beside the geopotential, the effects of Sun, Moon and

solar radiation pressure.

5.2. Cartography of the 1:1 resonance. We compute a grid of 100 × 100 points of

the λ−a plane, where the stroboscopic mean node λ ranges in the interval [−220o, 180o],

while the semimajor axis a spans an area around the geostationary value corresponding

to a = 42 164.1696 km. Figure 3 shows the FLI values for e = 0.005, i = 0, ω = 0, Ω = 0

and different approximations from second to fourth order degree harmonics (we used

as integration algorithm a 4–th order Runge–Kutta method). We also add a panel in

the (e, a) plane, which provides the amplitude of the libration islands as the eccentricity

increases.

For the dynamical model based just on the perturbing harmonics J2 and J22 (Figure 3,

upper left panel), pendulum like plots are obtained. The semimajor axis a and the

stroboscopic mean node λ librate or circulate; the separatrix divides the phase-space in

regions corresponding to libration or circulation. Including higher order harmonics, up to

degree and order three and four, the pattern of the resonance slightly changes, revealing

the appearance of more complex orbits (see Figure 3, upper right and bottom left panels).

In particular, near the separatrix some additional curves are visible and, moreover, the
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Figure 3. FLI (using Hamilton’s equations) for the GEO 1:1 resonance
for e = 0.005, i = 0o, ω = 0o, Ω = 0o under the effects of the J2 and J22

terms (top left); all harmonics up to degree and order n = m = 3 (top
right); all harmonics up to n = m = 4 (bottom left). The bottom right
panel yields the FLI for i = 0o, λ = 75.07o in the (e, a) plane under the
effects of all harmonics up to n = m = 4.

libration zones lose their symmetry. These complex orbits are not a consequence of the

resonance splitting, as in the case of the 2:1 resonance (see Section 5.4), but they are

rather due to the interaction between T1 and T3. Since the argument of T1 is 2(λ−λ22),

while the argument of T3 is λ−λ31, we get an intricate dynamical behavior clearly depicted

in Figure 3, upper right panel. The fourth degree harmonic terms play a negligible role

(compare with Figure 3, bottom left). The pattern shown on the first half of each plot

of Figure 3, that is for λ ∈ [−220o,−20o], could be viewed as a mirror reflection of the

one appearing in the other half. Since all figures obtained for the 1 : 1 resonance have

this feature, in the following we plot the FLI values just for λ in the interval [−20o, 170o].

Increasing the eccentricity we have a decrease of the amplitude of the librational region

around the 1:1 resonance (Figure 3, bottom right panel). This effect is common to all

cases shown in the present subsection.

Figure 4 shows the FLI values in the spatial case (i = 30o or i = 60o) as a function

of λ and a, or in the (e, a) plane. All these figures confirm that T1 is dominant. As a

consequence, the stable point is located at about λ = 75o and since T1 is proportional to
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Figure 4. FLI (using Hamilton’s equations) for the GEO 1:1 resonance,
under the effects of all harmonics up to degree and order n = m = 4, for
e = 0.005, ω = 0, Ω = 0 and i = 30o in the upper left panel, i = 60o in the
bottom left panel. The right panels provide FLI for λ = 75.07o, i = 30o

(top right) and i = 60o (bottom right) in the (a, e) plane.
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Figure 5. FLI (using Cartesian equations) for the GEO 1:1 resonance
for e = 0.005, i = 30o, ω = 0, Ω = 0, under all harmonics up to degree
and order three (left panel), all harmonics up to degree and order three +
Moon + Sun+ SRP with A/m = 0.1 (right panel).

(1+cos i)2(1− 5
2
e2), as already remarked the amplitude of the resonance slightly decreases

when the inclination and/or the eccentricity increase.

