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Abstract

In this paper, we study degenerate Hopf bifurcations in a class of parametrized

retarded functional differential equations. Specifically, we are interested in the case

where the eigenvalue crossing condition of the classical Hopf bifurcation theorem is

violated. Our approach is based on center manifold reduction and Poincaré-Birkhoff

normal forms, and a singularity theoretical classification of this degenerate Hopf bi-

1

ar
X

iv
:1

50
2.

06
92

8v
2 

 [
m

at
h.

D
S]

  1
7 

Ju
l 2

01
5



furcation. Our results are applied to a recently developed SIS model incorporating a

delayed behavioral response. We show that the phenomenon of endemic bubbles, which

is characterized by a branch of periodic solutions which bifurcates from the endemic

equilibrium at some value of the basic reproduction number R0, and then reconnects to

the endemic equilibrium at a larger value of R0, originates in a codimension-two orga-

nizing center where the eigenvalue crossing condition for the Hopf bifurcation theorem

is violated.
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1 Introduction

Retarded functional differential equations (RFDEs), of which delay differential equations

(DDEs) are a special case, are used to model a large variety of phenomena in sciences,

engineering, economics and many other areas [1, 2, 3, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21].

One of the main technical differences between RFDEs and ordinary differential equations

(ODEs) is that while ODEs require initial data only at one point (typically at time t = 0)

to generate a solution, RFDEs require initial data in a range of past values, typically an

interval t ∈ [−τ, 0]. One of the consequences of this fact is that the phase space for RFDEs

is infinite-dimensional. Despite this fact, most of the usual tools and techniques of the theory

of dynamical systems can be suitably adapted to the study of RFDEs [4, 5, 8]. In particular,

for parametrized RFDEs, one can analyze bifurcations using center manifold theory and

normal forms [4, 5], and in many studies (see for example [2, 3, 13, 15, 18, 19]), this has led

to valuable insight into many phenomena which are modeld using RFDEs.

The focus of this paper is an analysis of a certain codimension 2 degenerate Hopf bifur-

cation in RFDEs. In particular, we are interested in studying the case where a parametrized

RFDE admits an equilibrium solution which satisfies the simple purely imaginary eigenvalue

condition of the Hopf bifurcation theorem [14], but for which the crossing condition of this

theorem is violated. This is motivated from recent results [11] where a SIS model incor-

porating a delayed behavioral response was analyzed and shown to exhibit a phenonmenon

which the authors called endemic bubbles. It became apparent to us that the bifurcation

diagrams reported in [11] resembled bifurcation diagrams which had been found to be in

the versal unfolding of the degenerate Hopf bifurcation (with crossing condition violated) in
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[6]. Although this SIS model is the application which motivated our analysis, the theoretical

results we present here have a much larger scope of application, since many phenomena in

nature are modelled using the class of delay differential equations we study.

1.1 The crossing condition for the Hopf bifurcation

Consider as a prototype the delay differential equation

ẋ(t) = αx(t) + β x(t− τ) + F (x(t), x(t− τ)) (1.1)

where α, β ∈ R are parameters, τ > 0 is a fixed delay time, and F represents higher-order

nonlinear terms.

Equation (1.1) has x = 0 as an equilibrium solution for all values of α and β. We are

interested in bifurcations from this trivial equilibrium point. To this end, we consider the

characteristic equation

ξ = α + β e−ξτ .

In particular, we are interested in purely imaginary solutions ξ = i ω to this characteristic

equation. It is easy to see that such solutions occur when the parameters α and β satisfy

α + β cos τω = 0, −ω = β sin τω, ω =
√
β2 − α2, β2 > α2. (1.2)

Equations (1.2) define curves in the α-β parameter space, as illustrated in Figure 1.

Now let us suppose that α and β in (1.1) depend on a distinguished external control

parameter λ. If the path (α(λ), β(λ)) in parameter space crosses the Hopf bifurcation curve

(1.2) at the point (α∗, β∗) = (α(λ∗), β(λ∗)) from the region where the equilibrium x =
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Figure 1: Hopf bifurcation curves (1.2) in red for τ = 1 on the left and τ = 5 on the right.

The blue line represents β = α. In the region in parameter space below the blue line and

above the uppermost red curve, the equilibrium point x = 0 of (1.1) is locally asymptotically

stable, and loses this stability below the uppermost red curve.
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0 is stable into the region where it is unstable as illustrated in Figure 2, then typically

it crosses this Hopf curve transversally, and assuming non-degeneracy conditions in the

nonlinear coefficients (specifically, the first Lyapunov coefficient is non-zero), a super- or

sub-critical Hopf bifurcation occurs from the trivial equilibrium.

Figure 2: As the control parameter λ varies through λ∗, the (black) curve (α(λ), β(λ))

crosses the (red) Hopf bifurcation curve (1.2) at the point (α∗, β∗). Generically, the crossing

is transversal (as illustrated here), and we get a Hopf bifurcation from the trivial equilibrium

point of (1.1).

In applications, it often occurs that in addition to depending on the distinguished pa-

rameter λ, the coefficients α and β in (1.1) also depend on auxiliary parameters µ ∈ Rp. For

the purposes of this discussion, let us suppose that p = 1. In this case, it is possible that for

a certain value of µ = µ∗, the curve λ 7−→ (α(λ, µ∗), β(λ, µ∗)) intersects the Hopf curve (1.2)

tangentially at the point (α∗, β∗) = (α(λ∗, µ∗), β(λ∗, µ∗)) as is illustrated in Figure 3. In this
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case, the transversality condition of the Hopf Bifurcation Theorem [14] is violated. However,

as µ varies in a neighborhood of µ∗, this degeneracy is “unfolded” as illustrated in Figure

4. Assuming certain non-degeneracy conditions on nonlinear terms for ODEs undergoing a

violation of the crossing condition, it is shown in [6] that the Hopf bifurcation diagrams in

a neighborhood of µ∗ are equivalent to one of the bifurcation diagrams of the normal form

x(ε(λ2 + η) + x2) = 0, ε = ±1 (1.3)

as shown in Figure 5.

