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Abstract

Vector fields that are discontinuous on codimension-one surfaces are known as Filippov
systems and can have attracting periodic orbits involving segments that are contained on
a discontinuity surface of the vector field. In this paper we consider the addition of small
noise to a general Filippov system and study the resulting stochastic dynamics near such a
periodic orbit. Since a straight-forward asymptotic expansion in terms of the noise ampli-
tude is not possible due to the presence of discontinuity surfaces, in order to quantitatively
determine the basic statistical properties of the dynamics, we treat different parts of the
periodic orbit separately. Dynamics distant from discontinuity surfaces is analyzed by the
use of a series expansion of the transitional probability density function. Stochastically
perturbed sliding motion is analyzed through stochastic averaging methods. The influence
of noise on points at which the periodic orbit escapes a discontinuity surface is determined
by zooming into the transition point. We combine the results to quantitatively determine
the effect of noise on the oscillation time for a three-dimensional canonical model of relay
control. For some parameter values of this model, small noise induces a significantly large
reduction in the average oscillation time. By interpreting our results geometrically, we are
able to identify four features of the relay control system that contribute to this phenomenon.

1 Introduction

Filippov systems are vector fields with codimension-one surfaces, termed switching manifolds,
on which the vector field is discontinuous. Subsets of switching manifolds at which the vector
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field on either side of the manifold points towards the manifold are known as stable sliding
regions. Whenever a trajectory of the system arrives at a stable sliding region, future evolution
is constrained to the switching manifold until it exits the sliding region. This evolution is known
as sliding motion [1, 2]. In Filippov models of stick-slip oscillators, sliding motion corresponds
to the sticking phase of the dynamics [3], and for relay control, sliding motion models extremely
rapid switching [1, 4, 5]. So-called sliding-mode controllers specifically utilize sliding motion to
achieve superior control objectives [6, 7]. Stable periodic orbits that involve segments of sliding
motion arise in models of stick-slip oscillators [8, 9], relay control [10, 11, 12, 13], and population
dynamics [14, 15, 16]. The purpose of the present paper is to quantitatively determine the effects
of noise on such periodic orbits.

Throughout this paper, we use a canonical relay control model, given in [1, 4, 5], as an
example. The general model equations are

Ẋ = AX+Bν ,

ϕ = CTX ,

ν = −sgn(ϕ) ,

(1.1)

where X ∈ R
N represents the state of the system, ϕ is the control measurement, and ν is the

control response. We consider the following three-dimensional example (N = 3) of (1.1), given
in [1, 10],

A =





−2ζω − λ 1 0
−2ζωλ− ω2 0 1

−λω2 0 0



 , B =





1
−2
1



 , C =





1
0
0



 , (1.2)

with parameter values,
ζ = 0.5 , λ = 0.05 , ω = 5 . (1.3)

The system (1.1)-(1.3) has an attracting symmetric periodic orbit, call it Γ, with two sliding
segments, Fig. 1. The parameter values (1.3) are typical in the sense that (1.1) with (1.2)
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Figure 1: The attracting periodic orbit Γ of (1.1)-(1.3).
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exhibits an attracting periodic orbit with one or more sliding segments over a relatively large
range of parameter values [10].

From the viewpoint of control, it is important to understand the robustness of (1.1) to random
fluctuations, parameter uncertainty, and unmodelled nonlinear dynamics. Conditions ensuring
the robustness of equilibria of general hybrid control systems under various assumptions have
been established [17, 18, 19, 20]. In [21], the robustness of attracting periodic orbits of (1.1)
is investigated numerically by altering the switching condition in different ways, such as by
incorporating time delay. The authors conclude that periodic orbits with sliding appear to
be less robust than periodic orbits that only have transversal intersections with the switching
manifold. In [22], a model of anti-lock brakes is shown to exhibit attracting periodic orbits with
sliding and the robustness of the periodic orbits is correlated with the size of their basins of
attraction. In addition, unlike attracting periodic orbits of smooth systems, attracting periodic
orbits with sliding segments may be destroyed by stable singular perturbations [23].

Randomness or uncertainty enters into relay control systems in various ways, such as via
the input and output of the controlling component or through the action of circuit elements,
and is present in modelling by means of parameter uncertainty and modelling approximations
[24, 25, 26, 27]. For simplicity, we incorporate randomness in (1.1) by adding white Gaussian
noise to the control response. Specifically, the stochastic model is

dX(t) =
(

AX(t)− B sgn
(

CTX(t)
))

dt+
√
εB dW (t) , (1.4)

where W (t) is standard Brownian motion and 0 < ε≪ 1.
Let us consider a sample solution to (1.4) with (1.2)-(1.3) from an arbitrary initial point.

Once sufficient time has passed to allow the solution to become close to Γ, with high probability
the solution follows a random path near Γ for a long period of time. Throughout this paper we
ignore transient dynamics. We define an oscillation time of a sample solution to (1.4) as the
difference between successive times at which the solution returns to the switching manifold after
a large excursion with X1 > 0. The oscillation time represents a stochastic analogue of the period
of Γ.

To investigate the effect of the noise, for a handful of fixed values of ε we numerically solved
(1.4) with (1.2)-(1.3) over a long time frame and recorded the oscillation times, tosc. For all
Monte-Carlo simulations in this paper we used the Euler-Maruyama method with a fixed step
size. We found that different step sizes produced essentially the same results. We let tosc,Γ denote
the period of Γ, and let

Diff(tosc) ≡ E[tosc]− tosc,Γ , (1.5)

where E denotes expectation. Roughly speaking, we say that the noise alters the oscillation time
significantly if |Diff(tosc)| is larger than, or comparable to, Std(tosc).

Fig. 2 shows the variation in Diff(tosc) and Std(tosc) with ε, given by our numerical experi-
ment. As for an analogous stochastic perturbation of a periodic orbit in a smooth system [28],
Diff(tosc) ∼ K1ε, and Std(tosc) ∼ K2

√
ε, for some constants K1, K2. Consequently, as ε → 0,

Std(tosc) is large relative to Diff(tosc). Yet the noise significantly alters the oscillation time for
relatively small values of ε because |Diff(tosc)| ≈ Std(tosc) for ε = 0.001. As we may infer from
Fig. 2, this is because the magnitude of K1 is extremely large.

In our earlier work [29], we gave numerical results similar to Fig. 2 for parameter values
different to (1.3). We analyzed stochastically perturbed sliding motion and showed that the
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Figure 2: Plots of Diff(tosc) (the difference between E[tosc] and the period of Γ (1.5)), and
Std(tosc) (the standard deviation of tosc) for the system (1.4) with (1.2)-(1.3). To create this
figure, for several different values of ε, we solved (1.4) using the Euler-Maruyama method with
a fixed step size, ∆t = 0.00001, and recorded 1000 consecutive oscillation times, tosc. For each
ε, we have plotted the mean value (as a small circle) and a 95% confidence interval (as a line
segment ending at small crosses) for both Diff(tosc) and Std(tosc) as determined from the 1000
sample values of tosc.

noise may cause this motion to be significantly faster (or slower) than without noise, on average.
We suggested that this mechanism may be the cause for the reduction in oscillation time. In
this paper we use analytical methods to approximate Diff(tosc) and Std(tosc) and explain why
we may have |Diff(tosc)| ≈ Std(tosc) for relatively small values of ε. We find that the mechanism
described in [29] is one of four phenomena that induce a significant reduction in oscillation time
for (1.4) with (1.2)-(1.3).

The remainder of the paper is organized as follows. As detailed in §2, to perform our analysis
we split the stochastic dynamics into three phases. A regular phase corresponds to dynamics
near a section of the periodic orbit that does not involve sliding motion. This is analyzed in
§3 for which the dynamics are described by a stochastic differential equation with a smooth
drift coefficient. A sliding phase corresponds to random motion about the switching manifold
near a sliding section of the periodic orbit and is strongly influenced by the discontinuity. The
stochastically perturbed dynamics are analyzed using stochastic averaging principles in §4. Our
methods for both of these phases are invalid at points where the periodic orbit escapes from the
switching manifold, and the methods are impractical near such points. Consequently, in §5 we
provide a separate analysis for the transition from sliding to regular motion that we refer to as an
escaping phase. In §6 we combine the results to determine the statistics of Diff(tosc) and Std(tosc)
for (1.4) with (1.2)-(1.3). Sections 3-6 involve fundamentally different analytical methods and
may be read independently. Conclusions are given in §7.
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2 General equations and three phases of stochastic dy-

namics

In this section we begin by introducing general equations and a coordinate system that is most
convenient for our analysis, §2.1. In §2.2 we precisely partition the dynamics into regular, sliding
and escaping phases. Lastly in §2.3 we construct the coordinate system of §2.1 for the relay
control example.

2.1 A stochastically perturbed Filippov system and assumptions on

the equations

For an N -dimensional Filippov system (N ≥ 2) with a single switching manifold, we suppose that
we may choose our coordinate system such that the switching manifold coincides with x1 = 0,
where x1 = eT1 x is the first component of the state variable, x. We then write the Filippov system
perturbed by noise as

dx(t) =

{

φ(L)(x(t)) , x1(t) < 0
φ(R)(x(t)) , x1(t) > 0

}

dt+
√
εD dW(t) , (2.1)

where φ(L) and φ(R) are functions that are C2 on the closure of their respective half-spaces, W(t)
is a standard N -dimensional vector Brownian motion, 0 < ε ≪ 1 controls the noise amplitude,
and D is an N × N matrix that specifies the relative strengths and correlations of the noise in
different directions. Throughout this paper it is convenient to separate the component of the
noise in the x1-direction from the remaining directions, and we write

DDT =

[

α βT

β γ

]

, (2.2)

where α ∈ R, β ∈ R
N−1 and γ is an (N − 1) × (N − 1) matrix. Many generalizations of (2.1)

are possible. We anticipate that Filippov systems with multiple switching manifolds, nonsmooth
switching manifolds, coloured noise or multiplicative noise, can be analyzed by extensions of the
methods presented below.

We assume that when ε = 0, (2.1) has an attracting periodic orbit Γ that includes at least
one sliding segment. We now reorient the coordinate axes relative to one such sliding segment
in order to analyze the stochastically perturbed dynamics relating to this segment, and relating
to the subsequent segment of Γ that does not intersect the switching manifold. Our underlying
strategy is to repeat this coordinate change and analysis for all sliding segments in order to
determine the overall effect of noise on Γ.

Without loss of generality, we may assume that the chosen sliding segment ends at the origin,
and that from the origin Γ then enters the right half-space, as shown in Fig. 3. Consequently,
the right half-flow φ(R) is tangent to the switching manifold at the origin:

eT1 φ
(R)(0) = 0 . (2.3)

To ensure a non-degenerate scenario we also require

eT1 φ
(L)(0) > 0 . (2.4)
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Figure 3: A schematic showing part of a periodic orbit, Γ, of (2.1) with ε = 0 that involves
sliding and conforms to assumptions (2.3)-(2.7). Γ arrives at the switching manifold at a point,
xM
Γ , slides along the switching manifold to the origin, x = 0, then travels in the right-half space

until returning to the switching manifold at a point, xR
Γ . To analyze stochastic dynamics, we

divide evolution from xM
Γ to xR

Γ into three distinct phases: sliding, escaping and regular dynamics.

For simplicity we choose the coordinate x2 such that at the origin Γ is tangent to the x2-axis and
locally the value of x2 increases with time on Γ. Therefore

eT2 φ
(R)(0) > 0 , eTj φ

(R)(0) = 0 , ∀j > 2 . (2.5)

In order to ensure Γ enters the right half-space from the origin in a non-degenerate fashion we
require

eT1
∂φ(R)

∂x2
(0) > 0 . (2.6)

Lastly, if the system is at least three-dimensional we may choose the remaining axes so that
the boundary of the stable sliding region is tangent to x2 = 0 at the origin. This requirement
is indicated in Fig. 3 and simplifies our expansions about the origin in §5. Algebraically this
requirement equates to

eT1
∂φ(R)

∂xj
(0) = 0 , ∀j > 2 . (2.7)
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2.2 Three dynamical phases

The periodic orbit Γ may have many sliding segments. The assumptions (2.3)-(2.7) ensure that
our coordinate system is centred at the end point of an arbitrarily chosen sliding segment in a
convenient fashion. Such a point corresponds to a transition from sliding dynamics to regular
dynamics. In the presence of noise, we prefer to treat this transition as a sequence of three
phases: a sliding phase, an escaping phase, and a regular phase.