It is worth mentioning that although T3 is dominant for inclinations close to i = 60o

and large eccentricities, the dynamics is still leaded by the terms of order J22. For such
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cases, the magnitude of T1+T2 is larger than the magnitude of any combination of terms

having as argument λ + const, and as a consequence the equilibrium points are located

at the same points as for small eccentricities.

The results obtained by using the Hamiltonian formulation are validated by integrating

the Cartesian equations of motion as in Figure 5, computed for i = 30o, ω = 0, Ω = 0,

e = 0.005. We have used as starter a single step method (a Butcher numerical algorithm),

while a multistep predictor–corrector numerical method (Adams-Bashforth 12 steps and

Adams-Moulton 11 steps) performs most of the propagation. The Adams-Bashforth

(predictor) method gives an initial solution, while the Adams-Moulton (corrector) method

is successively used to generate better estimates of the solution. Being a convergent

process, provided the step size is small enough, the algorithm was iteratively applied till

the solution was obtained within a fixed tolerance. The integration step was set to h = 10

minutes, while the total time span was N = 15000 sidereal days (about 41 years). For

each orbit we used a fixed initial tangent vector, leaving the exploration of the effect of a

random choice of this vector to a future work. The left panel of Figure 5 is obtained by

considering all harmonics up to degree and order three, while in the right panel we add

the effect of Moon, Sun and SRP for an object with A/m = 0.1. The overall structure is

very similar to the integration of the Hamilton’s equations in Figure 4. Both approaches

predict the same dynamical behavior; precisely: the equilibrium points have the same

location, the long term behavior of the orbital elements are similar, in particular the

semimajor axis is nearly the same, some chaotic orbits are observed near the separatrix.

From the analysis provided in this subsection, we conclude that a dynamical model

based just on the perturbing harmonics J2 and J22 yields the essential features of the

dynamics providing pendulum like plots, while the inclusion of higher order harmonics

in the model provokes a small interaction between all harmonics (tesseral, sectorial and

zonal), revealed by the appearance of additional structures near the separatrix and by

the lack of symmetry of the librational zones.

For small and moderate inclinations and eccentricities, the effects of Sun, Moon and

solar radiation pressure with a small A/m parameter (Figure 5, right panel) do not change

significantly the pattern of the resonance, a fact pointed out also in [2] and [25].

5.3. Location of the equilibrium points for the 1:1 resonance. In the above sub-

section an analysis of the 1:1 resonance was presented for various eccentricities and incli-

nations. In all computations, we considered the initial conditions ω = 0 and Ω = 0. In
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Figure 6. FLI (using Hamilton’s equations) for the GEO 1:1 resonance,
under the effects of all harmonics up to degree and order n = m = 4, for
i = 0, ω = 20o, Ω = 0: e = 0.005 (left); e = 0.5 (right).

this section we analyze the influence of non–zero initial angles ω and Ω on the location

of the equilibrium points.

Since all resonant arguments in Rres1:1
earth may be written in the form mλ + jω − nλnm,

where m, n ∈ N and j ∈ Z, a non–zero initial Ω does not influence the location of the

equilibrium points. Moreover, since T1 is dominant in almost all regions of the phase

space, with its magnitude much greater than the size of any other term, and since its res-

onant argument (see (3.11)) does not depend on ω, the location of the equilibrium points

is not affected by the argument of perigee for almost all inclinations and eccentricities.

Figure 6, obtained for ω = 20o, Ω = 0, i = 0, e = 0.005 (left panel) and e = 0.5 (right

panel) provides evidence for the above claims. In particular, it is clear that the location

of the equilibrium points is not affected by ω.

We immediately recognize that using λ = M − θ + ω + Ω in place of M , then Ω

becomes a cyclic variable. Moreover, in the case of GEO, for a model based just on the

perturbations due to J2 and to T1, then ω is also a cyclic variable.

Notice that also in the case of the 2:1 resonance, for the model based on the perturbing

terms due to J2 and to the term t3 defined in (3.13), then ω is a cyclic variable.