Figure 3: Tangential intersection of the parameter curve (α(λ, µ∗), β(λ, µ∗)) with the Hopf

bifurcation curve (1.2) at λ = λ∗. The crossing condition of the Hopf bifurcation theorem is

violated for this parameter path.

Consider the twice differentiable path λ 7−→ (α(λ, µ), β(λ, µ)), and let λ∗ and µ∗ be such

that the point

(α∗, β∗) ≡ (α(λ∗, µ∗), β(λ∗, µ∗))
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Figure 4: Unfolding the tangential intersection (middle diagram), for fixed values of µ in a

neighborhood of µ∗. Generically, we either get no intersections (as illustrated on the left) or

two intersections (as illustrated on the right) with the Hopf bifurcation curve.

satisfies both the following equations

α∗ + β∗ cos τ
√
β∗2 − α∗2 = 0 (1.4)

β∗αλ(λ
∗, µ∗)(1− α∗τ) + βλ(λ

∗, µ∗)(τβ∗2 − α∗) = 0, (1.5)

then the path λ 7−→ (α(λ, µ), β(λ, µ)) has a tangential intersection with the Hopf bifurcation

curve (1.2) at the point (α∗, β∗). At the point (α∗, β∗), the signed curvature of the Hopf

bifurcation curve (1.2) can be computed as

κ1 =
β∗(α∗2 − β∗2)(β∗2τ 2 + α∗τ − 2)τ

[(β∗2τ 2 + 1)(α∗2 + β∗2)− 4α∗β∗2τ ]3/2

and the signed curvature of the path λ 7−→ (α(λ, µ), β(λ, µ)) is

κ2 =
(α∗τ − 1)2β∗2(β∗(α∗τ − 1)αλλ(λ

∗, µ∗) + (α∗ − β∗2τ)βλλ(λ
∗, µ∗))

βλ(λ∗, µ∗)2[(β∗2τ 2 + 1)(α∗2 + β∗2)− 4α∗β∗2τ ]3/2
.
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Figure 5: Universal unfolding of the degenerate crossing condition for the Hopf bifurcation.

These are the bifurcation diagrams for the normal form (1.3). An “s” designates a sta-

ble branch of periodic solutions, whereas a “u” designates an unstable branch of periodic

solutions.
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Although these two curves are tangential at the intersection point, we want their curvatures

to be different, so that locally near (α∗, β∗) the curve λ 7−→ (α(λ, µ), β(λ, µ)) lies entirely on

one side only of the Hopf curve, as illustrated in Figure 3. This is equivalent to requiring

G(α∗, β∗, τ) ≡ (α∗τ − 1)3β∗2αλλ(λ
∗, µ∗) + β∗(α∗τ − 1)2(α∗ − β∗2τ)βλλ(λ

∗, µ∗)

−(βλ(λ
∗, µ∗))2τ(α∗2 − β∗2)(β∗2τ 2 + α∗τ − 2) 6= 0.

(1.6)

By using center manifold and normal form analysis for retarded functional differential

equations (see for example [4, 5]), we expect to see for (λ, µ) near (λ∗, µ∗) Hopf bifurcation

diagrams for

ẋ(t) = α(λ, µ)x(t) + β(λ, µ)x(t− τ) + F (x(t), x(t− τ), λ, µ)

which resemble those of Figure 5. This will be the theoretical focus of section 2 of this paper.

1.2 Endemic bubbles

In [11], the following susceptible-infected-susceptible (SIS) model incorporating delayed be-

havioral response was analyzed

ẏ(t) = −y(t) +R0h(y(t− τ))y(t)(1− y(t)) (1.7)

where y(t) represents the proportion of infected individuals in the population, R0 is the basic

reproduction number (expressing the expected number of secondary infections generated by

a single infectious agent introduced into a wholly susceptible population), and the smooth

behavioral function h : [0, 1] −→ (0, 1] is such that h′(y) ≤ 0, h(0) = 1 and h(1) < 1. The

parameter τ > 0 represents the delay in time between the moment when the population
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has information about the number of infections, and the moment this population decides to

modify its behavior in order to reduce the rate of infections. We refer the reader to [11] for

more details related to the modelling aspects.

Equilibria of (1.7) are algebraic solutions to

y = R0h(y)y(1− y). (1.8)

Obviously y = 0 is always a solution to (1.8) (disease-free equilibrium). It is shown in

[11] that if R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable. If

R0 > 1, then y = 0 becomes unstable, and (1.8) has a unique endemic equilibrium y∗

satisfying y∗ < 1 − 1/R0. The authors in [11] then perform a comprehensive analysis of

(1.7) for different choices of response functions h, and in particular, they plot bifurcation

diagrams with distinguished parameter R0. Some of these bifurcation diagrams (see for

example figures 5 and 9 of [11]) exhibit a phenomenon that the authors have called endemic

bubbles, which loosely speaking is the bifurcation of a branch of periodic solutions from the

endemic equilibrium point at some parameter value R0 > 1, and this branch reconnects with

the endemic equilibrium (in a reverse Hopf bifurcation) at parameter value R̃0 > R0. A

schematic representation of a typical such endemic bubble bifurcation diagram is given in

Figure 6.

When focussing on the endemic branch, we notice the similarity between Figure 6 and

the bottom-right-most bifurcation in Figure 5. As we will show in this paper, the endemic

bubble is indeed a consequence of a degenerate Hopf bifurcation which occurs in (1.7) for

various choices of response functions h(y, p), where p ≥ 0 is some auxiliary parameter which

appears in the behavioral response function.
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Figure 6: Schematic representation of a bifurcation diagram for (1.7) which exhibits the

phenomenon of endemic bubble. The disease-free equilibrium is stable for R0 ≤ 1. At R0 = 1,

a branch of endemic equilibria bifurcate from the disease-free equilibrium, and this branch

is stable until R0 = R0 at which point a Hopf bifurcation occurs. The blue curves represent

minima and maxima of oscillations for the bifurcating periodic solutions. At R0 = R̃0, the

branch of periodic solutions reconnects with the endemic equilibrium. The region between

R0 and R̃0 is what is referred to as the endemic bubble.
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1.3 Overview of paper

With the above discussion in mind, this suggests that the organizing center of endemic bub-

bles is a degenerate Hopf bifurcation in (1.7). In this paper, we will develop the theoretical

ideas to make this hypothesis into a rigorous theorem. Our approach will be to use the

center manifold and normal form theory for RFDEs developed in [4, 5] and the classification

and unfolding of degenerate Hopf bifurcations of [6].

