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Abstract

We explain how spectrally stable vortices of the Nonlinear Schrödinger Equation in the plane

can be orbitally unstable. This relates to the nonlinear Fermi golden rule, a mechanism which

exploits the nonlinear interaction between discrete and continuous modes of the NLS.

1 Introduction

In this paper we consider the nonlinear Schrödinger equation (NLS):

iut = −∆u+ V u+ β(|u|2)u, u(0, x) = u0(x), (t, x) ∈ R× R
d, (1.1)

with V a real valued Schwartz function. We are interested in bound states, which are solutions of
(1.1) of the form u(t, x) = eiωtφω(x) with ω ∈ R. When φω is real valued and of fixed sign then we
call eiωtφω a ground state. In all other cases we call it an excited state. In the d = 2 case on which
we focus in this paper, and with V (x) = V (|x|), an important class of excited states, which we call
vortices, involves solutions of the form

u(t, x) = eiωtφω(x) with φω(x) = eim arg(x)ψω(|x|) with ψω : R2 → R, (1.2)

with φω(x) smooth and rapidly decreasing to 0 at infinity and m ≥ 1. In the sequel, we will always
assume that there is a family of bound states φω for ω in some open interval O ⊆ R+ = (0,∞) (see
(H4) in section 2). We will study the following classical notion of stability, [31, 81].

Definition 1.1 (Orbital stability). A bound state eiωtφω of (1.1) is orbitally stable if

∀ ǫ > 0, ∃ δ > 0 s.t. ‖φω − u0‖H1 < δ ⇒ sup
t>0

inf
s∈R

‖eisφω − u(t)‖H1 < ǫ

where u is the solution of (1.1) with u(0) = u0.

The orbital stability of bound states has been extensively studied, mainly using two tools:
Lyapunov functions; linearized operators.

It is well known that (1.1) conserves the energy

E(u) :=
1

2

∫

R2

|∇u|2 + V |u|2 +B(|u|2) dx (1.3)
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where B(0) = 0 and B′(s) = β(s), and the mass

Q(u) := 2−1

∫

R2

|u|2dx (we will set q(ω) = Q(φω) and q
′(ω) =

d

dω
q(ω)). (1.4)

Using these conservations laws, if φω is a strict local minimizer up to constant phase eiθ of E
under the constraint ‖u‖L2 = ‖φω‖L2, then it has been shown that eiωtφω is orbitally stable, see
[8, 31, 32, 80]. We are interested on standing waves not covered by this classical result. We will use
the following notion.

Definition 1.2. A bound state eiωtφω is not trapped by the energy if for any ε > 0 there exists an
uε satisfying ‖φω − uε‖H1 < ε, ‖uε‖L2 = ‖φω‖L2 and E(uε) < E(φω).

The results [8, 31, 32, 80] do not cover the case when φω is a local but not strict minimizer.
They also leave unsolved the case when φω is not trapped by the energy, which we will discuss here.

In order to study the stability, it is natural to consider the linearized operator Lω of φω (see
(2.7) for the explicit form). Indeed, if Lω has unstable modes (spectrum with positive real part),
then eiωtφω is orbitally unstable. (Even though this may look trivial, it is not, and it was proved
rather recently first in 2D by [56] and later in general by [28]). Classical papers proving orbital
instability of solitary waves by first proving their spectral instability are [30, 32, 37, 38].

In the case of ground states, except for the degenerate cases when q′(ω) = 0, only the above
two cases (trapped by the energy or linearly unstable) occur. That is, if q′(ω) < 0 then Lω has
an unstable mode while if q′(ω) > 0 it is trapped by the energy, [31, 32]. For the degenerate case
q′(ω) = 0, see [9, 49, 61].

Excited state are usually not trapped by the energy and furthermore there are cases when
Lω has no unstable modes. For example, if −∆ + V has n simple negative eigenvalues {e1 <
e2 < · · · < en(< 0)} then, if 2ej < e1 for some j ≥ 2, the excited states bifurcating form ej are
not trapped by the energy and are spectrally stable. Even if spectrally stable they are orbitally
unstable, [18]. Prior to [18] no systematic proof of this orbital instability was available. The series
[26, 27, 34, 60, 71, 72, 73, 74, 75, 76], which stemmed from [7, 70], was able to treat only case
2e2 > e1 where, generically, excited states are spectrally unstable, see [20, 34, 60, 76].

Vortices (1.2) of (1.1) in the important pure power case β(|u|2)u = −|u|p−1u have been consid-
ered in [57, 58, 59] which have various instability results, always by proving first spectral instability.
Another important example is given by [63, 65, 77] for vortices for the cubic-quintic nonlinearity

iut = −∆u− (|u|2 − |u|4)u, u(0, x) = u0(x), (t, x) ∈ R× R
2, (1.5)

(for a review paper see also [10], for work on spinning solitons in 3D see [55]; see also [5]). [63, 77]
show numerically for some values |m| ≥ 1 the existence of a critical value ωcr such that for ω < ωcr

the vortices are spectrally unstable and for ω ≥ ωcr are spectrally stable. In the simulations in [63]
the spectrally stable vortices for ω > ωcr appear stable while in [77] for m = 3 appear to slowly
develop instabilities. This latter observation appears consistent with the more recent numerical
observations in [22, 43], in turn based on the instability theory in [14]. The theory in [14] is centered
on the notion of Krein signature, which we introduce in Lemma 2.4 (although the standard definition
is in the proof of Lemma 7.1). In this paper, we generalize [14] by using a simple idea from [18]. We
will need the following notion.

Definition 1.3 (Conditional asymptotic stability). We say that a bound state eiωtφω is conditionally
asymptotically stable if there exist constants ǫ0 > 0 and C0 > 0 s.t. if u ∈ C0([0,∞), H1) is a solution
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of (1.1) with supt≥0 infϑ∈R ‖u(t) − eiϑφω‖H1 < ǫ < ǫ0 then there exist ω+ ∈ O, θ ∈ C1(R;R) and
h+ ∈ H1 with ‖h+‖H1 + |ω+ − ω| ≤ C0ǫ such that

lim
t→∞

‖u(t)− eiθ(t)φω+
− eit∆h+‖H1 = 0. (1.6)

Then we have the following orbital instability result.

Theorem 1.4. Consider a bound state eiωtφω and suppose that Hypotheses (H1)–(H5) in Section 2
below are satisfied. Then if eiωtφω is not trapped by the energy and is conditionally asymptotically
stable it is also orbitally unstable.

Proof. Here the key hypothesis is (H5), i.e. q′(ω) 6= 0 and hence either q′(ω) > 0 for all ω or
q′(ω) < 0 for all ω. We prove the theorem by contradiction.
Assume that the statement is false and that there is a ω1 ∈ O s.t. the standing wave eiω1tφω1

is
orbitally stable. Since eiω1tφω1

is not trapped by the energy there are initial data u0 arbitrarily close
to φω1

such that E(u0) < E(φω1
) and Q(u0) = Q(φω1

). We can apply the Conditional asymptotic
stability, Definition 1.3, and conclude by the conservation of the mass that

q(ω1) = Q(u(t)) = lim
t→∞

Q(u(t)) = q(ω+) + 2−1‖h+‖2L2 ≥ q(ω+).

Similarly, by the conservation of the energy we have

E(φω1
) > E(u0) = lim

t→∞
E(u(t)) = E(φω+

) + 2−1‖∇h+‖2L2 ≥ E(φω+
). (1.7)

By ∇E(φω) = −ω∇Q(φω) we have
d
dω
E(φω) = −ωq′(ω) (recall the notation q(ω) := Q(φω) in (1.4)).

On the other hand, by (H5) we know that q′(ω) has a fixed sign. So, since ω > 0, both ω → E(φω)
and ω → q(ω) are strictly monotonic, one increasing and the other decreasing. This means that
q(ω1) ≥ q(ω+) implies that E(φω1

) ≤ E(φω+
). But this contradicts E(φω1

) > E(φω+
) in (1.7). This

contradiction shows that eiω1tφω1
is not orbitally stable for any ω1 ∈ O.

Remark 1.5. Notice that (after modifying the assumption (H4)) Theorem 1.4 holds for arbitrary
dimension and we do not require that the nonlinear bound states are vortices.

Remark 1.6. We do not claim that conditional asymptotic stability is necessary for the instability
of excited states.

Remark 1.7. For discrete NLS there are examples of bound states which are not trapped by the
energy, are orbitally stable, but are not asymptotically stable, see [50, 51].

We now start the discussion on how to apply Theorem 1.4. We first discuss a sufficient condition
for the standing waves to be not trapped by the energy. One natural way is to look at the Taylor
expansion of the energy, which is often used in the study of orbital stability. Set Sω(u) = E(u) +
ωQ(u) (notice that if Q(u) = Q(v), E(u) > E(v) is equivalent to Sω(u) > Sω(v)). Then, since e

iωtφω
is a bound state if and only if∇Sω(φω) = 0, we have Sω(φω+v) = Sω(φω)+

1
2

〈
∇2Sω(φω)v, v

〉
+o(v2).

Roughly speaking, we have one constraint Q(φω + v) = Q(φω) which may eliminate at most one
negative direction of ∇2Sω(φω). Therefore, if ∇2Sω(φω) has more than two negative eigenvalues,
φω is not trapped by the energy. Further, for the case ∇2Sω(φω) has one negative eigenvalue, the
trapping/nontrapping can be determined by the sign of q′(ω). That is, if q′(ω) > (<)0 then eiωtφω
is trapped (not trapped) by the energy.