For the models based on J2 and another term, one can easily perform an adapted

change of canonical variables in such a way that ω becomes cyclic. This is the reason

for having that Ω has no influence on the location of the equilibrium points and that the

location of the equilibrium points depends on ω, provided that there are two or three

terms in the Hamiltonian which are comparable in magnitude.

5.4. Cartography of the 2:1 resonance. In this section we consider the 2:1 resonance

and we perform an analysis similar to that provided for the 1:1 resonance in Section 5.2.
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Figure 7. FLI for the toy–model (5.1), for e = 0.1, i = 20o, ω = 0, Ω = 0,
under various effects: J2+ t1 (top left); J2+ t2 (top right); J2+ t3 (bottom
left); J2 + t1 + t2 + t3 (bottom right).
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Figure 8. Left: FLI (using Cartesian equations) for the MEO 2:1 reso-
nance for i = 20o, e = 0.1, ω = 0, Ω = 0, under the effects of harmonics
up to degree and order 3, Sun, Moon and solar radiation pressure with
A/m = 0.1. Right: FLI for the toy–model (5.1), for e = 0.1, i = 63.4o,
ω = 0, Ω = 0 under the effects of J2 + t1 + t2 + t3.

For the 2 : 1 resonance a phenomenon of superposition of harmonics takes place. To

explain this phenomenon and to point out its effects, let us consider the following toy

model described by the Hamiltonian

Htoy = − µ2
E

2L2
+ R̃sec

earth + t1 + t2 + t3 , (5.1)



ON THE DYNAMICS OF SPACE DEBRIS: 1:1 AND 2:1 RESONANCES 25

where we approximate Rsec
earth by

R̃sec
earth

∼= µER
2
EJ2

a3

(3
4
sin2 i− 1

2

)
(1− e2)−3/2 ,

that is, we consider just the influence of the J2 harmonic, and where t1, t2, t3 are defined

in (3.13). For simplicity, we consider these terms up to second order in eccentricity,

namely we take

t1 =
µER

2
EJ22

a3

{3

4
(1 + cos i)2

(
−e

2

)
cos(σ + ω − 2λ22)

}

t2 =
µER

2
EJ22

a3

{3

2
sin2 i

(3
2
e
)
cos(σ − ω − 2λ22)

}

t3 =
µER

3
EJ32

a4

{15

8
sin i(1− 2 cos i− 3 cos2 i)

(
1 + 2e2

)
sin(σ − 2λ32)

}
,

where σ = 2λ with λ as in (3.14).
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Figure 9. FLI (using Hamilton’s equations) for the MEO 2:1 resonance,
under the effects of all harmonics up to degree and order n = m = 4, for
i = 30o, ω = 0, Ω = 0: e = 0.005 (top left); e = 0.01 (top right); e = 0.1
(bottom left); e = 0.5 (bottom right).

It is worth mentioning that, for small and moderate eccentricities, this simple dynam-

ical model yields the essential features of the dynamics inside the 2:1 resonance. The

other terms of Rsec
earth and Rres2:1

earth have a secondary role.
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The canonical variables in the non–autonomous Hamiltonian (5.1) are the action–

angle Delaunay variables (L,G,H,M, ω,Ω), which are related to the orbital elements

by the relations (3.1). An autonomous Hamiltonian H̃toy can be obtained from Htoy by

introducing an artificial momentum Θ conjugated to θ. Precisely, assuming that θ̇ = nθ,

we consider the Hamiltonian

H̃toy = Htoy + nθΘ ,

where θ̇ = ∂H̃toy

∂Θ
, Θ̇ = −∂H̃toy

∂θ
. Let us consider the symplectic canonical transformation:

(L,G,H,Θ,M, ω,Ω, θ) −→ (L′, G′, H ′,Θ′, σ, ω,Ω, θ) ,

which is defined by

L′ = L , G′ = G−L , H ′ = H−2L , Θ′ = Θ+2L , σ = M−2θ+ω+2Ω , (5.2)

while ω, Ω, θ are kept unaltered. In terms of the new variables, the autonomous Hamil-

tonian K̃toy is given by

K̃toy = − µ2
E

2L′2
− 2nθL

′ + nθΘ
′ + R̃sec

earth + t1 + t2 + t3 ,

from which we get the non–autonomous Hamiltonian

Ktoy = − µ2
E

2L′2
− 2nθL

′ + R̃sec
earth + t1 + t2 + t3 . (5.3)

The new action–angle variables (L,G′, H ′, σ, ω,Ω) are related to the orbital elements

through the relations (3.1), (3.14), (5.2).

Let us underline one of the main effects induced by the J2 harmonic (see also [5]).

Setting t1 = t2 = t3 = 0 in (5.3), it is easy to show (see for example [16]) that J2

provokes a secular regression of the orbital node and a precession of the perigee, that is

Ω̇ ≃ −3

2
n∗J2(

RE

a(1− e2)
)2 cos i , ω̇ ≃ 3

2
n∗J2(

RE

a(1− e2)
)2(2− 5

2
sin2 i) , (5.4)

where n∗ denotes the mean motion. Let us remark that for i = 63.40, called the critical

inclination, we have 2 − 5
2
sin2 i = 0 and therefore ω is constant, giving place to the

so–called frozen orbits ([5]).

If i 6= 63.40, then ω̇ 6= 0 and each of the angles σ, σ+ω, σ−ω appearing in each term

of (3.13) will have zero derivatives at different locations. Therefore, the gravitational

resonance splits into a triplet of resonances, the separation between them being of the

order of a few kilometers (precisely a value between 0-9 km, the exact value depending

on the inclination and the eccentricity).

In Figure 7, obtained for the initial conditions e = 0.1, i = 20o, ω = 0, Ω = 0,

we represent the FLI values for the toy-models taking into account as perturbations:
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J2 + t1 (top left), J2 + t2 (top right), J2 + t3 (bottom left), respectively. Each toy–model

yields a pendulum like plot. In particular, for J2 + t1 the stable point is located at

σ = 2λ22 − 180o ≃ −30o and a = 26565.8 km. For J2 + t2 the stable point is located at

σ = 2λ22 ≃ 150o and a = 26559.9 km, therefore there is a shift of about 6 km in semimajor

axis, if we compare it with the plot obtained for the previous toy–model (Figure 7, top

left). In the case of J2 + t3 the stable point is located at σ = 2λ32 − 90o ≃ 55o and

a = 26 562.8 km.

A different behavior is found for the model taking into account all perturbing terms,

that is J2 + t1 + t2 + t3 (Figure 7, bottom right); all harmonics interact, leading to a

complex dynamics with a complicated interplay of regular and chaotic motions.

Figure 8 left is obtained by integrating the Cartesian equations and taking into account

all harmonics up to degree and order 3, Sun, Moon and solar radiation pressure with

A/m = 0.1; the plot confirms what was anticipated and described by the above toy–

model, namely a complex dynamics due to a strong effect provoked by the interaction of

all harmonics.

Roughly speaking, as long as the magnitude of one of the terms t1, t2 or t3 is much

greater than the magnitude of the other two, then a pendulum–like pattern is obtained.

On the contrary, when two (or all three) terms t1, t2, t3 are comparable in magnitude and

i 6= 63.4o, then all harmonics superpose, leading to chaotic motions as in Figure 8 (left

panel). There exists an exception, which corresponds to the critical inclination i = 63.4o

(see Figure 8, right). In this case, ω is constant and σ, σ + ω, σ − ω will have zero

derivatives at the same location, precisely at about a = 26 560 km.

Figure 9 is obtained including all harmonics up to degree and order 4; the different

panels illustrate graphically the phenomenon of superposition of harmonics, for various

eccentricities and for i = 30o (similar results are obtained for other inclinations).