Ours is not the first study of higher codimension bifurcation in RFDEs with nonlinear

degeneracies. We note in particular [2] where the authors present and analyze a DDE model

for tumor growth in which a Bautin bifurcation (Hopf bifurcation with the first Lyapunov

coefficient being zero) occurs. In [17], a Maple program is presented which allows the com-

putation of coefficients up to any order related to Hopf bifurcation for RFDEs. Also, in [3],

the authors investigate the stabilization of unstable periodic orbits via the Pyragas delayed

feedback control. It is shown that the stabilization mechanism occurs because of a highly

degenerate Hopf bifurcation in which both crossing condition and first Lyapunov coefficient

degeneracy occur simultaneously. Our paper here appears to be the first systematic study of

the degeneracy resulting from the violation of the crossing condition in the Hopf Bifurcation

Theorem for general RFDEs.

In section 2, we will establish the sufficient conditions for such a degenerate Hopf bifur-

cation to occur in a general class of parametrized RFDEs. Our main theorems to that effect

are Theorems 2.3 and 2.4. In subsection 2.3, we will apply these results to the special case

in which the RFDE is a DDE of the form (1.1).

In section 3, we use our theoretical results to seek out and analyze degenerate Hopf
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bifurcation points in the SIS model (1.7), where the behavioral response function h = h(y, p)

depends on an auxiliary parameter p. The parameter space is thus two-dimensional: R0 acts

as a distinguished bifurcation parameter, and p as an unfolding parameter. This leads to

Theorem 3.1. In subsections 3.2 and 3.3, we illustrate these results by performing explicit

computations for two of the types of delayed response functions h(y, p) which were considered

in [11].

We end with some concluding remarks in section 4, and an Appendix where a lengthy

expression for the Lyapunov coefficient associated with the degenerate Hopf bifurcation is

presented.

2 Center manifold and normal form reduction

In this section, we give a brief summary of the theory presented in [4, 5] for center-manifold

and normal form reductions of retarded functional differential equations, and then apply it

to study the degenerate Hopf bifurcation in a class of parametrized RFDEs.

2.1 Phase space and splitting

For τ > 0, we consider the Banach space C = C([−τ, 0],R) of continuous functions from

[−τ, 0] into R, endowed with the supremum norm. We define zt ∈ C by zt(θ) = z(t+ θ), for

θ ∈ [−τ, 0].

Let

ż(t) = L(λ, µ)(zt) + F (zt, λ, µ) (2.1)
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denote a smoothly parametrized family of nonlinear retarded functional differential equa-

tions, where λ ∈ R is a real distinguished bifurcation parameter, µ ∈ R is an auxiliary

parameter (to be regarded as an unfolding parameter), L(λ, µ) is a smoothly parametrized

family of bounded linear operators from C into R, and F is a smooth function from C ×R2

into R, which satisfies

F (0, λ, µ) = 0, D1F (0, λ, µ) = 0, ∀(λ, µ) near (0, 0) ∈ R2 (2.2)

We denote L0 = L(0, 0), and we rewrite (2.1) as

ż(t) = L0(zt) + (L(λ, µ)− L0)(zt) + F (zt, λ, µ).

By the Riesz representation theorem, we may write

L(λ, µ)(φ) =

∫ 0

−τ
[dηλ,µ(θ)]φ(θ),

where ηλ,µ(θ) is a measurable function on [−τ, 0]. We also define A(λ, µ) to be the infinites-

imal generator for the flow of the linear system ż = L(λ, µ)(zt). For each fixed (λ, µ), we

consider the characteristic equation

∆(λ, µ)(ξ) = 0, ∆(λ, µ)(ξ) = ξ −
∫ 0

−τ
dηλ,µ(θ) eξθ.

We suppose that the following holds:

Hypothesis 2.1 The characteristic equation ∆(λ, µ)(ξ) = 0 has roots, ξ(λ, µ) = γ(λ, µ) ±

iω(λ, µ) which are smoothly parametrized by λ and µ, and are such that

γ(0, 0) = 0, ω(0, 0) ≡ ω∗ > 0, γλ(0, 0) = 0, γµ(0, 0) 6= 0,
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d

dξ
∆(0, 0)(iω∗) 6= 0, or equivalently 1− L0(θ eiω

∗θ) 6= 0, (2.3)

and furthermore, we suppose the characteristic equation ∆(0, 0)(ξ) = 0 has no roots other

than ± iω∗ on the imaginary axis, and that all other roots of ∆(0, 0)(ξ) = 0 have strictly

negative real part.

It follows that if A0 denotes the infinitesimal generator of the linear equation ż(t) =

L0(zt), then the eigenspace P of A0 corresponding to the eigenvalues±iω∗ is two-dimensional.

Let Φ(θ) = (eiω
∗θ, e−iω

∗θ) be a complex representation of a basis for P . The dual space

C∗ = C([0, τ ],R) also admits a two-dimensional subspace for the transpose A∗0 corresponding

to ±iω∗. We introduce the bilinear form between C and C∗

(ψ, φ) = ψ(0)φ(0)−
∫ 0

−τ

∫ θ

0

ψ(υ − θ) dη(θ)φ(υ) dυ.

We choose a basis Ψ(s) = col(ψ1(0)e−iωs, ψ1(0)eiωs) such that (Ψ,Φ) = Id. As is shown in

[5] we have

ψ1(0) = [1− L0(θeiω
∗θ)]−1, (2.4)

which is well-defined because of (2.3). We have C = P ⊕Q, where Q is infinite-dimensional

and also invariant for the operator A0.

