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A DATA–DRIVEN APPROXIMATION

OF THE KOOPMAN OPERATOR:

EXTENDING DYNAMIC MODE DECOMPOSITION

Abstract. The Koopman operator is a linear but infinite dimensional opera-

tor that governs the evolution of scalar observables defined on the state space
of an autonomous dynamical system, and is a powerful tool for the analysis and

decomposition of nonlinear dynamical systems. In this manuscript, we present

a data driven method for approximating the leading eigenvalues, eigenfunc-
tions, and modes of the Koopman operator. The method requires a data set of

snapshot pairs and a dictionary of scalar observables, but does not require ex-
plicit governing equations or interaction with a “black box” integrator. We will

show that this approach is, in effect, an extension of Dynamic Mode Decompo-

sition (DMD), which has been used to approximate the Koopman eigenvalues
and modes. Furthermore, if the data provided to the method are generated by

a Markov process instead of a deterministic dynamical system, the algorithm

approximates the eigenfunctions of the Kolmogorov backward equation, which
could be considered as the “stochastic Koopman operator” [1]. Finally, four

illustrative examples are presented: two that highlight the quantitative perfor-

mance of the method when presented with either deterministic or stochastic
data, and two that show potential applications of the Koopman eigenfunctions.
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1. Introduction. In many mathematical and engineering applications, a phenom-
enon of interest can be summarized in different ways. For instance, to describe the
state of a two dimensional incompressible fluid flow, one can either record velocity
and pressure fields or streamfunction and vorticity [2]. Furthermore, these states
can often be approximated using a low dimensional set of Proper Orthogonal De-
composition (POD) modes [3], a set of Dynamic Modes [4, 5], or a finite collection
of Lagrangian particles [6]. A mathematical example is the linear time invariant
(LTI) system provided by x(n + 1) = Ax(n), where x(n) is the system state at
the n-th timestep. Written as such, the evolution of x is governed by the eigen-
values of A. One could also consider the invertible but nonlinear transformation,
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z(n) = T (x(n)), which generates a nonlinear evolution law for z. Both approaches
(i.e., x or z) describe the same fundamental behavior, yet one description may
be preferable to others. For example, solving an LTI system is almost certainly
preferable to evolving a nonlinear system from a computational standpoint.

In general, one measures (or computes) the state of a system using a set of
scalar observables, which are functions defined on state space, and watches how
the values of these functions evolve in time. Furthermore, provided the set of
observations is rich enough, one can even write an evolution law for the dynamics
of the set of observations, and use this system in lieu of the original one. Because
the properties of this new dynamical system depend on our choice of variables
(observables), it would be highly desirable if one could find a set of observables
whose dynamics appear to be governed by a linear evolution law. If such a set
could be identified, the dynamics would be completely determined by the spectrum
of the evolution operator. Furthermore, this could enable the simple yet effective
algorithms designed for linear systems, for example controller design [7,8] or stability
analysis [1, 9], to be applied to nonlinear systems.

Mathematically, the evolution of observables of the system state is governed by
the Koopman operator [10–13], which is a linear but infinite dimensional operator
that is defined for an autonomous dynamical system. Of particular interest here is
the “slow” subspace of the Koopman operator, which is the span of the eigenfunc-
tions associated with eigenvalues near the unit circle in discrete time (or near the
imaginary axis in continuous time). These eigenvalues and eigenfunctions capture
the long term dynamics of observables that appear after the fast transients have sub-
sided, and could serve as a low dimensional approximation of the otherwise infinite
dimensional operator when a spectral gap, which clearly delineates the “fast” and
“slow” temporal dynamics, is present. In addition to the eigenvalues and eigenfunc-
tions, the final element of Koopman spectral analysis is the set of Koopman modes
for the full state observable [12,13], which are vectors that enable us to reconstruct
the state of the system as a linear combination of the Koopman eigenfunctions.
Overall, the “tuples” of Koopman eigenfunctions, eigenvalues, and modes enable us
to: (a) transform state space so that it the dynamics appear to be linear, (b) deter-
mine the temporal dynamics of the linear system, and (c) reconstruct the state of
the original system from our new linear representation. In principle, this framework
is quite broadly applicable, and useful even for problems with multiple attractors
that cannot be accurately approximated using models based on local linearization.

There are several algorithms in the literature that can computationally approxi-
mate subsets of these quantities. Three examples are Generalized Laplace Analysis
(GLA) [12, 14, 15], the Ulam Galerkin Method [16, 17], and Dynamic Mode De-
composition (DMD) [4, 13, 18]. None of these techniques require explicit governing
equations, so all, in principle, can be applied directly to data. GLA can approx-
imate both the Koopman modes and eigenfunctions, but it requires knowledge of
the eigenvalues to do so [12, 14, 15]. The Ulam Galerkin method has been used to
approximate the eigenfunctions and eigenvalues [16], though it is more frequently
used to generate finite dimensional approximations of the Perron–Frobenius opera-
tor, which is the adjoint of the Koopman operator. Finally, DMD has been used to
approximate the Koopman modes and eigenvalues [13, 18], but not the Koopman
eigenfunctions.

Even in pairs instead of triplets, approximations of these quantities are useful.
DMD and its variants [19–21] have been successfully used to analyze nonlinear
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fluid flows using data from both experiments and computation [4,22,23]. GLA and
similar methods have been applied to extract meaningful spatio-temporal structures
using sensor data from buildings and power systems [24–27]. Finally, the Ulam
Galerkin method has been used to identify coherent structures and almost invariant
sets [28–30] based on the singular value decomposition of (a slight modification of)
the Koopman operator.

In this manuscript, we present a data driven method that approximates the lead-
ing Koopman eigenfunctions, eigenvalues, and modes from a data set of successive
“snapshot” pairs and a dictionary of observables that spans a subspace of the scalar
observables. There are many possible ways to choose this dictionary, and it could be
comprised of polynomials, Fourier modes, spectral elements, or other sets of func-
tions of the full state observable. We will argue that this approach is an extension
of DMD that can produce better approximations of the Koopman eigenfunctions;
as such, we refer to it as Extended Dynamic Mode Decomposition (EDMD). One
regime where the behavior of both EDMD and DMD can be formally analyzed and
contrasted is in the limit of large data. In this regime, we will show that the numeri-
cal approximation of the Koopman eigenfunctions generated by EDMD converges to
the numerical approximation we would obtain from a Galerkin method [31] in that
the residual is orthogonal to the subspace spanned by the elements of the dictio-
nary. With finite amounts of data, we will demonstrate the effectiveness of EDMD
on two deterministic examples: one that highlights the quantitative accuracy of the
method, and a more practical application.

Because EDMD is an entirely data driven procedure, it can also be applied to
data from stochastic systems without any algorithmic changes. If the underlying
system is a Markov process, we will show that EDMD approximates the eigen-
functions of the Kolmogorov backward equation [32,33], which has been called the
stochastic Koopman operator (SKO) [1]. Once again, we will demonstrate the ef-
fectiveness of the EDMD procedure when the amount of data is limited by applying
it to two stochastic examples: the first to test the accuracy of the method, and the
second to highlight a potential application of EDMD as a nonlinear manifold learn-
ing technique. In the latter example, we highlight two forms of model reduction:
reduction that occurs when the dynamics of the system state are constrained to a
low-dimensional manifold, and reduction that occurs when the statistical moments
of the stochastic dynamical system are effectively low dimensional.

In the remainder of the manuscript, we will detail the EDMD algorithm and
show (when mathematically possible) or demonstrate through examples that it ac-
curately approximates the leading Koopman eigenfunctions, eigenvalues, and modes
for both deterministic and stochastic sets of data. In particular, in Sec. 2 the EDMD
algorithm will be presented, and we will prove that it converges to a Galerkin ap-
proximation of the Koopman operator given a sufficiently large amount of data. In
Sec. 3, we detail three choices of dictionary that we have found to be effective in
a broad set of applications. In Sec. 4, we will demonstrate that the EDMD ap-
proximation can be accurate even with finite amounts of data, and can yield useful
parameterizations of common dynamical structures such as systems with multiple
basins of attraction when the underlying system is deterministic. In Sec. 5, we
experiment by applying EDMD to stochastic data and show it approximates the
eigenfunctions of the SKO for Markov processes. Though the interpretation of the
eigenfunctions now differs, we demonstrate that they can still be used to accomplish
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useful tasks such as the parameterization of nonlinear manifolds. Finally, some brief
concluding remarks are given in Sec. 6.

2. Dynamic Mode Decomposition and the Koopman Operator. Our am-
bition in this section is to establish the connection between the Koopman operator
and what we call EDMD. To accomplish this, we will define the Koopman operator
in Sec. 2.1. Using this definition, we will outline the EDMD algorithm in Sec. 2.2,
and then show how it can be used to approximate the Koopman eigenvalues, eigen-
functions, and modes. Next, in Sec. 2.3, we will prove that the EDMD method
almost surely converges to a Galerkin method in the limit of large data. Finally,
in Sec. 2.4, we will highlight the connection between the EDMD algorithm and
standard DMD.

2.1. The Koopman Operator. Because the Koopman operator is central to all
that follows, we will define it along with the properties relevant to EDMD in this
subsection. No new mathematical results are presented here; our only objective is to
include for completeness the terms and definitions we will require later in the paper.
To do so, we require the autonomous, discrete time dynamical system (M, n,F ),
where M ⊆ RN is the state space, n ∈ Z is (discrete) time, and F : M → M is
the evolution operator. Unlike F , which acts on x ∈ M, the Koopman operator,
K, acts on functions of state space, φ ∈ F with φ : M → C. The action of the
Koopman operator is,

Kφ = φ ◦ F , (1)

where ◦ denotes the composition of φ with F . We stress once again that the Koop-
man operator maps functions of state space to functions of state space and not states
to states [10–12].

In essence, the Koopman operator defines a new dynamical system, (F , n,K),
that governs the evolution of observables, φ ∈ F , in discrete time. In what follows,
we assume that F = L2(M, ρ), where ρ is a positive, single valued analytic function
defined onM, but not necessarily an invariant measure of the underlying dynamical
system. This assumption, which has been made before in the literature [11, 12], is
required so that the inner products in the Galerkin-like method we will present
can be taken. Because it acts on functions, K is infinite dimensional even when F
is finite dimensional, but it is also linear even when F is nonlinear. The infinite
dimensional nature of the Koopman operator is potentially problematic, but if it
can, practically, be truncated without too great a loss of accuracy (e.g., if the system
has multiple time scales), then the result would be a linear and finite dimensional
approximation. Therefore, the promise of the Koopman approach is to take the
tools developed for linear systems and apply them to the dynamical system defined
by the Koopman operator; thus obtaining a linear approximation of a nonlinear
system without directly linearizing around a fixed point.

