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Abstract

The formation of microdomains, also called rafts, in biomembranes can be attributed to
the surface tension of the membrane. In order to model this phenomenon, a model involving
a coupling between the local composition and the local curvature was proposed by Seul and
Andelman in 1995. In addition to the familiar Cahn-Hilliard/Modica-Mortola energy, there
are additional ‘forces’ that prevent large domains of homogeneous concentration. This is taken
into account by the bending energy of the membrane, which is coupled to the value of the
order parameter, and reflects the notion that surface tension associated with a slightly curved
membrane influences the localization of phases as the geometry of the lipids has an effect on
the preferred placement on the membrane.

The main result of the paper is the study of the Γ-convergence of this family of energy
functionals, involving nonlocal as well as negative terms. Since the minimizers of the limiting
energy have minimal interfaces, the physical interpretation is that, within a sufficiently strong
interspecies surface tension and a large enough sample size, raft microdomains are not formed.

Keywords: Γ-convergence, nonlocal energies, interpolation.
AMS Mathematics Subject Classification: 49J45, 74K15.

1 Introduction

The continuum theory of membranes has been an active area of research in material and biological
sciences since the pioneering works of Canham and Helfrich, [6, 17]. Biological cell membranes or
biomembranes are complex structures commonly made up of lipids, proteins, and cholesterol. Of
recent very widespread interest is the phase separation and domain formation of these compounds
forming the cell membrane. The resulting nanoscale microdomains, referred to as ‘lipid rafts’, are
believed to be responsible for membrane trafficking, intracellular signaling, and assembly of special-
ized structures, [33]. Many important biological processes, such as virus budding, endocytosis, and
immune responses, are believed to be linked to membrane rafts, [29]. Ever since the first experimen-
tal evidence of raft formation in late 1980’s, there has been a growing body of literature on both
theoretical and experimental aspects of this phenomenon, [11]. However, due to very small scales
associated with raft domains (they are too small to be optically resolved) [29, 5, 25], there are differ-
ent viewpoints on the precise structure and stability of lipid rafts, [24]. As a result, understanding
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Figure 1: Experimental and schematic representation of rafts. The first picture is reprinted with
permission from S. Rozovsky, Y. Kaizuka, and J. T. Groves. Formation and spatio-temporal evolu-
tion of periodic structures in lipid bilayers. J. Am. Chem. Soc., 127(1):36–37, 1 2005. Copyright
2005 American Chemical Society. It depicts epifluorescence microscopy images of phase separation
in a vesicle composed of a mixture of sphingomyelin, DOPC, and cholesterol adhering to a supported
lipid bilayer. Rafts, initially forming a stripe pattern evolve into a hexagonal array of circular do-
mains as the vesicle changes shape. The last row depicts Fourier spectra for the ordered regions
depicted in the middle row. The second picture, showing a schematic representation of the same
process, is reprinted with permission from S. Komura, N. Shimokawa, and D. Andelman. Tension-
induced morphological transition in mixed lipid bilayers. Langmuir, 22:6771–6774, 2006. Copyright
2006 American Chemical Society.

the conditions for the formation, as well as mechanisms driving stability (and instability), of these
microdomains is of great importance.

It has been proposed in [22] that raft formation can be attributed to the surface tension of
the membrane. The experimental basis for the theory comes from the work of Rozovsky et al in
[31], in which domain formation in a ternary mixture of sphingomyelin, DOPC, and cholesterol is
observed for a vesicle adhered to a substrate structure. To study the relation between an increase in
surface tension and the morphological transitions on the membrane plane, a coupling between the
local composition and the local curvature was proposed in [22]. The authors consider a free energy
framework and use an energy functional first introduced in [32] to model phase separation of a di-
block copolymer in a membrane allowing out of plane (bending) distortions (see also [20, 34, 23]).

Similar to the classic Ginzburg-Landau models, the system is described in terms of an order
parameter u that may, for instance, model the relative composition of the lipids and cholesterol on
the membrane plane. However, in addition to the familiar Cahn-Hilliard/Modica-Mortola energy
(see [27]),

Aε[u] :=

∫
Ω

(
1

ε
W (u) + ε|∇u|2

)
dx, (1.1)

that models line tension between domains and represents ‘short-range’ interactions and whose min-
imization drives the system to evolve into A rich and B rich phases (corresponding to u = α or
u = β, minima of a double-well potential W ), there are additional ‘forces’ that prevent large do-
mains of homogeneous concentration. In [32] Seul and Andelman proposed a nonlocal contribution
to the energy by considering an energy functional that takes into account the bending energy of
the membrane, and couples it to the value of the order parameter. The idea is that surface tension
associated with a slightly curved membrane influences the localization of phases as the geometry of
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Symbol Description Value
a4 10−5J/m2

b line tension 5× 10−19J
σ surface tension 5× 10−6 to 10−4J/m2

κ bending rigidity of the membrane 10−19J
Λ composition-curvature coupling constant 4.9× 10−12J/m

Table 1: Parameter descriptions and characteristic values, [22].

the lipids has an effect on the preferred placement on the membrane. Similarly, the geometry of the
membrane may adapt to that of the molecules. The resulting energy has the form

E [φ, h] =

∫
D

(
f(φ) +

1

2
b|∇φ|2 +

1

2
σ|∇h|2 +

1

2
κ(∆h)2 + Λφ∆h

)
dx̄. (1.2)

Here D := {Lx : x ∈ Ω} is the domain with the characteristic size L, φ is the order parameter, h
represents the height profile of the membrane, f(φ) := a2

2 φ
2 + a4

4 φ
4, where a2, a4 are constants, b > 0

is related to the line tension between different domains, σ > 0 and κ > 0 are the surface tension
and bending rigidity of the membrane, respectively, and Λ is the composition-curvature coupling
constant.

We note that several simplifying assumptions have been made in relation to the classical mem-
brane energies (e.g. [6, 17]) or more recent multi-component biological membrane energies (e.g.
[15]). Rather than considering a closed hypersurface to represent the vesicle. We assume that the
vesicle is almost flat and that its shape is described in terms of the distance, h, to the reference
plane, D ⊂ R2. In addition, for simplicity, higher-order coupling terms between the composition
and the curvature of the membrane are omitted. There is no direct measure of the resulting single
coupling parameter, Λ, but it can be fitted based on experimental data (see [22] for details).

Since minimizers of E satisfy the Euler-Lagrange equations, we may consider the minimization
problem for E [φ, h] under the constraint, δE

δh = 0. Using the last equation to eliminate h (see the
Appendix) and rescaling

u(x) = φ(Lx), ε :=

√
κ

L2σ
, q := 1− bσ

Λ2
, W (u) :=

2κ

Λ2
f(u), and F∗ε :=

1

ε

2κ

Λ2Ld
E ,

one can reduce (1.2) to

F∗ε [u] :=
1

ε

∫
Ω

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx. (1.3)

Here q is a constant parameter and the second order differential operator 1− ε2∆ : H2(Ω)→ L2(Ω)
is subject to Neumann boundary conditions. A detailed derivation is given in the Appendix. In
addition, Table 1 lists typical values for the parameters. Note that

√
κ
σ ∼ 10−7m, so the domain size

of 10 microns corresponds to ε ∼ 10−2. One may also easily check from the table that the relevant
values of the parameter q fall in the interval (−1.1, 1), and for fixed b and Λ correspond to varying
the surface tension.

Moreover, the line tension, surface tension, and the composition-curvature coupling constant are
embedded in the effective parameter q. To develop some intuition about the effect of varying q we
momentarily assume dependence only on a single direction and consider the energy of a single term
in the Fourier series expansion of u (see the Appendix),

u(x) = ψn(x), x ∈ Ω = (−1, 1),
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where
ψn(x) := cos(λnx) and λn = 2πn.

Then,

(1− ε2∆)−1ψn =
1

1 + ε2λ2
n

ψn,

and separating the potential term in the energy we have,

F∗ε [ψn] =
1

ε

∫ 1

−1

W (ψn)dx+
1

ε

∫ 1

−1

(
−1 + (1− q)ε2λ2

n +
1

1 + ε2λ2
n

)
cos2(λnx)dx

=
1

ε

∫ 1

−1

W (ψn)dx+
1

ε
Fq,n, (1.4)

where

Fq,n := −1 + (1− q)ε2λ2
n +

1

1 + ε2λ2
n

. (1.5)

For fixed q > 0, the minimum of Fq,n is achieved by

ε2λ2
n∗ =

1√
1− q

− 1,

with the corresponding energy

Fq,n∗ = −2 + 2
√

1− q + q < 0. (1.6)

As evident from the calculations above, the contribution to the full energy from Fq,n∗ becomes
negative as q increases from 0 (corresponding to the weakening tension). Hence, depending on the
properties of the potential W the functional may be unbounded from below. A natural question is
to understand this bifurcation as q increases. This paper represents a step towards that goal. In
particular, we show that for a standard family of double-well potentials (see Hypotheses 2.2), even
if q is positive, the energy is bounded from below and Γ-converges to the perimeter functional for q
sufficiently small. Since the minimizers of the limiting energy have minimal interfaces, the physical
interpretation is that for L2 � κ/σ, (ε � 1) raft microdomains are not formed in this regime. If
the surface tension is too small and the functional is unbounded from below as ε → 0, different
mathematical methods will have to be used to study the formation of raft-like microdomains (e.g.
[26, 28]).