We now let BC represent the Banach space of functions from [−τ, 0] into R which are

uniformly continuous on [−τ, 0) with a jump discontinuity at 0. We define the function

X0(θ) =


1, θ = 0

0, −τ ≤ θ < 0.
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The elements of the space BC can be written as Y = ϕ+X0ν, where ϕ ∈ C and ν ∈ R. We

define the projection π : BC −→ P as

π(ϕ+X0ν) = Φ[(Ψ, ϕ) + Ψ(0)ν].

We then have

BC = P ⊕ kerπ,

where Q ( kerπ, and we may rewrite (2.1) according to this splitting as

ẋ = Bx+ Ψ(0)[(L(λ, µ)− L0)(Φx+ ζ) + F (Φx+ ζ, λ, µ)],

d
dt
ζ = AQ1ζ + (Id − π)X0[(L(λ, µ)− L0)(Φx+ ζ) + F (Φx+ ζ, λ, µ)],

(2.5)

where

B =

 iω∗ 0

0 −iω∗

 ,

x = (u, u)T , ζ ∈ Q1 ≡ Q ∩ C1([−τ, 0],R), and AQ1 is defined as

AQ1ϕ = ϕ̇+X0[L0ϕ− ϕ̇(0)].

As is shown in [5], it is then possible to define near identity changes of coordinates

(x, ζ) = (x̂, ζ̂) + U(x̂, λ, µ) (2.6)

such that a Taylor expansion of (2.5) can be put into the normal form

ẋ = Bx+
∑
j≥2

g1
j (x, ζ, λ, µ),

d

dt
ζ = AQ1ζ +

∑
j≥2

g2
j (x, ζ, λ, µ)
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having the property that the center manifold is locally given by ζ = 0, and the local flow of

(2.1) on this center manifold is given by

ẋ = Bx+
∑
j≥2

g1
j (x, 0, λ, µ). (2.7)

The nonlinear terms in (2.7) are in classical Poincaré-Birkhoff normal form with respect to

the matrix B.

2.2 Normal form for the degenerate Hopf bifurcation

From Hypothesis 2.1, we have that there exists a smooth function ξ(λ, µ) such that

ξ(λ, µ) = L(λ, µ)(eξ(λ,µ)θ), ξ(0, 0) = iω∗,

for which implicit differentiation gives the following equalities

ξλ(0, 0) = ψ1(0)Lλ(0, 0)(eiω
∗θ),

ξµ(0, 0) = ψ1(0)Lµ(0, 0)(eiω
∗θ),

and

ξλλ(0, 0) = ψ1(0)
[
Lλλ(0, 0)(eiω

∗θ) + 2ξλ(0, 0)Lλ(0, 0)(θ eiω
∗θ) + (ξλ(0, 0))2L0(θ2 eiω

∗θ)
]
,

(2.8)

where ψ1(0) is as in (2.4). Hypothesis 2.1 thus implies

Re
[
ψ1(0)Lλ(0, 0)(eiω

∗θ)
]

= 0, and Re
[
ψ1(0)Lµ(0, 0)(eiω

∗θ)
]
6= 0.

In addition, we are going to assume the following second-order non-degeneracy condition
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Hypothesis 2.2 We assume the non-degeneracy condition Re(ξλλ(0, 0)) 6= 0, which is equiv-

alent (via (2.8)) to

Re
(
ψ1(0)

[
Lλλ(0, 0)(eiω

∗θ) + 2ξλ(0, 0)Lλ(0, 0)(θ eiω
∗θ) + (ξλ(0, 0))2L0(θ2 eiω

∗θ)
])
6= 0. (2.9)

We will see later on that the geometrical meaning of (2.9) is equivalent to the curvature

condition given in (1.6).

Consider equations (2.5) which we expand in a Taylor series as

ẋ = Bx+ Ψ(0)[λLλ(0, 0)(Φx+ ζ) + µLµ(0, 0)(Φx+ ζ)

+1
2
λ2 Lλλ(0, 0)(Φx+ ζ) +R(x, ζ, λ, µ)],

d
dt
ζ = AQ1ζ + (Id − π)X0[λLλ(0, 0)(Φx+ ζ) + µLµ(0, 0)(Φx+ ζ)

+1
2
λ2 Lλλ(0, 0)(Φx+ ζ) +R(x, ζ, λ, µ)],

(2.10)

where the remainder term is R(x, ζ, λ, µ) = O(|(x, ζ)|2, µ2, µλ, λ3).

We procede as in section 3 of [5]. Writing x = (u, u)T , Φx = ueiω
∗θ + ūe−iω

∗θ, we define

quadratic near-identity changes of coordinates of the form (2.6) which transforms (2.10) in

such a way that the normal form (2.7) becomes

u̇ = iω∗u+ [(σ1 + iσ2)µ+ iσ3λ+ (σ4 + iσ5)λ2]u+ ψ1(0)R((u, u), 0, λ, µ), (2.11)

where

σ1 + iσ2 = ψ1(0)Lµ(0, 0)(eiω
∗θ), σ1 6= 0,

σ3 = Im
[
ψ1(0)Lλ(0, 0)(eiω

∗θ)
]

= ωλ(0, 0),
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and

σ4 + iσ5 = 1
2
ψ1(0)

[
Lλλ(0, 0)(eiω

∗θ) + 2ξλ(0, 0)Lλ(0, 0)(θ eiω
∗θ) + (ξλ(0, 0))2L0(θ2 eiω

∗θ)
]

= 1
2
ξλλ(0, 0)

(2.12)

is such that σ4 6= 0 because of Hypothesis 2.2. The extra terms

1

2
ψ1(0)

[
2ξλ(0, 0)Lλ(0, 0)(θ eiω

∗θ) + (ξλ(0, 0))2L0(θ2 eiω
∗θ)
]

which appear in (2.12) arise from having normalized quadratic terms in (2.10).

As mentioned earlier, the nonlinear terms in (2.7) (equivalently (2.11)) are in classical

Poincaré-Birkhoff normal form with respect to the matrix B. It is well-known (see for

example [7]) that such a normal form has the algebraic form

u̇ = iω∗u+ Γ(|u|2, λ, µ)u, (2.13)

where Γ is a smooth complex-valued function.