The dynamical system defined by F and the one defined by K are two different
parameterizations of the same fundamental behavior. The link between these pa-
rameterizations is the “full state observable,” g(x) = x and {(µk, ϕk,vk)}Kk=1, the
set of K “tuples” of Koopman eigenvalues, eigenfunctions, and modes required to
reconstruct the full state. Note that K could (and often will) be infinite. Although
g is a vector valued observable, each component of it is a scalar valued observable,
i.e., gi ∈ F where gi is the i-th component of g. Assuming gi is in the span of our

set of K eigenfunctions, gi =
∑K
k=1 vikϕk with vkj ∈ C. Then g can be obtained by



APPROXIMATING THE KOOPMAN OPERATOR WITH DATA 5

x1

x2

x3

n

M

F (x1)

F (x2)

F (x3)

n+ 1

M

φ1

φ2

φ3 Kφ1

Kφ2

Kφ3F F

Evolution Operator

F : M → M
(Finite Dimensional

and Nonlinear)

Koopman Operator

K : F → F
(Infinite Dimen-

sional and Linear)

K
o
op

m
an

E
ig
en

fu
n
ct
io
n
s

K
o
op

m
an

M
o
d
es

K
o
op

m
an

E
ig
en

fu
n
ct
io
n
s

K
o
op

m
an

M
o
d
es

States
(x, n,F )

Observables
(F , n,K)

Figure 1. A cartoon of the Koopman operator and how it re-
lates to the underlying dynamical system. The top path updates
the state, x ∈ M, using the evolution operator F . The bottom
path updates the observables, φ ∈ F , using the Koopman opera-
tor, K. Here both dynamical systems are autonomous, so the (dis-
crete) time, n ∈ Z, does not appear explicitly. The connection be-
tween the states and observables is through the full state observable
g(x) = x. By writing g in terms of the Koopman eigenfunctions,
we substitute the complex evolution of x with the straightforward,
linear evolution of the {ϕi}i. To reconstruct x, we superimpose
the Koopman eigenfunctions evaluated at a point, which satisfy
(Kϕi)(xi) = µiϕi(xi), using the Koopman modes as shown in (3).
As a result, these two “paths” commute, and one can either solve
a finite dimensional but nonlinear problem (the top path) or an
infinite dimensional but linear problem (the bottom path) if one
can compute the Koopman eigenvalues, eigenfunctions, and modes.

“stacking” these weights into vectors (i.e., vj = [v1j , v2j , . . . , vNj ]
T ). As a result,

x = g(x) =

K∑
k=1

vkϕk(x), (2)

where vk is the k-th Koopman mode, and ϕk is the k-th Koopman eigenfunction. In
doing this, we have assumed that each of the scalar observables that comprise g are
in the subspace of F spanned by our K eigenfunctions, but we have not assumed
that the eigenfunctions form a basis for F .
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The system state at future times can be obtained either by directly evolving x
or by evolving the full state observable through Koopman:

F (x) = (Kg) (x) =

K∑
k=1

vk(Kϕk)(x) =

K∑
k=1

µkvkϕk(x). (3)

This representation of F (x) is particularly advantageous because the dynamics
associated with each eigenfunction are determined by its corresponding eigenvalue.

Figure 1 shows a commutative diagram that acts as a visual summary of this
section. The top row shows the direct evolution of states, x ∈ M, governed by
F ; the bottom row shows the evolution of observables, φ ∈ F , governed by the
Koopman operator. Although F and K act on different spaces, they encapsulate
the same dynamics. For example, once given a state x, to compute (Kφ)(x) one
could either take the observable φ, apply K, and evaluate it at x (the bottom route),
or use F to compute F (x) and then evaluate φ at this updated position (the top
route). Similarly, to compute F (x), one could either apply F to x (the top route)
or apply K to the full state observable and evaluate (Kg)(x) (the bottom route).
As a result, one can either choose to work with a finite dimensional, nonlinear
system or an infinite dimensional, linear system depending upon which “path” is
simpler/more useful for a given problem.

2.2. Extended Dynamic Mode Decomposition. In this subsection, we outline
Extended Dynamic Mode Decomposition (EDMD), which is a method that approxi-
mates the Koopman operator and therefore the Koopman eigenvalue, eigenfunction,
and mode tuples defined in Sec. 2.1. The EDMD procedure requires: (a) a data set
of snapshot pairs, i.e., {(xm,ym)}Mm=1 that we will organize as a pair of data sets,

X =
[
x1 x2 · · · xM

]
, Y =

[
y1 y2 · · · yM

]
, (4)

where xi ∈ M and yi ∈ M are snapshots of the system state with yi = F (xi),
and (b) a dictionary of observables, D = {ψ1, ψ2, . . . , ψK} where ψi ∈ F , whose
span we denote as FD ⊂ F ; for brevity, we also define the vector valued function
Ψ :M→ C1×K where

Ψ(x) =
[
ψ1(x) ψ2(x) · · · ψK(x)

]
. (5)

The data set needed is typically constructed from multiple short bursts of simulation
or from experimental data. For example, if the data were given as a single time
series, then for a given snapshot xi, yi = F (xi) is the next snapshot in the time
series. The optimal choice of dictionary elements remains an open question, but a
short discussion including some pragmatic choices will be given in Sec. 3. For now,
we assume that D is “rich enough” to accurately approximate a few of the leading
Koopman eigenfunctions.

2.2.1. Approximating the Koopman Operator and its Eigenfunctions. Now we seek
to generate K ∈ RK×K , a finite dimensional approximation of K. By definition, a
function φ ∈ FD can be written as

φ =

K∑
k=1

akψk = Ψa, (6)

the linear superposition of the K elements in the dictionary with the weights a.
Because FD is typically not an invariant subspace of K,

Kφ = (Ψ ◦ F )a = Ψ(Ka) + r (7)
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which includes the residual term r ∈ F . To determine K, we will minimize

J =
1

2

M∑
m=1

|r(xm)|2

=
1

2

M∑
m=1

|((Ψ ◦ F )(xm)−Ψ(xm)K)a|2

=
1

2

M∑
m=1

|(Ψ(ym)−Ψ(xm)K)a|2

(8)

where xm is the m-th snapshot in X, and ym = F (xm) is the m-th snapshot in Y .
Equation 8 is a least squares problem, and therefore cannot have multiple isolated
local minima; it must either have a unique global minimizer or a continuous family
(or families) of minimizers. As a result, regularization (here via the truncated
singular value decomposition) may be required to ensure the solution is unique, and
the K that minimizes (8) is:

K , G+A, (9)

where + denotes the pseudoinverse and

G =
1

M

M∑
m=1

Ψ(xm)∗Ψ(xm), (10)

A =
1

M

M∑
m=1

Ψ(xm)∗Ψ(ym), (11)

with K,G,A ∈ CK×K . As a result, K is a finite dimensional approximation of K
that maps φ ∈ FD to some other φ̂ ∈ FD by minimizing the residuals at the data
points. As a consequence, if ξj is the j-th eigenvector of K with the eigenvalue µj ,
then the EDMD approximation of an eigenfunction of K is

ϕj = Ψξj . (12)

Finally, in many applications the discrete time data in X and Y are generated by a
continuous time process with a sampling interval of ∆t. If this is the case, we define

λj =
ln(µj)

∆t to approximate the eigenvalues of the continuous time system. In the
remainder of the manuscript, we denote the eigenvalues of K with the µj and (when
applicable) the approximation of the corresponding continuous time eigenvalues as
λj . Although both embody the same information, one choice is often more natural
for a specific problem.

2.2.2. Computing the Koopman Modes. Next, we will compute approximations of
the Koopman modes for the full state observable using EDMD. Recall that the
Koopman modes are the weights needed to express the full state in the Koopman
eigenfunction basis. As such, we will proceed in two steps: first, we will express
the full state observable using the elements of D; then, we will find a mapping from
the elements of D to the numerically computed eigenfunctions. Applying these two
steps in sequence will yield the observables expressed as a linear combination of
Koopman eigenfunctions, which is, by definition, the Koopman modes for the full
state observable.
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Recall that the full state observable, g(x) = x, is a vector valued observable (e.g.,
g : M → RN ) that can be generated by “stacking” N scalar valued observables,
gi :M→ R, as follows:

g(x) =


g1(x)
g2(x)

...
gN (x)

 =


e∗1x
e∗2x

...
e∗Nx

 , (13)

where ei is the i-th unit vector in RN . At this time, we conveniently assume that

all gi ∈ FD so that gi =
∑K
k=1 ψkbk,i = Ψbi, where bi is some appropriate vector of

weights. If this is not the case, approximate Koopman modes can be computed by
projecting gi onto FD, though the accuracy and usefulness of this fit clearly depends
on the choice of D. To avoid this issue, gi ∈ FD for i = 1, . . . , N in all examples
that follow. In either case, the entire vector valued observable can be expressed (or
approximated) in this manner as

g = BTΨT = (ΨB)T , B =
[
b1 b2 · · · bN

]
, (14)

where B ∈ CK×N .
Next, we will express the ψi in terms of all the ϕi, which are our numerical

approximations of the Koopman eigenfunctions. For notational convenience, we
define the vector–valued functions Φ :M→ CK , where

Φ(x) =
[
ϕ1(x) ϕ2(x) · · · ϕK(x)

]
. (15)

Using (12) and (14), this function can also be written as

Φ = ΨΞ, Ξ =
[
ξ1 ξ2 · · · ξK

]
, (16)

where ξi ∈ CK is the i-th eigenvector of K associated with µi. Therefore, we can
determine the ψi as a function of ϕi by inverting ΞT . Because Ξ is a matrix of
eigenvectors, its inverse is

Ξ−1 = W ∗ =
[
w1 w2 · · ·wK

]∗
, (17)

wherewi is the i-th left eigenvector ofK also associated with µi (i.e., w∗iK = w∗i µi)
appropriately scaled so w∗i ξi = 1. We combine (14) and (17), and after some slight
algebraic manipulation find that

g = V ΦT =

K∑
k=1

vkϕk, V =
[
v1 v2 . . . vK

]
= (W ∗B)

T
, (18)

where vi = (w∗iB)T is the i-th Koopman mode. This is the formula for the Koop-
man modes that we desired.