We now define these phases precisely and introduce notation used in the remaining sections
of the paper. In order to treat escape from the vicinity of the switching manifold separately, we
introduce small constants δ− and δ+ that satisfy

δ− < 0 < δ+ ,
∣

∣δ±
∣

∣≪ 1 . (2.8)

For a sample solution to (2.1) with (2.3)-(2.7) and ε > 0 that follows a path close to Γ, we define
the sliding phase as the part of the solution between the point at which it arrives at the switching
manifold and its first intersection with x2 = δ−. This is followed by an escaping phase defined
as the part of the solution between the end point of the sliding phase and its first intersection
with x2 = δ+. Lastly we refer to the subsequent part of the solution ending with its next
intersection with the switching manifold as a regular phase. Throughout this paper we consider
approximations to quantities such as transitional PDFs and first passage times and locations.
Since these relate to finite intervals of time, with the assumption that ε is sufficiently small, a
wild departure of a sample solution from close proximity to Γ occurs sufficiently rarely that such
large deviations may be ignored.

As indicated in Fig. 3, for the periodic orbit Γ we let xM
Γ denote the point at which the sliding

segment starts, let xS
Γ denote the point at which the sliding segment intersects x2 = δ−, let xE

Γ

denote the point at which Γ intersects x2 = δ+, and let xR
Γ denote the next point at which Γ

intersects the switching manifold. We let tSΓ, t
E
Γ and tRΓ denote the deterministic evolution times

for the sliding, escaping and regular phases, respectively.

2.3 The coordinate change for the relay control system

Here we change the coordinates of the relay control example, (1.4) with (1.2)-(1.3), so that it
conforms to the general system (2.1) with assumptions (2.3)-(2.7). The periodic orbit Γ, shown in
Fig. 1, has two sliding segments. We choose the end point of the upper sliding segment (the sliding
segment with X3 > 0) as the centre of the new coordinates. Since Γ is symmetric (specifically
(1.4) is unchanged under X 7→ −X), the results obtained for the three phases associated with
this end point may be applied directly to the remaining half of Γ.

To determine the location of the end point of the upper sliding segment, we note that while
X1 < 0 trajectories rapidly contract to a one-dimensional weakly stable manifold. The inter-
section of this stable manifold with the switching manifold provides a suitable approximation to
the starting point of the upper sliding segment. Then from Filippov’s solution for sliding motion
we find that upper sliding segment of Γ ends at X = (0, 1, Z)T, where Z ≈ 2.561. The relevant
calculations for this derivation and an exact expression for Z are given in Appendix A.

Further calculations reveal that the affine change of coordinates

x = PX+Q , (2.9)
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where

P =





1 0 0
0 1 0
0 1

Z+2
1



 , Q =





0
−1

− 1
Z+2

− Z



 , (2.10)

transforms (1.4) with ε = 0 to a system satisfying (2.3)-(2.7). Specifically, under (2.9) the system
(1.4) with (1.2)-(1.3) becomes

dx(t) =

{

Ax(t) + B(L) , x1(t) < 0
Ax(t) + B(R) , x1(t) > 0

}

dt+
√
εD dW(t) , (2.11)

where

A = PAP−1 =





−2ζω − λ 1 0
−2ζωλ− ω2 −1

Z+2
1

−λω2 − 2ζωλ+ω2

Z+2
−1

(Z+2)2
1

Z+2



 , (2.12)

B(L) =





2
Z − 2

2Z
Z+2



 , B(R) =





0
Z + 2
0



 , D =





1 0 0
−2 0 0
Z

Z+2
0 0



 . (2.13)

The system (2.11) with (2.12)-(2.13) is used as an example to illustrate our methods in the next
three sections.

3 Regular stochastic dynamics

Here we consider sample solutions to (2.1)-(2.7) that start from an initial point, x0, on x2 = δ+,
to an intersection with the switching manifold, x1 = 0. For an arbitrary sample solution, we let
tR denote the first passage time to x1 = 0 and let xR denote the corresponding arrival location
of the solution. When ε = 0, these values are deterministic and we denote them by tRd and xR

d

respectively. Naturally the values of tRd and xR
d depend on x0, but in this section it is convenient

to ignore this dependency because here we are not interested in variations in x0. Such variations
are considered in §6 where it is necessary to calculate exactly how deviations in one phase of the
dynamics influence dynamics in subsequent phases. Note, if x0 = xE

Γ , then t
R
d = tRΓ and xR

d = xR
Γ ,

Fig. 3.
We assume ε is small and x0 is sufficiently far from x1 = 0 such that tR ≈ tRd and xR ≈ xR

d ,
with high probability. Indeed, we have tR − tRd = O(

√
ε) and xR − xR

d = O(
√
ε). Dynamics for

this phase are governed purely by the right half-system of (2.1):

dx(t) = φ(R)(x(t)) dt+
√
εD dW(t) . (3.1)

It suffices to use classical methods of analysis to study (3.1). We begin by obtaining tR and xR

to O(
√
ε) by sample path methods following [28].

3.1 First order approximations

For the smooth stochastic differential equation, (3.1), we can expand x(t) as a series involving
powers of

√
ε. Specifically, by Theorem 2.2 of Chapter 2 of [28] we can write

x(t) = xd(t;x0) +
√
εx(1)(t) + o(

√
ε) , (3.2)
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where xd denotes the solution to ẋ = φ(R)(x), from x0, and x(1) satisfies

dx(1)(t) = Dxφ
(R)(xd(t))x

(1)(t) dt+DdW(t) , x(1)(0) = 0 , (3.3)

where Dxφ
(R) is the Jacobian of φ(R). Equation (3.3) is a time-dependent Ornstein-Uhlenbeck

process [30, 31]. By using an integrating factor we obtain the explicit solution

x(1)(t) =

∫ t

0

e
∫ t

s
Dxφ

(R)(xd(s̃)) ds̃DdW(s) . (3.4)

Consequently x(1)(t) is a Gaussian random variable with zero mean and covariance matrix

K(t) =

∫ t

0

H(s, t)H(s, t)T ds , (3.5)

where
H(s, t) = e

∫ t

s
Dxφ

(R)(xd(s̃)) ds̃D . (3.6)

When ε = 0, first passage to the switching manifold occurs at the point, xR
d = xd(t

R
d ).

We assume that the deterministic solution intersects the switching manifold transversely at this
point, as is generically the case. That is, we assume eT1 v 6= 0 where

v = φ(R)(xd(t
R
d )) . (3.7)

Then, for ε > 0, by Theorem 2.3 of Chapter 2 of [28], the first passage statistics satisfy

E[tR] = tRd + o(
√
ε) , (3.8)

Var(tR) =
eT1K(tRd )e1
(eT1 v)

2
ε+ o(ε) , (3.9)

and

E[xR] = xR
d + o(

√
ε) , (3.10)

Cov(xR) =

(

I − veT1
eT1 v

)

K(tRd )

(

I − veT1
eT1 v

)T

ε+ o(ε) . (3.11)

In Fig. 4, the formulas (3.9) and (3.11) are compared with Monte-Carlo simulations for the
relay control example, (1.4). The upper curve of panel A is the square root of the leading
order term of (3.9). We compute K in this expression by numerically evaluating the integral
(3.5). The upper curves of the lower two panels of Fig. 4 correspond to analogous lowest-order
approximations using (3.11).

3.2 Deviations in the mean

From (3.8) and (3.10) we see that to determine the lowest order nonzero terms of Diff(tR) =
E[tR] − tRΓ and Diff(xR) = E[xR] − xR

Γ , more powerful methods are required. To calculate E[tR]
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to O(ε) we express this quantity in terms of the transitional PDF (probability density function)
pR(x, t;x0) for (3.1),

E[tR] =

∫ ∞

0

∫

RN

pR(x, t) dx dt . (3.12)

The Fokker-Planck equation for pR with corresponding boundary conditions, including an ab-
sorbing barrier at x1 = 0, is considered below in (3.18)-(3.21). A determination of E[xR] requires
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(
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Figure 4: First passage statistics for a regular phase of the dynamics for the relay control
system (1.2)-(1.4). Theoretical results (shown as solid curves) are compared with Monte-Carlo
simulations using the transformed system (2.11)-(2.13). In panel A, Std(tR) and Diff(tR) are
approximated using (3.9) and (3.36), respectively. In panels B and C, Std(xR2 ) and Std(xR3 ) are
approximated using (3.11), and Diff(xR2 ) and Diff(xR3 ) are approximated using (B.18). We have
used, x0 = xE

Γ , that is, the initial point is the intersection of the deterministic periodic orbit, Γ,
with x2 = δ+, (using δ+ = 0.2, as discussed in §6). The deterministic passage time and location
are tRd ≈ 4.263 and xR

d ≈ (0,−0.040,−4.770). The data points were computed from 1000 Monte-
Carlo simulations for each value of ε using the Euler-Maruyama method with a fixed step size,
∆t = 0.00001, and 95% confidence intervals are indicated as in Fig. 2.
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using the joint PDF for the first passage time and location, k(x2, . . . , xN , t;x0),

E[xRj ] =

∫ ∞

0

∫

RN−1

xjk(x2, . . . , xN , t) dx2 . . . dxN dt . (3.13)

The joint PDF k can be written in terms of pR through the probability current J [30, 31] of (3.1),

k(x2, . . . , xN , t) = −eT1 J(0, x2, . . . , xN , t) , (3.14)

where J is given by

J(x, t) = φ(R)pR − ε

2









∑N
j=1(DD

T)1j
∂pR

∂xj

...
∑N

j=1(DD
T)Nj

∂pR

∂xj









. (3.15)

In view of the absorbing barrier at x1 = 0, we have

k(x2, . . . , xN , t) =
ε

2
(DDT)11

∂pR

∂x1
(0, x2, . . . , xN , t) , (3.16)

so that (3.13) becomes

E[xRj ] =
ε

2
(DDT)11

∫ ∞

0

∫

RN−1

xj
∂pR

∂x1
(0, x2, . . . , xN , t) dx2 . . . dxN dt . (3.17)

The expressions for E[tR] and E[xRj ] involve p
R, which satisfies the following boundary value

problem

∂pR

∂t
= −

N
∑

i=1

∂

∂xi

(

φ
(R)
i (x)pR

)

+
ε

2

N
∑

i=1

N
∑

j=1

(DDT)ij
∂2pR

∂xi∂xj
, (3.18)

pR(x, 0;x0) = δ(x− x0) , (3.19)

pR(x, t;x0) = 0 , whenever x1 = 0 , (3.20)

pR(x, t;x0) → 0 as ||x|| → ∞ , with x1 ≥ 0 . (3.21)

Here (3.19) captures the initial condition, (3.20) is the absorbing boundary condition representing
that the switching manifold is an absorbing barrier, with (3.21) ensuring physically realistic
behaviour.

The form of (3.18)-(3.21) suggests that the problem can be solved using an asymptotic ap-
proach [32, 33, 34]. The solution to (3.18)-(3.21) can be constructed using the solution to (3.18)
without the boundary conditions, that is, the free-space solution pf (x, t;x0). With ε ≪ 1, pf
is concentrated around the deterministic trajectory xd(t). The PDF pf does not satisfy the
boundary condition at x1 = 0, in particular near the point xR

d .
A boundary layer analysis in terms of the local variable z = x1

ε
indicates that near the switch-

ing manifold the boundary layer behaviour of the PDF is given by the sum pℓ(z, x2, . . . , xN , t) +
pf |x1=0, where pℓ is a local contribution to be determined. The uniform solution is then obtained
by matching the boundary layer solution to the outer free space solution, limz→∞(pℓ+ pf |x1=0) =
limx1→0 pf (x, t;x0). This implies limz→∞ pℓ = 0, and hence the uniform solution has the form
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pR = pℓ + pf . Furthermore, since pf decays exponentially away from its main concentration
around the deterministic trajectory, xd, it remains to find the local contribution pℓ that decays
away from xR

d . To this end it is appropriate to use the local variables,

z =
x1

ε
, uj =

xj − xRd,j√
ε

, ∀j 6= 1 , τ =
t− tRd√

ε
, (3.22)

where the particular scaling for τ and uj is motivated by (3.9) and (3.11) respectively. Then the
local contribution can be written

pℓ
(

εz,
√
εu2 + xRd,2, . . . ,

√
εuN + xRd,N ,

√
ετ + tRd

)

= ε−
N
2 P(z, u2, . . . , uN , τ)

= ε−
N
2

(

P(0)(z, u2, . . . , uN , τ) +
√
εP(1)(z, u2, . . . , uN , τ) +O(ε)

)

, (3.23)

with the expansion in powers of
√
ε. The PDE and behaviour at infinity for P are given by

1√
ε

∂P
∂τ

= −1

ε
φ
(R)
1 (xR

d )
∂P
∂z

− 1√
ε

N
∑

i=2

∂φ
(R)
1

∂xi
(xR

d )ui
∂P
∂z

− 1√
ε

N
∑

i=2

φ
(R)
i (xR

d )
∂P
∂ui

+
1

2ε

(

DDT
)

1,1

∂2P
∂z2

+
1√
ε

N
∑

i=2

(

DDT
)

i,1

∂2P
∂z∂ui

+O(ε0) , (3.24)

P → 0 as z → ∞ or uj → ±∞ , ∀j 6= 1 . (3.25)

The absorbing boundary condition for pR (3.20) gives the condition for P at z = 0,

−pf (0,
√
εu2 + xRd,2, . . . ,

√
εuN + xRd,N ,

√
ετ + tRd ) = ε−

N
2 P(0, u2, . . . , uN , τ)

= ε−
N
2

(

f (0)(u2, . . . , uN , τ) +
√
εf (1)(u2, . . . , uN , τ) +O(ε)

)

. (3.26)

for some functions f (i).