The following theorem now follows from the above discussion and by performing further

near-identity changes of coordinates (2.6) as in [5]:

Theorem 2.3 Consider the smoothly parametrized family of nonlinear retarded functional

differential equations (2.1) which satisfies (2.2), and Hypotheses 2.1 and 2.2. Then there

exists a two-dimensional semi-flow invariant center manifold in the phase space C([−τ, 0],R).

Furthermore, there exist a formal sequence of parameter-dependent near-identity changes of

coordinates of the form (2.6) which are such that the dynamics of (2.1) reduced to this center

manifold have a Poincaré-Birkhoff normal form to any order given by (2.7) (equivalently
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(2.13)):

u̇ =
[
iω∗ + (σ1 + iσ2)µ+ iσ3λ+ (σ4 + iσ5)λ2 +H(|u|2, λ, µ)

]
u, (2.14)

where H(|u|2, 0, 0) ≡ K1 + iK2, Hλ(|u|2, 0, 0) = Hµ(|u|2, 0, 0) = Hλλ(|u|2, 0, 0) = 0.

The coefficient K1 in (2.14) is the first Lyapunov coefficient. It has been computed explicitly

in [5] as

K1 = Re

[
ψ1(0)

(
B(2,1,0,0) −

B(1,1,0,0)B(1,0,1,0)

L0(1)
+

B(2,0,0,0)B(0,1,0,1)

2iω∗ − L0(e2iω∗θ)

)]
, (2.15)

where the coefficients B(i,j,k,`) are read-off from the Taylor expansion of F in (2.1):

F (x1e
iω∗θ + x2e

−iω∗θ + x3 1 + x4e
2iω∗θ, 0, 0) =

B(2,0,0,0)x
2
1 +B(1,1,0,0)x1x2 +B(1,0,1,0)x1x3 +B(0,1,0,1)x2x4 +B(2,1,0,0)x

2
1x2 + · · ·

(2.16)

Using the polar coordinates u = reiφ, (2.14) becomes

ṙ = r(σ4λ
2 + σ1µ+K1r

2 +O(r4, µ2, µλ, λ3))

φ̇ = ω∗ + · · ·

(2.17)

Zeros of the ṙ equation of (2.17) correspond to periodic solutions of (2.1) whose period is

approximately equal to 2π/ω∗. Let us assume the non-degeneracy condition K1 6= 0. Since

σ1 6= 0 and σ4 6= 0, it now follows from the classification of degenerate Hopf bifurcations

done in [6] that

Theorem 2.4 For µ near 0, the bifurcation diagram (wrt λ) of r(σ4λ
2 + σ1µ + K1r

2 +

O(r4, µ2, µλ, λ3)) = 0 is locally diffeomorphic to the bifurcation diagram of

r(ε(λ2 + η) + r2) = 0,
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where ε = sgn(σ4/K1) and η =
σ1µ

|K1|sgn(σ4)
(see (1.3)), as illustrated in Figure 5.

2.3 Special case: discrete delay

As a special case of the theory we have just developed, we return to the prototype delay-

differential equation (1.1)

ẋ(t) = α(λ, µ)x(t) + β(λ, µ)x(t− τ) + F (x(t), x(t− τ), λ, µ) (2.18)

where we will assume without loss of generality that λ∗ = 0, µ∗ = 0, and (α∗, β∗) are such

that (1.4), (1.5) and (1.6) are satisfied, and β∗ 6= 0, and α∗τ − 1 6= 0.

The operator L(λ, µ) is defined as

L(λ, µ)(z(θ)) = α(λ, µ)z(0) + β(λ, µ)z(−τ),

so that

L0(eiω
∗θ) = α∗ + β∗e−iω

∗τ = iω∗ =⇒ e−iω
∗τ =

iω∗ − α∗

β∗
,

L0(θ eiω
∗θ) = −τβ∗e−iω∗τ = −τ(iω∗ − α∗),

ψ1(0) = [1− L0(θ eiω
∗θ)]−1 =

1

(1− α∗τ) + iω∗τ
.

Using (1.5), we have

ψ1(0)Lλ(0, 0)(eiω
∗θ) =

αλ(0, 0) + βλ(0,0)
β∗ (iω∗ − α∗)

(1− α∗τ) + iω∗τ

= −i
[
ω∗(αλ(0, 0)β∗τ − βλ(0, 0))

β∗((1− α∗τ)2 + ω∗2τ 2)

]
.

The non-degeneracy condition Re(ψ1(0)Lµ(0, 0)(eiω
∗θ)) becomes

σ1 ≡
β∗αµ(0, 0)(1− α∗τ) + βµ(0, 0)(τβ∗2 − α∗)

β∗((1− α∗τ)2 + ω∗2τ 2)
6= 0.
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Finally,

2σ4 = Re(ψ1(0)[Lλλ(0, 0)(eiω
∗θ) + 2ξλ(0, 0)Lλ(0, 0)(θ eiω

∗θ) + (ξλ(0, 0))2L0(θ2 eiω
∗θ)])

=
G(α∗, β∗, τ)

β∗2(α∗τ − 1)2(−β∗2τ 2 + 2α∗τ − 1)
,

where G(α∗, β∗, τ) is as in (1.6). Thus, we note that the condition σ4 6= 0 is equivalent to

the curvature condition (1.6).

We write F in (2.18) at (λ, µ) = (0, 0) as

F (x(t), x(t− τ), 0, 0) = f(2,0)x(t)2 + f(1,1)x(t)x(t− τ) + f(0,2)(x(t− τ))2+

+f(3,0)x(t)3 + f(2,1)x(t)2x(t− τ) + f(1,2)x(t)(x(t− τ))2 + f(0,3)(x(t− τ))3

+O(|x|4)

(2.19)

To compute the first Lyapunov coefficient K1 in (2.15), we need

L0(1) = α∗ + β∗, and L0(e2iω∗θ) = α∗ + β∗e−2iω∗τ = α∗ +
(iω∗ − α∗)2

β∗
.