Another viewpoint which we adopt in this paper is to study the linearized operator Lω =

J∇2Sω(φω) given in (2.7), where J =

(
0 1
−1 0

)
. Here, we have extended ∇2Sω(φω) to be a matrix
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to make it self-adjont, see section 2. Since Lω has the form J(−∆+ω)+“rapidly decaying potential”,
we see that iσe(Lω) = (−∞,−ω] ∪ [ω,∞). Here σe(Lω) is the essential spectrum of Lω. Since we
are only interested in the case that Lω is spectrally stable we assume σ(Lω) ⊂ iR.
In general no eigenvalues are expected in the interior of the essential spectrum. References [2, 54]
have computational proofs about the absence of embedded eigenvalues when φω is a ground state
for some equations.[63] does not discuss explicitly the issue of embedded eigenvalues but they seem
to be excluded, see Remark 7.10 below for some further comments. [20] proves that in some generic
sense embedded eigenvalues do not exist because they are unstable, see also [30, 76]. The proof is
similar to the discussion of the well established instability of embedded eigenvalues in the case of
self-adjoint operators, cfr. [40]. However it is not clear whether taking for example V generic in the
cubic–quintic NLS would make Lω generic in the sense of [20]. We think that embedded eigenvalues
(with some negative Krein signature) can exist, but that they are unstable (we conjecture the non
existence of embedded eigenvalues of positive Krein signature). Hence the assumption of absence of
embedded eigenvalues seems reasonable.
Similarly, the edge of the essential spectrum is shown in [19, 78] generically to be neither an eigenvalue
nor resonance. Again, we did not check whether taking V generic makes the Lω associated to the
cubic–quintic NLS generic in that sense, although this is even more likely than for the issue of
embedded eigenvalues. In [63] there is no discussion about the edge of the essential spectrum where
the presence of a resonance or an eigenvalue would affect the computations discussed in pp. 371–372.
We think that assuming absence of eigenvalue or resonance at the edge is reasonable.
We will further assume that the kernel is spanned by Jφω and all nonzero eigenvalues (which are
assumed to be finitely many but in fact this can be proved to be the case, see the comments
under (H11) in Sect. 2) have the same algebraic and geometric dimensions which are finite (in the
presence of a nonzero imaginary eigenvalue whose two dimensions differ we would have a sort of linear
instability, see Remark 7.10 for further comments). Now, let ξ be the eigenfunction of Lω associated
to iλ with λ > 0 (for eigenfunctions of iλ with λ < 0, we have the symmetry. Thus it suffices
to consider the positive case). Then, the “energy” of ξ is

〈
∇2Sω(φω)ξ, ξ̄

〉
= Ω(Lωξ, ξ̄) = iλΩ(ξ, ξ̄),

where Ω =
〈
J−1, ·, ·

〉
(see (2.6)). It is known that we can normalize ξ s.t. Ω(ξ, ξ̄) = is for s ∈ {1,−1}.

Therefore, if s = 1, ξ have a negative energy and if s = −1, ξ have a positive energy. Now, set
n(∇2Sω(φω)) be the number of negative eigenvalues of ∇2Sω(φω). It is known that n(∇2Sω(φω))
can be represented as

n(∇2Sω(φω)) = p(q′) + 2N−
r +Ni + 2Nc,

where p(q′) = 1 if q′ > 0 and 0 if q′ < 0, Nr, Ni, Nc are the number of real, imaginary and complex
eigenvalues of Lω (See [20, 79]). In our situation, Ni = Nc = 0. Therefore, if N−

r = 0, φω will be
trapped by the energy and if N−

r ≥ 1, the φω is not trapped by the energy. Thus, by the above
discussion, the trapping/nontrapping of the energy is determined by the existence of eigenvalue of
Lω with negative energy. Here, we will give a direct proof of the nontrapping when there exists a
negative energy eigenvalue.

Proposition 1.8. Assume hypothesis (H1)–(H11) and (H14) in Section 2. Then the standing waves
are not trapped by the energy.

Proof. Here (H14) is the key hypothesis which is roughly stating that for any ω there is one eigenvalue
iλj ∈ R+ with negative Krein signature (i.e. the corresponding eigenfunction ξj satisfies Ω(ξj , ξ̄j) =
1).
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Fix ω1 ∈ O and choose α(ǫ) to satisfy Q
(
(1− α(ǫ))φω1

+ ǫ(ξj(ω1) + ξ̄j(ω1))
)
= Q(φω1

). Since
ξj(ω), ξ̄j(ω) ∈ Ng(L∗

ω1
)⊥ (see (2.9)), we see that

Q
(
(1− α(ǫ))φω1

+ ǫ(ξj(ω1) + ξ̄j(ω1))
)
= (1− α(ǫ))2Q (φω1

) + ǫ2Q
(
(ξj(ω1) + ξ̄j(ω1))

)
.

Thus, we can conclude α(ǫ) ∼ ǫ2. Consequently, we have

E
(
(1− α(ǫ))φω1

+ ǫ(ξj(ω1) + ξ̄j(ω1))
)
− E(φω1

)

= Sω1

(
(1− α(ǫ))φω1

+ ǫ(ξj(ω1) + ξ̄j(ω1))
)
− Sω1

(φω1
)

=
ǫ2

2

〈
∇2Sω1

(φω1
)
(
ξj(ω1) + ξ̄j(ω1)

)
, ξj(ω1) + ξ̄j(ω1)

〉
+ o(ε2).

Finally, since Lω1
= J∇2Sω1

(φω1
), we have

〈
∇2Sω1

(φω1
)
(
ξj(ω1) + ξ̄j(ω1)

)
, ξj(ω1) + ξ̄j(ω1)

〉
= Ω

(
Lω1

(
ξj(ω1) + ξ̄j(ω1)

)
, ξj(ω1) + ξ̄j(ω1)

)

= iλjΩ(ξj(ω1), ξ̄j(ω1))− iλjΩ(ξ̄j(ω1), ξj(ω1)) = −2λj < 0.

Therefore, we have the conclusion.

We now turn our attention to the conditional asymptotic stability. Its proof is very close to
the proof of asymptotic stability of ground states in [12, 13] and we will need assumptions for the
spectrum of Lω discussed above (i.e. absence of embedded eigenvalues, ±iω are neither eigenvalues
nor resonance, the generalized kernel is 2 dimensional, all nonzero eigenvalues have nonzero energy,
see section 2). We will consider only the 2D case.

Theorem 1.9. Assume hypothesis (H1)-(H13) in Section 2. Then, we have the conditional asymp-
totic stability.

The main example for the theory developed in this paper that we have in mind is the cubic
quintic NLS (1.5) and specifically perturbations obtained adding a radial potential V (|x|)u. As
we mentioned above, in [63] it is shown that for any m = 1, 2, 3, 4, 5 there is a critical value ωcr

such that for ω < ωcr the vortices are spectrally unstable and for ω ≥ ωcr are spectrally stable.
[63] proves numerically that the linearization Lω has an eigenvalue of negative Krein signature, i.e.
our hypothesis (H14) is satisfied. Indeed in [63] it is shown numerically that for (1.5) the spectral
instability for ω < ωcr occurs because a pair of eigenvalues on iR coalesce as ω → ω+

cr and then
for ω < ωcr form two eigenvalues which exit iR in opposite directions. This can happen only if the
eigenvalues for ω > ωcr do not have the same Krein signature. Thus for ω close to and larger than
ωcr at least one imaginary eigenvalue has negative signature. See below in Lemma 7.1 for a more
precise discussion. Our results do not apply directly to the 2D cubic quintic NLS (1.5) because of
its translation invariance. However, as we show in Section 7, when we add to (1.5) a small linear
potential, then we obtain an equation which satisfies hypothesis (H14) and which is not translation
invariant. When we take the small potential with a nondegenerate minimum at the origin, then for
ω > ωcr we obtain spectrally stable vortices. Our hypotheses (H1)–(H7) are either obvious or we
know they are true as a consequence of the numerical experiments in [63]. The hypotheses (H9)–
(H13), while probably generically true, ought to be checked numerically. We will say more later
about them, especially (H13), the most delicate and least analyzed. The conclusion that we can
draw is that, assuming that indeed (H9)–(H13) are true, then for ω close to and larger than ωcr the
vortices of appropriate perturbations of the cubic quintic NLS (1.5) are not trapped by the energy
and are conditionally asymptotically stable. And hence by Theorem 1.4 they are orbitally unstable.
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We have seen that Theorem 1.4 is a simple consequence of non trapping by energy (by Propo-
sition 1.8 a consequence of the existence of one eigenvalue of negative Krein signature) and of the
Conditional asymptotic stability. The latter follows from (H1)–(H13) by Theorem 1.9. A more
precise formulation of Theorem 1.9 is in Proposition 2.5. The Conditional asymptotic stability, like
the asymptotic stability of ground states proved in [13], is due to a mechanism of loss of energy of
discrete modes related to the Fermi golden rule (FGR) and to linear scattering of the continuous
modes.