3.3 Regular dynamics for the relay control model

Here we summarize the key steps in calculating the functions f (i) that appear in (3.26), and
ultimately calculating E[tR] and E[xR] for the relay control example. Details are deferred to
Appendix B.

As described in §2.3, in transformed coordinates the right half-system of the relay control
example is

dx(t) =
(

Ax(t) + B(R)
)

dt+
√
εD dW(t) , (3.27)

with (2.12) and (2.13). The transitional PDF of (3.27) takes the form pR(x, t) = pf(x, t) +

ε−
N
2 P(z, u2, . . . , uN , τ) with initial and boundary conditions (3.19)-(3.21). The free-space contri-

bution is given by

pf(x, t) =
1

(2πε)
3
2

√

det(K(t))
e−

1
2ε

(x−xd(t))
TK(t)−1(x−xd(t)) , (3.28)

with covariance matrix

K(t) =

∫ t

0

eAsDDTeA
Ts ds . (3.29)
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The local contribution P satisfies (3.24) with φ
(R)
1 (xR

Γ ) = xRΓ,2 and
(

DDT
)

1,1
= 1 (coefficients for

higher order terms are given in Appendix B). Note that tRΓ and xR
Γ are obtained by solving (3.27)

with ε = 0 (refer to (B.1)).
With P expanded as in (3.23), the O(1) equation is

1

2
P(0)

zz − xRΓ,2P(0)
z = 0 . (3.30)

Therefore
P(0) = −f (0)(u2, u3, τ) e

2xR
Γ,2z , (3.31)

where f (0) is determined from (3.26) and (3.28) and given by (B.8). Note xRΓ,2 < 0, because

φ
(R)
1 (xR

Γ ) = xRΓ,2 is the component of the vector field orthogonal to the switching manifold evalu-
ated at the deterministic passage location. Higher order corrections to P satisfy

1

2
P(j)

zz − xRΓ,2P(j)
z = F

(

P(0), . . . ,P(j−1)
)

, (3.32)

where the right hand-side is a function of the lower order components and their derivatives. By
solving (3.32) with j = 1 using (3.31) and the boundary conditions (3.25)-(3.26), we obtain

P(1) =
(

−f (1)(u2, u3, τ) + g(1)(u2, u3, τ)z
)

e2x
R
Γ,2z , (3.33)

where f (1) is found from (3.26) and (B.8) and g(1) depends on f (0) and its derivatives (B.9).
By evaluating (3.12) with (3.28) and (3.31), we obtain the following formula for the mean

first passage time,

E[tR] = tRΓ +
1

2
(

φ
(R)
1 (xR

Γ )
)2

(

κ̇11(t
R
Γ ) +

κ11(t
R
Γ )ẍd,1(t

R
Γ )

φ
(R)
1 (xR

Γ )
− 1

)

ε+O
(

ε
3
2

)

, (3.34)

where κ11 denotes the (1, 1)-element ofK. As discussed in §2.3, the deterministic passage location
xR
Γ is well approximated by the intersection of the weakly stable manifold of the right half-space

with the switching manifold. Repeating (A.11), in transformed coordinates this intersection point
is

x
(R)
int =

[

0 ,− 1

ω2
,−2− 2ζ

ω
− Z − 1

ω2(Z + 2)

]

T

. (3.35)

Indeed, for the parameter values we have used numerical calculations reveal that ||xR
Γ − x

(R)
int || ≈

0.000087. By combining (3.34) and (3.35) we obtain the useful approximation

E[tR] ≈ tRd +
ω4

2

(

κ̇11(t
R
d ) + λκ11(t

R
d )− 1

)

ε+O
(

ε
3
2

)

. (3.36)

As shown in Fig. 4-A, (3.36) is consistent with Monte-Carlo simulations.
The mean values E[xR

2 ] and E[xR
3 ] cannot be expressed as concisely. Numerically it is conve-

nient to compute these values by evaluating pf directly, rather than calculating f (1), as shown
in Appendix B. The results, shown in panels B and C of Fig. 4, were computed by numerically
evaluating (B.18).

13



4 Stochastically perturbed sliding dynamics

Here we consider sample solutions to (2.1) with assumptions (2.3)-(2.7) from an initial point, x0,
on x1 = 0, until an intersection x2 = δ−. For an arbitrary sample solution, we let tS and xS

denote the first passage time and location to x2 = δ−. When ε = 0, these values are deterministic
and we denote them by tSd and xS

d respectively.
In this section it is convenient to write

y = [x2, . . . , xN ]
T , ψ(L) = [φ

(L)
2 , . . . , φ

(L)
N ]T , ψ(R) = [φ

(R)
2 , . . . , φ

(R)
N ]T , (4.1)

with which the piecewise-smooth stochastic differential equation (2.1) may be written as

[

dx1(t)
dy(t)

]

=















[

φ
(L)
1 (x1(t),y(t))
ψ(L)(x1(t),y(t))

]

, x1(t) < 0
[

φ
(R)
1 (x1(t),y(t))
ψ(R)(x1(t),y(t))

]

, x1(t) > 0















dt+
√
εD dW(t) . (4.2)

Since sample solutions remain near the switching manifold with high probability, it is profitable
to expand in x1. We rewrite (4.2) as

[

dx1(t)
dy(t)

]

=















[

aL(y(t)) + cL(y(t))x1(t) +O(x1(t)
2)

bL(y(t)) + dL(y(t))x1(t) + O(x1(t)
2)

]

, x1(t) < 0
[

−aR(y(t)) + cR(y(t))x1(t) +O(x1(t)
2)

bR(y(t)) + dR(y(t))x1(t) +O(x1(t)
2)

]

, x1(t) > 0















dt+
√
εD dW(t) .

(4.3)
Take care to note that aL, aR, cL and cR are scalars, and bL, bR, dL and dR are (N−1)-dimensional
vectors.

When ε = 0 we use Filippov’s convention to define a deterministic sliding solution [2, 35]. On
x1 = 0, for values of y for which aL > 0 and aR > 0, we define

[

ẋd,1
ẏd

]

= (1− µ(yd))

[

aL(yd)
bL(yd)

]

+ µ(yd)

[

−aR(yd)
bR(yd)

]

, (4.4)

where µ is given by the requirement ẋd,1 = 0. That is µ = aL
aL+aR

, and hence

ẏd = Ω ≡ aLbR + aRbL

aL + aR
. (4.5)

The sliding solution, yd(t;y0), satisfies yd(0;y0) = y0, and ẏd = Ω(yd).

4.1 Stochastic averaging

The technique of stochastic averaging applies to stochastic systems with distinct time scales
[28, 36, 37, 38]. The underlying principle is to average fast variables in order to obtain a simpler
description of the behaviour of slow variables over a relatively long time frame. Stochastic
averaging has been an invaluable tool for understanding periodically forced oscillators [39, 40, 41],
and excitable systems [42, 43]. Here we apply stochastic averaging to determine the first passage
statistics of stochastically perturbed sliding motion to the plane x2 = δ−.
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From previous investigations [29] we know that x1(t) = O(ε), for stochastically perturbed
sliding motion of (4.3). This motivates the scaling

z =
x1

ε
, (4.6)

with which (4.3) may be written as

dz(t) =
1

ε

{

aL(y(t)) + εcL(y(t))z(t) +O(ε2) , z(t) < 0
−aR(y(t)) + εcR(y(t))z(t) +O(ε2) , z(t) > 0

}

dt+
1√
ε
eT1DdW(t) , (4.7)

dy(t) = F (z(t),y(t)) dt+
√
ε







eT2
...
eTN






D dW(t) , (4.8)

where

F (z,y) =
bL + bR

2
− bL − bR

2
sgn(z) + ε

dL + dR

2
z − ε

dL − dR

2
z sgn(z) +O(ε2) . (4.9)

In view of the manner by which ε appears in (4.7)-(4.8), we may treat z(t) and y(t) as fast
and slow variables respectively. Furthermore, the averaging approximation of (4.8) involves only
terms in the drift coefficients that are of lower order than ε (i.e. terms involving aL, aR, bL and
bR). Below we show that with this approximation the mean of y coincides with the deterministic
solution, yd. A full computation of the noise-induced correction to the mean due to terms of the
next order is beyond the scope of this paper. However, for the relay control example some of
the coefficients cL, cR, dL and dR, take relatively large values. Here we suppose these coefficients
are O (ε−η), for some η > 0, so that we can formally derive the correction via a straight-forward
averaging approximation.

For any fixed y satisfying aL, aR > 0, as detailed in [29], (4.7) has the quasi-steady-state
density

pqss(z;y) =

(

2aLaR
α(aL + aR)

− a3LcR + a3RcL

aLaR(aL + aR)2
ε+O(ε2)

)

{

e
1
α(2aLz+cLz

2ε+O(ε2)) , z < 0

e−
1
α(2aRz−cRz2ε+O(ε2)) , z > 0

,

(4.10)
where α = (DDT)11 as in (2.2). Given y, it is suitable to assume z is distributed according to
(4.10). Averaging F over pqss yields

F (y) ≡ E
[

F (z,y)
∣

∣y
]

=

∫ ∞

−∞
F (z,y)pqss(z;y) dz

= Ω(y) + Λ(y)αε+O(ε2) , (4.11)

where Ω is given by (4.5) and

Λ =
(a2LdR − a2RdL)(aL + aR)− (a2LcR − a2RcL)(bL − bR)

2aLaR(aL + aR)2
. (4.12)

15



The quantity Λ was obtained in [29] in the case that φ(L) and φ(R) are independent of y. The
averaged equation of (4.8) is dy(t) = F (y(t))dt. Therefore we have the ODE

dy

dt
= Ω(y) + Λ(y)αε+O(ε2) . (4.13)

Note, in the limit ε → 0, (4.13) is equal to (4.5). Formally there exists a sequence of stochastic
solutions to (4.2) that converges to yd(t) as ε→ 0 [44].

Since (4.13) is the averaged equation we can use it to obtain the mean of the first passage
statistics for small ε. The mean of the first passage time, tS, is approximated by

eT1 y
(

E
[

tS
])

≈ δ− , (4.14)

and the mean of the y-component of the first passage location is approximated by

E
[

yS
]

≈ y
(

E
[

tS
])

. (4.15)

We expect these approximations to be exact to at least O(ε), and write

y(t) = yd(t) + y(1)(t)ε+O(ε2) , (4.16)

E[tS ] = tSd + tS,1ε+O(ε2) , (4.17)

E[yS] = yS
d + yS,1ε+O(ε2) . (4.18)

By substituting (4.16) into (4.13) we obtain

y(1)(t) = α

∫ t

0

e
∫ t

s
(DyΩ)(yd(u)) duΛ(yd(s)) ds , (4.19)

which indicates the leading-order deviation of y(t) from the deterministic value yd(t). We then
express the leading-order deviations of E[tS ] and E[yS] in terms of y(1)(tSd ). First, from (4.14)
and (4.17),

tS,1 = − eT1 y
(1)(tSd )

eT1Ω(yd(tSd ))
. (4.20)

Second, from (4.15) and (4.18),

yS,1 = Ω(tSd )t
S,1 + y(1)(tSd ) . (4.21)

The x1-value of the mean first passage location is found using (4.10):

E
[

xS1
]

= ε

∫ ∞

−∞
zpqss(z;y) dz =

aL − aR

2aLaR

∣

∣

∣

∣

y=yS
d

αε+O(ε2) . (4.22)

4.2 Linear diffusion approximation

Here we calculate deviations in tS and xS from their respective mean values. Our approach is to
use a linear diffusion approximation to obtain a stochastic differential equation for the difference
between y and its averaged value, and analyze first passage to x2 = δ−.
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We write the slow-fast system (4.7)-(4.8) as

dz(t) =
1

ε

({

aL(y(t)) , z(t) < 0
−aR(y(t)) , z(t) > 0

}

+O(ε)

)

dt+
1√
ε
eT1DdW(t) , (4.23)

dy(t) =
(

F0(z(t),y(t)) +O(ε)
)

dt+
√
ε







eT2
...
eTN






DdW(t) , (4.24)

where

F0(z,y) =
bL(y) + bR(y)

2
− bL(y)− bR(y)

2
sgn(z) , (4.25)

constitutes the leading order component of F (4.9). From (4.11), the averaged value of F0 is
E [F0(z,y)|y] = Ω(y). In view of (4.5), the averaged value of y(t) is yd(t), and for this reason
we define

ŷ(t) = y(t)− yd(t) . (4.26)

In [45] we performed an asymptotic expansion of the Fokker-Planck equation for (4.23)-(4.24).
Assuming the validity of this expansion, we showed that as ε → 0 the distribution of

Y(t) =
ŷ(t)√
ε
, (4.27)

converges weakly to that of

dY(t) = (DyΩ)(yd(t))Y(t) dt+M(yd(t)) dW(t) , (4.28)

where

M(y) =

[

− bL(y)− bR(y)

aL(y) + aR(y)

∣

∣

∣

∣

I

]

D , (4.29)

and I is the (N − 1)-dimensional identity matrix. In order to obtain statistics for tS and xS by
applying standard first passage theory to (4.28), we require strong convergence. For this reason
we use the method of averaging to derive a linear diffusion approximation, which provides strong
convergence [46, 47], and compare it to (4.28).