We remark that when q ≤ 0 the Γ-convergence to the perimeter functional can be proved under
weaker conditions on the potential. In that case the functional is nonnegative (this can be seen from
the reformulation of the problem presented in (2.1)). The Γ-convergence of similar energies has been
considered before (e.g. [18, 2]), however there are some differences with the functional (2.1) (for
example when q = 0) and will be addressed in a separate paper.

Finally, we observe that in our context the relevant physical dimension is d = 2, although the
analysis presented here is carried out in arbitrary dimension d ≥ 2.

2 Preliminaries, Notation, and Statement of Results

A natural mathematical framework for studying the asymptotic behavior of the family of functionals
(1.3) is the notion of Γ-convergence introduced by De Giorgi in [14] (see also [4, 10]). In a general
metric space setting the definition is given below.

Definition 2.1. Let (Y, d) be a metric space and consider a sequence {Fn} of functionals Fn:
Y → [−∞,∞]. We say that {Fn} Γ-converges to a functional F : Y → [−∞,∞] if the following
properties hold:
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1. (Liminf Inequality) For every y ∈ Y and every sequence {yn} ⊂ Y such that yn → y,

F [y] ≤ lim inf
n→∞

Fn[yn].

2. (Limsup Inequality) For every y ∈ Y there exists {yn} ⊂ Y such that yn → y and

lim sup
n→∞

Fn[yn] ≤ F [y].

The functional F is called the Γ-limit of the sequence {Fn}.

A key property of Γ-convergence is the fact that, under appropriate compactness conditions,
the sequence of minimizers of the functionals Fn converge to a minimizer of the limiting functional
F . Moreover, one can show that the isolated local minima of the Γ-limit F persist under small
perturbations (see [21, 10]).

The problem of finding a characterization of the Γ-limit of (1.3) has been considered in the one-
dimensional setting by Ren and Wei in [30], but in a different parameter regime. Due to the different
scaling of the terms, the technique used in that paper is not applicable to our case. Recall that the
last term in (1.3) renders the problem nonlocal. A local approximation of (1.3) was studied in [7]
and [8]. We refer to the derivation of (6.20) in the Appendix for the precise connection between
the models. Qualitative properties of local minimizers of the local approximation model have been
studied extensively to explain the formation of periodic layered structures (see [3, 9, 26, 28]).

We now give the precise formulation of our results. Let Ω ⊂ Rd, d ≥ 2, be an open, bounded set
of class C2, and let W be a twice continuously differentiable double-well potential defined on the
real line. We make the following hypotheses on W .

Hypotheses 2.2.

1. W (s) > 0 if s 6= ±1.

2. W (±1) = 0.

3. There exists cw > 0 such that W (s) ≥ cw(s∓ 1)2 for ± s ≥ 0.

4. There exist constants Kw, Cw > 0 such that |W ′(s)| ≤ Cw
√
W (s) and |W ′′(s)| ≤ Kw for all

s ∈ R.

Remark 2.3. Note that conditions 3 and 4 imply that W has quadratic growth at infinity.

For the purposes of our analysis it will be convenient to rewrite the functional F∗ε as follows.
Given u ∈W 1,2(Ω), we define v ∈W 3,2(Ω) via

−ε2∆v + v = u in Ω and
∂v

∂n
= 0 on ∂Ω,

where n denotes the outward unit normal to ∂Ω, and use the abbreviatory notation v := (1 −
ε2∆)−1u. Integrating by parts we obtain

F∗ε [u] =

∫
Ω

(
1

ε
W (u)− εq|∇u|2 + ε3(∆v)2 + ε5|∇∆v|2

)
dx

=

∫
Ω

(
1

ε
W (u)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

Hence, we may also view F∗ε as Fε[v] with Fε : L2(Ω)→ (−∞,∞] given by
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Fε[v] :=

{
Fε[v; Ω] if v ∈W 3,2(Ω), ∂v∂n = 0 on ∂Ω,
+∞ otherwise,

(2.1)

where

Fε[v;A] =

∫
A

(
1

ε
W (−ε2∆v + v)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx

for every open set A ⊂ Ω.

Remark 2.4. Observe that if v ∈ W 3,2(Ω) does not satisfy Neumann boundary conditions on ∂Ω,
then Fε[v; Ω] < Fε[v] =∞.

Definition 2.5. Given a vector ν ∈ Sd−1 (d − 1 dimensional unit sphere), let {ν1, · · · , νd−1, ν} be
an orthonormal basis of Rd. We will denote by Qν an open unit cube centered at the origin with two
of its faces normal to ν, i.e.,

Qν :=

{
x ∈ Rd : |x · ν| < 1

2
, |x · νi| <

1

2
, i = 1, . . . , d− 1

}
.

If x0 ∈ Rd and r > 0, then Qν(x0, r) := x0 + rQν . If {ν1, · · · , νd−1, ν} is the canonical basis, we
drop the dependence on ν, i.e., Q(x0, r) := x0 + r(−1/2, 1/2)d = x0 + rQ, where Q is the open unit
cube centered at the origin with faces normal to the coordinate axes.

Define the admissible set to be

Aν := {v ∈W 3,2
loc (Rd) : v = 1 in a neighborhood of x · ν = −1/2,

v = −1 in a neighborhood of x · ν = 1/2,

v(x) = v(x+ νi) for all x ∈ Rd, i = 1, . . . , d− 1},

and set
md := inf{Fε[v;Qν ] : 0 < ε ≤ 1, v ∈ Aν}. (2.2)

As we will see in the sequel (see (2.3)) the constant md represents the surface energy density per
unit area of the limit energy. The fact that md is characterized by the cell problem (2.2) is to be
expected in this type of singular perturbations problems (see, e.g., [2], [7], [8]). As it turns out, in
the case in which only first order derivatives are considered in the energy functionals, md reduces
to a one-dimensional geodesic distance between the wells for an appropriate metric involving the
double-well potential W (see [13]).

Remark 2.6. Since the gradient and Laplacian are invariant with respect to rotations, we can choose
the coordinate system in such a way that the standard vector ed is parallel to ν. It follows that md

does not depend on ν, and we abbreviate A := Aed .

Remark 2.7. We will show in Proposition 3.4 that md > 0 if q is sufficiently small.

We introduce the functional F : L2(Ω)→ [0,+∞],

F [v] :=

{
mdPerΩ({v = 1}) if v ∈ BV (Ω; {−1, 1}),
+∞ if v ∈ L2(Ω)\BV (Ω; {−1, 1}). (2.3)

Here BV (Ω; {−1, 1}) denotes the space of functions of bounded variation taking values in the set
{−1, 1}, (see the discussion at the end of the section). The following theorems establish the Γ-
convergence of Fε to F , and ensures convergence of almost minimizers of Fε to minimizers of F .
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Theorem 2.8. (Compactness) Assume that W ∈ C2(R) satisfies Hypotheses 2.2. There exists
q0 > 0, depending only on the potential W , such that if q < q0, εn → 0+ and {vn} ⊂ W 3,2(Ω)
satisfies

sup
n
Fεn [vn] <∞, (2.4)

then there exist a subsequence {vnk} of {vn} and v ∈ BV (Ω; {−1, 1}) such that

vnk → v and ε2
nk

∆vnk → 0 in L2(Ω). (2.5)

Theorem 2.9. Assume that W ∈ C2(R) satisfies Hypotheses 2.2. There exists q̄ > 0, depending
only on the potential W and Ω, such that for all 0 < q < q̄ the following inequalities hold:

1. Liminf Inequality: For every sequence of positive real numbers εn → 0, for every v ∈ L2(Ω),
and for every {vn} ⊂W 3,2(Ω) such that vn → v in L2(Ω),

lim inf
n→∞

Fεn [vn] ≥ F [v]. (2.6)

2. Limsup Inequality: For every v ∈ L2(Ω) and for every sequence of positive real numbers εn → 0,
there exists a sequence {vn} ⊂W 3,2(Ω) such that vn → v in L2(Ω) and

lim sup
n→∞

Fεn [vn] ≤ F [v]. (2.7)

Remark 2.10. We remark that Theorem 2.9 and the compactness property stated in Theorem
2.8 have analogous formulations for the functional F∗ε in (1.3). In particular, since for vn :=
(1− ε2∆)−1un, Fεn [vn] = F∗εn [un], the compactness property follows from (2.5) due to the fact that
supn F∗ε [un] < ∞ implies that unk = −ε2

nk
∆vnk + vnk → v in L2(Ω). Similarly, for un → v in

L2(Ω), inequalities (2.6) and (2.7) of Theorem 2.9 hold with Fεn [vn] replaced by F∗εn [un].

We now give a proof of an elliptic regularity result used in the sequel.

Proposition 2.11. If Ω has a piecewise C2 boundary, then there exists a constant C(Ω), depending
on Ω, such that

||∇2v||2L2(Ω) ≤ 3||∆v||2L2(Ω) + C(Ω)||v||2L2(Ω) (2.8)

for all v ∈W 2,2(Ω) such that ∂v
∂n = 0 on ∂Ω.