The FGR was first introduced in [7, 67, 70] and we will discuss it shortly. But first we discuss
linear scattering, which is based on a number of results on the group etLω associated to the lin-
earization of the NLS at the vortex. The results needed here are quoted (here we focus on 2D) from
[21] and require that Lω should not have eigenvalues (and resonances) in the essential spectrum, see
hypotheses (H9)–(H10) below. The results in [21] allow to say that, for all practical purposes, the
restriction of etLω on the continuous spectrum part, behaves like eit(−∆+V ) restricted to its contin-
uous spectrum part. (H9)–(H10) are probably generically true, but nonetheless ought to be either
proved or checked numerically on any given example. The fact that we cannot treat translation (the
asymptotic stability result on moving solitons in [15] has not been proved in dimensions 1 and 2)
depends on the specific way in which scattering of continuous modes is proved. Probably there is a
simpler and more robust way to prove dispersion using virial inequalities and the theory of Martel
and Merle [52, 53]. This should require fewer hypotheses and lead to similar results. This approach
has been very successful in the context of KdV equations where it has improved the result by Pego
and Weinstein [64]. The theory is proving successful also in different contexts, see [6, 11, 29, 47, 42].
However here we follow our standard approach and we use material in [21].

We now turn to the FGR. It can be easily seen under appropriate coordinate systems. It leads
to nonlinear interactions between discrete an continuous modes of the NLS which are responsible
for energy leaking out from the discrete modes.

When we discuss the FGR we need to separate two distinct issues, as we will see with a simple
example below. One issue is the fact that certain coefficients of the system have a 2nd power
structure. This has been proved in [13]. See also [12, 18] for generalizations and references. A
separate issue, is whether or not these 2nd powers, which are non negative, are also strictly positive.
There might be cases when this is not true, but in general we expect that they are strictly positive.
We do not have the expertise to run numerical tests, but a simple model might clarify this point
(for other examples of FGR see also the survey [82]).

For (z, h) ∈ C×H1(R2,C), consider the Hamiltonian

H(z, h) = |z|2 + ‖∇h‖2L2 + |z|2z
∫

R2

G(x)h(x)dx + |z|2z
∫

R2

G(x)h(x)dx, (1.8)

where G is a C-valued Schwartz function and the symplectic form idz ∧ dz̄ + 2 〈idh, dh〉 where

〈f, g〉 = Re

∫

R2

f(x)g(x)dx =

∫

R2

(f1(x)g1(x) + f2(x)g2(x))dx for f, g : R2 → C(= R
2) . (1.9)

Then we have the Hamiltonian system

iḣ = −∆h+ |z|2zG, (1.10)

iż = z + 2|z|2
∫

R2

h(x)G(x)dx + z2
∫

R2

h(x)G(x)dx. (1.11)

The solution of the linearized equation around (0, 0) is (z, h) = (e−itz(0), eit∆h(0)). Therefore,
at the linear level, we do not see the asymptotic stability of (0, 0). In the following, we sketch
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heuristically why the equilibrium (0, 0) is asymptotically stable thanks to the FGR and scattering
of the continuous mode. First, if we assume z(t) = e−itz(0), then −|z|2zR+

−∆(1)Ḡ solves (1.10) (for

the use of R+
−∆(1) = limε→0+ R−∆(1+ iε) see the remark on p. 30 [70]) . Therefore, it is reasonable

to set
h = −|z|2zR+

−∆(1)G+ g (1.12)

and think g is a remainder. In fact (1.12) is a normal form transformation intended to eliminate
the term |z|2zG from the r.h.s. in (1.10). g satisfies an analogous equation as h, but with a higher
degree polynomial in (z, z), and so it is smaller than h (this goes back to [7, 70] )
When we substitute (1.12) in (1.11) and we ignore g, we get

iż = z − 2|z|4z
∫

R2

GR+
−∆(1)Gdx− |z|4z

∫

R2

GR−
−∆(1)Gdx.

We recall that R±
−∆(λ) = P.V.(−∆− λ)−1 ± iπδ(−∆− λ) for any λ > 0, where δ is the Dirac delta

function and P.V.x−1 is the Cauchy principal value. These can be given sense using the Fourier
transform. Multiplying by z and taking imaginary part we get

d

dt
|z|2 = −2πc|z|6 with c =

∫

R2

Gδ(−∆− 1)Gdx ≥ 0. (1.13)

We conclude that c ≥ 0 by the following formula, see ch.2 [23]:

c =
1

2

∫

|ξ|=1

|Ĝ(ξ)|2dσ(ξ). (1.14)

This is the 2nd power structure discussed above. In the context of the study of ground states of the
NLS, the analogue of this formula has been proved in [13], see formulas (6.13)–(6.14) and later in
this section.
The next step is to ask whether in (1.14) we have not only c ≥ 0 but rather the strict inequality

c > 0. Obviously, for generic G we have Ĝ
∣∣∣
|ξ|=1

6= 0, and so c > 0. Numerical computations for

random choices of G would yield convincingly this fact. The strict inequality c > 0 and the equation
of z in (1.13) yield the explicit formula

|z(t)|2 =
|z(0)|2

(1 + 4πc|z(0)|4t) 1
2

.

On the other hand, h will scatter by linear mechanisms, thanks also to the fact that the forcing
term |z|2zG in (1.10) is in L2 for time. (Combining this fact with Kato smoothing estimates such
as Lemmas A.3 and A.4, we can show h has finite Strichartz norm, which implies the scattering).
Proceeding differently and as a reference for later comments, one could integrate (1.13) and write

|z(t)|2 + 2πc

∫ t

0

|z(s)|6ds = |z(0)|2. (1.15)

Our FGR hypothesis, stated explicitly in (6.15), is the same as assuming c > 0 in model (1.8). The
analogue of c ≥ 0 instead is rigorously proved in (6.14). Numerical computations are likely to prove
(6.15) true for generic equations exactly in the same way they would show that c > 0 in the above
model.
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We now discuss the FGR, still heuristically, for a model closer to the one necessary to examine
equation (1.1). The discussion is more complicated than for model (1.8), but will yield similar
conclusions.

First of all, by a Noetherian reduction of coordinates related to the U(1) invariance of the NLS,
we will see that we reduce to an effective Hamiltonian of the form, for appropriate finite sums,

H(z, h) = −
n∑

j=1

sjλj |zj |2 + 〈(−∆+ ω +V)h, σ1h〉+
∑

|λ·(µ−ν)|>ω

zµzν〈Gµν , σ3σ1h〉, (1.16)

where: (z, h) ∈ Cn × H1(R2;C2) with h = σ1h; the inner product 〈f, g〉 =
∫

tf(x)g(x)dx is a
bilinear map; iλj ∈ iR+ are eigenvalues of the linearization Lω; λ = (λ1, ..., λn); V(x) is smooth in
x, rapidly convergent to 0 as x → ∞ and is for every x a self adjoint 2 × 2 matrix; ω > 0 and in
the application we are thinking it is in O of (H4); µ, ν are multi-index such as µ = (µ1, · · · , µn) and
zµ = zµ1

1 · · · zµn

n and similar for z̄ν; the second (finite) sum is taken for multi-indices µ, ν; Gµν(x) is
Schwartz class in x with values in 2 components vectors;

σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
; (1.17)

the number −sj is the Krein signature of each iλj , with at least one sj = 1 (for the connection
between Krein signature and number sj see in the proof of Lemma 7.1).
Here h = σ1h, the Hamiltonian H(z, h) is real valued and so Gµν = −σ1Gνµ. We consider the
symplectic form

n∑

j=1

i sj dzj ∧ dzj + i〈dh, σ3σ1dh〉.

The equations are then of the form

iḣ = Kh+
∑

|λ·(α−β)|>ω

zαzβGαβ for K = σ3(−∆+ ω +V)

isj żj = −sjλjzj +
∑

|λ·(µ−ν)|>ω

νj
zµzν

zj
〈Gµν , σ3σ1h〉.

(1.18)

Setting h = −∑
zαzβR+

K(λ · (β − α))Gαβ + g like in (1.12), substituting and ignoring g (as we did
earlier) we get

isj żj = −sjλjzj −
∑

|λ·(µ−ν)|>ω
|λ·(α−β)|>ω

νj
zµzνzαzβ

zj
〈Gµν , σ3σ1R

+
K(λ · (β − α))Gαβ〉.

As we will see, we can ignore the terms where λ · (µ− ν) 6= λ · (α− β). Furthermore, up to smaller
terms that we ignore, we have

isj żj = −sjλjzj −
∑

L>ω

∑

λ·ν=λ·α=L

νj
zαzν

zj
〈G0ν , σ3σ1R

+
K(−L)Gα0〉.

Let us write formally R+
K(−L) = P.V. 1

K+L
+ iπδ(K+L) (there is a distorted Fourier transform that
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allows to make sense of this). Then, using G0ν = −σ1Gν0,

∂t

n∑

j=1

sjλj |zj |2 = −π
∑

L>ω

LRe

〈
∑

λ·ν=L

zνG0ν , σ3σ1δ(K + L)
∑

λ·α=L

zαGα0

〉

= −π
∑

L>ω

L〈GL(z), σ3δ(K + L)GL(z)〉 where GL(z) :=
∑

λ·α=L

zαGα0.

(1.19)

Furthermore, there exists G
(0)
L (z) s.t.

〈GL(z), σ3δ(K + L)GL(z)〉 = 〈G(0)

L (z),




0︷ ︸︸ ︷
δ(−∆+ ω + L) 0

0 −δ(∆− ω + L)


G

(0)
L (z)〉.