Expanding (4.24) about y = yd produces

dŷ(t) = (DyΩ)(yd(t))ŷ(t) dt+
(

F0(z(t),yd(t))− Ω(yd(t))
)

dt+
√
ε







eT2
...
eTN






D dW(t) +O

(

ε
3
2

)

.

(4.30)
The fast variable z(t) appears in only the middle term of (4.30). The essence of the linear
diffusion approximation is to replace this term with an equivalent diffusion [28, 36, 38, 48]. Such
a computation is beyond the scope of this paper in the general situation that the noise terms
of (4.23) and (4.24) are correlated. In this case the middle term of (4.30) and the noise term
of (4.30) are not independent and it seems necessary to study the occupation times of z(t) on
either side of zero, as in [45]. With the correlation matrix of (4.23)-(4.24) partitioned as in (2.2),
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if β = 0 then the noise terms of (4.23) and (4.24) are uncorrelated. In this case (4.30) admits
the linear diffusion approximation

dŷ(t) = (DyΩ)(yd(t))ŷ(t) dt+ σ(yd(t))
√
αε dW (t) +

√
εD̃ dV(t) , (4.31)

where W (t) is a one-dimensional Brownian motion, V(t) is an (N − 1)-dimensional Brownian
motion independent to W (t), D̃D̃T = γ, and

σσT =
(bL − bR)(bL − bR)

T

(aL + aR)2
. (4.32)

The formula (4.32) is derived in Appendix C by using an explicit expression for the transitional
PDF of the leading order truncation of (4.23). The approximation (4.31) is called “linear” because
the drift term of (4.31) is linear. The validity of (4.31) requires that the drift term of (4.23) is
Lipschitz in y and is not influenced by the fact that this drift term is discontinuous in z.

The correlation matrices for the noise terms in (4.31) are σσTα and γ, respectively. In
comparison, the correlation matrix for (4.28) is

MMT = σσTα− σβT − βσT + γ . (4.33)

and so (4.31) is equivalent to (4.28) when β = 0. Given this agreement we conjecture that (4.28)
has strong convergence for any D, with which we may apply standard first passage theory to
(4.28) and obtain statistics for tS and xS. Indeed the first passage theory provides a good match
to the results of Monte-Carlo simulations of the relay control system for various choices of D as
discussed in the next section.

Equation (4.28) is a time-dependent Ornstein-Uhlenbeck process [30, 31], and thus the PDF
for Y(t) is the Gaussian

pS(Y, t) =
1

(2πε)
N−1

2

√

det(Θ(t))
e−

1
2
YTΘ(t)−1Y , (4.34)

where

Θ(t) =

∫ t

0

e
∫ t

s
(DyΩ)(yd(s̃)) ds̃M(yd(s))M(yd(s))

Te
∫ t

s
(DyΩ)(yd(s̃))

T ds̃ ds . (4.35)

Then the leading order terms of Var
(

tS
)

and Cov
(

yS
)

are found via standard first passage
theory [28] (employed in §3) applied to (4.28):

Var
(

tS
)

=
θ11(t

S
d )

eT1Ω(yd(t
S
d ))

ε+O(ε2) , (4.36)

Cov
(

yS
)

=

(

I − ΩeT1
eT1Ω

)

Θ

(

I − ΩeT1
eT1Ω

)T ∣

∣

∣

∣

y=yd(t
S
d
)

ε+O(ε2) , (4.37)

where θ11 is the top left entry of Θ. Lastly, since x1 operates on a fast time-scale relative to y,
to leading order, xS1 is uncorrelated to yS. From (4.10), we have

Var(xS1 ) =
a2L + a2R
4a2La

2
R

∣

∣

∣

∣

y=yd(t
S
d
)

ε2 +O(ε3) . (4.38)
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4.3 Summary and comparison to numerical simulations

Fig. 5 compares the above theoretical results with Monte-Carlo simulations of the relay control
example from x0 = xM

Γ to x2 = δ−. For panel A, Diff(tS) is approximated by εtS,1 using (4.20),
and Std(tS) is approximated using (4.36). For panel B, Diff(xS1 ) is approximated by (4.22), and
Std(xS1 ) by (4.38). Lastly for panel C, Diff(xS3 ) is approximated with (4.15) and (4.21), and the
standard deviation with (4.37).
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Figure 5: A comparison of first passage statistics for stochastically perturbed sliding motion
for the relay control example, (1.4) with (1.2)-(1.3), with theoretical results. Here x0 = xM

Γ ,
and we have used δ− = 0.1, as discussed in §6. The deterministic passage time and location are
tSd ≈ 1.032 and xS

d ≈ (0,−0.1,−0.000685). The data points were computed from 1000 Monte-
Carlo simulations for each value of ε using the Euler-Maruyama method with a fixed step size,
∆t = 0.00001. The circles, bars and crosses indicate mean values and 95% confidence intervals,
as in Fig. 2. The solid curves are the theoretical predictions. Std(tS) is approximated by (4.36),
Std(xS1 ) by (4.38), and Std(xS1 ) by (4.37). Diff(tS) is approximated by (4.20), Diff(xS1 ) by (4.22)
and Diff(xS3 ) by (4.15) and (4.21).
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Notice that the approximations to the standard deviations of tS and xS3 are zero. This is
because, remarkably, for our example the matrix MMT is identically zero, and thus so is Θ. To
see this why this is the case, we notice that the left and right half-systems of (2.11) are identical
up to a constant vector, that is

aL + aR = eT1
(

B(L) − B(R)
)

, bL − bR =







eT2
...
eTN







(

B(L) − B(R)
)

, (4.39)

are constant. Moreover, in view of (2.13) we can write

D =
1

2

(

B(L) − B(R)
)

eT1 . (4.40)

By substituting (4.32), (4.39) and (4.40) into (4.33), we immediately obtain MMT = 0.
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Figure 6: First passage statistics of the sliding phase for the relay control example as in Fig. 5,
except for this figure we have used D = e1e

T

1 in place of D = BeT1 in (1.2).
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This can also be explained geometrically. The drift term of the stochastic differential equation
(4.2) is piecewise, and in general points in different unrelated directions for x1 < 0 and x1 > 0.
When we rewrite (4.2) in terms of the variables x1 and ŷ = y − yd(t) (representing deviations
from the deterministic solution), to lowest order the drift for x1 > 0 is a scalar multiple of the
drift for x1 < 0. For our example (1.4), both left and right drift vectors are multiples of B and
the noise term in (1.4) is one-dimensional and also a multiple B. Consequently, to leading order
deviations occur along a line in the direction of B. Deviations in any direction orthogonal to the
switching manifold are O(ε), hence in this case overall deviations are O(ε). For this reason, for
our example, the O(

√
ε) term representing deviations in yi is zero.

In Fig. 6 we repeat the numerical comparison using D = e1e
T

1 in place of D = BeT1 in (1.2).
Now MMT is nonzero and Std(tS) and Std(xS3 ) are O(

√
ε). Again the theoretical calculations

are consistent with the numerical simulations. We have found that the first passage predictions
match the results of Monte-Carlo simulations for other choices of D, including those with β 6= 0.

5 Escaping analysis

In this section we study (2.1) near the origin and in the range δ− ≤ x2 ≤ δ+. As in the previous
section it is convenient to write y = [x2, . . . , xN ]

T and, repeating (4.3), write (2.1) as

[

dx1(t)
dy(t)

]

=















[

aL(y(t)) + cL(y(t))x1(t) +O(x1(t)
2)

bL(y(t)) + dL(y(t))x1(t) + O(x1(t)
2)

]

, x1(t) < 0
[

−aR(y(t)) + cR(y(t))x1(t) +O(x1(t)
2)

bR(y(t)) + dR(y(t))x1(t) +O(x1(t)
2)

]

, x1(t) > 0















dt+
√
εD dW(t) .

(5.1)
Here we expand the coefficients in (5.1) about y = 0. In view of assumptions (2.3)-(2.7), we can
write

aL(y) = aL +O(||y||) , aR(y) =
∂aR

∂x2
x2 +O(||y||2) ,

bR1(y) = bR1 +O(||y||) , bRi(y) =
N
∑

j=2

∂bRi

∂xj
xj +O(||y||2) , ∀i 6= 1 ,

cR(y) = cR +O(||y||) , dR(y) = dR +O(||y||) ,

(5.2)

where, on the right hand sides, and in the remainder of this section, the coefficients are evaluated
at y = 0, and

aL > 0 ,
∂aR

∂x2
< 0 , bR1 > 0 . (5.3)

To study dynamics near the origin asymptotically in ε, we scale space and time. Consider the
general scaling

X1 =
x1

ελ1
, Xi =

xi

ελ2
, ∀i 6= 1 , T =

t

ελ3
, (5.4)
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where λ1, λ2, λ3 > 0. By substituting (5.4) into (5.1), for X1 > 0 we obtain,

dX1(T ) =
(

−ελ2+λ3−λ1 ∂aR
∂x2

X2(T ) + ελ3cRX1(T ) +O
(

ελ3−λ1+2min(λ1,λ2)
)

)

dT

+ ε
λ3+1

2
−λ1eT1DdW(T ) ,

dX2(T ) =
(

ελ3−λ2bR1 +O
(

ελ3−λ2+min(λ1,λ2)
))

dT + ε
λ3+1

2
−λ2eT2DdW(T ) ,

dXi(T ) = O
(

ελ3−λ2+min(λ1,λ2)
)

dT + ε
λ3+1

2
−λ2eTi+1DdW(T ) , ∀i ≥ 3 ,

(5.5)

and for X1 < 0,

dX1(T ) =
(

ελ3−λ1aL +O
(

ελ3−λ1+min(λ1,λ2)
))

dT + ε
λ3+1

2
−λ1eT1DdW(T ) ,

dXi(T ) =
(

ελ3−λ2bLi +O
(

ελ3−λ2+min(λ1,λ2)
))

dT + ε
λ3+1

2
−λ2eTi+1D dW(T ) , ∀i ≥ 2 .

(5.6)

To identify the appropriate choice for each λj, j = 1, 2, 3, one would normally consider the
asymptotic behaviour as ε → 0 of the Fokker-Planck equation for the joint probability density
of Xi for all i. We do not provide such calculations here, and instead consider the stochastic
differential equation directly for the sake of brevity. Both approaches lead to the same conclusions.

First note that the ratio of the drift in the X1-direction for X1 > 0, to the drift in the X1-
direction for X1 < 0, approaches zero as ε → 0, and for X1 < 0 this drift is directed to the
right. Therefore we expect sample solutions to be located almost entirely in the right half-space.
We then choose λ1, λ2 and λ3 such that three terms in (5.5) are O(1) and all other terms are
of higher order. This gives two possibilities. First, we may have λ1 = λ2 = λ3 = 1, but this
proves unhelpful because in this case the drift in X1 is a higher order term and so this scaling
does not capture dynamics escaping a neighbourhood of the switching manifold, which is what
we are trying to describe. This suggests we need to look on a longer time-scale, that is, we should
choose λ3 < 1. Indeed the second possibility is:

λ1 =
2

3
, λ2 =

1

3
, λ3 =

1

3
. (5.7)

Then for X1 < 0,

dX1(T ) =
1

ε
1
3

aL dT +O(ε0) . (5.8)

Consideration of the corresponding Fokker-Planck equation for X1 < 0 leads to the conclusion
that the probability that X1 < 0 is negligible as ε → 0. Consequently we consider the dynamics
for X1 > 0 only, providing an appropriate boundary condition at X1 = 0 below in (5.15).

With (5.5) and (5.7), for X1 > 0

dX1(T ) = −∂aR
∂x2

X2(T ) dT + eT1DdW(T ) +O
(

ε
1
3

)

,

dX2(T ) = bR1 dT +O
(

ε
1
3

)

,

dXi(T ) = O
(

ε
1
3

)

, ∀i ≥ 3 .