We will assume that α∗+β∗ 6= 0. If this condition holds, it follows that 2iω∗−L0(e2iω∗θ) 6= 0.

A lengthy computation using (2.15), (2.16) and (2.19) yields the Lyapunov coefficient K1 in

terms of the coefficients f(j,k) in (2.19) and α∗, β∗, ω∗ and τ . The formula is lengthy and

given in the Appendix. Generically, we will have K1 6= 0. Once we have these quantities,

we can compute the normal form for the unfolding of the degenerate Hopf bifurcation at

(λ, µ) = (0, 0):

r(ε(λ2 + η) + r2) = 0,

where ε = sgn(σ4/K1) and η =
σ1µ

|K1|sgn(σ4)
as in Theorem 2.4.
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3 Application to a SIS model with delayed behavioral

response: endemic bubbles

We recall the SIS model (1.7) which was analyzed in [11]. In this section, we will apply the

theoretical results of the previous section to establish and study degenerate Hopf bifurcations

which occur in this model.

3.1 General case

Non-trivial equilibria of (1.7) are solutions ȳ 6= 0 to (1.8), or equivalently to

h(ȳ, p) =
1

R0(1− ȳ)
. (3.1)

Because the function h is such that hy(y, p) ≤ 0, h(0, p) = 1 and h(1, p) < 1, if R0 ≥ 1 then

(3.1) has a unique solution ȳ = ȳ(R0, p), i.e.

R0h(ȳ(R0, p), p)(1− ȳ(R0, p)) ≡ 1, ∀R0 ≥ 1, p ≥ 0. (3.2)

Linearizing (1.7) about the equilibrium ȳ(R0, p) gives

ẋ(t) = α(R0, p)x(t) + β(R0, p)x(t− τ),

where

α(R0, p) = −R0 ȳ(R0, p)h(ȳ(R0, p), p) < 0 (3.3)

and

β(R0, p) = R0 hy(ȳ(R0, p), p) ȳ(R0, p) (1− ȳ(R0, p)) < 0. (3.4)
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Using implicit differentiation of (3.2), one can compute ȳR0 , ȳp and ȳR0R0 in terms of h, hy,

hyy, hp and ȳ. One can then use (3.3) and (3.4) to compute the quantities αR0 , βR0 , αp, βp,

αR0R0 and βR0R0 .

We then have the following

Theorem 3.1 Consider the nonlinear delay-differential equation

ẋ(t) = α(R0, p)x(t) + β(R0, p)x(t− τ) + F(x(t), x(t− τ), R0, p)

which is obtained by performing the change of variables x = y − ȳ(R0, p) in (1.7), (where

ȳ(R0, p) is the endemic equilibrium, which is solution to (3.2)), and where α(R0, p) and

β(R0, p) are as in (3.3) and (3.4) respectively. Define ω(R0, p) by

ω(R0, p)
2 = β(R0, p)

2 − α(R0, p)
2.

Suppose (R∗0, p
∗) is a point in parameter space such that

α∗ + β∗ cosω∗τ = 0, (3.5)

β∗α∗R0
(1− α∗τ) + β∗R0

(τβ∗2 − α∗) = 0, (3.6)

where α∗ ≡ α(R∗0, p
∗), β∗ ≡ β(R∗0, p

∗), α∗R0
≡ αR0(R

∗
0, p
∗), β∗R0

≡ β(R∗0, p
∗), α∗p ≡ αp(R

∗
0, p
∗),

β∗p ≡ βp(R
∗
0, p
∗), α∗R0R0

≡ αR0R0(R
∗
0, p
∗), β∗R0R0

≡ βR0R0(R
∗
0, p
∗), and ω∗2 ≡ β∗2 − α∗2 > 0.

Suppose

σ∗1 ≡
β∗α∗p (1− α∗τ) + β∗p (τβ∗2 − α∗)

β∗((1− α∗τ)2 + ω∗2τ 2)
6= 0, (3.7)

2σ∗4 ≡
G(α∗, β∗, τ)

β∗2(α∗τ − 1)2(−β∗2τ 2 + 2α∗τ − 1)
6= 0, (3.8)
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(where G is as in (1.6)), and that the first Lyapunov coefficient K∗1 ≡ K1(α∗, β∗) computed in

Appendix A is non-zero. Then (1.7) has a degenerate Hopf bifurcation point at the endemic

equilibrium ȳ when (R0, p) = (R∗0, p
∗), and the normal form for the Hopf bifurcation diagrams

near this point is

r(ε(λ2 + η) + r2) = 0

where λ = R0 − R∗0, ε = sgn(σ∗4/K
∗
1) and η =

σ∗1(p− p∗)
|K∗1 |sgn(σ∗4)

. Furthermore, for (R0, p) close

enough to (R∗0, p
∗), this Hopf bifurcation diagram will exhibit an endemic bubble if ε = +1

and η < 0. In the case ε = +1 and η < 0, the width of the endemic bubble (in R0 space) is

approximately equal to the width of the region between the two zeros of

σ4(R0 −R∗0)2 + σ1(p− p∗),

i.e.

R̃0 − R̄0 ≈ 2

√∣∣∣∣σ1(p− p∗)
σ4

∣∣∣∣

3.2 Response function h(y, p) = 1
1+py

This is one of the special cases which was studied in [11] and for which endemic bubbles were

observed. For purposes of comparing our results to those of [11], we will assume as they do

that τ = 10.

The endemic equilibrium is

ȳ(R0, p) =
R0 − 1

p+R0

, R0 > 1
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and introducing x = y − y∗ transforms (1.7) into

ẋ(t) = α(R0, p)x(t) + β(R0, p)x(t− τ) +O(|x|2), (3.9)

where

α(R0, p) =
1−R0

1 + p
, β(R0, p) =

(1−R0)p

R0(1 + p)
.

Computing the quantity βαR0(1− ατ) + βR0(τβ
2 − α) for τ = 10 gives

(1−R0)2 p
(
10R0

3 +R0
2p+R0

2 − 10 p2
)

R0
4 (1 + p)3 .