Observe now that δ(∆− ω + L) = δ(−∆− (L− ω)) and that integrating in (1.19) we get

n∑

j=1

sjλj |zj(t)|2 − π
∑

L>ω

L

∫ t

0

〈(G(0)
L (z(s)))2, δ(−∆− (L− ω))(G

(0)
L (z(s)))2)〉ds

=

n∑

j=1

sjλj |zj(0)|2.
(1.20)

Notice that inside the integral we have a similar 2nd power structure (for each L we have a positive
quadratic form in the vector (zα)λ·α=L ) to the (1.14) we found in model (1.8). In particular, if n = 1
in (1.16), then the time integral in (1.20) will be similar (possibly with different power) to the time
integral in (1.15). So formula (1.20) is a generalization of (1.15). When the Krein signatures are

all positive, that is if sj ≡ −1, then (1.20) can be used to prove z(t)
t→∞→ 0 (and so the asymptotic

stability of the standing wave). Indeed, starting from a |z(0)| small, (1.20) is telling us that also
|z(t)| remains small. Furthermore, the fact that the integrals remain bounded as t→ ∞ can be used,
along with the fact that |ż(t)| remains bounded (which can be seen by the 2nd equation in (1.18)),

to show that z(t)
t→∞→ 0. However, to make this rigorous we need to have something analogous to

the inequality c > 0, which is exactly the meaning of (6.15).

If there are negative Krein signatures, and so some sj = 1, obviously the proof of z(t)
t→∞→ 0

breaks down since in the l.h.s. of (1.20) there are terms with different signs whose size could become
large even if the sum is small.

However, if we know that a solution u(t) remains close to a standing wave, and consequently

the corresponding |z(t)| remains small, then (1.20) allows to prove z(t)
t→∞→ 0 because we know that

the sum
∑

j sjλj |zj(t)|2 remains small. This allows to control the integrals and, with hypothesis

(H13), that is (6.15), to conclude z(t)
t→∞→ 0.

The validity of (6.15) (or of more explicit formulations of the formula) is an open question.
Proofs related to special situations are in [3, 46, 1]. It is fair to expect that numerical experiments
will confirm strict positivity for most examples, like for the c in (1.14). Some numerical verifications
are in [22, 43], but there is room for more systematic studies. These are absent in the literature not
because some intrinsic difficulty, but simply because the ideas in [13, 14] are not well known.

Having given a general overview of the main concepts and results of this paper, we list now
the content of the remaining section of the paper. In Section 2 we state hypotheses and give in
Proposition 2.5 a statement that is more detailed than Theorem 1.9. In Sections 3–6 we describe
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the proof of Proposition 2.5. The proof is basically the same of the proofs of asymptotic stability of
ground states of the NLS in [12, 13]. In Section 3, after introducing a natural system of coordinates
related to the modulation we state in Proposition 3.4 a result on Darboux coordinates, whose proof
is in [12] and which is a key step to the subsequent search of an effective Hamiltonian. We will only
give a sketch here. The expansion in these new coordinates of the functional K(u), defined in (3.14),
is again given without proof since the proof is in [12]. In Section 4 we complexify L2(R2,R2) and
consider the spectral decomposition of the linearization Lω in L2(R2,C2). This produces discrete
coordinates z = (z1, ..., zn) ∈ Cn and a continuous coordinate f ∈ L2(R2,R2). We then state the
expansion of the functionalK(u) in these coordinates, with the proofs in [12]. Next step is the search
of an effective Hamiltonian by means of a Birkhoff normal forms argument. This is accomplished in in
Proposition 4.3, which we give only a sketch of the proof, for which we refer again to [12]. Proposition

5.1 contains Strichartz and smoothing estimates satisfied by f , and the statement of z(t)
t→∞→ 0. We

then show that Proposition 5.1 implies Proposition 2.5. By an elementary continuation argument
Proposition 5.1 is in turn a consequence of Proposition 5.2, whose proof is in Section 6. In consists
first in Strichartz and smoothing estimates for f . We then split f like in (1.12) as a term dependent
only of z, which is the part of f which really affects the z’s, and a g which is smaller, does not affect
z substantially and can be treated as a reminder term. The estimates on f and on g are the same

of [21]. Finally in Section 6 we return to the Fermi golden rule, explaining why z(t)
t→∞→ 0. All the

estimates are proved in the literature, for example in [16]. Therefore, we limit ourselves at describing
the structure of the argument. However we give a sketch of the proof for some important theorem
(especially Darboux theorem and Birkhoff normal forms arguments) for reader’s convenience.

In Section 7 we discuss the cubic quintic equation (1.5). We discuss how starting from the
numerical observations in [63] it satisfies hypothesis (H14) for values ω > ωcr close to ωcr. Since our
theory does not apply to translation invariant equations like (1.5) we show that by adding a small
radial potential with a non degenerate local minimum at 0 produces spectrally stable vortices which
still satisfy (H14) because their linearization is a small perturbation of that of (1.5). At the end of
Section 7 we also discuss the status of the other of the other hypotheses for equation (1.5) perturbed
by adding a liner potential. Some of them follow from the computations in [63], the others ought to
be checked numerically and in out opinion are plausibly true.

2 Hypotheses and statements

To begin with, assume the following hypotheses.

(H1) β(0) = 0, β ∈ C∞(R,R).

(H2) There exists a p ∈ R such that for every k ≥ 0 there is a fixed Ck with

∣∣∣∣
dk

dvk
β(v2)

∣∣∣∣ ≤ Ck|v|p−k−1 if |v| ≥ 1. (2.1)

(H3) V (x) is smooth, non zero, real valued, and for any multi index α there are Cα > 0 and aα > 0
such that |∂αxV (x)| ≤ Cαe

−aα|x|.

For n ≥ 1 and K = R,C then Σn = Σn(R
2,K2) is the Banach space with

‖u‖2Σn
:=

∑

|α|≤n

(‖xαu‖2L2(R2) + ‖∂αx u‖2L2(R2)) <∞. (2.2)
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We set Σ0 = L2(R2,K2). We define Σt by ‖u‖Σt
:= ‖(1−∆+ |x|2) t

2u‖L2 <∞ for t ∈ R. For t ∈ N

the two definitions are equivalent, see [15].

(H4) There exists an open interval O ⊂ R+ such that

∆u− V u− ωu+ β(|u|2)u = 0 for x ∈ R
2, (2.3)

admits a function ω → φω which for any k is in C2(O,Σk(R
2,C)). We also assume that

φω(x) = eim arg(x)ψω(|x|) like in (1.2).

(H5) We have for q(ω) := 2−1‖φω‖2L2(R2), see (1.4),

q′(ω) 6= 0 for all ω ∈ O. (2.4)

Remark 2.1. Notice that by a standard bootstrapping argument we can relax hypothesis (H4) by
only asking that ω 7→ φω be in C1(O, H1(R2,C)).

We identify C = R
2 setting w1 = Rew and w2 = Imw for w ∈ C . In particular we identify the

imaginary unit i with −J where

J =

(
0 1
−1 0

)
, (2.5)

and the bound state φω with

(
Reφω
Imφω

)
.

We consider the strong symplectic form defined

Ω(X,Y ) = 〈J−1X,Y 〉. (2.6)

Definition 2.2. We denote by 〈 , 〉 also the bilinear form in L2(R2,C2) obtained extending (1.9).
We extend Ω to L2(R2,C2) as a bilinear form.

For F ∈ C1(U,R) with U an open subset of H1(R2,R2), the gradient ∇F (u) is defined by
〈∇F (u), X〉 = dF (u)X , with dF (u) the Frechét derivative at u. If F ∈ C2(U,R) it remains de-
fined ∇2F (u) ∈ C0(U, B(H1(R2,R2), H−1(R2,R2))) (with B(X,Y) the space of R–linear bounded
operators from a Banach space X to another a Banach space Y).

The φω are constrained critical points of E with associated Lagrange multiplier −ω so that
∇E(φω) = −ω∇Q(φω). The linearization of the NLS at φω is

Lω := J(∇2E(φω) + ω) = J(−∆+ ω + V ) + JVω with (2.7)

Vω :=

(
β(|φω |2) + 2β′(|φω |2)(Re φω)2 β′(|φω |2)(Re φω)(Im φω)
β′(|φω |2)(Re φω)(Im φω) β(|φω |2) + 2β′(|φω |2)(Im φω)

2

)
.

Since there is a natural identification L2(R2,C2) = L2(R2,R2)⊗RC andH2(R2,C2) = H2(R2,R2)⊗R

C, the operator Lω extends naturally in a C linear operator in L2(R2,C2) with domain H2(R2,C2)
simply starting from formulas Lω(v ⊗R z) = (Lωv)⊗R z.

Starting from v ⊗R z := v⊗R z a complex conjugation can be defined in L2(R2,R2)⊗RC, which
should not be confused with the complex conjugation in the initial L2(R2,C). Using this complex
conjugation we consider in L2(R2,C) the hermitian form 〈f, g〉, where we recall that 〈 , 〉. is a
bilinear form.
Notice that if Lωξ = zξ with z ∈ C, then applying this complex conjugation we obtain Lωξ = zξ.
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Notice also that as operators in L2(R2,R2) we have JLω = −L∗
ωJ and LωJ = −JL∗

ω. This extends
also for the operators in L2(R2,C2). From this we conclude that σ(Lω) is symmetric with respect
to the coordinate axes.

We consider only standing waves which are spectrally stable. Specifically, we will assume

(H6) σ(Lω) ⊂ iR for all ω ∈ O.