(5.9)
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As ε→ 0, (5.9) approaches

dX1(T ) = −∂aR
∂x2

X2(T ) dT +
√
α dW (T ) ,

dX2(T ) = bR1 dT ,

dXi(T ) = 0 , ∀i ≥ 3 ,

(5.10)

whereW (T ) is a scalar Brownian motion, and α = (DDT)11 (2.2). We now perform an additional
scaling to simplify (5.10). Note that X2(T ), as governed by the limiting equation (5.10), is
deterministic. Let T0 be the time at which X2 = 0. Then, with

u =

∣

∣

∣

∂aR
∂x2

∣

∣

∣

1
3

b
1
3
R1

α
4
3

X1 , s =

∣

∣

∣

∂aR
∂x2

∣

∣

∣

2
3

b
2
3
R1

α
2
3

(T − T0) , (5.11)

(5.10) reduces to
du(s) = s ds+ dW (s) . (5.12)

For the purposes of describing escaping dynamics, we determine the transitional PDF for
(5.12), call it pE(u, s), by writing it as the solution to a boundary value problem. The PDF
satisfies the Fokker-Planck equation

pEs = −spEu +
1

2
pEuu . (5.13)

To produce meaningful solutions we impose the following boundary condition at infinity:

pE(u, s) → 0 as u → ∞ . (5.14)

At u = 0 we use the boundary condition

spE(0, s)− 1

2
pEu (0, s) = 0 , (5.15)

which may be justified in two ways. First, the requirement that u > 0 with probability 1 is
equivalent to ∂

∂s

∫∞
0
pE(u, s) du = 0, and applying this identity to (5.13) produces (5.15). Second,

by (5.8) dynamics for X1 < 0 has drift directed to the right, which in the limit ε→ 0 is infinitely
large. Therefore sample solutions to (5.12) that reach u = 0 are reflected back to the right;
indeed (5.15) is a reflecting boundary condition [30, 31]. Also we suppose u(s0) = u0 at some
initial time s0, which corresponds to the initial condition

pE(u, s0) = δ(u− u0) . (5.16)

An explicit expression for the solution to (5.13)-(5.16) is derived in [49] (by scaling pE in
order to remove the time-dependency in the coefficients of (5.13) and taking Laplace transforms)
but takes a rather complicated form. For our purposes it is useful to take s0 → −∞, because
s0 ∝ δ−

ε
1
3
→ −∞, as ε → 0, when taking an initial point with x2 = δ− in the original equation

(5.1). Also, it is reasonable to take u0 → 0 because, as shown in §4, x1(t) is a fast variable
and with high probability repeatedly intersects the switching manifold as the sample solution
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Figure 7: The PDF, (5.17), for four different values of the time, s. The quantity, u, represents
distance from x1 = 0 (5.11).

approaches the escaping phase. As shown by Knessl [50], the solution to (5.13)-(5.16) with
s0 → −∞ and u0 → 0 is given by

pE(u, s) = 2
2
3 e−

s3

6 eusY (u, s) , (5.17)

where Y is given by the inverse Laplace transform

Y (u, s) =
1

2πi

∫

Br

Ai
(

2
1
3 (u+ ν)

)

Ai
(

2
1
3 ν
)2 eνs dν , (5.18)

and Ai(u) is the Airy function. The PDF (5.17) is shown in Fig. 7.
Fig. 8 shows the result of Monte-Carlo simulations of the relay control example (1.4) with

(1.2)-(1.3) for first passage from x = xS
d to x2 = δ+ using δ− = −0.1 and δ+ = 0.2. The

curves in panel B were obtained by using (5.17). If smaller values of δ− and δ+ are used, then
the approximation of Diff(xE1 ) for small ε improves because the approximation is applied over
a smaller region. Since δ− and δ+ are small, the values in Fig. 8 are significantly smaller than
the analogous values of the previous two sections. In the next section we find that, in agreement
with this observation, the escaping phase does not have a significant effect on the statistics of the
oscillation time, tosc, because the escaping phase corresponds to a relatively short time-frame.
Moreover, the leading-order description of the escaping dynamics derived in this section does not
provide us with a way to accurately approximate the data in panels A and C.

6 Combining the results

Here we use the results of Sections 3–5 to construct approximations to Diff(tosc) and Std(tosc)
for the relay control system (1.2)-(1.4). We employ approximations at various stages of the
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Figure 8: First passage statistics of an escaping phase for the relay control example, (1.4) with
(1.2)-(1.3). Here x0 = xS

Γ, and we have used (6.1) for the values of δ− and δ+. The deterministic
passage time and location are tEd ≈ 0.0668 and xE

d ≈ (0.00415, 0.2,−0.000642). The data points
were computed from 1000 Monte-Carlo simulations for each value of ε using the Euler-Maruyama
method with a fixed step size, ∆t = 0.00001. We have included 95% confidence intervals using
the same conventions as in Fig. 2. The solid curves in panel B are theoretical approximations
obtained by evaluating (5.17).

construction in order to obtain results that can be interpreted in terms of the values of the
parameters and geometric features of the system. The first passage times and locations discussed
in sections 3–5 are stochastic quantities that depend significantly on one another. We were able
to ignore this interdependence in these sections because in each case our attention was restricted
to an individual phase. In this section, however, it is necessary to consider the dependence
carefully.

As evident from Fig. 1, on either side of the switching manifold, Γ rapidly approaches a slow
manifold. For this reason, each point at which a regular phase ends, denoted xR, is practically
independent of the point at which the regular phase starts, denoted xE . Consequently, we ignore
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the distribution of xE in the computation of the distribution of xR. For systems for which
such a simplification is not possible, one could use the results of the previous three sections to
numerically evaluate the statistics of the oscillation time via an iterative procedure. In such a
procedure one would consecutively apply the distributions of the various phases of the dynamics
in order, rather than a stochastic simulation of many realizations of the equations.

The final approximations are affected by the values of δ− and δ+. In particular, the results
for escaping are based on a series expansion of the system about x = 0 that is applied for
values of x2 over the range δ− < x2 < δ+. For this reason, errors in approximations relating
to escaping increase with the magnitude of δ− and δ+, and therefore we need δ− and δ+ to be
small. However, the results for sliding are singular in the limit δ− → 0, and for this reason the
accuracy of approximations relating to sliding decrease as δ− approaches zero. Also, the results
for the regular phase assume that initial points on x2 = δ+ are sufficiently far from x1 = 0 so
that a sample solution from an initial point is highly unlikely to reach x1 = 0 before undergoing
a large excursion with x1 > 0. Hence the values of δ− and δ+ cannot be too small. For simplicity
we take δ− and δ+ independent of ε. In view of the above points, and based on using ε ≤ 0.0001,
throughout this paper we have used

δ− = −0.1 , δ+ = 0.2 . (6.1)

The final approximations are not substantially altered by using other values of δ− and δ+ that
are the same order of magnitude as the values in (6.1).

Next we introduce additional notation, for which it is helpful refer to Fig. 3. From an initial
point xM that lies on the switching manifold and is near xM

Γ , we let tS and xS denote the first
passage time and location to x2 = δ−. We let

Diff
(

tS
∣

∣xM
)

≡ E
[

tS
∣

∣xM
]

− tSd
(

xM
)

, (6.2)

Diff
(

xS
∣

∣xM
)

≡ E
[

xS
∣

∣xM
]

− xS
d

(

xM
)

, (6.3)

denote the differences between their means and deterministic values. Below we evaluate (6.2) and
(6.3) at xM

Γ by using (4.17) to compute E
[

tS
∣

∣xM
Γ

]

, and (4.18) and (4.22) to compute E
[

xS
∣

∣xM
Γ

]

.
Also, we evaluate Std

(

tS
∣

∣xM
Γ

)

with (4.36), and Cov
(

xS
∣

∣xM
Γ

)

with (4.37) and (4.38).
Similarly, from an initial point xE that lies on x2 = δ+ and near xE

Γ , we let t
R and xR denote

the first passage time and location to the switching manifold. Below we evaluate

Diff
(

tR
∣

∣xE
)

≡ E
[

tR
∣

∣xE
]

− tRd
(

xE
)

, (6.4)

Diff
(

xR
∣

∣xE
)

≡ E
[

xR
∣

∣xE
]

− xR
d

(

xE
)

, (6.5)

at xE
Γ by using (3.36) and (B.18), respectively. Std

(

tR
∣

∣xE
Γ

)

and Cov
(

xR
∣

∣xE
Γ

)

are given by (3.9)
and (3.11), respectively.

Calculations relating the escaping phase do not enter into our final approximations because
escaping phases occur over significantly shorter time-frames than sliding and regular phases, as
discussed at the end of §5.

6.1 An approximation to Diff(tosc)

From a sample solution to (1.2)-(1.4) computed over a length of time that is substantially greater
than the period of Γ, we can identify first passage locations, xM , xS, xE and xR, and first passage
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times, tS, tE and tR corresponding to the beginning and end of sliding, escaping and regular
phases. Since (1.2)-(1.4) exhibits a simple symmetry about x1 = 0, the distributions of xM and
xR are symmetric. Also, as discussed above, each xR is practically independent of the previous
point xE. Consequently it is suitable to use the approximation

Diff
(

xM
)

≈ −Diff
(

xR
∣

∣xE
Γ

)

. (6.6)

We can compute Diff
(

tS
)

by evaluating the following expression that is derived in Appendix
D via a Taylor series expansion

Diff
(

tS
)

= Diff
(

tS
∣

∣xM
Γ

)

+Dxt
S
d

(

xM
Γ

)T

Diff
(

xM
)

+

N
∑

i=1

N
∑

j=1

D2
xt

S
d

(

xM
Γ

)

i,j
Cov

(

xMΓ
)

i,j
+O

(

ε
3
2

)

.

(6.7)
Note, tSd is a function of the point xM at which the sliding phase begins. In (6.7), tSd and
its derivatives are evaluated at xM = xM

Γ . Each term in (6.7) is O(ε), but, for our example,
components of the vector Diff

(

xM
)

are of much larger magnitude than elements of the matrix
Cov

(

xMΓ
)

. For this reason we use the approximation

Diff
(

tS
)

≈ Diff
(

tS
∣

∣xM
Γ

)

+Dxt
S
d

(

xM
Γ

)T

Diff
(

xM
)

, (6.8)

which is evaluated using (6.6). Similarly we use

Diff
(

tE
)

≈ Diff
(

tE
∣

∣xS
Γ

)

+Dxt
E
d

(

xS
Γ

)T

Diff
(

xS
)

, (6.9)

Diff
(

tR
)

≈ Diff
(

tR
∣

∣xE
Γ

)

+Dxt
R
d

(

xE
Γ

)T

Diff
(

xE
)

, (6.10)

Diff
(

xS
)

≈ Diff
(

xS
∣

∣xM
Γ

)

+Dxx
S
d

(

xM
Γ

)

Diff
(

xM
)

, (6.11)

Diff
(

xE
)

≈ Diff
(

xE
∣

∣xS
Γ

)

+Dxx
E
d

(

xS
Γ

)

Diff
(

xS
)

. (6.12)

The difference for the time of half an oscillation is given simply by

Diff
(

t 1
2
osc

)

= Diff
(

tS
)

+Diff
(

tE
)

+Diff
(

tR
)

. (6.13)

Substituting (6.8)-(6.12) into (6.13) and expanding brackets yields an approximation for Diff(t 1
2
osc)

that is a sum of nine terms. Monte-Carlo simulations reveal that for our example three of these
terms have significantly larger values than the remaining six terms, and for simplicity we approx-
imate Diff(t 1

2
osc) using the three largest terms:

Diff
(

t 1
2
osc

)

≈ Diff
(

tR
∣

∣xE
Γ

)

+Dxt
S
d

(

xM
Γ

)T

Diff
(

xM
)

+Diff
(

tS
∣

∣xM
Γ

)

. (6.14)

The first term in (6.14) represents the additional time that regular phases take, on average, due
to the presence of noise. This term is negative-valued and large because by (3.36) its magnitude
is proportional to ω4, and we have used ω = 5. The second term in (6.14) represents the
average additional time that sliding phases take due to noise causing the points xM , at which
sliding phases start, to be deviated from the deterministic value xM

Γ in a particular direction,
on average. Indeed, as evident in Fig. 4-C, small noise induces a large positive shift in the x3-
component of the average value of xM . Finally the third term of (6.14) represents the additional
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time that sliding phases take, on average, due to the noise. In view of (4.17), (4.19) and (4.20),
this term is proportional to Λ (4.12). The third term of (6.14) is large, but not as large as the first
term because Λ is proportional to ω2. The approximation (6.14) is compared with Monte-Carlo
simulations in Fig. 9-A. Also

Diff(tosc) = 2Diff(t 1
2
osc) , (6.15)

is used for Fig. 9-B.