So using (3.6) and solving for p, we have

p = p∗ =
1

20

(
R∗0 +

√
R∗0

2 + 400R∗0 + 40

)
R∗0,

where R∗0 is a root of (3.5), which is equivalent to

cos (10ω∗)

(
R∗0 +

√
R∗0

2 + 400R∗0 + 40

)
+ 20 = 0 (3.10)

where

ω∗2 = 2
(1−R∗0)2

(
R∗0
√
R∗0

2 + 400R∗0 + 40 +R∗0
2 + 200R∗0 − 180

)
(
R∗0
√
R∗0

2 + 400R∗0 + 40 +R∗0
2 + 20

)2 .

A plot of the left-hand side of (3.10) as a function of R0 is given in Figure 7. We numerically

compute the value for the root

R∗0 ≈ 1.784

which yields

p∗ ≈ 2.613
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Figure 7: Graph of the left-hand side of (3.10).

and

α∗ ≈ −0.217, β∗ ≈ −0.318, ω∗ ≈ 0.232.

We compute σ∗1 and σ∗4 as in (3.7) and (3.8) and get

σ∗1 ≈ 0.021, σ∗4 ≈ −0.037.

To compute the Lyapunov coefficient K∗1 , we will need to compute explicitly the quadratic

and cubic terms in (3.9). A straightforward computation gives the following expression for
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these quadratic and cubic terms:

−
(
p∗+R∗

0

1+p∗

)
x(t)2 +

(
p∗(R∗

0−2−p∗)(p∗+R∗
0)

R∗
0(1+p∗)2

)
x(t)x(t− τ) +

(
(p∗+R∗

0)(R∗
0−1)p∗2

R∗2
0 (1+p∗)2

)
x(t− τ)2

+
(

(p∗+R∗
0)2p∗

R∗
0(1+p∗)2

)
x(t)2x(t− τ)−

(
p∗2(p∗+R∗

0)2(R∗
0−2−p∗)

R∗2
0 (1+p∗)3

)
x(t)x(t− τ)2

+
(

(1−R∗
0)(p∗+R∗

0)2p∗3

R∗3
0 (1+p∗)3

)
x(t− τ)3.

The formula for K1 in the Appendix now gives

K∗1 ≈ −1.006

so that

ε = sgn(σ∗4/K
∗
1) = +1, η ≈ −0.021 (p− p∗).

Based on Theorem 3.1, we therefore predict the following for p near p∗ when h(y, p) =

1/(1 + yp):

(i) Suppose p < p∗. Then varying R0 near R∗0 in (1.7) will not generate Hopf bifurcation

from the endemic equilibrium, hence there will be no endemic bubble.

(ii) Suppose p > p∗. Then varying R0 near R∗0 in (1.7) will generate an endemic bubble

via Hopf bifurcation at R0 = R0 followed by a reverse Hopf bifurcation at R0 = R̃0,

with R0 and R̃0 near R∗0, and

R̃0 −R0 ≈ 2

√
−σ

∗
1

σ∗4
(p− p∗) ≈ 1.614

√
p− p∗.

In Figure 8, we illustrate the results of several integrations of (1.7) with h(y, p) = 1/(1 +

py) for values of (R0, p) near (R∗0, p
∗). The resulting bifurcation diagrams show the emergence

of the endemic bubble.
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Figure 8: Numerically obtained bifurcation diagrams for (1.7) with h(y, p) = 1/(1 + py)

for the following values of p: (a) p = 2.61 < p∗, (b) p = 2.62 > p∗, (c) p = 2.633 > p∗,

(d) p = 2.7 > p∗. The red squares indicate that the simulation has settled to the endemic

equilibrium. The green asterisks and blue circles designate respectively the maxima and

minima of the steady oscillations which occur for values of R0 inside the endemic bubble.

Recall that the theoretically computed value of (R∗0, p
∗) for the degenerate Hopf bifurcation

is (R∗0, p
∗) ≈ (1.784, 2.613).
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Figure 9: Numerically obtained bifurcation diagrams for (1.7) with h(y, p) = e−py for the

following values of p: (a) p = 1.660 < p∗, (b) p = 1.662 > p∗. The red squares indicate

that the simulation has settled to the endemic equilibrium. The green asterisks and blue

circles designate respectively the maxima and minima of the steady oscillations which occur

for values of R0 inside the endemic bubble. Recall that the theoretically computed value of

(R∗0, p
∗) for the degenerate Hopf bifurcation is (R∗0, p

∗) ≈ (2.1474, 1.6617).

31



Time ×10
5

4.54 4.5401 4.5402 4.5403 4.5404 4.5405 4.5406 4.5407 4.5408 4.5409 4.541

y(t)

0.25

0.26

0.27

0.28

0.29

Figure 10: Numerically obtained periodic solution y(t) to (1.7) with h(y, p) = e−py after

transients have died out. The parameter values are p = 1.662 and R0 = 2.14, which is inside

the endemic bubble. The period is approximately 25, which is close to the theoretically

predicted value 2π/ω∗ ≈ 24.7.
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3.3 Response function h(y, p) = e−py

This case was also studied in [11], although the bifurcation diagrams were not given in that

paper. In this case, we can not solve in closed form the equation for the endemic equilibrium

(3.2)

epȳ(R0,p) = R0(1− ȳ(R0, p)). (3.11)

Using (3.11), equations (3.3) and (3.4) become

α(R0, p) =
−ȳ(R0, p)

1− ȳ(R0, p)

and

β(R0, p) = −pȳ(R0, p).

Implicit differentiation of (3.11) gives

ȳR0(R0, p) =
1− ȳ(R0, p)

R0(1 + p(1− ȳ(R0, p)))
,

from which we may now compute

αR0(R0, p) = − 1

(1− ȳ(R0, p))R0 (1 + p(1− ȳ(R0, p)))

and

βR0(R0, p) = − p (1− ȳ(R0, p))

R0 (1 + p(1− ȳ(R0, p)))
.