Proof. Theorem 3.1.1.2 from [16] yields∫
Ω

|∇2v|2dx ≤
∫

Ω

|∆v|2dx+ C1(Ω)

∫
∂Ω

|∇v|2dx (2.9)

for all v ∈W 2,2(Ω) with ∂v
∂n = 0 on ∂Ω, where the constant C1(Ω) depends only on the curvature of

∂Ω. In turn, applying Theorem 1.5.1.10 from [16] to each component of ∇v we obtain

C1(Ω)

∫
∂Ω

|∇v|2dx ≤ 1

2

∫
Ω

|∇2v|2dx+ C2(Ω)

∫
Ω

|∇v|2dx

for some C2(Ω) > 0 and for all v ∈W 2,2(Ω). This, together with (2.9), reduces to∫
Ω

|∇2v|2dx ≤ 2

∫
Ω

(∆v)2dx+ 2C2(Ω)

∫
Ω

|∇v|2dx. (2.10)

Finally, using the Neumann boundary condition and integration by parts we conclude that

2C2(Ω)

∫
Ω

|∇v|2dx = 2C2(Ω)

∫
Ω

(−∆v)vdx ≤
∫

Ω

(∆v)2dx+ C(Ω)

∫
Ω

v2dx, (2.11)

where in the last step we also used Young’s Inequality. Inequalities (2.10) and (2.11) now imply
(2.8).
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Figure 2: The sets E (in grey), R1, and R2.

For the reader’s convenience we end the section with a summary of standard measure-theoretic
results used in the remainder. A key concept used in the development of the Liminf Inequality
in Section 5 is that of a reduced boundary of the set E := {x ∈ Ω : v(x) = 1} associated to
v ∈ BV (Ω; {−1, 1}). We recall that v ∈ L1(Ω) is said to be of bounded variation, v ∈ BV (Ω), if the
generalized partial derivatives Di of v in the sense of distributions are bounded Radon measures. In
particular BV (Ω; {−1, 1}) denotes functions of bounded variation taking values in the set {−1, 1},
and PerΩ(E) := |DχE |(Ω) <∞.

For sets of finite perimeter the reduced boundary ∂∗E of E is defined as the set of points
x0 ∈ spt|DχE | ∩ Ω such that the limit

ν(x0) := − lim
r→0+

DχE(Br(x0))

|DχE |(Br(x0))

exists and satisfies |ν(x0)| = 1. Here Br(x0) is the open ball of radius r centered at x0. For x0 ∈ ∂∗E
the vector ν(x0) is called the generalized outer unit normal to E. In particular, by Theorem 3.59
from [1], |DχE | = Hd−1 ∂∗E, and for x0 ∈ ∂∗E,

lim
r→0+

Hd−1(Qν(x0, r) ∩ ∂∗E)

rd−1
= 1,

lim
r→0

1

rd
|R1| = 0, lim

r→0

1

rd
|R2| = 0, (2.12)

where
R1 := {x ∈ Qν(x0, r) ∩ E : (x− x0) · ν(x0) > 0}, (2.13)

R2 := {x ∈ Qν(x0, r)\E : (x− x0) · ν(x0) < 0}, (2.14)

and | · | denotes the Lebesgue measure in Rd.

3 Compactness

In this section we prove the compactness Theorem 2.8. We use the following interpolation inequality.

Proposition 3.1. Let A ⊂ Rd be a bounded open set in Rd. Assume, in addition, that either A
has a C1 boundary or that A can be written as the union of finitely many pairwise disjoint open

8



rectangles and a set of Lebesgue measure zero. Then there exist a constant q∗ ∈ (0, 1), independent
of A, and ε0 = ε0(A, q∗) > 0 such that

q∗

∫
A

ε|∇v|2dx ≤
∫
A

(
W (v)

ε
+ ε3|∇2v|2

)
dx (3.1)

for every ε ∈ (0, ε0) and v ∈W 2,2(A).

Proof. See Theorem 1.2 in [7].

For every open set A ⊂ Ω, v ∈W 3,2(Ω), and ε > 0, define the functional

Iε[v;A] :=

∫
A

(
1

ε
W (v) + ε|∇v|2 + ε3|∇2v|2 + ε5|∇∆v|2

)
dx.

Remark 3.2. We note that in the energy Fε[v] the potential W acts on u, which is related to v
through the condition u = −ε2∆v + v, while in Iε[v] the potential acts on v. Hence Fε differs from
the standard Cahn-Hilliard energies involving solely the potential W (v). In addition, the second
order term in Fε[v] involves the Laplacian ∆v, while the second order term in Iε[v] involves the
Hessian ∇2v.

Next, we prove a result that will be useful to bound the energy from below and to obtain
compactness of energy bounded sequences (see Theorem 2.8).

Proposition 3.3. Let Kw, Cw, cw, q∗, ε0 > 0 be the constants given in Hypotheses 2.2 and Proposi-
tion 3.1. Then there exist q0 > 0, depending only on Kw, Cw, q∗ (see (3.6)), and ε1 > 0, depending
only on Cw, such that for every 0 < q ≤ q0, v ∈W 3,2(Ω), and 0 < ε < ε1,

Fε[v] ≥ q Iε[v; Ω]− 12q

q∗
C(Ω)ε3|Ω| (3.2)

for some constant C(Ω) > 0.

Proof. If v does not satisfy ∂v
∂n = 0 on ∂Ω then Fε[v] =∞ and there is nothing to prove. Otherwise,

fix 0 < θ ≤ 1. Using Taylor’s formula for W and the fact that W ′′ is bounded by Hypotheses 2.2,
yields

Fε[v] = Fε[v; Ω] =

∫
Ω

(
1

ε
W (−ε2∆v + v)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx

≥
∫

Ω

(θ
ε
W (v)− θW ′(v)ε∆v − εq|∇v|2 +

(
1− 2q − θ

2
Kw

)
ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

(3.3)

By Young’s Inequality and the condition |W ′(s)| ≤ Cw
√
W (s) from Hypotheses 2.2, we have

W ′(v)∆v ≤ 1

2ε2C2
w

(W ′(v))2 +
ε2

2
C2
w(∆v)2 ≤ 1

2ε2
W (v) +

ε2

2
C2
w(∆v)2. (3.4)

Substituting (3.4) into (3.3) implies

Fε[v] ≥
∫

Ω

(
θ

2ε
W (v)− εq|∇v|2 +

(
1− 2q − θ

2
Kw −

θ

2
C2
w

)
ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.
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Multiplying (3.1), with A = Ω, by 2q/q∗ and using it in the previous inequality gives

Fε[v] ≥
∫

Ω

((
θ

2
− 2q

q∗

)
1

ε
W (v) + εq|∇v|2 +

(
1− 2q − θ

2
Kw −

θ

2
C2
w

)
ε3(∆v)2

− 2qε3

q∗
|∇2v|2 + (1− q)ε5|∇∆v|2

)
dx. (3.5)

Fix δ > 0. Using Proposition 2.11 we get

Fε[v] ≥
∫

Ω

((
θ

2
− 2q

q∗

)
1

ε
W (v)−

(
δ +

2q

q∗

)
ε3C(Ω)v2 + εq|∇v|2

+

(
1− 2q − θ

2
Kw −

θ

2
C2
w −

6q

q∗
− 3δ

)
ε3(∆v)2 + δε3|∇2v|2 + (1− q)ε5|∇∆v|2

)
.

Finally, it follows from Hypotheses 2.2 that W (s) ≥ (cw/4)s2 for |s| ≥ 2. Hence

Fε[v] ≥
∫

Ω

([
θ

2
− 2q

q∗
− ε4 4C(Ω)

cw

(
δ +

2q

q∗

)]
1

ε
W (v) +

(
1− 2q − θ

2
Kw −

θ

2
C2
w −

6q

q∗
− 3δ

)
ε3(∆v)2

+ εq|∇v|2 + δε3|∇2v|2 + (1− q)ε5|∇∆v|2
)
dx− 4

(
δ +

2q

q∗

)
ε3C(Ω)|Ω|.

Choosing δ := q
q∗

, θ := 8q
q∗

, ε1 := min

{
ε0,
(

cw
12C(Ω)

)1/4
}

and

q0 :=
q∗

2q∗ + 4Kw + 4C2
w + 10

(3.6)

yields (3.2).

We now prove that for q sufficiently small the “cell” energy is positive.

Proposition 3.4. Let md be defined in (2.2) and let q0 be as in Proposition 3.3. Then md > 0 for
every 0 < q < q0.

Proof. Without loss of generality we may assume that the infimum in the definition of md is taken
over 0 < ε < ε0. The result of the proposition then follows if we show that

inf

{∫
Q

(
W (v)

ε
+ ε|∇v|2

)
dx : 0 < ε < ε0, v ∈ A

}
> 0. (3.7)

Indeed, let v ∈ A. Since v satisfies periodic boundary conditions on Q, integration by parts yields

||∇2v||2L2(Q) = ||∆v||2L2(Q). (3.8)

Repeating the proof of Proposition 3.3 with Q instead of Ω and using (3.8) in (3.5), we obtain

Fε[v;Q] ≥ q Iε[v;Q] ≥ q
∫
Q

(
W (v)

ε
+ ε|∇v|2

)
dx

if q ≤ q0. To prove (3.7) we follow [13]. In particular, for v ∈ A,∫
Q

(
W (v)

ε
+ ε|∇v|2

)
dx ≥ 2

∫
Q

√
W (v)|∇v|dx ≥

∫
Q′

∫ 1/2

−1/2

√
W (v)

∣∣∣∣ ∂v∂xd
∣∣∣∣ dxddx′, (3.9)
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where Q′ := (−1/2, 1/2)d−1. Since v(x′,±1/2) = ±1 a change of variables yields∫
Q′

∫ 1/2

−1/2

√
W (v)

∣∣∣∣ ∂v∂xd
∣∣∣∣ dxd dx′ ≥ ∫ 1

−1

√
W (s) ds.