6.2 An approximation to Std(tosc)

Taylor expanding xM about its deterministic value xM
Γ , (mentioned in §6.1), also leads to the

formula
Var

(

tS
)

= Var
(

tS
∣

∣xM
Γ

)

+Dxt
S
d

(

xM
Γ

)T

Cov
(

xM
)

Dxt
S
d

(

xM
Γ

)

+O
(

ε
3
2

)

, (6.16)

which expresses Var
(

tS
)

in terms of elements that we can evaluate using equations derived in
earlier sections. A derivation of (6.16) is given in Appendix D. Via similar calculations we obtain

Var
(

tE
)

= Var
(

tE
∣

∣xS
Γ

)

+Dxt
E
d

(

xS
Γ

)T

Cov
(

xS
)

Dxt
E
d

(

xS
Γ

)

+O
(

ε
3
2

)

, (6.17)

Var
(

tR
)

= Var
(

tR
∣

∣xE
Γ

)

+Dxt
R
d

(

xE
Γ

)T

Cov
(

xE
)

Dxt
R
d

(

xE
Γ

)

+O
(

ε
3
2

)

, (6.18)

Cov
(

xS
)

= Cov
(

xS
∣

∣xM
Γ

)

+Dxx
S
d

(

xM
Γ

)

Cov
(

xM
)

Dxx
S
d

(

xM
Γ

)T

+O
(

ε
3
2

)

, (6.19)

Cov
(

xE
)

= Cov
(

xE
∣

∣xS
Γ

)

+Dxx
E
d

(

xS
Γ

)

Cov
(

xS
)

Dxx
E
d

(

xS
Γ

)T

+O
(

ε
3
2

)

. (6.20)

0 0.00002 0.00004 0.00006 0.00008 0.0001

−0.04

0

0.04

0.08

0.12

0 0.00002 0.00004 0.00006 0.00008 0.0001

−0.04

0

0.04

0.08

0.12

A B

ε

Diff
(

t 1
2
osc

)

Std
(

t 1
2
osc

)

ε

Diff (tosc)

Std (tosc)

Figure 9: A comparison of Monte-Carlo simulations with the theoretical approximations derived
in the text for oscillation times of the system (1.3)-(1.4). As in Fig. 2, the data points were
computed by solving the system using the Euler-Maruyama method with ∆t = 0.00001. For
panel A, 500 oscillations were computed yielding 1000 values of t 1

2
osc – the time taken to return

to the switching manifold after one large excursion. Twice as many oscillations were computed
for panel B. The circles, bars and crosses indicate mean values and 95% confidence intervals, as
in Fig. 2. The solid straight lines are the theoretical approximations (6.14) and (6.15). The solid
curves are the theoretical approximations (6.22) and (6.25).
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We use the approximation

Var
(

t 1
2
osc

)

≈ Var
(

tS
)

+Var
(

tE
)

+Var
(

tR
)

, (6.21)

because, for our example, the value of each tE is practically independent of the preceding value
of tS, and the value of each tR is practically independent of the preceding value of tE. This
is due to strong attraction to x1 = 0 for the duration of the sliding phase, which is inherent
in stochastically perturbed sliding motion and causes the x1-value of xS (which is the primary
influence on the value of tE) to have a negligible correlation to tS . In an analogous fashion to the
calculations in §6.1, by substituting (6.16)-(6.20) into (6.21) and expanding brackets, we produce
an approximation to Var(t 1

2
osc) that is a sum of nine terms. Monte-Carlo simulations reveal that

three of these terms dominate. By dropping the other six terms we generate the approximation

Var
(

t 1
2
osc

)

≈ Dxt
S
d

(

xM
Γ

)T

Cov
(

xM
)

Dxt
S
d

(

xM
Γ

)

+Var
(

tR
∣

∣xE
Γ

)

+ Dxt
R
d

(

xE
Γ

)T

Dxx
E
d

(

xS
Γ

)

Dxx
S
d

(

xM
Γ

)

Cov
(

xM
)

Dxx
S
d

(

xM
Γ

)T

Dxx
E
d

(

xS
Γ

)T

Dxt
R
d

(

xE
Γ

)

. (6.22)

The three terms in (6.22) can be interpreted geometrically. Noise creates variability in the values
of xM . The variance that this induces in the values of the sliding times tS is represented by the
first term of (6.22). Variability in xM is also responsible for variance in the time of regular phases;
this is represented by the third term of (6.22). The second term of (6.22) simply represents the
variance in the time of the regular phases given that regular phases start at the deterministic
location xE

Γ . The approximation (6.22) is compared with Monte-Carlo simulations in Fig. 9-A.
Lastly we determine Var (tosc) from Var(t 1

2
osc). Each oscillation time tosc is the sum of two

consecutive half oscillation times, call them t 1
2
osc,1 and t 1

2
osc,2. For our example, the value of each

t 1
2
osc,2 depends on heavily on the value of t 1

2
osc,1. This is because if t 1

2
osc,1 is, say, less than its

deterministic value
tosc,Γ
2

, then the point at which the first half oscillation ends, xR, is likely to
be skewed in a particular direction from xR

Γ . The second half oscillation begins at this end point
which affects the value of t 1

2
osc,2.

To treat this difficulty, we define

̺ =
dE
[

t 1
2
osc,2

∣

∣t 1
2
osc,1

]

dt 1
2
osc,1

∣

∣

∣

∣

∣

t 1
2 osc,1

= t 1
2 osc,Γ

, (6.23)

which measures the rate at which the mean value of t 1
2
osc,2, given t 1

2
osc,1, changes with t 1

2
osc,1. If

t 1
2
osc,1 and t 1

2
osc,2 were independent then we would have ̺ = 0. Via straight-forward calculations

based upon conditioning over the value of xR, it can be shown that

Var (tosc) = Var
(

t 1
2
osc,2

)

+ (1 + ̺)2Var
(

t 1
2
osc,1

)

+O
(

ε
3
2

)

. (6.24)

Due to the symmetry of the relay control system, Var(t 1
2
osc,1) = Var(t 1

2
osc,2), and therefore

Var (tosc) =
(

1 + (1 + ̺)2
)

Var
(

t 1
2
osc

)

+O
(

ε
3
2

)

. (6.25)
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For our example, ̺ ≈ −0.68. We obtained this value numerically by first computing the adjusted
mean value of xR given that t 1

2
osc,1 =

tosc,Γ
2

+ ∆t (using ∆t = 0.0001), then numerically solving

the system with ε = 0 for half an oscillation from xR in order to obtain the expected value
of t 1

2
osc,2, and lastly using a first order finite difference approximation to evaluate (6.23). The

approximation (6.25) is compared with Monte-Carlo simulations in Fig. 9-B.

7 Conclusions

In this paper we have quantitatively analyzed the effect of noise on periodic orbits of Filippov
systems that involve segments of sliding motion. Our results apply to the general N -dimensional
stochastic differential equation, (2.1), which is formed by adding white Gaussian noise of ampli-
tude

√
ε to a Filippov system with a single switching manifold. We assume that in the absence

of noise, i.e. with ε = 0, (2.1) has an attracting periodic orbit Γ of period tosc,Γ. For small ε > 0,
sample solutions to (2.1) are likely to follow paths near Γ. From such solutions we can identify
oscillation times, tosc ≈ tosc,Γ, defined by measuring the time taken between appropriate returns
to the switching manifold (x1 = 0). In order to determine the statistics of tosc for small ε > 0,
we split the stochastic dynamics into three phases: regular, sliding and escaping, see Fig. 3, and
analyzed each phase separately.

Regular dynamics

From an initial point x0 in the right half-space, we let tR and xR denote the time and location
for first passage to x1 = 0. To derive the mean values of these quantities to O(ε), we searched
for an asymptotic solution to the Fokker-Planck equation of (2.1) with an absorbing boundary
condition at x1 = 0, (3.18)-(3.21), by introducing a boundary layer near x1 = 0 and expanding
about the deterministic passage time and location (3.22). With the solution expanded in the
form (3.23), only the first term of the local PDF P(0) is required to obtain E

[

tR
∣

∣x0

]

to O(ε).

To determine E
[

xR
∣

∣x0

]

to O(ε), we also require the second term, P(1). We computed P(1) by
numerically evaluating integrals, see Appendix B. Standard calculations based on a sample path
methodology are sufficient to determine Var

(

tR
∣

∣x0

)

and Cov
(

xR
∣

∣x0

)

to O (
√
ε).

Sliding dynamics

In §4 we analyzed stochastically perturbed sliding motion. We let tS and xS denote the time and
location for the first passage of (2.1) to x2 = δ− from an initial point x0 that lies on the switching
manifold. We assumed that the deterministic solution from x0 to x2 = δ− is contained entirely
within the interior of a stable sliding region. Stochastic dynamics of (2.1) in the x1-direction,
i.e. orthogonal to the switching manifold, occurs on an O(ε) time-scale and for this reason it
is suitable to employ stochastic averaging to analyze the overall dynamics from x0 to x2 = δ−.
To leading order, the averaged solution is identical to Filippov’s solution of the deterministic
equations. We estimated Diff

(

tS
∣

∣x0

)

and Diff
(

xS
∣

∣x0

)

to O(ε) by including terms of the next
order in the averaging calculation. The key quantity affecting the magnitude of these differences
is Λ (4.12) which denotes the O(ε) component of the average drift in directions parallel to the
switching manifold.
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We obtained the leading order terms of Var
(

tS
∣

∣x0

)

and Cov
(

xS
∣

∣x0

)

through the use of a
linear diffusion approximation derived via averaging. In particular we found that deviations of
the first passage location xS orthogonal to the switching manifold are O(ε), whereas deviations
in a direction parallel to the switching manifold are O(

√
ε), as evident in panels B and C of

Fig. 6. This is because the discontinuity in the equations along x1 = 0 inhibits deviations in the
x1-direction. Furthermore, for the relay control system with noise added purely to the control
response, the leading order terms of Std

(

tS
∣

∣x0

)

and Std
(

xSj
∣

∣x0

)

for j > 2 vanish because the
noise effectively acts only in the x1-direction. Consequently these standard deviations are O(ε),
Fig. 5.

Escaping dynamics

We defined escaping dynamics as sections of solutions that lie within the strip, δ− < x2 < δ+,
where δ− and δ+ are suitably small, (2.8). As shown in §5, the spatial and time scales for escaping

dynamics are x1 = O(ε
2
3 ), xj = O(ε

1
3 ) for j > 1, and t = O(ε

1
3 ). We derived the leading order

component of the transitional PDF for (2.1) for an escaping phase by assuming x1 > 0, imposing
a reflecting boundary condition at x1 = 0, and solving the corresponding Fokker-Planck equation.
The result is Knessl’s solution (5.17). However, escaping phases make up only a small fraction
of dynamics over a full oscillation and have little effect on tosc. Indeed our final approximations
of Diff (tosc) and Std (tosc) in §6 do not involve calculations relating to escaping.

The statistics of tosc for relay control

In §6 we combined the results to approximate Diff (tosc) and Std (tosc) for the relay control system
(1.2)-(1.4). Fig. 9 reveals that the approximations (6.14), (6.15), (6.22) and (6.25) fit the results
of Monte-Carlo simulations reasonably well. In view of the complexity in evaluating these ap-
proximations, a geometric understanding of the terms in these equations is arguably more useful
than the approximations themselves. Here we use the results to obtain four reasons why the
noise significantly reduces the average oscillation time for the relay control example at relatively
small values of ε, as seen in Fig. 2.

Diff(t 1
2
osc) is approximated by (6.14) as a sum of three terms that we have ordered by decreas-

ing magnitude. The first term, Diff
(

tR
∣

∣xE
Γ

)

, is negative and represents the difference created by
the noise causing solutions to return to the switching manifold earlier, on average, than in the
absence of noise. By (3.34), this term is proportional to the square of the inverse of the velocity
of Γ at xR in the x1-direction. For the relay control system the velocity is − 1

ω2 , where ω = 5, and

for this reason the first term is relatively large. The second term of (6.14), Dxt
S
d

(

xM
Γ

)T

Diff
(

xM
)

,
represents the difference created by sliding phases taking, on average, less time than they would
without noise due to sliding phases starting at points xM that are, on average, deviated from
xM
Γ in a particular direction. The description of these two terms provides one reason why small

noise significantly decreases tosc: Since Γ slowly approaches the switching manifold along a path

that has a sharp angle relative to the switching manifold, small noise tends to push solutions onto

the switching manifold early and at points deviated from xR
Γ . Loosely speaking, the noise causes

solutions to “cut the corner” at xR
Γ .