For τ = 10, solving (3.6) becomes equivalent to solving

−10(1− ȳ(R0, p))
3 p2 + 11− ȳ(R0, p) = 0,

or

p =
1

10

√
10(1− ȳ(R0, p))(11− ȳ(R0, p))

(1− ȳ(R0, p))2
. (3.12)
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Using this expression for p, we may solve (numerically) the equation

α + β cos(10
√
β2 − α2) = 0

for ȳ, and the result is

ȳ ≈ 0.2703

which, when substituted into (3.12) gives

p∗ ≈ 1.6617

and then (3.11) gives

R∗0 ≈ 2.1474.

We then compute

α∗ ≈ −0.3704, β∗ ≈ −0.4491, ω∗ ≈ 0.2540.

Using these values and further implicit differentiations of (3.11) (we omit the details) yields

σ∗1 ≈ 0.0503, σ∗4 ≈ −0.0190.

Finally, the first Lyapunov coefficient has the value

K∗1 ≈ −0.4906

so that

ε = sgn(σ∗4/K
∗
1) = +1, η ≈ −0.1025 (p− p∗).

Based on Theorem 3.1, we therefore predict the following for p near p∗ when h(y, p) = e−py:
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(i) Suppose p < p∗. Then varying R0 near R∗0 in (1.7) will not generate Hopf bifurcation

from the endemic equilibrium, hence there will be no endemic bubble.

(ii) Suppose p > p∗. Then varying R0 near R∗0 in (1.7) will generate an endemic bubble

via Hopf bifurcation at R0 = R0 followed by a reverse Hopf bifurcation at R0 = R̃0,

with R0 and R̃0 near R∗0, and

R̃0 −R0 ≈ 2

√
−σ

∗
1

σ∗4
(p− p∗) ≈ 4.486

√
p− p∗.

Resuts of numerical simulations for this case are illustrated in Figures 9 and 10.

4 Conclusions

In this paper, we have performed a detailed theoretical analysis of a degenerate Hopf bifur-

cation in parametrized families of RFDEs where the degeneracy arises from a violation of

the eigenvalue crossing condition. Although our detailed computations have been performed

for scalar RFDEs, there are no complications other than those involved with cumbersome

notation in extending these results to systems of RFDEs. We have paid particular attention

to the cases where the RFDE is a delay differential equation of the form (2.18), since these

cases are quite ubiquitous in the literature, and many important phenomena in nature are

modelled using such equations. Since we give precise conditions on the parameters of (2.18)

to characterize the degenerate Hopf bifurcation, we expect that our paper will be a valuable

contribution to many researchers who model phenomena using delay differential equations.

As an application of our results, we have considered the SIS model (1.7) which was
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studied in [11]. We have shown that the phenomenon of endemic bubbles which had been

reported in [11] originates in a degenerate Hopf bifurcation such as the one studied herein.

It is worth noting that the formula for the Lyapunov coefficient in the appendix includes

the parameters α∗, β∗ and τ . It is conceivable that by varying τ , we could achieve an even

higher-order degeneracy where both the crossing condition and the first Lyapunov condition

are violated. This is work in progress.

A First Lyapunov coefficient

For the delay-differential equation (2.18), formulae (2.15), (2.16) and (2.19) yield the Lya-

punov coefficient K1 in terms of the coefficients f(j,k) in (2.19) and α∗, β∗, ω∗ and τ . The

following result was computed using the symbolic computation software package Maple:
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K1 = 1
(1−α∗τ)2+ω∗2

[
3(1− α∗τ)f(3,0) +

(
3α∗2τ−α∗2+β∗2−3α∗

β∗

)
f(2,1)

−
(

2α∗3τ+α∗ β∗2τ−2α∗3+2α∗ β∗2−2α∗2−β∗2

β∗2

)
f(1,2) + 3

(
α∗2τ−α∗2+β∗2−α∗

β∗

)
f(0,3)

+2
(

6α∗2τ−9α∗ β∗ τ−2α∗2+2β∗2−6α∗+9β∗

(α∗+β∗)(4α∗−5β∗)

)
f 2

(2,0)

−
(

18α∗3τ−33α∗2β∗ τ+9α∗ β∗2τ−10α∗3+7α∗2β∗+10α∗ β∗2−7β∗3−18α∗2+33α∗ β∗−9β∗2

(α∗+β∗)(4α∗−5β∗)β∗

)
f(2,0)f(1,1)

−2

(
(α∗−β∗)(6α∗2τ−9α∗ β∗ τ−6α∗2+α∗ β∗+7β∗2−6α∗+9β∗)

(α∗+β∗)(4α∗−5β∗)β∗

)
f(2,0)f(0,2)

+

(
(α∗−β∗)(4α∗3τ−10α∗2β∗ τ+α∗ β∗2τ−4α∗3+2α∗2β∗+3α∗ β∗2−3β∗3−4α∗2+10α∗ β∗−β∗2)

β∗2(α∗+β∗)(4α∗−5β∗)

)
f 2

(1,1)

+
(

8 τ α∗5+8α∗4β∗ τ−32α∗3β∗2τ+19α∗2β∗3τ−9α∗ β∗4τ−8α∗5−8α∗4β∗+36α∗3β∗2

β∗3(α∗+β∗)(4α∗−5β∗)

+ α∗2β∗3−28α∗ β∗4+7β∗5−8α∗4−8α∗3β∗+32α∗2β∗2−19α∗ β∗3+9β∗4

β∗3(α∗+β∗)(4α∗−5β∗)

)
f(1,1)f(0,2)

−2
(

4α∗4τ+4α∗3β∗τ−13α∗2β∗2τ+2α∗β∗3τ−4α∗4−4α∗3β∗+15α∗2β∗2+4α∗β∗3

β∗2(α∗+β∗)(4α∗−5β∗)

+ −11β∗4−4α∗3−4α∗2β∗+13α∗β∗2−2β∗3

β∗2(α∗+β∗)(4α∗−5β∗)

)
f 2

(0,2)

]
.

It follows that in order for K1 to be well-defined, we need the non-degeneracy conditions

α∗ + β∗ 6= 0 and 4α∗ − 5β∗ 6= 0. For a generic delay-differential equation of the form (2.18),

this coefficient K1 will be non-zero.
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