In summary, EDMD requires a data set of snapshot pairs, {(xm,ym)}Mm=1, that
we represent as two data sets, X and Y , as well as a dictionary of observables,
D. Furthermore, it assumes that the leading Koopman eigenfunctions are (nearly)
contained within FD, the subspace spanned by the elements of D. With this infor-
mation, a finite dimensional approximation of the Koopman operator, K, can be
computed using (9). The eigenvalues of K are the EDMD approximations of the
Koopman eigenvalues. The right eigenvectors of K generate the approximations of
the eigenfunctions, and the left eigenvectors of K generate the approximations of
the Koopman modes.
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2.3. Convergence of the EDMD Algorithm to a Galerkin Method. In this
subsection, we relate EDMD to the Galerkin methods one would use to approximate
the Koopman operator with complete information about the underlying dynamical
system. In this context, a Galerkin method is a weighted residual method where
the residual, as defined in (7), is orthogonal to the span of D. In particular, we
show that the EDMD approximation of the Koopman operator converges to the
approximation that would be obtained from a Galerkin method when M becomes
sufficiently large and if: (1) the elements of X are drawn from a distribution on
M with density ρ, and (2) F = L2(M, ρ). The first assumption defines a process
for adding new data points to our set, and could be replaced with other sampling
schemes. The second assumption is required so that the inner products in the
Galerkin method converge, which is relevant for problems where M = RN .

If EDMD were a Galerkin method, then the entries of G and A in (9) would be
defined as

Ĝij =

∫
M
ψ∗i (x)ψj(x)ρ(x) dx = 〈ψi, ψj〉ρ ,

Âij =

∫
M
ψ∗i (x)ψj(F (x))ρ(x) dx = 〈ψi,Kψj〉ρ ,

(19)

where 〈p, q〉ρ =
∫
M p∗(x)q(x)ρ(x) dx is the inner product, and the finite dimen-

sional Galerkin approximation of the Koopman operator would be K̂ = Ĝ−1Â.
The performance of this method certainly depends upon the choice of ψj and ρ,
but it is nevertheless a Galerkin method as the residual would be orthogonal to
FD [31, 34]. There are nontrivial questions about what sets of ψ and what mea-
sures, ρ, are required if the Galerkin method is to generate a useful approximation
of the Koopman operator (e.g., when can we “trust” our eigenfunctions if ρ is com-
pactly supported butM = RN?), but they are beyond the scope of this manuscript
and will be the focus of future work.

For a finite M , the ij-th element of G is

Gij ,
1

M

M∑
m=1

ψ∗i (xm)ψj(xm) = ψ∗i (x)ψj(x), (20a)

where the bar denotes the sample mean. Similarly,

Aij ,
1

M

M∑
m=1

ψ∗i (xm)ψj(ym) = ψ∗i (x)(ψj ◦ F )(x). (20b)

When M is finite, (19) is approximated by (20). However by the law of large
numbers, the sample means almost surely converge to the expectation when the
number of samples, M , becomes sufficiently large. For this system, the expectation
can be written as

lim
M→∞

Gij =

∫
M
ψ∗i (x)ψj(x)ρ(x) dx = 〈ψi, ψj〉ρ = Ĝij ,

lim
M→∞

Aij =

∫
M
ψ∗i (x)ψj(F (x))ρ(x) dx = 〈ψi,Kψj〉ρ = Âij ,

(21)

which reintroduces the integrals in (19). As a result, the entries of A and G
converge to the values they would have if the integrals were taken analytically,
and therefore, the output of the EDMD procedure will converge to the output of
a Galerkin method. With randomly distributed initial data, the needed integrals
are computed using Monte-Carlo integration, and the rate of convergence will be
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O(M−1/2). Other sampling choices, such as placing points on a uniform grid,
effectively use different quadrature rules and could therefore obtain a better rate of
convergence.

2.4. Relationship with DMD. When M is not large, EDMD will not be an accu-
rate Galerkin method because the quadrature errors generated by the Monte-Carlo
integrator will be significant, and so the residual will probably not be orthogonal to
FD. However, it is still formally an extension of DMD, which has empirically been
shown to yield meaningful results even without exhaustive data sets. In this section,
we show that EDMD is equivalent to DMD for a very specific – and restrictive –
choice of D because EDMD and DMD will produce the same set of eigenvalues and
modes for any set of snapshot pairs.

Because there are many conceptually equivalent but mathematically different
definitions of DMD, the one we adopt here is taken from Ref. [18], which defines
the DMD modes as the eigenvectors of the matrix

KDMD , Y X+, (22)

where the j-th mode is associated with the j-th eigenvalue of KDMD, µj . KDMD is
constructed using the data matrices in (4), where + again denotes the pseudoinverse.
This definition is a generalization of preexisting DMD algorithms [4, 35], and does
not require the data to be in the form of a single time series.

Now, we will prove that the Koopman modes computed using EDMD with
D = {e∗1, e∗2, . . . , e∗N}, which is the special (if relatively restrictive) choice of dic-
tionary alluded to earlier, are equivalent to the DMD modes by showing that the
i-th Koopman mode, vi, is also an eigenvector of KDMD and, hence, a DMD mode.
Because the elements of the full state observable are the dictionary elements, B = I
in (14). Then, the Koopman modes are the complex conjugates of the left eigen-
vectors of K, so vTi = w∗i . Furthermore, GT = 1

MXX
∗ and AT = 1

MY X
∗.

Then

KT = ATGT+ = Y X∗ (XX∗)+
= Y X+ = KDMD. (23)

Therefore, KDMDvi = (vTi K
T
DMD)T = (w∗iK)T = (µiw

∗
i )T = µivi, and all the

Koopman modes computed by EDMD are eigenvectors of KDMD and, thus, the
DMD modes. Once again, the choice of dictionary is critical; EDMD and DMD are
only equivalent for this very specific D, and other choices of D will generate different
(and potentially more useful) results.

Conceptually, DMD can be thought of as producing an approximation of the
Koopman eigenfunctions using the set of linear monomials as basis functions for
FD, which is analogous to a one–term Taylor expansion. For problems where the
eigenfunctions can be approximated accurately using linear monomials (e.g., in some
small neighborhood of a stable fixed point), then DMD will produce an accurate
local approximation of the Koopman eigenfunctions. However, this is certainly
not the case for all systems (particularly beyond the region of validity for local
linearization). EDMD can be thought of as an extension of DMD that retains
additional terms in the expansion, where these additional terms are determined by
the elements of D. The quality of the resulting approximation is governed by FD,
and therefore, depends upon the choice of D. However, the hope is that a more
extensive D will produce a superior approximation of the Koopman eigenfunctions
compared to the one produced by DMD simply it uses a larger FD. As a result, with
the right choice of D, EDMD should be applicable to a broader array of problems
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Table 1. A table with some commonly used sets of trial functions,
and the application where they are, on our experience, most suited.

Name Suggested Context

Hermite Polynomials Problems defined on RN
Radial Basis Functions Problems defined on irregular domains
Discontinuous Spectral Elements Large problems where a block-diagonal G

is beneficial/computationally important

where the implicit choice of D made by DMD results in less accuracy than desired
even if M is not large enough for EDMD to be an accurate Galerkin method.

3. The Choice of the Dictionary. As with all spectral methods, the accuracy
and rate of convergence of EDMD depends on D, whose elements, which we refer
to as trial or basis functions, span the subspace of observables, FD ⊂ F . Possible
choices for the elements of D include: polynomials [31], Fourier modes [34], radial
basis functions [36], and spectral elements [37], but the optimal choice of basis
functions likely depends on both the underlying dynamical system and the sampling
strategy used to obtain the data. Any of these sets are, in principle, a useful choice
for D, though some care must be taken on infinite domains to ensure that any
needed inner products will converge.

Choosing D for EDMD is, in some cases, more difficult than selecting a set of
basis functions for use in a standard spectral method because the domain on which
the underlying dynamical system is defined,M, is not necessarily known. Typically,
we can define Ω ⊃ M so that it contains all the data in X and Y , e.g., pick Ω to
be a “box” in RN that contains every snapshot in X and Y . Next, we choose the
elements of D to be a basis for F̃D ⊂ F̃ where F̃ is the space of functions that map
Ω→ C. Because F ⊂ F̃ , this choice of D can be used in the EDMD procedure, but
there is no guarantee that the elements of D form a basis for FD as there may be
redundancies. The potential for these redundancies and the numerical issues they
generate is why regularization and hence the pseudoinverse [38] is required in (9).
An example of these redundancies and their effects is given in App. A.

Although the optimal choice of D is unknown, there are three choices that are
broadly applicable in our experience. They are: Hermite polynomials, radial basis
functions (RBFs), and discontinuous spectral elements. The Hermite polynomials
are the simplest of the three sets, and are best suited to problems defined on RN
if the data in X are normally distributed. The observables that comprise D are
products of the Hermite polynomials in a single dimension (e.g., H1(x)H2(y)H0(z)
where Hi is the i-th Hermite polynomial and x = (x, y, z)). This set of basis
functions is simple to implement, and conceptually related to approximating the
Koopman eigenfunctions with a Taylor expansion. Furthermore, because they are
orthogonal with respect to Gaussian weights, G will be diagonal if the xm are drawn
from a normal distribution, which can be beneficial numerically.

An alternative to the Hermite polynomials are discontinuous spectral elements.
To use this set, we define a set of BN boxes, {Bi}BN

i=1, such that ∪BN
i=1Bi ⊃M. Then,

on each of the Bi, we define Ki (suitably transformed) Legendre polynomials. For
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example, in one dimension, each basis function is of the form

ψij(x) =

{
Lj(ξ) x ∈ Bi,
0 otherwise,

(24)

where Lj is the j-th Legendre polynomial, and ξ is x transformed such that the
“edges” of the box are at ξ = ±1. The advantage of this basis is that G will be
block diagonal, and therefore easy to invert even if a very large number of basis
functions are employed.