Using this lower bound in (3.9) and taking the infimum over v ∈ A and 0 < ε < ε0 gives (3.7).

Proof of Theorem 2.8. By Proposition 3.3 and (2.4)

sup
n
Iεn [vn; Ω] <∞. (3.10)

Hence, the Modica-Mortola energy, Aε[vn], of vn defined in (1.1) is uniformly bounded from above.
The existence of some v ∈ BV (Ω; {−1, 1}) and a subsequence {vnk} converging to v in L1(Ω) is well
established for sequences of functions with uniformly bounded Modica-Mortola energy (see [27]).

To show the convergence in L2(Ω), we recall again that by Hypotheses 2.2, W (s) ≥ (cw/4)|s|2
for |s| ≥ 2, and hence for every measurable set E ⊂ Ω,∫

E

|vn|2 dx =

∫
{y∈E:|vn(y)|<2}

|vn|2dx+

∫
{y∈E:|vn(y)|≥2}

|vn|2dx

≤ 4|E|+ 4

cw

∫
E

W (vn) ≤ 4|E|+ C(q)εn,

where in the last step we used (3.10). Therefore {|vnk |2} is equi-integrable, and convergence of {vnk}
to v in L2(Ω) is a consequence of Vitali’s Convergence Theorem.

To prove (2.5)2, note that (3.10) implies ε2
n‖∆vn‖L2(Ω) ≤ C(q)ε

1/2
n . It follows that ε2

n∆vn → 0
in L2(Ω).

4 Slicing Propositions

The slicing arguments in the following propositions will be used in the proof of the Liminf Inequality.
In what follows we adopt the notation introduced in Definition 2.5.

Proposition 4.1. There exists a constant C(d) > 0 with the following property: If K > 0, k ∈ N,
and v ∈W 3,2(Q(x0, r0)) are such that

Iε[v;Q(x0, r0)] ≤ K (4.1)

for some 0 < ε < ε1 := r0

4k
√
C(d)

, then there exists i ∈ {1, . . . , k} (depending on v) such that

Fε[v;Q(x0, r)] ≥ q Iε[v;Q(x0, r)]−
q

q∗

6K

k

and

Iε[v;L] ≤ K

k
,

for all r ∈
(
r0
2

(
1 + 2i−1

2k

)
, r02

(
1 + i

k

))
and all 0 < q < q1, where

L := Q

(
x0,

r0

2

(
1 +

i

k

))
\Q
(
x0,

r0

2

(
1 +

i− 1

k

))
and

q1 :=
q∗

2q∗ + 4Kw + 4C2
w + 3C(d) + 1

.
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Proof. For simplicity we will use the notation Q(r) := Q(x0, r). The following estimate is obtained
from the proof of Lemma 9.2.3 in [19]. Let 0 < r1 < r2 < r0. Then,∫

Q(r1)

|∇2v|2 ≤ C(d)

(∫
Q(r2)

|∆v|2 dx+
1

(r2 − r1)2

∫
Q(r2)\Q(r1)

|∇v|2 dx

)
. (4.2)

Given k ∈ N, we first partition the set Q(r0)\Q(r0/2) into k layers

Li := Q

(
r0

2

(
1 +

i

k

))
\Q

(
r0

2

(
1 +

i− 1

k

))
, i = 1, . . . , k.

Since
k∑
i=1

Iε[v;Li] ≤ Iε[v;Q(r0)],

by (4.1) there exists a layer Li
∗

satisfying

Iε[v;Li
∗
] ≤ 1

k
Iε[v;Q(r0)] ≤ K

k
. (4.3)

Fix r ∈
(
r0
2

(
1 + 2i∗−1

2k

)
, r02

(
1 + i∗

k

))
. Choosing r1 := r0

2

(
1 + i∗−1

k

)
, r2 := r and applying esti-

mate (4.2) we obtain∫
Q(r1)

|∇2v|2 dx ≤ C(d)

(∫
Q(r)

|∆v|2 dx+
16k2

r2
0

∫
Li∗
|∇v|2 dx

)
.

Adding
∫
Li∗
|∇2v|2 dx to both sides and multiplying by ε3 yields, by (4.3),

ε3

∫
Q(r)

|∇2v|2 dx ≤ C(d)

(
ε3

∫
Q(r)

|∆v|2 dx+
16k2

r2
0

ε3

∫
Li∗
|∇v|2 dx

)
+ ε3

∫
Li∗
|∇2v|2 dx

≤ C(d)

(
ε3

∫
Q(r)

|∆v|2 dx+
16k2

r2
0

ε2K

k

)
+
K

k
.

Let 0 < ε2
1 =

r20
16k2C(d) . Then for 0 < ε < ε1 we have

ε3

∫
Q(r)

|∇2v|2 dx ≤ C(d) ε3

∫
Q(r)

|∆v|2 dx+
2K

k
. (4.4)

Repeating the argument of the proof of Proposition 3.3 with θ := 8q
q∗

until (3.5) and using (4.4)
multiplied by 3 in place of Proposition 2.11 yields

Fε[v;Q(r)] ≥
∫
Q(r)

(
2q

q∗

1

ε
W (v) +

(
1− 2q − 4q

q∗
Kw −

4q

q∗
C2
w −

3q

q∗
C(d)

)
ε3|∆v|2

+ qε|∇v|2 +
q

q∗
ε3|∇2v|2 + (1− q)ε5|∇∆v|2

)
dx− q

q∗

6K

k

≥ q Iε[v;Q(r)]− q

q∗

6K

k
,

provided 0 < q < q1. This completes the proof.
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Proposition 4.2. Let k ∈ N, εn → 0+, ν ∈ Sd−1, and {wn} ⊂W 3,2(Qν(0, 1)) be such that

lim
n→∞

∫
Qν(0,1)

|wn − v0|2dx = 0,

and

Iεn [wn; L̃k] ≤ C0

k
(4.5)

for all n and some C0 > 0, not dependent on k, where

v0(y) :=

{
1 if y · ν < 0,
−1 if y · ν > 0,

and
L̃k := Qν(0, 1)\Qν(0, 1− 1/(4k)).

Then

Fεn [wn;Qν(0, 1)] ≥ md −
C

k
,

where the constant C does not depend on k.

Proof. We modify {wn} to belong to the admissible class Aν without increasing the energy. Given
Ψ ∈ C∞c (Rd), with supp(Ψ) ⊂ B1(0) and

∫
Rd Ψ(y)dy = 1, and ε > 0, consider the mollifier

Ψε(y) :=
1

εd
Ψ
(y
ε

)
(4.6)

and
ϕn := v0 ∗Ψεn .

Note that ϕn ∈ C∞(Rd) and

||ϕn||L∞(R) ≤ 1, ||∇ϕn||L∞(R) ≤ Cε−1
n , ||∇2ϕn||L∞(R) ≤ Cε−2

n , ||∇3ϕn||L∞(R) ≤ Cε−3
n . (4.7)

In addition,

ϕn(y) =

{
1 if y · ν < −εn,
−1 if y · ν > εn,

and
∇sϕn(y) = 0 if |y · ν| > εn, s = 1, 2, 3.

Hence for εn sufficiently small ϕn ∈ Aν . We want to define a function zn to equal ϕn near the
boundary of Qν and wn away from the boundary. To be precise, we first partition the set L̃k =
Qν(0, 1)\Qν(0, 1− 1/(4k)) into dε−1

n e layers,

Lin := Qν

(
0, 1− i− 1

4kdε−1
n e

)∖
Qν

(
0, 1− i

4kdε−1
n e

)
, i = 1, . . . , dε−1

n e,

where dxe is defined as the smallest integer not less than x. Since both wn → v0 in L2(Qν) and
ϕn → v0 in L2(Qν), we have

||wn − ϕn||2L2(Qν) → 0 as n→∞.

Note that ∪iLin = L̃k ⊂ Qν(0, 1) and that Lin are pairwise disjoint, so the sum over all of the layers
is bounded by ∑

i

Iεn [wn;Lin] +

∑
i ||wn − ϕn||2L2(Lin)

||wn − ϕn||2L2(Qν)

≤ C0

k
+ 1.
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Since there are dε−1
n e layers, for one of these layers, say Ln := Li

∗

n , it holds

Iεn [wn;Ln] +
||wn − ϕn||2L2(Ln)

||wn − ϕn||2L2(Qν)

≤
(
C0

k
+ 1

)
εn. (4.8)

Define
zn := ηnwn + (1− ηn)ϕn,

where ηn is a smooth function with support in Qν(0, 1) such that

ηn(x) :=


0 if x ∈ Qoutn := Qν (0, 1) \Qν

(
0, 1− i∗−1

4kdε−1
n e

)
,

∈ (0, 1) if x ∈ Ln,
1 if x ∈ Qinn := Qν\(Qoutn ∪ Ln),

and

||∇sηn||L∞(Qν) = O
(
ks

εsn

)
, s = 1, 2, 3. (4.9)

Moreover,
Fεn [zn;Qν ] = Fεn [ϕn;Qoutn ] + Fεn [zn;Ln] + Fεn [wn;Qinn ].