Since (H4) implies that φω(x) is exponentially decreasing to 0 as x → ∞, we know that always
for the essential spectrum we have iσe(Lω) = (−∞,−ω] ∪ [ω,∞). Hence (H6) is all about the set
of eigenvalues σp(Lω). We want our φω’s to be also linearly stable. This is somewhat ambiguous
as in principle it should mean that ‖etLω‖L2→L2 is bounded, which is never true since Lω is not
skew–adjoint and has a nontrivial Jordan block at 0. By linear stability we mean (H6) and the
following two additional hypotheses.

(H7) For Ng(L) := ∪∞
j=1 ker(L

j) we have

kerLω = Span{Jφω} and Ng(Lω) = Span{Jφω, ∂ωφω}. (2.8)

(H8) For any eigenvalue e ∈ σp(Lω)\{0} the algebraic and geometric dimensions coincide.

Notice that Ng(Lω) for (1.5) has been computed in [63]. For what happens when a potential is
added to (1.5) breaking the translation invariance see Lemma 7.4.

We assume the following hypotheses.

(H9) There are no eigenvalues of Lω contained in σe(Lω).

(H10) The points ±iω are neither eigenvalues not resonances of Lω, i.e. if LωF = ±iωF in a
distributional sense for an F ∈ L∞(R2), then F = 0.

As we mentioned in the introductions oth conditions appear to be generically true.
We have the symmetry JLω = −L∗

ωJ . Thus, (2.8) implies

Ng(L∗
ω) = Span{φω, J−1∂ωφω}. (2.9)

We have the following beginning of Jordan blocks decomposition, where we use the hermitian from
〈f, g〉 to define the orthogonal spaces,

L2(R2,C2) = Ng(Lω)⊕N⊥
g (L∗

ω) . (2.10)

[21], as consequence of [41], proves that ‖etLω |N⊥
g (L∗

ω)‖L2→L2 is bounded under (H6)–(H10). Appro-

priate dispersive and Strichatz estimates can be proved for the restriction etLω

∣∣
L2

c(ω) for the space
L2
c(ω), see Lemma 2.3 below.

We assume existence of non zero eigenvalues.

(H11) For any ω ∈ O there is a number n ≥ 1 and positive numbers 0 < λ1 ≤ λ2 ≤ ... ≤ λn such that
σp(Lω) consists exactly of the numbers ±ej and 0, where we set ej(ω) := iλj(ω). We assume
that there are fixed integers n0 = 0 < n1 < ... < nl0 = n such that λj = λi exactly for i and j
both in (nl,nl+1] for some l ≤ l0. In this case dimker(Lω − iλj(ω)) = nl+1 − nl. We denote
by Nj ∈ N the number such that Nj + 1 = inf{n ∈ N : niλj ∈ σe(Lω)}. We set N = supj Nj .
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Notice that in (H11) we do not ask any more uniformity with respect to ω, as in [13, 15, 16, 17].
We remark that the fact that the sum of all the algebraic dimensions of the eigenvalues of Lω is
finite can be proved from (H10) and from the fact that each φω(x) is in fact not only a Schwartz
function in S(R2,C) but converges exponentially to 0 as x → ∞, see [35]. The proof is standard,
is similar to an argument in p.305 [66] and involves extending the resolvent beyond the resolvent
set as a meromorphic function. Since we are in dimension 2, the discussion of what happens near
±iω is more complicated than the 3D argument near 0 in [66], but nonetheless an accumulation of
eigenvalues near ±iω can be excluded using ±iω.
The following is a rather standard non–degeneracy hypothesis in the context of normal forms argu-
ments.

(H12) For distinct λj1 < ... < λjk and µ ∈ Z
k with |µ| ≤ 2N+ 3, then

µ1λj1 + · · ·+ µkλjk = 0 ⇐⇒ µ = 0 .

It is plausible that (H12) is generically true.
Next we assume the Fermi golden rule which we will state explicitly later and on which we commented
at length in the Introduction.

(H13) The Fermi golden rule Hypothesis (H13) in Section 6, see (6.15), holds.

So far the hypotheses (H1)–(H13) are similar to the analogous ones in [13]. In [13] though
the main result is that the standing waves are (asymptotically) stable, while here we want to prove
instability, that is the opposite. So we need an hypothesis which will generate orbital instability. To
obtain this hypothesis we consider the signature, or Krein signature, see [44, 45].

Recall the extensions of 〈 , 〉 and Ω in L2(R2,C2) made in Def. 2.2. Recall that σp(Lω) =
σp(L∗

ω). By general argument we have the following result.

Lemma 2.3. The following spectral decomposition remains determined:

L2(R2,C2) = L2
d(Lω)⊕ L2

c(Lω) where L
2
c(ω) = (L2

d(L∗
ω))

⊥ and for L = Lω,Lω∗ (2.11)

L2
d(L) := Ng(L)⊕ L̃2

d(L) with L̃
2
d(L) := ⊕e∈σp(Lω)\{0} ker(L− e).

We denote by Pc(ω) the projection on L2
c(ω) associated to (2.11).

The form Ω remains symplectic also in L̃2
d(Lω). The proof of the following lemma is elementary,

see for example Lemma 5.2 [12].

Lemma 2.4. For any ω ∈ O and corresponding n in (H11) there are functions ξj(ω) ∈ Σk for any
k and j = 1, ...,n such that the following facts hold.

(1) ξj(ω) ∈ ker(Lω − iλj(ω)) for all j.

(2) Ω(ξj(ω), ξk(ω)) = 0 for all j and k and Ω(ξj(ω), ξk(ω)) = isjδjk with sj ∈ {1,−1}.

In the case of ground states, that is when φω(x) = ψω(|x|) with ψω(|x|) > 0 and m = 0, then
sj ≡ −1, see Lemma 2.7 [17]. Here, where m 6= 0, we assume instead what follows.

(H14) There exists at least one j s.t. sj = 1.

We have already discussed, and we will say more in Section 7, that it has been shown numerically
that this hypothesis occurs for spectrally stable vortices of the cubic–quintic NLS (1.5).

Theorem 1.9 is a consequence of the following proposition, which is a consequence of [12, 13,
16, 21].
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Proposition 2.5. Let ω1 ∈ O and assume (H1)–(H13). Then there exist constants ǫ0 > 0 and C0

s.t. if u ∈ C0([0,∞), H1) is a solution of (1.1) with supt≥0 infϑ∈R ‖u(t)− eiϑφω1
‖H1 < ǫ < ǫ0 then

there exist ω+ ∈ O, θ ∈ C1(R;R) and h+ ∈ H1 with ‖h+‖H1 + |ω+ − ω1| ≤ C0ǫ such that

lim
t→∞

‖u(t)− eiθ(t)φω+
− eit∆h+‖H1 = 0. (2.12)

It is possible to write u(t, x) = eiθ(t)φω(t) +A(t, x) + ũ(t, x) with |A(t, x)| ≤ CN (t)〈x〉−N for any N ,
with limt→∞ CN (t) = 0, with limt→∞ ω(t) = ω+, and such that for any admissible pair (q, p), i.e.

1/q + 1/p = 1/2 , q > 2, (2.13)

we have
‖ũ‖Lq([0,∞),W 1,p) ≤ C0ǫ. (2.14)

From Section 3 to Section 6 we focus on Proposition 2.5. There are various steps. We aim at
showing that there exists an effective Hamiltonian of the form (1.16). This has to be found through
a Birkhoff normal forms argument, see Theorem 11 [39]. In order to initiate the process we need to
to find and appropriate system of Darboux coordinates.

3 Modulation and Darboux coordinates

Asymptotic (or conditional asymptotic) stability arguments require traditionally, since [69], the
choice of appropriatemodulation coordinates. Indeed, since we are discussing the stability of vortices,
it is natural to express a solution u(t) which is close to a vortex as a sum of a vortex plus an error and
to frame stability in terms of what happens to the error. This and more is what modulation aims to
do. The first step to define precisely this vaguely stated aim is the following standard Modulation
Lemma.

Lemma 3.1 (Modulation Lemma). Fix n ∈ Z, ω1 ∈ O and Ψ1 = e−Jϑ1φω1
, where O is given

in (H4) and J is given in (2.5). Then there exists a neighborhood Un of Ψ1 in Σ−n(R
2,R2) and

functions ω ∈ C∞(Un,O) and ϑ ∈ C∞(Un,R) s.t. ω(Ψ1) = ω1 and ϑ(Ψ1) = ϑ1 and s.t. ∀u ∈ Un

u = e−Jϑ(φω +R) and R ∈ N⊥
g (L∗

ω). (3.1)

We give a sketch of the proof. See also Lemma 2.4 [12] or Lemma 2.2 [16] for a detailed proof.

Proof. It suffices to apply the implicit function Theorem to

F1(ϑ, ω, u) =

( 〈
eJϑu− φω , φω

〉
〈
eJϑu− φω , J

−1∂ωφω
〉
)
.

∂F1

∂(ϑ,ω)

∣∣∣
(ϑ,ω,u)=(ϑ,ω1,e−Jϑφω1

)
will be invertible because of (H5).

The above Modulation Lemma is the starting point to find appropriate coordinates in the
neighborhood of Ψ1 in H1(R2,C). Solutions u(t) starting close to Ψ1 will admit a time dependent
decomposition (3.1). If u(t) stays close to the orbit of Ψ1 for all time and scatters to a vortex, this

will be equivalent at showing that R(t) scatters to 0 as t→ ∞ and ω(t)
t→+∞→ ω+ for some ω+ ∈ O.