With a fixed amount of data, an equally difficult task is choosing the Bi; the
number and arrangement of the Bi is a balance between span of the basis functions
(i.e., h-type convergence), which increases as the number of boxes is increased, and
the accuracy of the quadrature rule, which decreases because smaller boxes contain
fewer data points. To generate a covering ofM, we use a method similar to the one
used by GAIO [39]. Initially, all the data (i.e., X and Y ) are contained within a

single user selected box, B(0)
1 . If this box contains more than a pre-specified number

of data points, it is subdivided into 2N domains of equation measure (e.g., in one

dimension, B(0)
1 = B(1)

1 ∪ B(1)
2 ). We then proceed recursively, if any of B(1)

i contain
more than a pre-specified number of points, then they too are subdivided; this

proceeds until no box has an “overly large” number of data points. Any B(j)
i that

do not contain any data points are pruned, which after j iterates leaves the set of

subdomains, {B(j)
i }, on which we define the Legendre polynomials. The resulting

trial functions are compactly supported and can be evaluated efficiently using 2N

trees, where N is the dimension of a snapshot. Finally, the higher order polynomials
used here allow for more rapid p-type convergence if the eigenfunctions happen to
be smooth.

The final choice of trial functions is a set of radial basis functions (RBFs), which
appeal to previous work on “mesh-free” methods [40]. Because these methods do not
require a computational grid or mesh, they are particularly effective for problems
whereM has what might be called a complex geometry. Many different RBFs could
be effective, but one particularly useful set of RBFs are the thin plate splines [36,41]
because they do not require the scaling parameter that other RBFs (e.g., Gaussians)
do. However, we still must choose the “centers” about which the RBFs are defined,
which we do with k-means clustering [42] with a pre-specified value of k on the
combined data set. Although we make no claims of optimality, in our examples,
the density of the RBF centers appears to be directly related to the density of data
points, which is, intuitively, a reasonable method for distributing the RBF centers
as regions with more samples will also have more spatial resolution.

There are, of course, other dictionaries that may prove more effective in other
circumstances. For example, basis functions defined in polar coordinates are useful
when limit cycles or other periodic orbits are present as they mimic the form of the
Koopman eigenfunctions for simple limit cycles [43]. How to choose the best set of
trial functions is an important, yet open, question; fortunately, the EDMD method
often produces useful results even with the relatively naive choices of trial functions
presented in this section.

4. Deterministic Data and the Koopman Eigenfunctions. Most applications
of DMD assume that the data sets were generated by a deterministic dynamical sys-
tem. In Sec. 2, we showed that EDMD produces an approximation of the Koopman
eigenfunctions, eigenvalues, and modes with large amounts of data. In this section,
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we demonstrate that EDMD can produce accurate approximations of the Koopman
eigenfunctions, eigenvalues, and modes with limited amounts of data by applying
the method to two illustrative examples. The first is a discrete time linear system,
one where the eigenfunctions, eigenvalues, and modes are known analytically, and
serves as a test case for the method. The second is the unforced Duffing oscillator.
Our goal there is to demonstrate that the approximate Koopman eigenfunctions
obtained via EDMD have the potential to serve as a data driven parameterization
of a system with multiple basins of attraction.

4.1. A Linear Example.

4.1.1. The Governing Equation, Data, and Analytically Obtained Eigenfunctions.
One system where the Koopman eigenfunctions are known analytically is a simple
LTI system of the form

x(n+ 1) = Jx(n), (25)

with x(n) ∈ RN and J ∈ RN×N . It is clear that an eigendecomposition yields
complete information about the underlying system provided J has a complete set of
eigenvectors. Because the underlying dynamics are linear, it should not be surprising
that the Koopman approach contains the eigendecomposition.

To show this, note that the action of the Koopman operator for this problem is

Kφ(x) = φ(Jx), (26)

where φ ∈ F . Assuming J has a complete set of eigenvectors, it will have N
left eigenvectors, wi, that satisfy w∗i J = µjw

∗
i , and where the i-th eigenvector is

associated with the eigenvalue µi. Then, the function

ϕn1,n2,...,nN
(x) =

N∏
i=1

(w∗i x)ni (27)

is an eigenfunction of the Koopman operator with the eigenvalue
∏N
i=1 µ

ni
i for ni ∈

N. This is a well known result (see, e.g., Ref. [12]), so we show the proof of this
only for the sake of completeness. We proceed directly:

Kϕn1,n2,...,nN
(x) =

N∏
i=1

(w∗i Jx)ni =

N∏
i=1

µni
i (w∗i x)ni

=

(
N∏
i=1

µni
i

)
ϕn1,n2,...,nN

(x),

by making use of (26) and the definition of wi as a left eigenvector. Then, the
representation of the full state observable in terms of the Koopman modes and
eigenfunctions (i.e., (2)) is

x =

N∑
i=1

vi (w∗i x) , (28)

where the i-th Koopman mode, vi, is the i-th eigenvector of J suitably scaled so
that w∗i vi = 1. This is identical to writing x in terms of the eigenvectors of J ; inner
products with the left eigenvectors determine the component in each direction, and
the (right) eigenvectors allow the full state to be reconstructed.

As a concrete example, consider

x(n+ 1) =

[
0.9 −0.1
0.0 0.8

]
x(n) = Jx(n), (29)
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Figure 2. Pseudocolor plots of the first 8 Koopman eigenfunctions
plotted using their analytical expressions, (30), along with the as-
sociated eigenvalue. Note that the eigenfunctions were scaled so
that ‖ϕi‖∞ = 1 on the domain shown.

where xn = [xn, yn]. From (27), the Koopman eigenfunctions and eigenvalues are

ϕij(x, y) =

(
x− y√

2

)i
yj , λij = (0.9)i(0.8)j , (30)

for i, j ∈ Z. Figure 2 shows the first 8 nontrivial eigenfunctions sorted by their
associated eigenvalue. The 0-th eigenfunction, ϕ00(x) = 1 with µ00 = 1, was
omitted because it is always an eigenfunction and will be recovered by EDMD if
ψ = 1 is included as a dictionary element.

To apply the EDMD procedure, one needs both data and a dictionary of observ-
ables. The data in X consists of 100 normally distributed initial conditions, xi, and
their images, yi = Jxi, which we aggregate in the matrix Y , i.e., X,Y ∈ R2×100.
The dictionary, D, is chosen to contain the direct sum of Hermite polynomials in x
and y that include up to the 5th order terms in x and y, i.e.,

D = {ψ0, ψ1, ψ2, . . .}

=

{H0(x)H0(y), H1(x)H0(y), H2(x)H0(y), H3(x)H0(y), H4(x)H0(y),
H0(x)H1(y), H1(x)H1(y), H2(x)H1(y), H3(x)H1(y), H4(x)H1(y),
H0(x)H2(y), H1(x)H2(y), H2(x)H2(y), H3(x)H2(y), H4(x)H2(y),
H0(x)H3(y), H1(x)H3(y), H2(x)H3(y), H3(x)H3(y), H4(x)H3(y),
H0(x)H4(y), H1(x)H4(y), H2(x)H4(y), H3(x)H4(y), H4(x)H4(y)},

(31)

where D has been written this way to make the ordering of the dictionary elements
apparent. The Hermite polynomials were chosen because they are an appropriate
basis for Cauchy problems, and orthogonal with respect to the weight function,

ρ(x) = e−‖x‖
2

, that is implicit in the normally distributed sampling strategy used
here.

4.1.2. Results. Figure 3 shows the same 8 eigenfunctions computed using the EDMD
method. Overall, there is (as expected) excellent quantitative agreement, both
in the eigenvalues and the eigenfunctions, with the analytical results presented in
Fig. 2. On the domain shown, the eigenvalues are accurate to 10 digits, and the max-
imum pointwise difference between the true and computed eigenfunction is 10−6.
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Figure 3. Pseudocolor plots of the first eight nontrivial eigen-
functions of the Koopman operator computed using the EDMD
procedure. The eigenfunctions obtained using EDMD were scaled
such that ‖ϕi‖∞ = 1 on the domain shown. With this scaling, there
is excellent agreement between these results and those presented in
Fig. 2.

In this problem, standard DMD also generates highly accurate approximations of
ϕ1 and ϕ3 and their associated eigenvalues, but will not produce any of the other
eigenfunctions; the standard choice of the dictionary only contains linear terms
and, therefore, cannot reproduce eigenfunctions with constant terms or any nonlin-
ear terms. As a result, expanding the basis allows EDMD to capture more of the
Koopman eigenfunctions than standard DMD could. These additional eigenfunc-
tions are not necessary for an LTI system, but are in principle needed in nonlinear
settings.

This level of accuracy is in large part because the first nine eigenfunctions are in
FD, the subspace of observables spanned by D. When this is not the case, the result
is either a missing or erroneous eigenfunctions like the examples shown in Fig. 4.
The 9-th eigenfunction, (x−y)5 with µ = 0.95 = 0.59049, is not captured by EDMD
with the dictionary chosen here because it lacks the needed 5-th order monomials
in x and y, which is similar to how DMD skips the 2nd Koopman eigenfunction due
to a lack of quadratic terms.

The erroneous eigenfunction appears because FD is not invariant with respect
to the action of the Koopman operator. In particular, φ contains the term yx4

whose image K(yx4) 6∈ FD because x5, y5 6∈ FD. In most applications, there are
small components of the eigenfunction that cannot be represented in the dictionary
chosen, which results in errors in the eigenfunction such as the one seen here. Even
in the limit of infinite data, we would compute the eigenfunctions of PFDK, where
PFD is the projection onto FD, rather than the eigenfunction of K. To see that this
not a legitimate eigenfunction, we added H5(x) and H5(y) to D, which removes this
erroneous eigenfunction.

Finally, we compute the Koopman modes for the full state observable. Using
the ordering of the dictionary elements given in (31), the weight matrix, B in (14),
needed to compute the Koopman modes for the full state observable, g(x)T = [x, y]
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Figure 4. A subset of the spectrum of the Koopman operator
and the EDMD computed approximation. As shown here, there
are clearly errors in the spectrum further away from the unit circle
(which is not contained in the plotting region). The center plot
shows an example of a “missing” eigenfunction that is not cap-
tured by EDMD; this eigenfunction is (x − y)5 6∈ FD, and cannot
be represented with our basis functions. The right plot shows an
example of an “erroneous” eigenfunction that appears because FD
is not an invariant subspace of the Koopman operator.

is

B =



0 0
1 0
0 0
0 0
0 0
0 1
0 0
...