We observe that since Fεn [wn;Qν\Qinn ] can be negative it is not necessarily true that Fεn [wn;Qinn ] ≤
Fεn [wn;Qν ]. Instead, we use (4.5) to control the negative terms to obtain

Fεn [zn;Qν ] ≤ Fεn [ϕn;Qoutn ] + Fεn [zn;Ln] + Fεn [wn;Qν ] + q

∫
L

εn|∇wn|2dx

≤ Fεn [ϕn;Qoutn ] + Fεn [zn;Ln] + Fεn [wn;Qν ] + q
C0

k
. (4.10)

Note that for s = 1, 2, 3,

ε2s−1
n

∫
Qoutn

|∇sϕn|2dx ≤ ε2s−1
n

C

ε2s
n

|{x ∈ Qoutn : ϕn 6= ±1}| ≤ C

k
. (4.11)

In addition, by the continuity of W ,

1

εn

∫
Qoutn

W (−ε2
n∆ϕn + ϕn)dx ≤ C

εn
|{x ∈ Qoutn : ϕn 6= ±1}| ≤ C

k
. (4.12)

Together (4.11) and (4.12) imply

Fεn [ϕn;Qoutn ] ≤ C

k
. (4.13)

To estimate Fεn [zn;Ln], we first note that

∂xizn = ∂xiηn(wn − ϕn) + ηn∂xiwn + (1− ηn)∂xiϕn,

and

∂xixkzn = ∂xixkηn(wn − ϕn) + ∂xiηn∂xkwn + ∂xkηn∂xiwn + ηn∂xixkwn

− ∂xiηn∂xkϕn − ∂xkηn∂xiϕn + (1− ηn)∂xixkϕn.

We use (4.8) to control the derivatives of wn in the transition region Ln. From (4.7), (4.8), (4.9),
the expressions for the derivatives of zn and the fact that ||wn − ϕn||L2(Q) → 0, we readily obtain
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the following bounds on the terms in Fεn [zn;Ln],

εn

∫
Ln

|∇zn|2dx ≤ C
∫
Ln

(
εn|∇ηn|2|wn − ϕn|2 + εnη

2
n|∇wn|2 + εn(1− ηn)2|∇ϕn|2

)
dx

≤ C
(
k2εn
ε2
n

||wn − ϕn||2L2(Ln) +

(
C0

k
+ 1

)
εn +

εn
ε2
n

|{x ∈ Ln : ϕn 6= ±1}|
)

≤ C
(
k2

(
C0

k
+ 1

)
||wn − ϕn||2L2(L) +

(
C0

k
+ 1

)
εn +

εn
k

)
≤ C

k
(4.14)

for n sufficiently large, where we used |{x ∈ Ln : |x · ν| < εn}| = O(ε2
n/k). Similarly,

ε3
n

∫
Ln

|∇2zn|dx ≤ Cε3
n

∫
Ln

(
|∇2ηn|2|wn − ϕn|2 + 2|∇ηn|2|∇wn|2 + 2|∇ηn|2|∇ϕn|2 + η2

n|∇2wn|2

+ (1− ηn)2|∇2ϕn|2
)
dx ≤ C

(
ε3
nk

4

ε4
n

(
C0

k
+ 1

)
εn||wn − ϕn||2L2(L) +

ε2
nk

2

ε2
n

(
C0

k
+ 1

)
εn

+ ε3
n

(
k2

ε2
n

1

ε2
n

+
1

ε4
n

)
|{x ∈ Ln : ϕn 6= ±1}|+

(
C0

k
+ 1

)
εn

)
≤ C

k

for n sufficiently large. To bound the integral involving the potential W we first remark that by
Hypotheses 2.2 (and Remark 2.3) W grows quadratically at infinity. Splitting the integral into
regions where | − ε2

n∆zn + zn| ≤ 2 and | − ε2
n∆zn + zn| > 2, we use the quadratic growth of W to

obtain,∣∣∣∣ 1

εn

∫
Ln

W (−ε2
n∆zn + zn)dx

∣∣∣∣ ≤ sup|s|≤2W (s)

εn
|Ln|+

C2
w

4εn

∫
Ln

(−ε2
n∆zn + zn)2dx

≤ C

k
+
C2
w

2

∫
Ln

ε3
n|∆zn|2dx+

C2
w

2εn

∫
Ln

z2
ndx ≤

C

k
+
C2
w

2

∫
Ln

ε3
n|∆zn|2dx+

C2
w

εn

∫
Ln

(w2
n + ϕ2

n)dx

≤ C

k
+
C2
w

2

∫
Ln

ε3
n|∆zn|2dx+

C

εn

∫
Ln

W (wn)dx+
C

εn
|Ln| ≤

(
C0

k
+ 1

)
εn +

C

k
≤ C

k
(4.15)

for n sufficiently large, where we again used (4.8). Analogous calculations are used to estimate
ε5
n

∫
Ln
|∇∆zn|2dx. Combining estimates (4.13), (4.14)-(4.15) with (4.10) completes the proof.

5 Proof of the Liminf Inequality

In this section we prove the Liminf Inequality of Theorem 2.9. We use the blow-up method to reduce
the problem to a unit cube, where we follow the general lines of [7]. In what follows we assume
q ≤ min{q0, q1} (see Propositions 3.3 and 4.1). Fix εn → 0+ and {vn} ⊂W 3,2(Ω), vn → v ∈ L2(Ω).
We may assume that

lim inf
n→∞

Fεn [vn] <∞, (5.1)

and we extract a subsequence {vnk} of {vn} satisfying

lim
k→∞

Fεnk [vnk ] = lim inf
n→∞

Fεn [vn] <∞.

By selecting a further subsequence, if necessary, we can assume that supk Fεnk [vnk ] <∞ so that by
Proposition 3.3,

sup
k
Iεnk [vnk ; Ω] =: K <∞. (5.2)
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Since vnk → v in L2(Ω), Theorem 2.8 implies that v ∈ BV (Ω; {−1, 1}). Therefore,

v = χE − χΩ\E , (5.3)

where PerΩ(E) < ∞. In what follows, to simplify notation we denote the subsequence of {vn}
extracted in (5.2) by {vn}.

We first note that, due to (5.1) and (5.2), the sequences of functions

fn :=
1

εn
W (−ε2

n∆vn + vn)− εnq|∇vn|2 + (1− 2q)ε3
n|∆vn|2 + (1− q)ε5

n|∇∆vn|2

and

gn :=
1

εn
W (vn) + εn|∇vn|2 + ε3

n|∆vn|2 + ε5
n|∇∆vn|2

are bounded in L1(Ω). Consider the signed Radon measures defined on Borel subsets of Ω,

λn(B) :=

∫
B

fn dx, ζn(B) :=

∫
B

gn dx.

Up to subsequences, not relabeled, we may assume that there exist Radon measures λ, µ, ζ such
that

λn ⇀∗ λ, |λn|⇀∗ µ, ζn ⇀
∗ ζ

in the space Mb(Ω) of all bounded signed Radon measures on Ω (see Proposition 1.202 in [12]),
where |λn| denotes the total variation of λn. We claim that λ ≥ 0.

Suppose that λ 6= 0. By the Besicovitch Derivation Theorem (Theorem 1.155 in [12]), for |λ|-a.e.
x0 ∈ Ω

dλ

d|λ|
(x0) = lim

r→0+

λ(Q(x0, r))

|λ|(Q(x0, r))
∈ R, (5.4)

where |λ| is the total variation of λ. Fix any x0 for which (5.4) holds and |λ|(Q(x0, r)) > 0 for all
r > 0 sufficiently small. Let η ∈ (0, 1) and find r̄η > 0 such that

dλ

d|λ|
(x0) ≥ λ(Q(x0, r))

|λ|(Q(x0, r))
− η (5.5)

for all 0 < r < r̄η.
Fix 0 < r0 < r̄η and k ∈ N. By Proposition 4.1 for every n there exists in ∈ {1, . . . , k} such that

Fεn [v;Q(x0, r)] ≥ qIεn [v;Q(x0, r)]−
q

q∗
6K

k
(5.6)

for all r ∈
(
r0
2

(
1 + 2in−1

2k

)
, r02

(
1 + in

k

))
where K is given in (5.2). Since in ∈ {1, . . . , k} for all n,

there exists i(1) ∈ {1, . . . , k} such that i(1) = in for infinitely many n, say nl, l ∈ N. Let k be so
large that

q

q∗

6K

k
≤ |λ|(Q(x0, r0/2))η (5.7)

and take

r1 ∈
(
r0

2

(
1 +

2i(1) − 1

2k

)
,
r0

2

(
1 +

i(1)

k

))
such that µ(∂Q(x0, r1)) = 0. Then by (5.5), Corollary 1.204 in [12], (5.6), and (5.7)

dλ

d|λ|
(x0) ≥ λ(Q(x0, r1))

|λ|(Q(x0, r1))
− η = lim

n→∞

Fεnl [vnl ;Q(x0, r1)]

|λ|(Q(x0, r0))
− η

≥ lim inf
n→∞

qIεnl [vnl ;Q(x0, r1)]− |λ|(Q(x0, r0/2)η

|λ|(Q(x0, r1))
− η

≥ −2η,
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where we used the fact that r0/2 < r1 so that |λ|(Q(x0, r1)) ≥ |λ|(Q(x0, r0/2)). Letting η → 0+ we
conclude that dλ

d|λ| (x0) ≥ 0.