Since t1 and t2 are proportional to the eccentricity, t3 is proportional to sin i(1−2 cos i−
3 cos2 i) and t2 is proportional to sin2 i, each term will dominate in a specific region of

the phase space (see Figure 1 right). As a consequence, the location of resonant island’s

centers as well as the widths of the resonances depend on the values of the eccentricity

and of the inclination. For example, in Figure 9 (top left and top right), since t3 is

dominant for small eccentricities, the center of the resonant island is at about σ = 55o

and the amplitude of the resonance increases (and then decreases) with the growth of

the inclination. An interesting phenomenon occurs for i = 70.53o, since the function

f : [0o, 90o] −→ R, f(i) = − sin i(1− 2 cos i− 3 cos2 i), (5.5)
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changes its sign at 70.53o. Thus, for i < 70.53o the stable point is located at about

σ = 55o and the unstable one at about σ = 235o, while for i > 70.53o the situation is

opposite: the hyperbolic point is located at σ = 55o and the stable one at σ = 235o

(compare with Figure 10). Therefore, at i = 70.53o we have a transcritical bifurcation

point, since a small change in inclination causes the stability of the equilibrium points to

change. This critical point is clearly marked as a cusp in the shape displayed in Figure 1

right (compare also with Figure 2 right).

For higher but moderate eccentricities, let us say e = 0.1, t3 is still dominant for

i ∈ [25o, 45o], but the magnitudes of all three terms t1, t2, t3 are comparable. Due to

resonance splitting, each component of the triplet gives rise to a resonance at a specific

exact location. Usually, these resonances have amplitude greater than the distance which

separates them, so that a superposition phenomenon takes place, leading to complex

dynamics with both regular and chaotic behaviors (compare with Figure 9, bottom left).

If the value of the eccentricity is larger, then t1 is dominant for i < i0 and t2 is dominant

for i > i0, where i0 ∈ (0o, 90o) is the solution of the equation

3

4
(1 + cos i)2(

e

2
− e3

16
)− 3

2
sin2 i(

3

2
e+

27

16
e3) = 0 . (5.6)

For e = 0.5, the value of i0 is about 39o. This is the reason for having the centers of the

islands located somewhere between σ = −50o and σ = 0o in the plots obtained for i < 39o

(see bottom right in Figure 9). Clearly, for e = 0.5 and non-zero inclinations, many other

terms in Rres2:1
earth grow in magnitude, their interaction leading to chaotic motions.

Figure 10 (top panels) plots the FLI values as a function of inclination and semimajor

axis in order to evaluate the width of the resonance for each value of the inclination and

to give a hint on the dynamics inside the resonance. For small eccentricities, let us say

e = 0.005, t3 is dominant and its magnitude is much greater than the magnitude of the

other terms. Therefore, we vary σ as σ = 55o in Figure 10 top left, and σ = 235o in the top

right panel. These plots give an estimate of the amplitude of the resonance as a function of

the inclination. For a specific inclination, the amplitude can be determined by measuring

the distance between the two points on the separatrix obtained as the intersection of the

vertical line corresponding to that specific inclination and the structure visible on the

plot. Due to the above described bifurcation phenomenon, Figure 10 top left panel should

be used for i ∈ [0o, 70.53o), while Figure 10 top right panel for i > 70.53o. In fact, the way

in which the amplitude of the resonance varies with the inclination is described by the

function f , defined by (5.5). The function f increases on the interval i ∈ [0o, 34.42o] and

then it decreases. At i = 70.53o, f changes its sign, so that on the interval [70.53o, 90o] the
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Figure 10. FLI (using Hamilton’s equations) for the MEO 2:1 resonance
under the effects of all harmonics up to degree and order n = m = 4. Upper
left and right panels: FLI in (i, a) for ω = 0, Ω = 0: e = 0.005, σ = 55o