...


. (32)

The Koopman modes associated with µ1 = 0.9 is v1 = [0,−
√

2]T , while the Koop-
man mode associated with µ3 = 0.8 is v3 = [−1,−1]; again, these are the eigen-
vectors of J . The contribution of the other numerically computed eigenfunctions in
reconstructing the full state observable is negligible (i.e., ‖vk‖ ≈ 10−11 for k 6= 1, 3),
so the Koopman/EDMD analysis is an eigenvalue/eigenvector decomposition once
numerical errors are taken into consideration.

Although EDMD reveals a richer set of Koopman eigenfunctions that are an-
alytically known to exist, their associated Koopman modes are zero and, hence,
they can be neglected. Our goal in presenting this example is not to demonstrate
any new phenomenon, but rather to demonstrate that there is good quantitative
agreement between the analytically obtained Koopman modes, eigenvalues, and
eigenfunctions and the approximations produced by EDMD. Furthermore, it al-
lowed us to highlight the types of errors that appear when FD is not an invariant
subspace of K, which results in erroneous eigenfunctions, or when the dictionary is
missing elements, which results in missing eigenfunctions.

4.2. The Duffing Oscillator. In this section, we will compute the Koopman
eigenfunctions for the unforced Duffing Oscillator, which for the parameter regime
of interest here, has two stable spirals and a saddle point whose stable manifold
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defines the boundary between the basins of attraction. Following Ref. [15] and the
references contained therein, the eigenvalues of the linearizations about the fixed
points in the system are known to be a subset of the Koopman eigenvalues, and for
each stable spiral, the magnitude and phase of the associated Koopman eigenfunc-
tion parameterizes the relevant basin of attraction. Additionally, because basins of
attraction are forward invariant sets, there will be two eigenfunctions with µ = 0,
each of which is supported on one of the two basins of attraction in this system (or,
equivalently, there will be a trivial eigenfunction and another eigenfunction with
µ = 0 whose level sets denote the basins of attraction). Ultimately, we are not
interested in recovering highly accurate eigenfunctions in this example. Instead, we
will demonstrate that the eigenfunctions computed by EDMD are accurate enough
that they can be used to identify and parameterize the basins of attraction that are
present in this problem for the region of interest.

The governing equations for the unforced Duffing Oscillator are

ẍ = −δẋ− x(β + αx2), (33)

which we will study using the parameters δ = 0.5, β = −1, and α = 1. In this
regime, there are two stable spirals at x = ±1 with ẋ = 0, and a saddle at x, ẋ = 0, so
almost every initial condition (except for those on the stable manifold of the saddle)
is drawn to either of the spirals. In what follows, the data consist of 103 trajectories

with 11 samples each with a sampling interval of ∆t = 0.25 (i.e., X,Y ∈ R2×104

),
and initial conditions uniformly distributed over x, ẋ ∈ [−2, 2]. With this sampling
rate and initialization scheme, many trajectories will approach the stable spirals,
but few will have (to numerical precision) reached the fixed points. As a result,
the basins of attraction cannot be determined by observing the last snapshot in a
given trajectory. Instead, EDMD will be used to “stitch” together this ensemble of
trajectories to form a single coherent picture.

However, because there are multiple basins of attraction, the leading eigenfunc-
tions will be discontinuous [15], and supported only on the appropriate basin of
attraction. In principle, our computation could be done “all at once” using a single
D and applying EDMD to the complete data set. To enforce the compactly sup-
ported nature of the eigenfunctions regardless of which dictionary we use, we will
proceed in a two-tiered fashion. First, the basins of attraction will be identified
using all of the data and a dictionary with support everywhere we have data. Once
we have identified these basins, both state space and the data will be partitioned
into subdomains based on the numerically identified basins. The EDMD procedure
will then be run on each subdomain and the corresponding partitioned data set
individually.

4.2.1. Locating Basins of Attraction. Figure 5 highlights the first step: partitioning
of state space into basins of attraction. We used a dictionary consisting of the
constant function and 1000 radial basis functions (RBFs) (the thin plate splines
described in Sec. 3), where k-means clustering [42] on the full data set was used
to choose the RBF centers. RBFs were chosen here because of the geometry of
the computational domain; indeed, RBFs are often a fundamental component of
“mesh-free” methods that avoid the nontrivial task of generating a computational
mesh [40].

The leading (continuous time) eigenvalue is λ0 = −10−14 which corresponds to
the constant function. The second eigenfunction, shown in the leftmost image of
Fig 5, has λ1 = −10−3, which should be considered an approximation of zero. The
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Figure 5. (left) A plot of the first nontrivial eigenfunction gen-
erated with an eigenvalue of λ = 0.048 obtained from 103 ran-
domly initialized trajectories each consisting of 10 steps taken with
∆t = 0.25. This eigenfunction should be constant in each basin
of attraction and have λ = 0, so EDMD is generating an approxi-
mation of the eigenfunction rather than a fully converged solution.
(center) The first nontrivial eigenfunction evaluated at the data
points. (right) A plot of the mis-classified points (less than 0.5%
of the data), each of these points are (to the eye) on the boundary
between the invariant sets.

discrepancy between the numerically computed eigenfunction and the theoretical
one is due to the choice of the dictionary. The analytical eigenfunction possesses a
discontinuity on the edge of the basin of attraction (i.e., the stable manifold of the
saddle point at the origin), but discontinuous functions are not in the space spanned
by RBFs. Therefore, the numerically computed approximation “blurs” this edge as
shown in Fig 5.

The scatter plot in the center of Fig. 5 shows the data points colored by the 1st
nontrivial eigenfunction. There is good qualitative agreement between the numer-
ically computed basin of attraction and the actual basin. By computing the mean
value of ϕ1 on the data and using that value as the threshold that determines which
basin of attraction a point belongs to, the EDMD approach mis-classifies only 46 of
the 104 data points, resulting in an error of only 0.5% as shown by the rightmost
plot. As a result, the leading eigenfunctions computed by EDMD are sufficiently
accurate to produce a meaningful partition of the data.

4.2.2. Parameterizing a Basin of Attraction. Now that the basins of attraction have
been identified, the next task is to develop a coordinate system or parameterization
of the individual basins. To do so, we will use the eigenfunctions associated with
the eigenvalues of the system linearization about the corresponding fixed point.
Because these fixed points are spirals, this parameterization can be realized using the
amplitude and phase of one member of the complex-conjugate pair of eigenfunctions.
To approximate these eigenfunctions, we first partition our data into two sets as
mentioned above using the leading Koopman eigenfunctions (including the mis-
classified data points). On each subset of the data, the k-means procedure was
run again to select a new set of 1000 RBF centers, and this “adjusted” basis along
with the constant function comprised the D used by EDMD. Figure 6 shows the
amplitude and phase of the eigenfunction with eigenvalue closest to −0.25 + 1.387ı
computed using the data in each basin of attraction. The computed eigenvalues
agree favorably with the analytically obtained eigenvalue; the basin of the spiral at
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Figure 6. (top) The amplitude and phase of the Koopman eigen-
function with λ = −0.237 + 1.387ı (analytically, −0.25 + 1.3919ı)
for the stable spiral at (1, 0). (bottom) The same pair of plots for
the spiral at (−1, 0). Although there are errors near the “edge” of
the basin of attraction, the amplitude and phase of this eigenfunc-
tion can serve as a polar coordinate system for the corresponding
basin of attraction.

(1, 0) has the eigenvalue −0.237 + 1.387ı, and the basin of the spiral at (−1, 0) has
the eigenvalue −0.24 + 1.35ı.

Figure 6 demonstrates that the amplitude and phase of a Koopman eigenfunction
forms something analogous to an “action–angle” parameterization of the basin of
attraction. Due to the nonlinearity in the Duffing oscillator, this parameterization
is more complicated than an appropriately shifted polar coordinate system, and is,
therefore, not the parameterization that would be generated by linearization about
either (±1, 0). The level sets of the amplitude of this eigenfunction are the so-called
“isostables” [15]. One feature predicted in that manuscript is that the 0-level set
of the isostable is the fixed point in the basin of attraction; this feature is reflected
in Fig. 6 by the blue region, which corresponds to small values of the eigenfunction
that are near the fixed points at (±1, 0). Additionally, a singularity in the phase
can be observed there. The EDMD approach produces noticeable numerical errors
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near the edges of the basin. These errors can be due to a lack of data, or to the
singularities in the eigenfunctions that can occur at unstable fixed points [44].

In this section, we applied the EDMD procedure to deterministic systems and
showed that it produces an approximation of the Koopman operator. With a sensi-
ble choice of data and D, we showed that EDMD generates a quantitatively accurate
approximation of the Koopman eigenvalues, eigenfunctions, and modes for the linear
example. In the second example, we used the Koopman eigenfunctions to identify
and parameterize the basins of attraction of the Duffing Oscillator. Although the
EDMD approximation of the eigenfunctions could be made more accurate with more
data, it is still accurate enough to serve as an effective parameterization. As a re-
sult, the EDMD method can be useful outside of the large data limit, and should be
considered an enabling technology for data driven approximations of the Koopman
eigenvalues, eigenfunction, and modes.

5. Stochastic Data and the Kolmogorov Backward Equation. The EDMD
approach is entirely data driven, and will produce an output regardless of the nature
of the data given to it. However, if the results of EDMD are to be meaningful, then
certain assumptions must be made about the dynamical system that produced the
data used. In the previous section, it was assumed the data were generated by a
deterministic dynamical system; as a result, EDMD produced approximations of
the tuples of Koopman eigenfunctions, eigenvalues, and modes.

Another interesting case to consider is if the underlying dynamical system is
a Markov process, such as a stochastic differential equation (SDE). For such sys-
tems, the evolution of an observable is governed by the Kolmogorov backward (KB)
equation [33], whose “right hand side” has been called the “stochastic Koopman
operator” (SKO) [1]. In this section, we will show that EDMD produces approxi-
mations of the eigenfunctions, eigenvalues, and modes of the SKO if the underlying
dynamical system happens to be a Markov process.