This shows that λ ≥ 0. In turn, by the Radon-Nikodym and Lebesgue Decomposition theorems
([12] Theorem 1.180) we can decompose

λ = λac + λs,

where λac � ξ, λs ≥ 0, λs ⊥ ξ, with

ξ(B) := Hd−1(B ∩ ∂∗E), B ⊂ Ω Borel.

We claim that for Hd−1-a.e. x0 ∈ Ω ∩ ∂∗E,

dλac
dξ

(x0) ≥ md, (5.8)

where md is the constant defined in (2.2). Observe that if (5.8) holds, then, since λs ≥ 0,

lim
n→∞

Fεn [vn; Ω] = lim
n→∞

λn(Ω) ≥ λ(Ω) ≥ λac(Ω) =

∫
Ω

dλac
dξ

dξ

≥ mdHd−1(Ω ∩ ∂∗E) = mdPerΩ(E),

which gives (2.6) (see (2.3) and (5.3)). In the remainder of the proof we show (5.8).
To this end we first note that by the Besicovitch Derivation Theorem (Theorem 1.155 in [12]),

for Hd−1-a.e. x0 ∈ Ω ∩ ∂∗E

∞ >
dλac
dHd−1

(x0) = lim
r→0+

λ(Qν(x0, r))

Hd−1(Qν(x0, r) ∩ ∂∗E)
= lim
r→0+

λ(Qν(x0, r))

rd−1
, (5.9)

∞ >
dζac
dHd−1

(x0) = lim
r→0+

ζ(Qν(x0, r))

Hd−1(Qν(x0, r) ∩ ∂∗E)
= lim
r→0+

ζ(Qν(x0, r))

rd−1
, (5.10)

where ν denotes the outward normal vector to E at x0. Fix x0 ∈ Ω∩∂∗E for which (5.9) and (5.10)
hold. Then there exists r̄ > 0 such that

ζ(Qν(x0, r))

rd−1
≤ dζac
dHd−1

(x0) + 1 =: M

for all 0 < r ≤ r̄. Let 0 < r0 ≤ r̄ be such that ζ(∂Qν(x0, r0)) = µ(∂Qν(x0, r0)) = 0. Then by
Corollary 1.204 in [12],

lim
n→∞

Iεn [vn;Qν(x0, r0)]

rd−1
0

=
ζ(Qν(x0, r0))

rd−1
0

≤M

and so
Iεn [vn;Qν(x0, r0)] ≤ (M + 1) rd−1

0

for all n ≥ n0 = n0(r0). Let k ∈ N. By Proposition 4.1 with K := (M + 1)rd+1
0 , for each n ≥ n0

there exists in ∈ {1, . . . , k} such that

Iεn [vn;Lin ] ≤ (M + 1) rd−1
0

k
,

where Lin := Qν
(
x0,

r0
2

(
1 + in

k

))
\Qν

(
x0,

r0
2

(
1 + in−1

k

))
.
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Since in ∈ {1, . . . , k} for all n ≥ n0, there exists i(1) ∈ {1, . . . , k} such that i(1) = in for infinitely

many n, say n
(1)
l , l ∈ N. Let L(1) := Li(1) . Then

Iε
n
(1)
l

[v
n
(1)
l

;L(1)] ≤ (M + 1) rd−1
0

k

for all n
(1)
l , l ∈ N. We proceed by induction. Let

αk := max

{
4k(k + i− 1)

(4k − 1)(k + i)
: i = 1, . . . k

}
= 1− 1

4k − 1
.

Fix βk ∈ (αk, 1) and for j ∈ N choose

rj ∈
(
rj−1

2

(
1 +

4i(j) − 3

4k − 1

)
, βk

rj−1

2

(
1 +

i(j)

k

))
(5.11)

such that ζ(∂Qν(x0, rj)) = µ(∂Qν(x0, rj)) = 0. Note that rj → 0+ since rj < βkrj−1 for all j.
Thus, for every j we find a subsequence {v

n
(j)
l

}l∈N ⊂ {vn(j−1)
l

}l∈N and a layer

L(j+1) := Qν

(
x0,

rj
2

(
1 +

i(j+1)

k

))
\Qν

(
x0,

rj
2

(
1 +

i(j+1) − 1

k

))
(5.12)

such that

Iε
n
(j+1)
l

[v
n
(j+1)
l

;L(j+1)] ≤
(M + 1) rd−1

j

k
(5.13)

for all l ∈ N.
By (5.9) and Corollary 1.204 in [12],

dλac
dHd−1

(x0) = lim
j→∞

λ(Qν(x0, rj))

rd−1
j

= lim
j→∞

lim
n→∞

Fεn [vn;Qν(x0, rj)]

rd−1
j

,

and by Theorem 3.59 from [1] (see also (2.12))

lim
j→∞

lim
n→∞

1

rdj

∫
Qν(x0,rj)

|vn − ṽ0|2dx = lim
j→∞

1

rdj

∫
Qν(x0,rj)

|v − ṽ0|2dx = 0,

where ṽ0(x) := v0(x − x0) with v0 introduced in Proposition 4.2. Further, by (5.13) and using the
fact that for j ∈ N, ε

n
(j)
l

→ 0 as l → ∞, we can use a diagonal argument to find ε(j) ∈ {ε
n
(j)
l

}l∈N
and ṽj ∈ {vn(j)

l

}l∈N such that ε(j)/rj → 0,

dλac
dHd−1

(x0) = lim
j→∞

Fε(j) [ṽj ;Qν(x0, rj)]

rd−1
j

, (5.14)

lim
j→∞

1

rdj

∫
Qν(x0,rj)

|ṽj − ṽ0|2dx = 0, and (5.15)

Iε(j) [ṽj ;L(j)] ≤
(M + 1) rd−1

j

k
. (5.16)

Define
wj(y) := ṽj(x0 + rjy), y ∈ Qν(0, 1),

and (see Proposition 4.2)
L̃k := Qν(0, 1)\Qν(0, 1− 1/(4k)).
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Since L(j) ⊇ Qν(x0, rj)\Qν(x0, rj(1− 1/(4k))) = x0 + rjL̃k by (5.12) and (5.11), by (5.16) we have

Iε(j)/rj [wj ; L̃k] =
1

rd−1
j

Iε(j) [ṽj ;x0 + rjL̃k] ≤ 1

rd−1
j

Iε(j) [ṽj ;L(j)] ≤
rd−1
j−1

rd−1
j

(M + 1)

k
≤ (M + 1) 2d−1

k
,

where we also used rj >
rj−1

2 . Moreover (5.14) and (5.15) become

dλac
dHd−1

(x0) = lim
j→∞

Fε(j)/rj [wj ;Qν(0, 1)],

and

lim
j→∞

∫
Qν(0,1)

|wj − v0|2dy = 0.

We can apply Proposition 4.2 to obtain

dλac
dHd−1

(x0) ≥ md −
C

k
.

Letting k →∞ completes the proof.

6 Proof of the Limsup Inequality

We now turn to the proof of (2.7), where we follow closely the argument in [7].

Step 1. Assume first that the target function v has a flat interface orthogonal to a given direction
ν ∈ Sd−1, and that Ω has a Lipschitz boundary that meets this interface orthogonally. More precisely,
without loss of generality (under suitable rigid transformations of the coordinate system), we assume
that v ∈ BV (Ω; {±1}) is of the simple form

v(x) :=

{
−1 if xd < 0,
1 if xd > 0,

where we use the notation xd := x · ed = x · ν, and that the normal to ∂Ω is orthogonal to ed for
all x ∈ ∂Ω with |xd| small enough. Let ρ > 0. By definition of md (see (2.2) and the remark after),
there exist ε0 > 0 and w ∈ Aν such that∫

Q

(
1

ε0
W (−ε2

0∆w + w)− ε0q |∇w|2 + (1− 2q)ε3
0|∆w|2 + (1− q)ε5

0|∇∆w|2
)
dx < md + ρ. (6.1)

Define

wn(x) :=


−1 if xd < − εn

2ε0
,

w
(
ε0x
εn

)
if |xd| ≤ εn

2ε0
,

1 if xd >
εn
2ε0
.