This will be proved working on the parameters in the r.h.s. of (3.1).
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Equation (1.1) can be expressed as u̇ = J∇E(u). The following discussion is standard, and is only
sketched in order to give an overview of the use of the parameters (ϑ, ω,R). By substituting the
r.h.s. of (3.1) and using ∇E(φω) = −ωφω we obtain after standard computations

(ω − ϑ̇)Jφω + ω̇∂ωφω + Ṙ = LωR+N(R)− (ω − ϑ̇)JR, (3.2)

where N(R) contains terms which are quadratic or higher order for R small. Denote by PNg
(ω) =

PNg(Lω) the projection on Ng(Lω) related to (2.10). Because 〈φω, ∂ωφω〉 = q′(ω), we have

PNg
(ω)X = −(q′(ω))−1 (Ω(X, ∂ωφω)Jφω +Ω(Jφω, X)∂ωφω) , ∀X ∈ S ′(R2,C2). (3.3)

Applying the projection
P (ω) := 1− PNg

(ω). (3.4)

to (3.2) we obtain for R the following equation

Ṙ = LωR+ P (ω)N(R)− (ω − ϑ̇)P (ω)JR. (3.5)

Since, as is well known, the term (ω− ϑ̇) is higher order in R, we can think of (3.5) as a perturbation
of Ṙ = LωR. It is natural now to look at the rest of the spectrum of Lω . The main difficulty is to
show that the discrete components of R associated to the point spectrum of Lω , which at a linear
level want to oscillate like the e−itz(0) component of the linearization of (1.10)–(1.11), will lose
their energy because of some friction originating from the nonlinear interaction with the continuous
components of R. This effect will be captured by an argument similar to the Fermi golden rule
discussed in the Introduction. For that argument to work we need to find an appropriate system of
coordinates.

Lemma 3.1 does not provide coordinates. We co back to the projection PNg
(ω). We have

Ω(PNg
(ω)X,Y ) = Ω(X,PNg

(ω)Y ). By (H4)–(H5) and (2.8) for S(R2,K2) = ∩k≥0Σk(R
2,K2) the

space of Schwartz functions and for S ′(R2,K2) = ∪k≤0Σk(R
2,K2) the space of tempered distribu-

tions, we have
PNg

(ω) ∈ C∞(O, B(S ′(R2,K2),S(R2,K2))) for K = R,C. (3.6)

For P (ω) defined as in (3.4) we have ω → P (ω)P (ω1) ∈ C∞(O, B(Σk,Σk)) for any k. By (H4) we

have P (ω)
ω→ω1→ P (ω1) in the operator topology of B(Σk,Σk). Thus, writing

P (ω)P (ω1) = (1 + (P (ω)− P (ω1)))P (ω1),

we see that there exists an a > 0 such that if |ω − ω1| < a the map P (ω)P (ω1) restricts into an
isomorphism from N⊥

g (L∗
ω1
) ∩Xk to N⊥

g (L∗
ω) ∩Xk for any k ≥ −n with Xk equal either to Hk or

to Σk. Hence for k ≥ −n the map

R× {ω : |ω − ω1| < a} × (N⊥
g (L∗

ω1
) ∩Xk) → Xk,

(ϑ, ω, r) → u = e−Jϑ(φω + P (ω)r),
(3.7)

is for ‖r‖Xk
< a a local C∞ diffeomorphism in the image. Therefore, (ϑ, ω, r) in (3.7) provides an

initial system of independent coordinates.
If we consider the function Q = Q(u), the map (ϑ, ω, r) → (ϑ,Q, r) is a local diffeomorphism

because of the assumption (H5). Indeed, applying implicit function theorem to

F2(Q, ρ, r, ω) = Q(φω − PNg
(ω)r) + ρ+

〈
φω − PNg

(ω)r, r
〉
−Q, (3.8)
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there exists ω(Q, ρ, r) which is a smooth function defined in the neighborhood of (Q(φω0
), 0, 0) ∈

R×R×Σ−n. Notice that F2(Q,Q(r), r, ω) = Q(φω+P (ω)r)−Q. We have put an auxiliary variable

ρ because if we directly put ω(Q, r) to be the implicit function of F̃2 = Q(φω + P (ω)r) − Q, then
we will only able to define ω in the neighborhood of (Q(φω0

), 0) in R×L2. Differentiating, (3.8) by
Q, ρ, r, we have

∂Qω = −∂ρω = A−1, (3.9)

〈∇rω,X〉 = A−1
(〈
P (ω)r, PNg

(ω)X
〉
+
〈
PNg

(ω)r,X
〉)
, (3.10)

where A = 〈φω + P (ω)r, ∂ωφω + ∂ωP (ω)r〉.
We now expand Ω by using the coordinates (ϑ,Q, r). Notice that

X = duX = ∂ϑuXθ + ∂QuXQ + 〈∇ru,Xr〉 ,

where Xϑ = dϑX,XQ = dQX and Xr = drX . Then, after some cancelations, we obtain

Ω =− dϑ ∧ dQ+Ω(P (ω)dr, P (ω)dr) (3.11)

+A−1dQ ∧ Ω(∂ωP (ω)r, P (ω)dr) + 〈∇rω + ∂qωr, dr〉 ∧ Ω(∂ωP (ω)r, P (ω)dr).

Notice that the coordinates (ϑ,Q, r) are not a system of Darboux coordinates for the symplectic
form Ω.

We now prepare some notations.

• Let F be a Frechét differentiable function. Then, its hamiltonian vector field XF is defined by
Ω(XF , Y ) = dF (Y ) for any given vector Y. In particular, we have XF = J∇F .

• For F,G two scalar valued functions, we set the Poisson bracket by {F,G} := dF (XG).

• If G has values in a given Banach space E and G is a scalar valued function, then we set
{G, G} := dG(XG).

In the coordinate system (ϑ,Q, r) our NLS can be expressed as

Q̇ = {Q,E} = (XE)Q, ϑ̇ = {ϑ,E} = (XE)ϑ, ṙ = {r, E} = (XE)r . (3.12)

Further, comparing the coefficients of Yϑ in Ω(XE , Y ) = dEY by (3.11), we have (XE)Q =

dQXE = 0. Therefore, we have Q̇ = 0. Notice that this shows that with coordinates (ϑ,Q, r) we
have achieved a reduction of order in the system, see [62] p. 412, effectively reducing to the variable
r only.
In the sequel we choose ω0 such that if u0 is the initial value in (1.1), then

Q(φω0
) = Q(u0). (3.13)

We consider (recall q(ω) = Q(φω))

K(u) : = E(u)− E (φω0
) + ω(u)(Q(u)− q(ω0)). (3.14)

Then, since (XQ)ϑ = −1, (XQ)Q = 0 and (XQ)r = 0, we see that (3.12) is equivalent to

Q̇ = 0 , ϑ̇ = {ϑ,K}+ ω , ṙ = {r,K}.

See [12] Lemma 2.6 and Section 2.3, and it is important that Q(u0) = q(ω0).
In the sequel the changes of coordinates will differ from the identity transformation by pertur-

bations that can be written in terms of the two classes of symbols which we introduce now.
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Definition 3.2. For I an interval with 0 in the interior, A ⊂ R×R×(N⊥
g (L∗

ω1
)∩Σ−n) a neighborhood

of (q(ω1), 0, 0), we say that F ∈ Cm(I × A,R) is Ri,j
n,m if there exists a C > 0 and a smaller

neighborhood A′ of of (q(ω1), 0, 0) s.t.

|F(t, Q, ̺, r)| ≤ C‖r‖jΣ−n
(‖r‖Σ−n

+ |̺|+ |Q− q(ω1)|)i in I ×A′. (3.15)

We will write also F = Ri,j
n,m or F = Ri,j

n,m(t, Q, ̺, r). Given a function F : I × Uω1
→ R for

Uω1
a neighborhood of φω1

in L2(R2,R2), we say that F = Ri,j
n,m if there is a Ri,j

n,m function s.t.

F (t, u) = Ri,j
n,m(t, Q,Q(r), r).

We say F = Ri,j
n,∞ if F = Ri,j

n,m for all m. We say F = Ri,j
∞,m if we can take n arbitrarily large.

If F = Ri,j
∞,m for any m, we set F = Ri,j .

Definition 3.3. A T ∈ Cm(I × A,Σn(R
2,C2)), with I × A like above, is Si,j

n,m and we write as

above T = Si,j
n,m or T = Si,j

n,m(t, Q, ̺, r), if there exists a C > 0 and a smaller neighborhood A′ of
(p0, p0, 0) s.t.

‖T(t, Q, ̺, r)‖Σn
≤ C‖r‖jΣ−n

(‖r‖Σ−n
+ |̺|+ |Q− q(ω1)|)i in I ×A′. (3.16)

We use notation T = Si,j
n,∞, T = Si,j

∞,m and T = Si,j as above. As above, given a function T : I ×
Uω1

→ Σ−n we write F = Si,j
n,m if there is a Si,j

n,m function s.t. T (t, u) = Si,j
n,m(t, Q,Q(r), r).

Next we consider the following symplectic form:

Ω0 := −dϑ ∧ dQ+Ω(dr , dr ). (3.17)

This is how our symplectic Ω form should look in appropriate coordinates. Indeed in Section 3 [12]
the following Darboux Theorem is proved.