To accomplish this, we will prove that the EDMD method converges to a Galerkin
method in the large data limit. After that, we will demonstrate its accuracy with
finite amounts of data by applying it to the model problem of a 1D SDE with a dou-
ble well potential, where the SKO eigenfunctions can be computed using standard
numerical methods.

Another proposed application of the Koopman operator is for the purposes of
model reduction, which as been explored in Ref. [16]. Model reduction based on the
Koopman eigenfunctions is equally applicable in both deterministic and stochastic
settings, but we choose to present it for stochastic systems to highlight the similari-
ties between EDMD and manifold learning techniques such as diffusion maps [45,46].
In particular, we apply EDMD to an SDE defined on a “Swiss Roll,” which is a
nonlinear manifold often used to test manifold learning methods [47]. The purpose
of this example is twofold: first, we show that a data driven parameterization of the
Swiss Roll can be obtained using EDMD, and second, we show that this parame-
terization will preferentially capture “slow” dynamics on that manifold before the
“fast” dynamics when the noise is made anisotropic.

5.1. EDMD with Stochastic Data. For a discrete time Markov process,

x 7→ F (x;ω),

the SKO [1] is defined as

(K̃ψ)(x) = E[ψ(F (x;ω))], (34)
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where ω ∈ Ωs is an element in the probability space associated with the stochastic
dynamics (Ωs), E denotes the expected value over that space, and ψ ∈ F is a scalar
observable. The SKO [1] takes an observable of the full system state and returns
the conditional expectation of the observable “one timestep in the future.” Note
that this definition is compatible with the deterministic Koopman operator because
E[ψ(F (x))] = ψ(F (x)) if F is deterministic.

As with the deterministic case, we assume the snapshots in X ∈ RN×M were
generated by randomly placing initial conditions on M with the density of ρ(x)
and that M is sufficiently large. Once again, ρ does not need to be an invariant
measure of the underlying dynamical system; it is simply the sampling density of
the data. Due to the stochastic nature of the system, there are two probability
spaces involved: one related to the samples in X and another for the stochastic
dynamics. Because our system has “process” rather than “measurement” noise,
the xi are known exactly, and the interpretation of the Gram matrix, G, remains
unchanged. Therefore,

lim
M→∞

Gi,j =

∫
M
ψ∗i (x)ψj(x)ρ(x)dx = 〈ψi, ψj〉ρ ,

by the law of large numbers when M is large enough. This is identical to the
deterministic case. However, the definition of A will change. Assuming that the
choice of ω and x are independent,

lim
M→∞

Ai,j = E[ψ∗i (K̃ψj)] =

∫
M×Ωs

ψ∗i (x)ψj(F (x,ω))ρ(x) dxdω

=

∫
M
ψ∗i (x)E[ψj(F (x,ω))]ρ(x) dx =

〈
ψi, K̃ψj

〉
ρ
,

.

The elements ofA now contain a second integral over the probability space that per-
tains to the stochastic dynamics, which produces the expectation of the observable
in the expression above.

The accuracy of the resulting method will depend on the dictionary, D, the
manifold on which the dynamical system is defined, the data, and the dynamics used
to generate it. One interesting special case is if the basis functions are indicator
functions supported on “boxes.” When this is the case, EDMD is equivalent to
the widely used Ulam Galerkin method [17, 39]. This equivalence is lost for other
choices of D and ρ, but as we will demonstrate in the subsequent sections, EDMD
can produce accurate approximations of the eigenfunctions for many other choices
of these quantities.

The “stochastic Koopman modes” can then be computed using (18), but they
too must be reinterpreted as the weights needed to reconstruct the expected value of
the full state observable using the eigenfunctions of the SKO. Due to the stochastic
nature of the dynamics, the Koopman modes can no longer exactly specify the state
of the system. However, they can be used as approximations of the Koopman modes
that would be obtained in the “noise free” limit when some appropriate restrictions
are placed on the nature of the noise and the underlying dynamical system. Indeed,
these are the modes we are truly computing when we apply DMD or EDMD to
experimental data, which by its very nature, contains some noise.

5.2. A Stochastic Differential Equation with a Double Well Potential.
In this section, we will show that the EDMD procedure is capable of accurately
approximating the eigenfunctions of the stochastic Koopman operator by applying
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Figure 7. The double well potential U(x) = −2(x2 − 1)2x2

it to an SDE with a double well potential. Although we do not have analytical
solutions for the eigenfunctions, the problem is simple enough that we can accurately
compute them using standard numerical methods.

5.2.1. The Double Well Problem and Data. First, consider an SDE with a double
well potential. Let the governing equations for this system be

dx = −∇U(x)dt+ σdWt, (35)

where x is the state, −∇U(x) the drift, and σ is the (constant) the diffusion coeffi-
cient. Furthermore, no flux boundary conditions are imposed at x = ±1. For this
problem, we let U(x) = −2(x2 − 1)2x2 as shown in Fig. 7.

The Fokker-Planck equation associated with this SDE is

∂ρ(x, t)

∂t
= − ∂

∂x

(
−∂U
∂x

ρ(x, t)

)
+
σ2

2

∂2ρ(x, t)

∂x2
= Pρ, (36)

where ρ is a probability density with ∂xρ(x, t)
∣∣
x=±1

= 0 due to the no-flux boundary

conditions we impose, and P is the Perron-Frobenius operator. The adjoint of the
Perron-Frobenius operator determines the Kolmogorov backward equation, and thus
defines the stochastic Koopman operator, K̃ = P†. For this example,

K̃φ = −∂U
∂x

∂φ

∂x
+
σ2

2

∂2φ

∂x2
(37)

with Neumann boundary conditions, ∂xφ
∣∣
x=±1

= 0. To directly approximate the

Koopman eigenfunctions, (37) is discretized in space using a second order finite
difference scheme with 1024 interior points. The eigenvalues and eigenvectors of
the resulting finite dimensional approximation of the Koopman operator will be
used to validate the EDMD computations.

The data are 106 initial points on x ∈ [−1, 1] drawn from a uniform distribution,
which constitute X, and their positions after ∆t = 0.1, which constitute Y . The
evolution of each initial condition was accomplished through 102 steps of the Euler–
Maruyama method [48,49] with a timestep of 10−3 using the double well potential in
Fig. 7. The dictionary chosen is a discontinuous spectral element basis that splits
x ∈ [−1, 1] into four equally sized subdomains with up to tenth order Legendre
polynomials on each subdomain (see Sec. 3) for a total of forty degrees of freedom.

5.2.2. Recovering the Koopman Eigenfunctions and Eigenvalues. Because the Koop-
man operator is infinite dimensional, we will clearly be unable to approximate all
of the tuples. Instead, we focus on the leading (i.e., most slowly decaying) tuples,
which govern the long–term dynamics of the underlying system. In this example,
we seek to demonstrate that our approximation is: (a) quantitatively accurate, and
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Figure 8. (left) The first six eigenvalues of the stochastic Koop-

man operator obtained with a finite difference discretization of K̃.
(right) The first six eigenvalues obtained with the EDMD approach.
In both plots, a marker is placed every 10-th data point. While
there is good quantitative agreement between the true eigenvalues
and those obtained with EDMD, some small “noise” due to quad-
rature errors does appear in the right plot as σ → 0.

(b) valid over a range of coefficients, σ, and not solely in the small (or large) noise
limits.

Figure 8 shows the first six eigenvalues obtained using a finite difference dis-
cretization of the Koopman operator and the EDMD approximation as a function
of σ. In this problem, ϕ0 = 1, is always an eigenfunction of the Koopman operator
with λ0 = 0 for all values of σ. Because D contains the constant function, it should
be no surprise the EDMD method is able to identify it as an eigenfunction. Though
trivial, the existence of this eigenfunction is a “sanity check” for the method.

More interesting is the first nontrivial eigenfunction which has the eigenvalue λ1.
The change in ϕ1 as a function of σ is shown in Fig. 9. As with the eigenvalue,
there is good agreement between EDMD and the directly computed eigenfunctions
at different values of σ. For all values of σ, ϕ1 is an odd function; what changes is
how rapidly ϕ1 transitions from its maximum to its minimum. When σ is small,
this transition is rapid, and ϕ1 will approach a step function as σ → 0. When σ
grows, this eigenfunction is “smoothed out” and the transition becomes slower. In
the limit as σ → ∞, the dynamics of the problem are dominated by the diffusion
term, and ϕ1 will be proportional to cos(πx/L) as is implied by the rightmost plot
in the figure.

In many system identification algorithms (e.g., Ref. [50]), one often constructs
deterministic governing equations from inherently stochastic data (either due to
measurement or process noise). Similarly, methods like DMD have been applied
to noisy sets of data to produce an approximations of the Koopman modes and
eigenvalues with the assumption that the underlying system is deterministic. In
this example, this is equivalent to using the output of EDMD with data taken with
0 < σ � 1 as an approximation of the Koopman tuples that would be obtained
with σ = 0.

For certain tuples, this is a reasonable approach. Taking σ → 0, λ3 and λ4 and ϕ3

and ϕ4 are good approximations of their deterministic counterparts. In particular
ϕ3 and ϕ4 are one-to-one with their associated basin of attraction and appear to
possess a zero at the stable fixed point. However, these approximate eigenfunctions
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Figure 9. A comparison of the leading nontrivial eigenfunction
computed with the finite difference method and EDMD for: (a)
σ = 0.2, (b) σ = 0.5, and (c) σ = 1.0. As with the eigenvalues,
there is excellent agreement between the “true” and data driven
approximations of this eigenfunction, though there are small quan-
titative differences in the approximation.

lack some important features such as a singularity at x = 0 that occurs due to the
unstable fixed point there. Therefore, both eigenfunctions are good approximations
of their σ = 0 counterparts, but cannot be “trusted” in the vicinity of an unstable
fixed point.