Note that, for n large enough, wn ∈W 3,2(Ω). Moreover, we claim that wn → v in L2(Ω). Indeed,

‖wn − v‖L2(Ω) = ‖wn − v‖L2({x∈Ω: |xd|< εn
2ε0
}) ≤ ‖wn‖L2({x∈Ω: |xd|< εn

2ε0
}) + ‖v‖L2({x∈Ω: |xd|< εn

2ε0
}),

where for n sufficiently large

‖v‖L2({x∈Ω: |xd|< εn
2ε0
}) =

∣∣∣∣{x ∈ Ω : |xd| <
εn
2ε0

}∣∣∣∣→ 0 as n→∞.
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Further, setting Ω′ := {x′ ∈ Rd−1 : (x′, 0) ∈ Ω}, we have for sufficiently large n, that {x ∈ Ω : |xd| ≤
εn/(2ε0)} = Ω′ × [−εn/(2ε0), εn/(2ε0)]. Hence, applying the change of variables t := ε0xd

εn
yields

‖wn‖2L2({x∈Ω: |xd|< εn
2ε0
}) =

∫
{
x∈Ω:|xd|< εn

2ε0

}
∣∣∣∣w(ε0x

εn

)∣∣∣∣2 dx =
εn
ε0

∫ 1/2

−1/2

∫
Ω′

∣∣∣∣w(ε0x
′

εn
, t

)∣∣∣∣2 dx′dt.
(6.2)

Since w is periodic in the first d−1 arguments, applying Fubini’s Theorem and the Riemann-Lebesgue

Lemma (see for example Lemma 2.85 in [12]) to
∫ 1/2

−1/2

∣∣∣w ( ε0x′εn
, t
)∣∣∣2 dt ∈ L1

loc(Rd−1) gives

lim
n→∞

∫
Ω′

∫ 1/2

−1/2

∣∣∣∣w(ε0x
′

εn
, t

)∣∣∣∣2 dt dx′ =

∫
Ω′

∫
Q′

∫ 1/2

−1/2

|w(y, t)|2 dt dy dx′ = Ld−1(Ω′)||w||2L2(Q).

It then follows from (6.2) that

‖wn‖2L2({x∈Ω: |xd|< εn
2ε0
}) ≤

Cεn
ε0
||w||2L2(Q) → 0, as n→∞.

This concludes the proof that wn → v in L2(Ω).
Since wn = ±1 on {x ∈ Ω : |xd| ≥ εn

2ε0
}, the contribution to the energy only comes from the

interfacial region {x ∈ Ω : |xd| ≤ εn
2ε0
}, where we have

− ε2
n∆wn(x) + wn(x) = −ε2

0∆w

(
ε0x

εn

)
+ w

(
ε0x

εn

)
.

Setting, as before, t := ε0xd
εn

we have for n sufficiently large

Fεn [wn; Ω] =

∫
{x∈Ω: |xd|< εn

2ε0
}

{
1

εn
W
(
−ε2

0∆w + w
)
− ε2

0

εn
q |∇w|2 + (1− 2q)

ε4
0

εn
|∆w|2+

+ (1− q) ε
6
0

εn
|∇∆w|2

}(
ε0x

εn

)
dx

=

∫
Ω′

∫ 1
2

− 1
2

{
1

ε0
W
(
−ε2

0∆w + w
)
− qε0 |∇w|2 +

+ (1− 2q)ε3
0|∆w|2 + (1− q)ε5

0|∇∆w|2
}(

ε0x
′

εn
, t

)
dt dx′.

Since w is periodic in the first d− 1 arguments, also the functions

x′ 7→
∫ 1

2

− 1
2

W (−ε2
0∆w + w)(x′, t) dt, x′ 7→

∫ 1
2

− 1
2

|∇w|2 (x′, t) dt,

x′ 7→
∫ 1

2

1
2

|∆w|2(x′, t) dt, and x′ 7→
∫ 1

2

− 1
2

|∇∆w|2(x′, t) dt

are periodic and locally in L1, where for the integral involving W we used the quadratic growth
assumption from Hypotheses 2.2. Thus, by the Riemann-Lebesgue Lemma and the choice of w (see
(6.1)),

lim
n→∞

Fεn [wn; Ω] = Ld−1(Ω′)

∫
Q

{ 1

ε0
W (−ε2

0∆w + w)− qε0 |∇w|2 + (1− 2q)ε3
0|∆w|2

+ (1− q)ε5
0|∇∆w|2

}
dx ≤ (md + ρ)PerΩ({v = 1}), (6.3)
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Ω1 2Ω
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Ω

δ
4

U δ
4

Figure 3: Construction in Step 2.

and the limsup inequality follows since ρ > 0 is arbitrarily small.

Step 2. Consider now the case in which

v = χE − χΩ\E ,

where PerΩ(E) <∞ and E has the form E = P ∩ Ω with P a polyhedron, i.e., there is L ∈ N such
that ∂P = H1 ∪ H2 ∪ · · · ∪ HL ∪ F with pairwise disjoint relatively open convex polyhedra Hi of
dimension d − 1, Hi ⊂ {x ∈ Rd : (x − xi) · νi = 0} for some xi ∈ Rd and νi ∈ Sd−1, i = 1, . . . , L,
and F is the union of a finite number of convex polyhedra of dimension d − 2. Finally, we assume
that E meets the boundary of Ω transversally, more precisely

∂Ω ∩ ∂P is the union of a finite number of C1 manifolds of dimension d− 2. (6.4)

We extend v to Rd by setting
v(x) := χP (x)− χRd\P (x),

and define
ϕn := v ∗Ψεn (6.5)

with mollifiers Ψεn (see (4.6)). For fixed (small) 0 < δ < 1 set

Uδ := {x ∈ Ω : dist(x, ∂Ω ∪ F ) ≤ δ}

and let H ′i be relatively open subsets of Hi with a d− 2 dimensional C∞ boundary such that{
x ∈ Hi ∩ Ω : dist(x, ∂Ω ∪ F ) ≥ δ

2

}
⊂ H ′i ⊂ H ′i ⊂ Hi ∩ Ω

and H ′i ∩ U δ
4

= ∅. Fix 0 < η < δ/2, and set for every i = 1, 2, . . . , L,

Ωi := {x+ tνi : x ∈ H ′i, |t| < η} .

Taking η sufficiently small we may assume, without loss of generality, that Ω1, . . . ,ΩL are pairwise
disjoint and

Ωi ∩ U δ
4

= ∅. (6.6)

21



We apply Step 1 to every Ωi to obtain a sequence {win} ⊂ W 3,2(Ωi) such that win → v in L2(Ωi),
and limn→∞ Fεn [win; Ωi] ≤ (md + ρ)Hd−1(Hi ∩ Ωi). For every δ > 0 choose cut-off functions
ηδ ∈ C∞c (Rd; [0, 1]) such that

ηδ = 0 in Uδ, ηδ = 1 in Rd \ U2δ, ‖∇kηδ‖L∞(Rd) ≤ C/δk for k = 1, 2, 3. (6.7)

Define Vn by

Vn :=

{
ηδw

i
n + (1− ηδ)ϕn in Ωi, i = 1, . . . , L,

η δ
8
ϕn in A := Ω \ (Ω1 ∪ · · · ∪ ΩL).

(6.8)

We claim that Vn ∈W 3,2(Ω) and satisfies Neumann boundary conditions on ∂Ω. Indeed, considering
Vn in the neighborhood of ∂A, we observe that by construction of win in Step 1

win(x) = v(x) for x ∈ Ωi and dist(x,Hi) ≥
εn
2ε0

.

Hence, from (6.5), for sufficiently large n we have win = ϕn in a neighborhood of {x ∈ ∂Ωi :
dist(x,Hi) = η} (the part of ∂Ωi parallel to Hi), and by (6.6) in that region both ηδw

i
n + (1− ηδ)ϕn

and η δ
8
ϕn are equal to ϕn. In addition, {x ∈ ∂Ωi : dist(x,Hi) < η} (the part of ∂Ωi orthogonal

to Hi) is contained in Uδ\Uδ/4 and both ηδw
i
n + (1− ηδ)ϕn and η δ

8
ϕn are equal to ϕn also in that

region. Finally, Vn is identically zero in a neighborhood of U δ
8

so the Neumann boundary conditions

are satisfied.
Furthermore, limn→∞ ||Vn − v||L2(Ω) ≤ Cδ, since win → v in L2(Ωi) and ϕn → v in L2(Ω\U δ

8
).

It remains to estimate the energies. By (6.5), Vn is possibly different from ±1 only on U δ
4

and on

Rn := {x ∈ Ω : dist(x, ∂P ) ≤ max{εn/(2ε0), εn}} .