(left); e = 0.005, σ = 235o (right). Middle and bottom panels provide the
FLI for ω = 0, Ω = 0, σ = −30o in the left panels and σ = 150o in the
right panels. The middle panels provide the FLI for e = 0.1 in (i, a), while
the bottom panels are for i = 50o in (e, a).

function −f increases. It is striking to compare the behavior of the function f with the

pattern followed in Figure 10 top panels by the amplitude of the resonance. Precisely, the

amplitude increases in the interval [0o, 34.42o], it decreases in the interval [34.42o, 70.53o],

and then it increases again in the interval [70.53o, 90o]. Analyzing carefully Figure 10

top panels, we notice that the structure of the left plot is not horizontal, but rather

slightly inclined. That is, increasing the inclination, the location of the equilibrium

points is shifted in semimajor axis. The J2 harmonic is responsible for this behavior,
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which provokes the secular regression of the orbital node and the precession of perigee.

The exact location of the resonance is given by σ̇ ≡ Ṁ − 2θ̇ + ω̇ + 2Ω̇ = 0. In view of

(5.4), one can write d(ω̇+2Ω̇)
di

= 3
2
n∗J2

(
RE

a(1−e2)

)2

(−5 cos i + 2) sin i < 0, for i ∈ (0o, 66.4o).

Therefore ω̇+2Ω̇ decreases with the inclination within (0o, 66.4o) and, as a consequence,

the equilibrium points are shifted in semimajor axis, as far as the inclination increases.

Figure 10 (middle panels) is obtained for e = 0.1 and shows that the roles played by

t1 and t2 enhance the complexity of the problem. Finally, Figure 10 (bottom panels)

provides the FLI values in the plane (e, a). These plots give an estimate of the width

of the resonance for each value of the eccentricity; we may conclude that for small e the

motion is regular, while for moderate and large e the plots show very complex behaviors.

5.5. Location of the equilibrium points for the 2:1 resonance. As in in Section 5.3

we infer that Ω does not influence the location of the equilibria. In contrast to the 1 : 1

resonance, ω plays an important role for moderate and high eccentricities. For the 2 : 1

resonance there are three leading terms, t1, t2, t3, with comparable magnitude in most

of the phase space. Since their resonant arguments are σ ± ω − 2λ22 and σ − 2λ32, the

location of the equilibria and the pattern of the resonances are strongly affected by ω.
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Figure 11. FLI for the toy–model (5.1), for e = 0.1, i = 20o, ω = −85o,
Ω = 0, under various effects: J2 + t1 (top left); J2 + t2 (top right); J2 + t3
(bottom left); J2 + t1 + t2 + t3 (bottom right).
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Here, we present just a discussion based on the toy-models which take into account

as perturbation: J2 + t1, J2 + t2, J2 + t3 and J2 + t1 + t2 + t3, respectively. As already

remarked, the first three toy–models yield pendulum–like plots (compare with Figure 7).

For J2+ t1 the stable point is located at σ = 2λ22−180o−ω ≃ −30o−ω and a = 26565.8

km. For J2 + t2 the stable point is located at σ = 2λ22 + ω ≃ 150o + ω and a = 26559.9

km. In the case of J2 + t3 the stable point is located at σ = 2λ32 − 90o ≃ 55o and

a = 26562.8 km. For the model including all perturbing terms, that is J2+ t1+ t2+ t3, all

harmonics interact, leading to a complex dynamics, strongly depending on ω. Figures 7

and 11 are obtained in the same conditions except for the initial value of ω which is 0o in

the first case and −85o in Figure 11. It is evident that Figures 7 and 11 (bottom right)

are not identical, indicating a strong dependence on ω, when the magnitudes of t1, t2,

t3 are comparable. In conclusion, as long as the magnitude of one term is much greater

than the size of any other term of Rres2:1
earth , then pendulum–like plots are obtained and the

stable points are shifted according to the value of ω. In the case when all three terms are

taken into account, we have a complex dynamics, strongly depending on the value of ω.