For other tuples, even a small amounts of noise can be important. Consider
the “slowest” non-zero eigenvalue, λ2, which appears to approach −4 as σ → 0,
but is not obtained by the EDMD method when σ = 0. Formally, the existence
of an eigenvalue of −4 is not surprising. The fixed point at x = 0 is unstable
with λ = 4, and in continuous time, if (λn, ϕn) is an eigenvalue/eigenfunction
pair then (kλn, ϕkn) is, at least formally, an eigenvalue/eigenfunction pair for any
scalar k. Using an argument similar to Ref. [51], it can be shown that ϕ2(x) =
C0 exp(−4x2/σ2) +O(σ2) as σ → 0 where C0 is chosen to normalize ϕ2. However,
this approaches a delta function as σ → 0, and therefore leaves the subspace of
observables spanned by our dictionary. When this occurs, this tuple appears to
“vanish,” which is why it does not appear in the σ = 0 limit. As a result, when
applying methods like EDMD or DMD to noisy data, the spectrum of the finite
dimensional approximation is not necessarily a good approximation of the spectrum
that would be obtained with noise–free data. Some of the tuples, such as those
containing ϕ1, ϕ3, and ϕ4, have eigenvalues that closely approximate the ones
found in the deterministic problem. However, others such as the tuple containing
ϕ2, do not. Furthermore, the only method to determine that λ2 can be neglected is
by directly examining the eigenfunction. As a result, when we apply methods like
DMD/EDMD to noisy data with the purpose of using the spectrum to determine
the time scales and behaviors of the underlying system, we must keep in mind that
not all of the eigenvalues obtained with noisy data will be present if “clean” data
is used instead.

5.2.3. Rate of Convergence. Among other things, the performance of the EDMD
method is dependent upon the number of snapshots provided to it, the distribution
of the data, the underlying dynamical system, and the dictionary. In this section,
we examine the convergence of EDMD to a Galerkin method as the number of
snapshots increases in order to provide some intuition about the “usefulness” of
the eigenfunctions obtained without an exhaustive amount of data. To do so, we
generated a larger set of data consisting of 107 initial conditions chosen from a
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Figure 10. (left) Plot of the first nontrivial eigenvalue as a func-
tion of the number of data points with σ = 1. The red dashed line
denotes the “exact” value computed using direct numerical meth-
ods. Although the EDMD approximation is poor with M < 100, it
quickly becomes more accurate as M is increased. (right) Plot of
the error, i.e., ‖ϕ1,EDMD − ϕ1,True‖, as a function of M . Because
the scalar products in (9) are evaluated using Monte-Carlo integra-
tion, the method converges like O(M−1/2) as shown by the fit on
the right.

spatially uniform distribution for the case with σ = 1. Each initial condition was
propagated using the Euler-Maruyama method described in the previous section.
Then we applied EDMD using the same dictionary to subsets of the data, computed
the leading nontrivial eigenvalue and eigenfunction, and compared the results to
the “true” leading eigenfunction and eigenvalue computed using a finite difference
approximation of the stochastic Koopman operator.

Figure 10 shows the convergence of the leading nontrivial eigenvalue and eigen-
function as a function of the number of snapshots, M . In the rightmost plot, we
define the error as ‖ϕ1,EDMD − ϕ1,True‖ after both eigenfunctions have been nor-
malized so that ‖ϕ1,EDMD‖2 = ‖ϕ1,True‖2. As expected, EDMD is inaccurate when
M is small (here, M < 100); there is not enough data to accurately approximate
the scalar products. For M > 103, the eigenfunction produced by EDMD have
the right shape, and the eigenvalue is approaching its true value. For M > 104,
there is no “visible” difference in the leading eigenvalue, and the error in the leading
eigenfunction is less than 10−3.

To quantify the rate of convergence, we fit a line to the plot of error versus M in
the right panel of Fig. 10. As expected, EDMD converges like M−0.49, which is very
close to the predicted value of O(M−0.5) associated with Monte–Carlo integration.
Because this problem is stochastic, we cannot increase the rate of convergence by
uniform sampling (the integral over the probability space associated with the sto-
chastic dynamics will still converge like O(M−1/2)), even though that is a simple
method for enhancing the rate of convergence for deterministic problems.

To provide some intuition about what the eigenfunctions look like for a fixed
value of M , Fig. 11 plots the leading nontrivial eigenfunction for M = 1623, 14384,
and 1128837. EDMD is qualitatively accurate even at the smallest values of M , but
there are clearly some numerical issues at the edges of the domain and near x = 0
where the discontinuities in the numerically computed eigenfunctions can occur
with our choice of dictionary. To obtain a more quantitatively accurate solution,
additional data points are required. When M = 14384, the numerical issues at the
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Figure 11. Comparison of the EDMD approximation of the lead-
ing nontrivial Koopman eigenfunction with M = 1623, 14384, and
1128837 with the “exact” solution obtained using direct numerical
methods. The EDMD solution is similar to the exact solution even
when M ∼ 103, but we would not characterize it as quantitatively
accurate until M > 104. Beyond M > 105, EDMD and the exact
solution are visually identical.

boundaries and the discontinuity at x = 0 have diminished. As shown in the plot
with M = 1128837, this process continues until the EDMD eigenfunction is visually
identical to the true eigenfunction.

5.3. Parameterizing Nonlinear Manifolds and Reducing Stochastic Dy-
namics. In this section, we will briefly demonstrate how the EDMD method can
be used to parameterize nonlinear manifolds and reduce stochastic differential equa-
tions defined on those manifolds. Everything done here could also be done for a
deterministic system; we chose to use an SDE rather than an ODE only to highlight
the similarities between EDMD and methods like diffusion maps, and not because
of any restriction on the Koopman approach. We proceed in two steps: first, we will
show that data from an SDE defined on the Swiss Roll, which is a nonlinear man-
ifold often used as a test of nonlinear manifold learning techniques [45–47, 52], in
conjunction with the EDMD procedure can generate a data driven parameterization
of that manifold. For this first example, isotropic diffusion is used, so there is no
“fast” or “slow” solution component that can be meaningfully neglected. Instead,
we will show that the leading eigenfunctions are one-to-one with the “length” and
“width” of the Swiss Roll. Then we alter the SDE and introduce a “fast” component
by making the diffusion term anisotropic. In this case, EDMD will “pick” the slower
components before the faster ones. Both of these tasks can be accomplished using
other methods such as Diffusion Maps (DMAPs) and its variants [45, 46, 52, 53],
and it is only recently that the Koopman operator has also been applied to such
problems [16].

5.3.1. Parameterizing a Nonlinear Manifold with a Diffusion Process. For this ex-
ample, the data are generated by a diffusion process on a rectangular domain,

ds = 2dWt, (38)

where s = (s1, s2) is the state and Wt is a two-dimensional Wiener process with
s1 ∈ [0, 3π] and s2 ∈ [0, 2π]. No flux boundary conditions are imposed at the domain
edges. If one had access to the true variables, the SKO could be written as

K̃φ = 2∂2
s1φ+ 2∂2

s2φ, (39)
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Figure 12. The first two nontrivial Koopman eigenfunctions for
the diffusion process on the “Swiss Roll” using 3×104 data points.
The first eigenfunction is one-to-one with s1 (the “length” of the
Swiss Roll), and the second eigenfunction is one-to-one with s2. As
a result, they could act as a data driven parameterization of this
nonlinear manifold. The eigenvalues associated with these eigen-
functions are -.234 and -0.491 compared to the theoretical values
of − 2

9 and −0.5 respectively.

also with no-flux boundary conditions; in this particular problem, the SKO is self-
adjoint and therefore equivalent to the Perron-Frobenius operator. The eigenfunc-

tions should be ϕij = cos
(
i
3s1

)
cos
(
j
2s2

)
with the eigenvalues λij = −2

(
i2

9 + j2

4

)
.

Note that the leading eigenfunctions, ϕ1,0 and ϕ0,1 are cos
(

1
3s1

)
and cos

(
1
2s2

)
,

which are one-to-one with s1 and s2 on [0, 3π] and [0, 2π] respectively, and could be
used to parameterize state space if s1 and s2 were not known.

In this example, these true data (i.e., the state expressed in terms of s1 and s2)
on the rectangle are mapped onto a “Swiss Roll” via the transformation

g(s) =

(s1 + 0.1) cos(s1)
s2

(s1 + 0.1) sin(s1)

 , (40)

which, among other things, has introduced a new spatial dimension. In all that
follows, the EDMD approach is applied to the 3-dimensional, transformed variables
and not the 2-dimensional, true variables. Our objective here is to determine a
2-parameter description of what initially appears to be 3-dimensional data, directly
from the data.

The data given to EDMD were generated by 104 initial conditions uniformly
distributed in s1 and s2 that were evolved for a total time of ∆t = 0.1 using the
Euler-Maruyama method with 100 timesteps. Then both the initial and terminal
states of the system were mapped into 3 dimensions using (40). Next, a dictionary
must be defined. However, M is unknown (indeed, parameterizing M is the entire
point), so Ω is embedded in R3 such that x ∈ [−3π − .1, 3π + .1], y ∈ [0, 2π] and
z ∈ [−3π−.1, 3π+.1]. In this larger domain, the spectral element basis consisting of
4096 rectangular subdomains (16 each in x, y, and z) with up to linear polynomials
in each subdomain is employed. Because M ⊂ Ω, extraneous and redundant trial
functions are expected, and G is often ill conditioned.
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Figure 12 shows the transformed data colored by the first and second nontrivial
eigenfunctions of the Koopman operator. Unlike many of the previous examples,
there are clear differences in the analytical and computed eigenvalues and eigenfunc-
tions. However, the first eigenfunction is one-to-one with the “arclength” along the
Swiss roll (i.e., the s1 direction), and the second eigenfunction is one-to-one with
the “width” (i.e., the s2 direction). Furthermore, the first two eigenvalues obtained
with EDMD, -.234 and -0.491, arrange the eigenfunctions in the correct order and
compare favorably with the true eigenvalues of −2/9 and −1/2. Therefore, while
our computation of the Koopman eigenfunctions may not be highly accurate, they
are accurate enough to parameterize the nonlinear manifold, which was the goal.

The procedure for incorporating new data points is simple; the embedding for
any x̃ ∈ M can be obtained simply by evaluating the relevant eigenfunctions at
x̃. It should be stressed that although the ϕ are defined on Ω, their value is
only meaningful on (or very near) M because that is where the dynamical system
is defined. Therefore, these new points must be elements of M if the resulting
embedding is to have any meaning.