Proposition 3.4 (Darboux Theorem). There is a local diffeomorphism F around φω1
in L2(R2,R2)

such that F∗Ω = Ω0 and which in the (ϑ,Q, r) coordinates is of the form

ϑ′ = ϑ+R0,2(Q,Q(r), r) , Q′ = Q ,

r′ = eJR
0,2(Q,Q(r),r)(r + S1,1(Q,Q(r), r)).

(3.18)

Remark 3.5. Notice that the idea of taking as fixed point φω1
rather than φω0

as in [12], is taken
from [4]. The proof of Prop. 3.4 is unaffected.

For the convenience of the readers we give a sketch of the proof here.

Sketch of the proof of Proposition 3.4. To make a change of coordinate to convert the symplectic
form Ω into Ω0 we need three steps. First, we find a 1-form Γ s.t. Ω − Ω0 = dΓ. Next, we solve
iX sΩs = −Γ, where iXω(Y ) := ω(X,Y ) and Ωs := Ω0 + s(Ω − Ω0). Finally, let Ys be the flow of
d
ds
Ys = X s(Ys). Then, we have

d

ds
(Y∗

sΩs) = Y∗
s (LX sΩs − ∂sΩs) = Y∗

s (diX sΩs − dΓ) = 0.

Thus, Y := Y1 gives us the desired transformation. This is a standard proof of Darboux theorem
(see [39]).
In our situation, we have to care about the regularity of the transformation (or in other words, error
from the identity). Therefore, we need to compute Γ rather explicitly.
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First, we seek Γ. It suffices to find some Γ satisfying Γ = B −B0 + dC, where

2B0 = Qdϑ+Ω(r, dr),

2B = Ω(u, ·)
= Qdϑ+Ω(P (ω)r, dr) + Ω(φω , P (ω)dr) + Ω(φω + P (ω)r, ∂ωφω + ∂ωP (ω)r)dω.

It is elementary that dB = Ω, dB0 = Ω0. We have

2(B −B0) =d (Ω(φω , P (ω)r)) + Ω(P (ω)r, ∂ωPr)∂QωdQ

+Ω(−PNg
(ω)r +Ω(P (ω)r, ∂ωP (ω)r)∂ρωJr +Ω(P (ω)r, ∂ωP (ω)r)∇rω, dr).

Therefore, we can choose Γ = Ω(Γr, dr) + ΓQdQ as

2Γr = −PNg
(ω)r +Ω(P (ω)r, ∂ωP (ω)r)∂ρωJr +Ω(P (ω)r, ∂ωP (ω)r)∇rω,

2ΓQ = Ω(P (ω)r, ∂ωPr)∂Qω.

Since PNg
(ω)r = PNg

(ω) (P (ω0)− P (ω)) r and |ω − ω0| ∼ Q(r), we see Γr = S1,1 + R0,2Jr and
ΓQ = R0,2.
Next, we solve iX sΩs = −Γ. Since s (Ω(X s, ·)− Ω0(X s, ·)) can be handled as a perturbation, the
main part of the equation will be Ω0(X s, ·) = −Γ. Therefore, we have X s

Q = 0, X s
θ = R0,2 and

X s
r = S1,1 +R0,2Jr. Finally, solving d

ds
Ys = X s(Ys), we have the conclusion.

It is well known that normal forms processes are based on Taylor expansions of the Hamiltonian,
see [39]. So we need an expansion of the functional K defined in (3.14) in terms of the Darboux
coordinates. This is provided by the following, proved in Lemma 4.3 [12].

Lemma 3.6. Consider an integer L ∈ N s.t. L > p for p the exponent (2.1) in hypothesis (H2).
For any preassigned (k,m) and in the coordinates (Q,ϑ, r) of (3.18), K admits the expansion

d(ω)− d(ω0)− (ω − ω0)q(ω0) +
1

2
Ω(LωP (ω)r, P (ω)r) +R1,2

k,m(Q,Q(r), r) + EP (P (ω)r) +R
′′,

R
′′ :=

L−1∑

d=2

〈Bd(Q,Q(r), r), (P (ω)r)d〉+
∫

R2

BL(x, r(x), Q,Q(r), r)(P (ω)r)L(x)dx with: (3.19)

• d(ω) = E(φω) + ωq(ω);

• B2(q(ω0), 0, 0) = 0;

• (P (ω)r)d(x) represent d−products of components of P (ω)r;

• Bd(·, Q, ̺, r) ∈ Cm(U−k,Σk(R
2, B((R2)⊗d,R))) for 2 ≤ d ≤ 4 with U−k ⊂ P−k a neighborhood

of (q(ω1), 0, 0) in R× R× (N⊥
g (L∗

ω1
) ∩ Σ−n);

• for ζ ∈ R2 and (Q, ̺, r) ∈ U−k we have for i+ j ≤ m

‖∂jr∂iζ,Q,̺BL(·, ζ, Q, ̺, r)‖B(Σ⊗j

−k
,Σk(R2,B((R2)⊗L,R)) ≤ Ci. (3.20)

Remark 3.7. We have d(ω)− d(ω0)− (ω−ω0)q(ω0) = O(ω−ω0)
2 = R2,0(Q(r)) +R1,2

k,m(Q,Q(r), r).
In Lemma 4.3 [12] inequality (3.20) is stated for |ζ| ≤ ε for some small ε > 0, but in fact in the
proof is unnecessary, thanks to (H2). Notice also that L = 5 in [12], but a similar proof holds for
our choice of L.
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Sketch of the proof. Notice that here we are just expanding K(u) = Sω(u)− Sω(φω0
) such as

K(φω + P (ω)r) = Sω(φω) +
〈
∇2Sω(φω)P (ω)r, P (ω)r

〉
+ o

(
(P (ω)r)

2
)
− d(ω0) + (ω − ω0)q(ω0),

where we have used ∇Sω(φω) = 0.

If we expand P (ω)r = r + (P (ω)− P (ω1))r we obtain what follows, see Lemma 4.4 [12].

Lemma 3.8. The expansion of K in Lemma 3.6 can be rewritten as follows,with similar notation:

K = R2,0
k,m(Q,Q(r)) + 2−1Ω(Lω1

r, r) +R1,2
k,m(Q,Q(r), r) + EP (r) +R

′,

R
′ :=

L−1∑

d=2

〈Bd(Q,Q(r), r), rd〉+
∫

R2

BL(x, r(x), Q,Q(r), r)rL(x)dx . (3.21)

4 Spectral coordinates associated to Lω1

Recall that r ∈ N⊥
g (L∗

ω1
)∩L2(R2,R2). We consider the spectral decomposition of r in terms of Lω1

:

r =

n∑

j=1

zjξj(ω1) +

n∑

j=1

zjξj(ω1) + f where f ∈ L2
c(ω1) and also f ∈ L2(R2,R2). (4.1)

This yields new coordinates r → (z, f) to replace r.
Correspondingly we have the expansion

Ω(dr , dr ) =

n∑

j=1

i sj dzj ∧ dzj +Ω(df , df ). (4.2)

Equation ṙ = {r,K} splits into

iżj = sj
∂

∂zj
K , ḟ = {f,K}, (4.3)

where we recall that sj ∈ {1,−1} and sj = 1 for at least one j.
We have reduced our NLS to system (4.3). Obviously, having replaced r with (z, f), we need to

rewrite the expansion of K in Lemma 3.8 in terms of (z, f). This is done in Lemma 5.4 [12], which
we quote.

Lemma 4.1. In the coordinate system (z, f) near (0, 0) for any preassigned pair (k,m) we have an
expansion

K = R2,0
k,m(Q,Q(f)) +H ′

2 +

4∑

j=−1

Rj +R1,2
k,m(Q,Q(f), f) with what follows. (4.4)

(1) For ̺ = Q(f)

H ′
2 = −

n∑

j=1

sjλj |zj|2 +
∑

|µ+ν|=2
e·(µ−ν)=0

R1,0
k,m(Q, ̺)zµzν + 2−1Ω(Lω1

f, f). (4.5)
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(2) We have for ̺ = Q(f):

R−1 =
∑

|µ+ν|=2
e·(µ−ν) 6=0

R1,0
k,m(Q, ̺)zµzν +

∑

|µ+ν|=1

zµzν〈JS1,0
k,m(Q, ̺), f〉;

for N as in (H12), ̺ = Q(f), gµν(Q, ̺) = R0,0
k,m(Q, ̺), Gµν(Q, ̺) = S

0,0
k,m(Q, ̺) and with the

symmetries gνµ = gµν and Gνµ = −Gµν , we have

R0 =

2N+1∑

|µ+ν|=3

zµzνgµν(Q, ̺); R1 = i

2N∑

|µ+ν|=2

zµzν〈JGµν(Q, ̺), f〉;

R2 = 〈S1,0
k,m(Q, ̺), f2〉 with B2(q(ω1), 0) = 0,

where fd(x) represents schematically d−products of components of f ;

R3 =
∑

|µ+ν|=
=2N+2

zµzνR0,0
k,m(Q, z, ̺, f) +

∑

|µ+ν|=
=2N+1

zµzν〈JS0,0
k,m(Q, z, ̺, f), f〉;

R4 =

L−1∑

d=2

〈Bd(Q, z, ̺, f), f
d〉+

∫

R2

BL(x, f(x), Q, z,Q(f), f)fL(x)dx + EP (f),

where the B’s are like in Lemma 3.6.