The third term of (6.14), Diff
(

tS
∣

∣xM
Γ

)

, is proportional to Λ (4.12). For the relay control
system, Λ involves terms in the first column of A, such as ω2, which is relatively large. This
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suggests that the noise-induced effect observed in Fig. 4 is due in part to this term which we
interpret as the result of noise pushing solutions slightly off the switching manifold, and causing

the nature of the vector field away from the switching manifold to influence dynamics.
Equation (6.22) approximates Var(t 1

2
osc). The second term of (6.22) represents the variance in

the times of the regular phases, and the first [resp. third] term of (6.22) represents the variance in
tS [resp. tR] due to the variability in the points xM . Therefore deviations in tosc are due primarily
to the variability in the first passage statistics of the regular phase. For the relay control example,
the deviations in these statistics are not as large as one might expect because away from x1 = 0
solutions rapidly contract onto a slow manifold. Hence the slow-fast nature of the system inhibits

large deviations in tosc. For this reason Std(tosc) is relatively small; this constitutes a third reason
for the nature of Fig. 2.

Finally, in (1.4) the noise is added purely to the control response causing the leading order

contribution of the noise during stochastically perturbed sliding motion to vanish. Specifically,
MMT = 0 where M is the diffusion matrix in (4.28) – the averaging approximation to the
difference between stochastic solutions and the deterministic solution in the sliding phase. Hence,
again, for our particular example, Std (tosc) is less than we would expect it to be in general.

Issues and future work

The many approximations in our calculations combine to form discrepancies between numerical
results, obtained by Monte-Carlo simulations, and theoretical results, as evident in Fig. 9. For
instance, we used only the three largest terms in our expressions for the statistics of tosc and
t 1
2
osc for Fig. 9. Our calculations for each of the three phases involve expansions in ε and ap-

proximations are obtained by truncating these expansions. Consequently the accuracy of the
approximations decreases with increasing values of ε. Calculations regarding escaping involve
the assumption x2 = O(ε

1
3 ). Thus, strictly speaking, the values δ− and δ+ should be O(ε

1
3 ),

but for simplicity we have set them as constants (6.1). Another source of error is that for the
relay control example the distance of the point xM

Γ , at which the sliding phase begins, to the
boundary of the stable sliding region is approximately equal to 1

ω2 , see Appendix A. With ω = 5
this distance is relatively small causing inaccuracy in the analysis for the sliding phase because
the calculations are singular in the limit that the distance of Γ to the sliding boundary goes to
zero. Also, we have not attempted to compute the O(ε) term of Std (tosc) necessary to fairly
compare this value to Diff (tosc).

It remains to study large deviations of periodic orbits with sliding segments [51]. For systems
with discontinuous drift, the small noise asymptotics of large deviations may be fundamentally
different to that of smooth systems [52]. In addition, it remains to investigate the effects of noise
on sliding bifurcations at which a segment of sliding motion is created or destroyed.

A Calculations for the relay control example in the ab-

sence of noise

With ε = 0, (1.4) is the piecewise-linear ODE system

Ẋ =

{

AX+B , X1 < 0
AX− B , X1 > 0

, (A.1)
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where A (1.2) has eigenvalues −λ and −ωζ ± i|ω|
√

1− ζ2. For the parameter values (1.3), λ is
relatively small, thus solutions to each linear half-system of (A.1) rapidly approach the eigenspace
corresponding to the eigenvalue −λ. The eigenvector of A for −λ is

v−λ =
[

1, 2ζω, ω2
]T

, (A.2)

and the equilibria of the left and right half-systems of (A.1) are, respectively,

X∗(L) =





1
λω2

−1 + 2ζ
λω

+ 1
ω2

2 + 2ζ
ω
+ 1

λ



 , X∗(R) =





− 1
λω2

1− 2ζ
λω

− 1
ω2

−2 − 2ζ
ω
− 1

λ



 . (A.3)

X∗(L) andX∗(R) are both virtual equilibria of (A.1). The weak stable manifold for each equilibrium
is the line that passes through the equilibrium in the direction v−λ. These manifolds intersect
X1 = 0 at

X
(L)
int =

[

0, − 1 +
1

ω2
, 2 +

2ζ

ω

]

T

, X
(R)
int =

[

0, 1− 1

ω2
, − 2− 2ζ

ω

]

T

. (A.4)

Consequently Γ arrives at X1 = 0 at points extremely close to X
(L)
int and X

(R)
int . For the purposes

of applying the coordinate change described in §2.3, it is appropriate to approximate the point
with X3 > 0 at which Γ returns to X1 = 0 by X

(L)
int .

Stable sliding motion occurs on X1 = 0 when Ẋ1 > 0 for the left half-system of (A.1) and
Ẋ1 < 0 for the right half-system of (A.1). By (1.2), stable sliding motion occurs on the strip

{

(0, X2, X3)
T
∣

∣ − 1 < X2 < 1
}

. (A.5)

Sliding motion is specified by Filippov’s solution [2, 35], which yields

[

Ẋ2

Ẋ3

]

=

[

2 1
−1 0

] [

X2

X3

]

. (A.6)

Equation (A.6) has the explicit solution

[

Xd,2(t;X0)
Xd,3(t;X0)

]

= et
[

1
−1

]

X0,2 + et
(

t

[

1
−1

]

+

[

0
1

])

(X0,2 +X0,3) , (A.7)

for any initial point X0 = (0, X0,2, X0,3) in the stable sliding region.
The upper sliding segment of Γ ends at X2 = 1. With the approximation that the sliding

segment starts atX
(L)
int , (A.4), the deterministic sliding time, here call it T , is therefore determined

by

Xd,2

(

T ;X
(L)
int

)

= 1 , (A.8)

and sliding ends at

(0, 1, Z)T , where Z ≡ Xd,3

(

T ;X
(L)
int

)

≈ 2.561 . (A.9)
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In the transformed coordinates (2.9), the initial point for the sliding phase and the end point
for the excursion phase are, respectively,

x
(L)
int = PX

(L)
int +Q =





0
−2 + 1

ω2

2 + 2ζ
ω
− Z −

(

2− 1
ω2

)

1
Z+2



 , (A.10)

x
(R)
int = PX

(R)
int +Q =





0
− 1

ω2

−2 − 2ζ
ω
− Z − 1

ω2(Z+2)



 . (A.11)

B Calculations of the regular phase for relay control

Here we provide details of calculations for the relay control example that were outlined in §3.3.
The deterministic solution to (3.27) is given by

xd(t) = eAt
(

x0 +A−1B(R)
)

−A−1B(R) , (B.1)

where x0 = xd(0) denotes the initial point. Here we take x0 = xE
Γ (the deterministic end point of

the previous escaping phase, refer to Fig. 3) with which first passage to the switching manifold

occurs at xR
Γ ≈ x

(R)
int (A.11), see §2.3.

Through elementary use of (2.12)-(2.13), the coefficients in the PDE for P (3.24) are found
to be

φ
(R)
1 (xR

d ) = xRΓ,2 , (B.2)

φ
(R)
2 (xR

d ) =
−1

Z + 2
xRΓ,2 + xRΓ,3 + Z + 2 , (B.3)

φ
(R)
3 (xR

d ) =
−1

(Z + 2)2
xRΓ,2 +

1

Z + 2
xRΓ,3 , (B.4)

∂φ
(R)
1

∂x2
(xR

d ) = 1 ,
∂φ

(R)
1

∂x3
(xR

d ) = 0 , (B.5)

(

DDT
)

1,1
= 1 ,

(

DDT
)

2,1
= −2 ,

(

DDT
)

3,1
=

Z

Z + 2
. (B.6)

Then by substituting
xd

(√
ετ + tRΓ

)

= xR
Γ +

√
εφ(R)(xR

d )τ +O(ε) , (B.7)

with (B.2)-(B.4) into the expression for the free-space PDF (3.28), we obtain an expression for
f (0) by the absorbing boundary condition (3.26). Specifically

f (0)(u2, u3, τ) =
1

(2π)
3
2

√

det(K(tRΓ ))
exp

(

−1

2
χTK(tRΓ )

−1χ

)

, where χ =







−φ(R)
1 (xR

d )τ

u2 − φ
(R)
2 (xR

d )τ

u3 − φ
(R)
3 (xR

d )τ






,

(B.8)
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which is used in (3.31) to obtain P(0). The function g(1) (which appears in the second term of
the expression for P(1) (3.33)) is determined from (3.32) and is given by

g(1)(u2, u3, τ) = − 2

(DDT)1,1

(

∂φ
(R)
1

∂x2
(xR

d )u2 +
∂φ

(R)
1

∂x3
(xR

d )u3

)

f (0) − 1

φ
(R)
1 (xR

d )
f (0)
τ

+

(

2
(

DDT
)

2,1

(DDT)1,1
− µ1

φ
(R)
1 (xR

d )

)

f (0)
u2

+

(

2
(

DDT
)

3,1

(DDT)1,1
− µ2

φ
(R)
1 (xR

d )

)

f (0)
u3

.(B.9)

Calculation of E[tR]

From (3.12) we can write

E[tR] =

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
pf(x, t) dx3 dx2 dx1 dt+

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
P(z, u2, u3, τ) dx3 dx2 dx1 dt .

(B.10)

Using Ψ(s) ≡ − xd,1(s+tRΓ )
√

2κ11(s+tRΓ )
, ξ =

x1−xd,1(t)√
2κ11(t)

and s = t− tRΓ , the first integral in (B.10) is

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
pf(x, t) dx3 dx2 dx1 dt

=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

1

(2πε)
3
2

√

det(K(t))
e−

1
2ε

(x−xd(t))
TK(t)−1(x−xd(t)) dx3 dx2 dx1 dt

=

∫ ∞

0

∫ ∞

0

1
√

2πεκ11(t)
e
− (x1−xd,1(t))

2

2εκ11(t) dx1 dt

=
1√
πε

∫ ∞

−tRΓ

∫ ∞

Ψ(s)

e−
ξ2

ε dξ ds . (B.11)

Then reversing the order of integration and expanding s = Ψ−1(ξ) as a Taylor series centred at
ξ = 0 produces

1√
πε

∫ ∞

−tRΓ

∫ ∞

Ψ(s)

e−
ξ2

ε dξ ds =
1√
πε

∫ ∞

−∞

(

t−
√
2κ11
ẋd,1

ξ +

(

κ̇11

ẋ2d,1
− κ11ẍd,1

ẋ3d,1

)

ξ2 +O(ξ3)

)∣

∣

∣

∣

∣

t=tRΓ

e−
ξ2

ε dξ

= tRΓ +
1

2







κ̇11
(

φ
(R)
1 (xR

d )
)2 +

κ11ẍd,1
(

φ
(R)
1 (xR

d )
)3







∣

∣

∣

∣

∣

t=tRΓ

ε+O(ε2) . (B.12)

The second integral in (B.10) is
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
P(z, u2, u3, τ) dx3 dx2 dx1 dt

= −ε
∫ ∞

− tR
Γ

√

ε

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f (0)(u2, u3, τ)e

2xR
Γ,2z du3 du2 dz dτ +O

(

ε
3
2

)

= − ε

2
(

φ
(R)
1 (xR

d )
)2 +O

(

ε
3
2

)

, (B.13)
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and the sum of (B.12) and (B.13) produces (3.34).

Calculation of E[xR]

Here we briefly describe the manner by which we evaluate E[xR] numerically.
Equation (3.17) gives

E[xRj ] =
ε

2
(DDT)11

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
xRj

(

∂pf

∂x1
(0, x2, x3, t) +

1

ε

∂P
∂z

(0, u2, u3, τ)

)

dx2 dx3 dt , (B.14)

for j = 2, 3, and changing to the local variables (3.22) yields

E[xRj ] =
ε

5
2

2
(DDT)11

∫ ∞

tR
Γ

√

ε

∫ ∞

−∞

∫ ∞

−∞

(√
εuj + xRΓ,j

)

(

∂pf

∂x1
(0,

√
εu2 + xRΓ,2,

√
εu3 + xRΓ,3,

√
ετ + tRΓ )

+
1

ε

∂P
∂z

(0, u2, u3, τ)

)

du2 du3 dτ . (B.15)

Since pf is Gaussian with covariance matrix, K(t), it is straightforward to derive

∂pf

∂x1
(0, x2, x3, t) = − 1

ε det(K)

(

− (κ22κ33 − κ223)x
R
Γ,1 + (κ13κ23 − κ12κ33)(x2 − xRΓ,2)

+ (κ12κ23 − κ13κ22)(x3 − xRΓ,3)
)

pf (0, x2, x3, t) . (B.16)

We also have from (3.26)

∂P
∂z

(0, u2, u3, τ) =
1

ε
3
2

(

−2φ
(R)
1 (xR

d )

(DDT)11

(

f (0) +
√
εf (1)

)

+
√
εg(1) +O(ε)

)

= −2xRΓ,2pf |x1=0 +
1

ε
g(1) +O

(

1√
ε

)

. (B.17)

Finally we obtain

E[xRj ] =
ε

3
2

2

∫ ∞

tR
Γ

√

ε

∫ ∞

−∞

∫ ∞

−∞

(√
εuj + xRΓ,j

)

(

− 1

det(K)

(

− (κ22κ33 − κ223)x
R
Γ,1

+ (κ13κ23 − κ12κ33)(x2 − xRΓ,2) + (κ12κ23 − κ13κ22)(x3 − xRΓ,3)
)

× pf
(

0,
√
εu2 + xRΓ,2,

√
εu3 + xRΓ,3,

√
ετ + tRΓ

)

+
2κ

α
pf
∣

∣

x1=0
+

1

ε
g(1)(u2, u3, τ)

)

du2 du3 dτ +O
(

ε
3
2

)

. (B.18)

To produce the black lines in panels B and C of Fig. 4 we have numerically evaluated the leading
order component of (B.18), which is O(ε).
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C Calculation of σ

Here we derive the formula (4.32):

σσT =
(bL − bR)(bL − bR)

T

(aL + aR)2
, (C.1)

where σ appears in (4.31). This is achieved by employing a linear diffusion approximation to
reduce the drift term,

(

F0(z(t),yd(t)) − Ω(yd(t))
)

dt, of (4.30), to a diffusion term that approx-
imates this drift term and in the limit ε → 0 has an equivalent distribution. This is possible
because the evolution of z(t) is fast relative to that of yd(t).