5.3.2. Reducing Multiscale Dynamics. In the previous example, the noise was isotropic,
so the dynamics were equally “fast” in both directions. As a result, the s1 com-
ponent was prioritized because the underlying rectangular domain is larger in s1

than it is in s2. In this example, we introduce anisotropic diffusion, and therefore
create “fast” and “slow” directions on the nonlinear manifold. The purpose of this
example is to show that EDMD will “reorder” its ranking of the eigenfunctions, and
recover the slower component before the faster one if the level of anisotropy is large
enough.

Our particular example is

ds1 =
2

ε
dW1, (41a)

ds2 = 2dW2, (41b)

with ε = 0.1, which is again transformed onto the same Swiss Roll. Although the
domain in s1 is larger than it is in the s2 component, the dynamics of s1 are now
significantly faster than those of s2 due to a much larger amount of “noise”. Because
the two random processes in (41) are independent, the eigenfunctions themselves
should not change. However, the eigenvalues associated with each of the eigenfunc-
tions should.

Figure 13 shows how EDMD captures this difference in the underlying diffusion
process. Before, the first two nontrivial eigenfunctions were one-to-one with s1

and s2 respectively; now, the first is one-to-one with s2, and the second is a higher
harmonic (but still only a function of s2). The eigenfunction that is one-to-one with
s1 still exists, but it is no longer associated with a leading eigenvalue. Analytically,
its eigenvalue is −20/9 though EDMD computes a value of −2.3. Therefore, it is no
longer a leading eigenfunction, but still is approximated by the EDMD procedure.

This section explored the application of the EDMD method to data taken from
a Markov process. Algorithmically, the method remains the same regardless of how
the data were generated, but as demonstrated here, EDMD computes an approxi-
mation of the tuples associated with SKO rather than the Koopman operator. To
demonstrate the effectiveness of EDMD, we applied the method to a simple SDE
with a double–well potential, and an SDE defined on a Swiss Roll, which is a non-
linear manifold often used as a benchmark for manifold learning techniques. One
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Figure 13. The first two nontrivial Koopman eigenfunctions for
the multiscale diffusion process in (41) on the “Swiss Roll” com-
puted using 3 × 104 data points. The eigenvalues associated with
these eigenfunctions are -0.504 (analytically it has the value -1/2)
and -2.1 (analytically, -2). In contrast with Fig. 12, these eigenfunc-
tions are a parameterization of the “width” of the Swiss roll (s2)
and a higher charmonic. As a result, the eigenfunctions computed
by EDMD take into account both the geometry of the underlying
manifold and the dynamics defined on it.

advantage of the Koopman approach for applications such as manifold learning or
model reduction is that the Koopman tuples take into account both the geometry
of the manifold, through the eigenfunction and mode, and the dynamics, through
the eigenvalue. As a result, the approach taken here is aware of both geometry and
dynamics, and does not focus solely on one or the other.

6. Conclusions. In this manuscript, we presented a data driven method that com-
putes approximations of the Koopman eigenvalues, eigenfunctions, and modes (what
we call Koopman tuples) directly from a set of snapshot pairs. We refer to this
method as Extended Dynamic Mode Decomposition (EDMD). The finite dimen-
sional approximation generated by EDMD is the solution to a least squares prob-
lem, and converges to a Galerkin method with a large amount of data. While the
usefulness of the Galerkin method depends on the sampling density and dictionary
selected, several “common sense” choices of both appear to produce useful results.

We demonstrate the effectiveness of the method with four examples: two exam-
ples dealt with deterministic data, and two with stochastic data. First, we applied
EDMD to a linear system where the Koopman eigenfunctions are known analyt-
ically. Direct comparison of the EDMD eigenfunctions and the analytic values
demonstrated that EDMD can be highly accurate with the proper choice of data
and dictionary. Next, we applied EDMD to the unforced Duffing oscillator where
the Koopman eigenfunctions are not known explicitly. Although more data will
increase the accuracy of the resulting eigenfunctions, they appeared to be accurate
enough to effectively partition the domain of interest and parameterize the resulting
partitions.

The final two examples used data generated by Markov processes. First, we
applied EDMD to data taken from an SDE with a double well potential, and
demonstrated the accuracy of the method by comparing those results with a di-
rect numerical approximation of the stochastic Koopman operator over a range of
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diffusion parameters. Next, we applied EDMD to data from a diffusion process on a
“Swiss Roll,” which is a nonlinear manifold commonly used as an example for non-
linear dimensionality reduction. Similar to those methods (see e.g., Ref. [46, 47]),
EDMD generated an effective parameterization of the manifold using the leading
eigenfunctions. By making the diffusion anisotropic, we then demonstrated that
EDMD extracts a parameterization that is dynamically, rather than only geometri-
cally, meaningful. Due to the simplicity of this problem, the eigenfunctions remain
unchanged despite the anisotropy; the difference appears in the temporal evolution
of the eigenfunctions, which is dictated by the corresponding set of eigenvalues.
As a result, the purpose of that example was to show that EDMD “ordered” the
eigenvalues of each tuple appropriately.

The Koopman operator governs the evolution of observables defined on the state
space of a dynamical system. By judiciously selecting how we observe our system,
we can generate linear models that are valid on all of (or, at least, a larger subset
of) state space rather than just some small neighborhood of a fixed point; this could
allow algorithms designed for linear systems to be applied even in nonlinear settings.
However, the tuples of eigenvalues, eigenfunctions, and modes required to do so
are decidedly nontrivial to compute. Data driven methods, such as EDMD, have
the potential to allow accurate approximations of these quantities to be computed
without knowledge of the underlying dynamics or geometry. As a result, they could
be a practical method for enabling Koopman-based analysis and model reduction
in large nonlinear systems.
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Appendix A. EDMD with Redundant Dictionaries. In this appendix, we
present a simple example of applying EDMD to a problem where the elements of D
contain redundancies (i.e., the elements of D are not a basis for FD ⊂ F). Given
full knowledge of the underlying dynamical system, one would always choose the
elements of D to be a basis for FD, but due to our ignorance of M, a redundant
set of functions may be chosen. Our objective here is to demonstrate that accurate
results can still be obtained even if such a choice is made. To separate quadrature
errors from errors resulting from our choice of D, we assume that M is large enough
that the EDMD method has already converged to a Galerkin method in that the
residual is orthogonal to the space spanned by D.

For the purposes of demonstration, we replace K with L = ∂2
s , the Laplace–

Beltrami operator defined on the manifold, M, where (x, y) = (s, s) for s ∈ [0, 2π)
with periodic boundary conditions, which would correspond to, say, the EDMD
procedure applied to a diffusion process on a periodic domain. A useful basis for
this problem would be ψ̃k(x, y) = exp(ıks) = exp(ık(x + y)), but without prior
knowledge of M, it is difficult to determine this choice should be made. Because
the problem appears two dimensional, one may choose a dictionary whose elements
have the form ψm,n(x, y) = exp(ımx+ ıny), which contains the φ̃ but is not linearly
independent on M. The indexes we use for the trial functions are ψk(x, y) =
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Figure 14. (a) A sketch of the manifold s 7→ (s, s) where our dy-
namical system is defined, and the larger domain, Ω, on which the
elements of D are defined. (b) A plot of the leading 56 eigenvalues
of ∂2

s computed using EDMD; the redundant trial functions have
increased the dimension of the nullspace from 1 to 50, but accu-
rately capture the pairs of eigenvalues at −k2 for k = 0, 1, 2, . . . , 8.
(c) A plot of the real part of the first three nontrivial eigenfunctions
shown in black, red, and blue respectively; as expected, they are
equivalent to cos(ks). The imaginary component of the eigenfunc-
tions, which is not shown, captures the sin(ks) terms.

ψm,n(x, y) with m = (k mod K)−K/2 and n =
⌊
k
K

⌋
−K/2 with k = 0, 1, . . . ,K2.

Here K ∈ N is the total number of basis functions in a single spatial dimension.
Following (9), the i, j-th element of G is

Gi,j =

∫
M
ψi(x)∗ψj(x)dx =

∫ 2π

0

eı((mj−mi)s+(nj−ni)s) ds

=

{
2π mj + nj −mi − ni = 0,

0 otherwise.

(42)

Similarly,

Ai,j =

∫
M
ψi(x)∗∂2

sψj(x)dx =

∫ 2π

0

−(mj + nj)
2eı((mj−mi)s+(nj−ni)s) ds

=

{
−2π(mj + nj)

2 mj + nj −mi − ni = 0,

0 otherwise.

(43)

The diagonal structure we would normally have has been replaced with a more
complex sparsity pattern, and it has a large nullspace (when K = 8, the nullspace
is 50 dimensional). To reiterate, there are no advantages to this choice; the redun-
dancies in D appear due to ignorance about the nature ofM, which is the expected
situation. Because G is singular, the use of the pseudoinverse in (9) is critical to
obtain a unique solution.

However, once this is done, there is excellent agreement between the leading
eigenfunctions and eigenvalues of L and those computed using EDMD; this is shown
in Fig. 14. The nonzero eigenvalues are quantitatively correct; in particular, pairs
of eigenvalues of the form λ = −k2 are obtained up until k = 8 using K = 8.
Although the maximum (absolute) value of m or n is only 4, it can be seen from the
form of the trial functions that the superposition of these functions on M mimics
k = 8 modes. The associated eigenfunctions are shown in Fig. 14c; again, there is
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excellent agreement between the analytic solution (i.e., exp(−ıks)) and the EDMD
computed solution.

The resulting eigenfunctions can also be evaluated for (x, y) 6∈ M, but the func-
tions have no dynamical meaning there. Indeed, their value is determined entirely
by the regularization used, and has no relationship to the underlying dynamical
system, which is defined solely on M. This should be contrasted to related works
such as Ref. [16] where the dynamical system is truly defined on Ω, andM is simply
the slow manifold where the eigenfunctions evaluated at (x, y) 6∈ M are meaningful
as they contain information about the fast dynamics of the system.

Overall, the performance of the EDMD procedure is dependent upon the sub-
space, FD and not the precise choice of D. There are numerical advantages to
choosing D to be a basis for FD, but in many circumstances this cannot be done
without prior knowledge of M. As a result, there are likely benefits to combin-
ing EDMD with manifold learning techniques (see, e.g., Refs. [46,47,54,55]). These
methods can numerically approximateM, which could allow a more effective choice
of the elements of D and their associated numerical benefits. As shown here, these
methods are not essential to the algorithm, butM must be identified through some
means if EDMD is to be used for more than just data analysis.
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