6. Appendix: On the derivation of the Cartesian equations of motion

We denote by θ the sidereal time and let r be the radius vector of the debris with coor-

dinates (x, y, z) and (X, Y, Z) in the quasi–inertial and in the synodic frames introduced

in Section 2: r = xe1 + ye2 + ze3 = Xf1 + Y f2 + Zf3. Denoting by R3(θ) the rotation

matrix of angle θ around the third axis, the relation between the coordinates is



x
y
z


 = R3(−θ)




X
Y
Z


 . (6.1)

The equations of motion (2.1) are provided by the sum of the contributions of the Earth’s

gravitational influence, including the oblateness effect, the solar attraction, the lunar

attraction and the solar radiation pressure. Let us denote by ∇F and ∇I the gradients

in the synodic and quasi–inertial frames:

∇F ≡ ∂

∂X
f1 +

∂

∂Y
f2 +

∂

∂Z
f3 , ∇I ≡

∂

∂x
e1 +

∂

∂y
e2 +

∂

∂z
e3 .

The equations (2.1) can be written in the form

r̈ = G R3(−θ) ∇F

∫

VE

ρ(rp)

|r− rp|
dVE +GmS ∇I

( 1

|r− rS|
+

r · rS
|rS|3

)

+ GmM ∇I

( 1

|r− rM | +
r · rM
|rM |3

)
− CrPra

2
S

A

m
∇I

( 1

|r− rS|
)
. (6.2)
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In the synodic frame we can write (X, Y, Z) = (r cosφ cosλ, r cos φ sinλ, r sin φ), where

(r, λ, φ) are spherical coordinates with the longitude 0 ≤ λ ≤ 2π and the latitude −π
2
≤

φ ≤ π
2
. Following [1] and [8], C10 = C11 = S11 = 0 and the values of C21 are S21 are

very small (see Table 1), so that in the Cartesian equations we neglect the contribution

of these harmonics. With these remarks we find the following explicit expansion of the

Earth’s gravity potential up n = m = 3:

V (r, φ, λ) ≃ GME

r

[
1 +

(RE

r

)2[1
2
(3 sin2 φ− 1)C20 + 3 cos2 φ

(
C22 cos(2λ) + S22 sin(2λ)

)]

+
(RE

r

)3 [1
2
sin φ(5 sin2 φ− 3)C30 +

3

2
cosφ(5 sin2 φ− 1)(C31 cosλ+ S31 sinλ)

+15 sinφ(1− sin2 φ)
(
C32 cos(2λ) + S32 sin(2λ)

)
+ 15 cos3 φ

(
C33 cos(3λ) + S33 sin(3λ)

)]]
.

If A < B < C denote the Earth’s principal moments of inertia, we can write C20 =

(A + B − 2C)/(2MER
2
E) and C22 = (B − A)/(4MER

2
E). The Earth’s gravity potential

in the synodic frame becomes

V (X, Y, Z) ≃ GME

r
+

GME

r

(RE

r

)2 [
C20

(3Z2

2r2
− 1

2

)
+ 3C22

X2 − Y 2

r2
+ 6S22

XY

r2

]

+
GME

r

(RE

r

)3 [
C30

Z

2r

(5Z2

r2
− 3

)
+

3

2

(5Z2

r2
− 1

)(
C31

X

r
+ S31

Y

r

)

+15
Z

r

(
C32

X2 − Y 2

r2
+ S32

2XY

r2

)
+ 15

(
C33

X(X2 − 3Y 2)

r3
+ S33

Y (3X2 − Y 2)

r3

)]
.

From this expression and (6.1), we compute the first term of the right hand side of (6.2).

This easily leads to the Cartesian equations of motion in the quasi–inertial frame. In

(2.2) we give the equations with harmonics up to degree and order two.
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