Using the notation from (6.8), Vn = η δ
8
ϕn on U δ

4
, Vn = ϕn on A\U δ

4
, A ∩Rn ⊂ Uδ and Hd−1(∂P ∩

Uδ) ≤ Cδ. Thus, for n sufficiently large,

Fεn [Vn;A] ≤
∣∣∣Fεn [η δ

8
ϕn;U δ

4
]
∣∣∣+

∫
A∩Rn

( 1

εn
W (−ε2

n∆ϕn + ϕn) + εn|q||∇ϕn|2 + (1− 2q)ε3
n|∆ϕn|2

+ (1− q)ε5
n|∇∆ϕn|2

)
dx ≤ Cδ,

where we also used (4.7) and (6.7) to bound the derivatives of ϕn and η δ
8
, respectively. Next we

estimate the energy in Ωi. In Ωi ∩ Uδ, Vn = ϕn and using (4.7) yields

Fεn [Vn; Ωi ∩ Uδ] = Fεn [Vn; Ωi ∩ Uδ ∩Rn] ≤ Cδ. (6.9)

To obtain estimates inside T := Ωi ∩ (U2δ\Uδ) we first observe that

∂xiVn = win∂xiηδ + ηδ∂xiw
i
n − ϕn∂xiηδ + (1− ηδ)∂xiϕn,

and arguing as in (6.3),

lim
n→∞

ε2k−1
n ||∇kwin||2L2(Ωi∩U2δ)

≤ C(ρ)Hd−1(Hi ∩ U2δ) ≤ C(ρ) δ for k = 0, . . . 3, (6.10)

where we also used the fact that w ∈ W 3,∞
loc (Rd). Combined with the bounds on ϕn from (4.7), it

follows that,∫
T

εn|∇Vn|2dx =

∫
T∩Rn

εn|∇Vn|2dx ≤ C(ρ)
(εn
δ2
||win||2L2(T ) + εn||∇win||2L2(T ) +

εn
δ2
||ϕn||2L2(T )+

+ εn||∇ϕn||2L2(T )

)
≤ C(ρ)

(
δ +

εn
δ2

)
.
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Analogous calculations for the higher derivatives of Vn, yield the bound

Fεn [Vn; Ωi ∩ (U2δ \ Uδ)] ≤ C(ρ) δ (6.11)

for n sufficiently large. Next, by (6.8), (6.10) and (4.7), we have

lim
n→∞

∫
Ωi∩U2δ

εn|∇Vn|2 dx ≤ C(ρ) δ,

and hence∫
Ωi\U2δ

{
1

εn
W (Vn)− εnq|∇Vn|2 + (1− 2q)ε3

n|∆Vn|2 + (1− q)ε5
n|∇∆Vn|2

}
dx

≤
∫

Ωi

{
1

εn
W (Vn)− εnq|∇Vn|2 + (1− 2q)ε3

n|∆Vn|2 + (1− q)ε5
n|∇∆Vn|2

}
dx+ C(ρ) δ.

(6.12)

Combining (6.3), (6.9), (6.11), and (6.12), we obtain for δ sufficiently small a sequence Vn ∈W 3,2(Ω),
with Neumann boundary conditions on ∂Ω, satisfying

lim
n→∞

||Vn − v||L2(Ω) ≤ ρ

and

lim sup
n→∞

Fεn [Vn] = lim sup
n→∞

Fεn [Vn; Ω] ≤ lim sup
n→∞

L∑
i=1

Fεn [Vn; Ωi] + lim sup
n→∞

Fεn [Vn;A]

≤ (md + ρ)

L∑
i=1

Hd−1(Ωi ∩Hi) + C(ρ) δ

≤ (md + ρ)Hd−1(Ω ∩ ∂P ) + ρ,

and the Limsup Inequality (2.6) follows by a standard diagonalizing argument.

Step 3. Lastly we consider the case in which the target function is

v = χE − χΩ\E ,

where E is an arbitrary set of finite perimeter in Ω. Since Ω is bounded and has C2 boundary, we
can approximate E with smooth sets (see Remark 3.43 in [1]) and then with polyhedral sets. In
particular, we may find sets Ek ⊂ Ω of the form Ek = Pk∩Ω, where Pk are polyhedral sets satisfying
(6.4) such that Hd−1(∂Ek ∩ ∂Ω) = 0, χEk → χE in L2(Ω), and PerΩ(Ek) → PerΩ(E) as k → +∞.
We apply Step 2 to each function vk := χEk − χΩ\Ek to find a sequence

V kn → vk

satisfying
lim sup
n→∞

Fεn [V kn ; Ω] ≤ mdHd−1(Ek ∩ ∂Pk)

and
lim sup
k→∞

lim sup
n→∞

Fεn [V kn ] ≤ lim sup
k→∞

(
mdHd−1(Ek ∩ ∂Pk)

)
= mdPerΩ(E).

The general result now follows by a diagonalizing argument.
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Appendix

We derive the energy functional (1.3) from (1.2). To eliminate the dependence on h we assume that
φ and h satisfy the Euler-Lagrange equation

δE
δh

(φ, h) = 0. (6.13)

After changing variables, x := x̄/L, u(x) := φ(x̄) in (1.2) we have

1

Ld
E [u, h] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2 +

σ

2L2
|∇h|2 +

κ

2L4
[∆h]2 +

Λ

L2
u∆h

)
dx, (6.14)

where Ω := {x/L : x ∈ D}. Assuming natural boundary conditions, the Euler-Lagrange equation
(6.13) takes the form {

∆
(
κ
L4 ∆h− σ

L2h+ Λ
L2u

)
= 0 in Ω,

∂h
∂n = 0, ∂∆h

∂n = 0, ∂u∂n = 0, ∂∆u
∂n = 0 on ∂Ω.

(6.15)

Consider the Fourier Series expansions of h and u,

h =

∞∑
i=0

hiψi, u =

∞∑
i=0

uiψi,

where ψi are the eigenfunctions of −∆ on H1(Ω) with Neumann boundary conditions. Denote the
corresponding nonnegative eigenvalues by λ2

i . Then, since ψ0 = const (due to Neumann boundary
conditions), we have

∆h = −
∞∑
i=1

λ2
ihiψi, and ∆2h =

∞∑
i=1

λ4
ihiψi,

and thus by (6.15)
∞∑
i=1

λ2
i

( κ
L2
λ2
ihi + σhi − Λui

)
ψi = 0.

Taking the L2 inner product with ψj , and noting that 〈ψi, ψj〉L2(Ω) = δij , we obtain

λ2
j

( κ
L2
λ2
jhj + σhj − Λuj

)
= 0 for j = 1, . . . ,∞.

Solving for hj yields

hj =
Λuj

σ + (κ/L2)λ2
j

for j = 1, . . . ,∞,

and

h(x) =

∞∑
i=0

hiψi(x) = const+

∞∑
i=1

hiψi(x) = const+

∞∑
i=1

Λuiψi(x)

σ + (κ/L2)λ2
i

.

Using this expansion and ∆ψi = −λ2
iψi gives

−∆h(x) =

∞∑
i=1

Λλ2
iuiψi(x)

σ + (κ/L2)λ2
i

. (6.16)

In addition, multiplying (6.15) by h and integrating by parts, we obtain∫
Ω

(
(κ/L2)(∆h)2 + σ|∇h|2 + Λu∆h

)
dx = 0,
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and consequently
1

2

∫
Ω

(
(κ/L2)(∆h)2 + σ|∇h|2

)
dx = −1

2

∫
Ω

Λu∆h dx. (6.17)

Substituting (6.17) into (6.14) yields

1

Ld
E [u, h] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2 +

Λ

2L2
u∆h

)
dx. (6.18)

To eliminate the dependence on h observe that since 〈ψi, ψj〉L2(Ω) = δij , (6.16) implies that

∫
Ω

u∆h dx = −
∫

Ω

( ∞∑
i=0

uiψi(x)

) ∞∑
j=1

Λλ2
jujψj(x)

σ + (κ/L2)λ2
j

 dx = −
∞∑
i=1

Λλ2
iu

2
i

σ + (κ/L2)λ2
i

.

Substituting this expression into the energy functional (6.18) yields

1

Ld
E [u] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− 1

2L2

∞∑
i=1

Λ2λ2
i

σ + (κ/L2)λ2
i

u2
i

=

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− Λ2

2κ

∞∑
i=1

(
(κ/L2)λ2

i + σ − σ
σ + (κ/L2)λ2

i

)
u2
i

=

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− Λ2

2κ

∞∑
i=1

u2
i +

Λ2

2κ

∞∑
i=1

(
σ

σ + (κ/L2)λ2
i

)
u2
i . (6.19)

At this point one can use a long-wavelength approximation as suggested for example in [22] resulting
in an approximation energy

1

Ld
Eap[u] =

∫
Ω

(
f(u) +

1

2L2

(
b− Λ2

σ

)
|∇u|2 +

Λ2κ

2L4σ2
(∆u)2

)
dx, (6.20)

which was studied in [7, 8]. Returning to the full energy in (6.19), we have

1

Ld
E [u] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2 − Λ2

2κ
u2

)
dx+

Λ2L2σ

2κ2

∞∑
i=1

1
L2σ
κ + λ2

i

u2
i

=

∫
Ω

(
f(u) +

b

2L2
|∇u|2 − Λ2

2κ
u2 +

Λ2L2σ

2κ2
u

(
L2σ

κ
−∆

)−1

u

)
dx

=

∫
Ω

(
f(u)− Λ2

2κ
u2 +

b

2L2
|∇u|2 +

Λ2

2κ
u
(
1− κ

L2σ
∆
)−1

u

)
dx

=
Λ2

2κ

∫
Ω

(
2κ

Λ2
f(u)− u2 +

κb

L2Λ2
|∇u|2 + u

(
1− κ

L2σ
∆
)−1

u

)
dx.

Setting

ε :=

√
κ

L2σ
, q := 1− bσ

Λ2
, W (u) :=

2κ

Λ2
f(u), and F∗ε :=

1

ε

2κ

Λ2Ld
E ,

yields

F∗ε [u] :=
1

ε

∫
Ω

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx.
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