Since we are taking the limit ε → 0, we may neglect higher order terms in the stochastic
differential equation for z(t), (4.23). Furthermore, the vector noise term in (4.23) is equivalent
to a scalar noise term

√
α dW (t), where α = (DDT)11. It is convenient to further replace this

term with simply dW (t), as the noise amplitude
√
α appears as only a multiplicative factor in

the final result. We let

r =
t

ε
, (C.2)

represent the fast time-scale. Then (4.23) becomes

dq(r;y) =

{

aL(y) , q < 0
−aR(y) , q > 0

}

dr + dW (r) , (C.3)

where we have replaced z with the symbol q to indicate that changes mentioned above have been
made. In (C.3) y is treated as a constant, so (C.3) represents Brownian motion with two-valued

drift [53].
In order to approximate the behaviour of the drift term,

(

F0(z(t),yd(t)) − Ω(yd(t))
)

dt, in
distribution, we let

R(r,y) = E

[

(F0(q(r̃ + r;y),y)− Ω(y)) (F0(q(r̃;y),y)− Ω(y))T
]

. (C.4)

For r ≥ 0, R(r,y) denotes the autocovariance of the function F0 (4.25) with (C.3). In (C.4), we
take q(r̃;y) to be at steady-state and thus R(r,y) is independent of the value of r̃. By stochastic
averaging theory [28, 36, 38, 48], in the limit ε → 0 the drift term may be replaced by the
diffusion term σ(yd(t))

√
αε dW (t), where

σ(y)σ(y)T = 2

∫ ∞

0

R(r,y) dr . (C.5)

Below we derive (C.1) by evaluating (C.5).
Let p(q, r|q0) denote the transitional PDF of (C.3) with q(0) = q0. When aL, aR > 0, (C.3)

has the steady-state PDF

pss(q) =
2aLaR
aL + aR

{

e2aLq , q ≤ 0
e−2aRq , q ≥ 0

. (C.6)

Then, by (C.5) we can write

σ(y)σ(y)T = 2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

(

F0(q,y)− Ω(y)
)(

F0(q0,y)− Ω(y)
)T

p(q, r|q0)pss(q0) dq dq0 dr ,
(C.7)
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where F0 is given by (4.25). Since,

E [F0(q,y)− Ω(y)] ≡ 0 , (C.8)

it follows that

σ(y)σ(y)T = 2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

(

F0(q,y)−Ω(y)
)(

F0(q0,y)−Ω(y)
)T(

p(q, r|q0)−pss(q)
)

pss(q0) dq dq0 dr .

(C.9)
By (4.5), (4.11) and (4.25) we have

F0(q,y)− Ω(y) =

{

aL(bL−bR)
aL+aR

, q < 0
−aR(bL−bR)

aL+aR
, q > 0

. (C.10)

Therefore we can write

σ(y)σ(y)T = 2
(bL − bR)(bL − bR)

T

(aL + aR)2

(

a2L

∫ ∞

0

∫ 0

−∞

∫ 0

−∞

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr

− aLaR

∫ ∞

0

∫ 0

−∞

∫ ∞

0

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr

− aLaR

∫ ∞

0

∫ ∞

0

∫ 0

−∞

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr

+ a2R

∫ ∞

0

∫ ∞

0

∫ ∞

0

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr

)

. (C.11)

Next we show that

∫ ∞

0

p(q, r|q0)− pss(q) dr =















































(

a3
L
+a3

R

aLaR(aL+aR)2
+ 2aR

aL+aR
(q + q0)

)

e2aLq

+ 1
aR

(

e−aR(q−q0)−aR|q−q0| − e−2aRq
)

, q0 ≤ 0, q ≤ 0
(

a3L+a3R
aLaR(aL+aR)2

− 2aL
aL+aR

q + 2aR
aL+aR

q0

)

e−2aRq , q0 ≤ 0, q ≥ 0
(

a3
L
+a3

R

aLaR(aL+aR)2
+ 2aR

aL+aR
q − 2aL

aL+aR
q0

)

e2aLq , q0 ≥ 0, q ≤ 0
(

a3L+a3R
aLaR(aL+aR)2

− 2aL
aL+aR

(q + q0)
)

e−2aRq

+ 1
aL

(

eaL(q−q0)−aL|q−q0| − e2aLq
)

, q0 ≥ 0, q ≥ 0

,

(C.12)
and from (C.6) and (C.12) straight-forward integration reveals that the integrals that appear in
(C.11) are given simply by

∫ ∞

0

∫ 0

−∞

∫ 0

−∞

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr =
1

2(aL + aR)2
,

∫ ∞

0

∫ 0

−∞

∫ ∞

0

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr =
−1

2(aL + aR)2
,

∫ ∞

0

∫ ∞

0

∫ 0

−∞

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr =
−1

2(aL + aR)2
,

∫ ∞

0

∫ ∞

0

∫ ∞

0

(

p(q, r|q0)− pss(q)
)

pss(q0) dq dq0 dr =
1

2(aL + aR)2
,

(C.13)
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with which we immediately arrive at the desired result (C.1).
To prove (C.12), we first note that, as shown in [54], p(q, r|q0) is given by

p(q, r|q0) =















2e2aLq
∫∞
0
h(r, b, aR) ∗ h(r, b− q − q0, aL) db+G(q, r, aL|q0) , q0 ≤ 0, q ≤ 0

2e−2aRq
∫∞
0
h(r, b+ q, aR) ∗ h(r, b− q0, aL) db , q0 ≤ 0, q ≥ 0

2e2aLq
∫∞
0
h(r, b+ q0, aR) ∗ h(r, b− q, aL) db , q0 ≥ 0, q ≤ 0

2e−2aRq
∫∞
0
h(r, b+ q + q0, aR) ∗ h(r, b, aL) db+G(q, r,−aR|q0) , q0 ≥ 0, q ≥ 0

,

(C.14)
where

h(r, q0, ω) =
|q0|√
2πr3

e−
(q0−ωr)2

2r , (C.15)

G(q, r, ω|q0) =
1√
2πr

e−
(q−q0−ωr)2

2r − e−2ωq0
1√
2πr

e−
(q+q0−ωr)2

2r , (C.16)

and ∗ denotes convolution with respect to r. Here we derive (C.12) from (C.14)-(C.16) for
q0, q ≥ 0. The case q0 ≥ 0, q ≤ 0 is similar and the remaining two cases follow by symmetry.

For q0, q ≥ 0, direct integration yields

∫ ∞

0

p(q, r|q0)− pss(q) dr =
1

aR

(

e−aR(q−q0)−aR|q−q0| − e−2aRq
)

+ lim
ν→0+

L
(

2e−2aRq

∫ ∞

0

h(r, b+ q + q0, aR) ∗ h(r, b, aL) db− pss(q)

)

, (C.17)

where

L[f(r)] =
∫ ∞

0

e−νrf(r) dr . (C.18)

denotes a Laplace transform in r. Next, we recall (C.6) and note that

L[h(r, q0, ω)] = eωq0−
√
ω2+2ν|q0| , (C.19)

to obtain
∫ ∞

0

p(q, r|q0)− pss(q) dr =
1

aR

(

e−aR(q−q0)−aR|q−q0| − e−2aRq
)

+ 2e−2aRq lim
ν→0+





e

(

aR−
√

a2
R
+2ν

)

(q+q0)

−aR +
√

a2R + 2ν − aL +
√

a2L + 2ν
− aLaR

ν(aL + aR)



 . (C.20)

Finally, by substituting −a+
√
a2 + 2ν = ν

a
− ν2

2a3
+O(ν3), with a = aL, aR in the above equation,

terms involving 1
ν
vanish and we arrive at (C.12) for q0, q ≥ 0.
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D Derivations of formulas for Diff
(

tS
)

and Var(tS)

In this section we derive (6.7) and (6.16):

Diff
(

tS
)

= Diff
(

tS
∣

∣xM
Γ

)

+Dxt
S
d

(

xM
Γ

)T

Diff
(

xM
)

+

N
∑

i=1

N
∑

j=1

D2
xt

S
d

(

xM
Γ

)

i,j
Cov

(

xMΓ
)

i,j
+O

(

ε
3
2

)

,

(D.1)

Var
(

tS
)

= Var
(

tS
∣

∣xM
Γ

)

+Dxt
S
d

(

xM
Γ

)T

Cov
(

xM
)

Dxt
S
d

(

xM
Γ

)

+O
(

ε
3
2

)

, (D.2)

which express the leading order terms for Diff
(

tS
)

and Var(tS) in terms of conditioned quanti-
ties and may be evaluated using the results of §4. Analogous formulas in §6 relating to other
components of the stochastic dynamics may be derived in the same fashion.

First, by definition,

Diff
(

tS
)

≡ E
[

tS
]

− tSΓ =

∫

tSp
(

tS
)

dtS − tSΓ , (D.3)

where throughout this exposition p(·) denotes the PDF of the indicated variable. Conditioning
over the starting point xM gives

Diff
(

tS
)

=

∫

tS
∫

p
(

tS
∣

∣xM
)

p
(

xM
)

dxM dtS − tSΓ . (D.4)

By then reversing the order of integration and using Diff
(

tS
∣

∣xM
)

≡ E
[

tS
∣

∣xM
]

− tSd
(

xM
)

, we
obtain

Diff
(

tS
)

=

∫

(

tSd
(

xM
)

+Diff
(

tS
∣

∣xM
))

p
(

xM
)

dxM − tSΓ . (D.5)

By replacing tSd
(

xM
)

in (D.5) with its Taylor series centred at the deterministic value xM = xM
Γ :

tSd
(

xM
)

= tSd
(

xM
Γ

)

+Dxt
S
d

(

xM
Γ

)T (

xM − xM
Γ

)

+
(

xM − xM
Γ

)T

D2
xt

S
d

(

xM
Γ

) (

xM − xM
Γ

)

+O
(

ε
3
2

)

,

(D.6)

and evaluating the integral in (D.5) we arrive at (D.1). The error term in (D.6) is O
(

ε
3
2

)

because

xM − xM
Γ = O (

√
ε).

Second, to derive (D.2) we begin by writing

Var
(

tS
)

=

∫

(

tS − E
[

tS
])2

p
(

tS
)

dtS . (D.7)

Conditioning over xM gives

Var
(

tS
)

=

∫

(

tS − E
[

tS
])2
∫

p
(

tS
∣

∣xM
)

p
(

xM
)

dxM dtS . (D.8)

Reversing the order of integration and adding and subtracting E
[

tS
∣

∣xM
]

produces

Var
(

tS
)

=

∫ ∫

(

tS − E
[

tS
∣

∣xM
]

+ E
[

tS
∣

∣xM
]

− E
[

tS
])2

p
(

tS
∣

∣xM
)

dtSp
(

xM
)

dxM . (D.9)

40



Since the mean values differ from their deterministic values by O(ε), we have

E
[

tS
∣

∣xM
]

− E
[

tS
]

= tSΓ
(

xM
)

− tSΓ +O(ε) . (D.10)

By substituting (D.6) and (D.10) into (D.9), and noting tSd
(

xM
Γ

)

= tSΓ, we obtain

Var
(

tS
)

=

∫ ∫

(

tS − E
[

tS
∣

∣xM
]

+Dxt
S
d

(

xM
Γ

)T (

xM − xM
Γ

)

+O(ε)
)2

p
(

tS
∣

∣xM
)

dtSp
(

xM
)

dxM .

(D.11)
Finally, by expanding the square in (D.11) and evaluating the double integral we arrive at (D.2).
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