Now we start discussing about the normal forms argument. It will consist in eliminating as
many terms as possible from Rj with j = −1, 0, 1.
We set, for n the number associated to ω1 in (H11),

e = (e1, ..., en). (4.6)

Some of the monomials in Rj with j = 0, 1 cannot be eliminated because they are resonant, that is
of the following type.

Definition 4.2 (Normal Forms). A function Z(z, ̺, f) is in normal form if Z = Z0 + Z1 where Z0

and Z1 are finite sums of the following type:

Z1 = i
∑

e·(µ−ν)∈σe(Lω1
)

zµzν〈JGµν(̺), f〉, (4.7)

where Gµν = S
0,0
k,m(̺) for fixed k,m ∈ N;

Z0 =
∑

e(ω1)·(µ−ν)=0

gµν(̺)z
µzν , (4.8)

and gµν = R0,0
∞,m(̺). We assume furthermore that Z0 and Z1 are real valued for f ∈ L2(R2,R2),

and hence gµν = gνµ and Gµν = −Gνµ.

With an appropriate canonical change of coordinates (that is, it preserves the r.h.s. of (4.2))
the term R−1 and all non resonant terms in R0 and R1 cancel out. Indeed we have the following
fact, which we quote from Theorem 6.4 [12].
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Proposition 4.3 (Birkhoff normal forms). There is a canonical transformation (z, f)
F→ (z′, f ′)

where
z′ = z +R0,2(Q, z,Q(f), f) ,

f = eJR
0,2(Q,z,Q(f),f)(f + S1,1(Q, z,Q(f), f)).

(4.9)

such that in the new coordinates (z, f) we have

K(Q, z, f) = R2,0
k,m(Q,Q(f)) +H ′

2 +R0 +R1 +R with

R = R1,2
k,m(Q,Q(f), f) +

4∑

j=2

Rj + R̂2(Q, z, ̺, f),
(4.10)

with H ′
2 and Rj like in Lemma and where we have:

(1) the term R−1 in (4.4) is here R−1 = 0;

(2) all the nonzero terms in R0 with |µ+ ν| ≤ 2N+ 1 are in normal form, that is e · (µ− ν) = 0,
and are in Z0;

(3) all the nonzero terms in R1 with |µ+ν| ≤ 2N are in normal form, that is e ·(µ−ν) ∈ σe(Hp0
),

and are in Z1;

(4) we have R̂2 ∈ Cm(U,C) for U ⊂ R× Cn × R× PcΣ−k a neighborhood of (q(ω1), 0, 0, 0) and

|R̂2(Q, z, f, ̺)| ≤ C(|Q− q(ω1)|+ |z|+ ‖f‖Σ−k
)‖f‖2Σ−k

.

Sketch of the proof. Our canonical transformation will be generated by Hamiltonian functions of the
following form:

∑

|µ+ν|=m
e·(µ−ν) 6=0

Aµ,ν(Q, ̺)z
µzν +

∑

|µ+ν|=m−1
e·(µ−ν) 6∈σe(Lω1

)

zµzνΩ(Bµ,ν(Q, ̺), f).

The Hamilton vector flow generated from this Hamiltonian vector field will be

zj(s) ∼ zj − sisj




∑

|µ+ν|=m
e·(µ−ν) 6=0

νjAµ,ν(Q, ̺)
zµzν

z̄j
+

∑

|µ+ν|=m−1
e·(µ−ν) 6∈σe(Lω1

)

νj
zµzν

z̄j
Ω(Bµ,ν(Q, ̺), f)


 ,

f(s) ∼ f + s
∑

|µ+ν|=m−1
e·(µ−ν) 6∈σe(Lω1

)

zµzνBµ,ν(Q, ̺).

Thus,

−
n∑

j=1

sjλj |zj(1)|2 + 2−1Ω(Lω1
f(1), f(1)) ∼ −

n∑

j=1

sjλj |zj |2 + 2−1Ω(Lω1
f, f)

+
∑

|µ+ν|=m
e·(µ−ν) 6=0

e · (µ− ν)Aµ,ν(Q, ̺)z
µzν +

∑

|µ+ν|=m−1
e·(µ−ν) 6∈σe(Lω1

)

zµzνΩ((Lω1
− e · (µ− ν))Bµ,ν(Q, ̺), f).

By the above, we can erase the nonresonant terms.
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In (4.10) the functional K is written in a form which is essentially the same of (1.16). What
follows in Sections 5–6 is rather close to the classical discussion in [7, 70]. The difference between
these papers and [13, 3] lies in the fact that the latter two use in an essential form the Hamiltonian
structure of the system to study higher order interactions between discrete and continuous modes.
The ideas originate from [14]. The method [7, 70] does not work well with higher order interactions
and requires very stringent restrictions on the spectrum of the linearization, which are completely
eased in [13, 3].

As we have seen in the analysis of (1.16) the 2nd power, the structure of the Fermi golden rule
will be easily seen in the framework provided by Proposition 4.3. However the informal analysis on
(1.16) which we made in Section 1 has to be supplemented by a number of estimates, especially for
the variable f . So we will need to write the equation for f and derive some estimates.

5 Equations

In the new coordinates (z, f) in Proposition 4.3 our NLS continues to be of the form (4.3). In
particular we have

ḟ = J∇fR2,0
k,m(Q,Q(f)) + J∇fH

′
2(Q, z,Q(f), f) + J∇fZ0(Q, z,Q(f))

+ J∇fZ1(Q, z,Q(f), f) + J∇fR(Q, z,Q(f), f),
(5.1)

where
∇f (R2,0

k,m(Q,Q(f)) +H ′
2 + Z0) = Lω1

f +A′Jf,

A′ := ∂Q(f)R2,0
k,m(Q,Q(f)) +

∑

|µ+ν|≥2
e·(µ−ν)=0

∂Q(f)aµν(Q,Q(f))zµzν , (5.2)

and similarly we split the 2nd line of (5.1) into

A′′Jf − i
∑

e·(µ−ν)∈σe(Lω1
)

zµzνGµν(Q,Q(f)) + J∇fR(Q, z, ̺, f)|̺=Q(f),

A′′ := ∂Q(f)[Z1(Q, z,Q(f), f) +R(Q, z,Q(f), f)].

(5.3)

So finally we write the equation of f as

ḟ = Lω1
f +AJf − i

∑

e·(µ−ν)∈σe(Lω1
)

zµzνGµν(Q, 0) +R where (5.4)

A = A′ +A′′ and R = ∇fR(Q, z, ̺, f)|̺=Q(f) − i
∑

e·(µ−ν)∈σe(Lω1
)

zµzν (Gµν(Q,Q(f))−Gµν(Q, 0)) .

We write the equations for z as

sj iżj =
∂

∂zj
(H ′

2 + Z0) + i
∑

e·(µ−ν)∈σe(Lω1
)

νj
zµzν

zj
〈JGµν(Q,Q(f)), f〉+ ∂

∂zj
R. (5.5)

We set, for n the number associated to ω1 in (H11),

λ = (λ1, ..., λn), (5.6)

where the λj = λj(ω1) are introduced in (H11).
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Proposition 5.1. For ǫ0 sufficiently small there exists a C > s.t., given a solution u(t) of the NLS
which satisfies supt≥0 infϑ∈R ‖u(t)− eiϑφω1

‖H1 < ǫ < ǫ0, for t ∈ I = [0,∞) we have

‖f‖Lp
t (I,W

1,q
x ) + ‖f‖

L2
t(I,H

1,−s
x ) ≤ Cǫ for all admissible pairs (p, q), (5.7)

‖zµ‖L2
t (I)

≤ Cǫ for all multi indices µ with λ · µ > ω1, (5.8)

‖zj‖W 1,∞
t (I) ≤ Cǫ for all j ∈ {1, . . . ,n}, (5.9)

‖ω − ω1‖L∞
t (I) ≤ Cǫ. (5.10)

Furthermore

lim
t→+∞

z(t) = 0. (5.11)

Notice that the case (p, q) = (∞, 2) in (5.7) and inequalities (5.9) and (5.10) are an easy
consequence of supt≥0 infϑ∈R ‖u(t)− eiϑφω1

‖H1 < ǫ.
Proposition 5.1 implies Proposition 2.5. For the proof see [16], in particular Section 12. First

of all, by standard arguments there is a f+ ∈ H1(R2,C2) such that for the f in (5.7) and for the A′

in (5.2) we have

lim
t→+∞

‖f(t)− eJ(ω1t+
∫

t

0
A′(s)ds)e−Jt∆f+‖H1 = 0, (5.12)

see Lemma 7.2 [16]. We can express the solution u(t) as

u(t) = e−Jϑ(t)(φω(t) + P (ω(t))(z′j(t)ξj + z′j(t)ξj + f ′(t)) where

z′ = z +R0,2
k,m(Q, z,Q(f), f) and f ′ = eJR

0,2

k,m
(Q,z,Q(f),f)(f + S

1,1
k,m(Q, z,Q(f), f)).

(5.13)

where (z, f) are the variables in Proposition 5.1 and (k,m) are arbitrary. This follows from the fact
that composing the change of variables (3.18) and (4.9) yields a change of variables like in (4.9), see
[12].
(5.11) and (5.12) imply lim

t→+∞
S
1,1
k,m = 0 in H1 and lim

t→+∞
R0,2

k,m = 0 in R.

It is easy to see that when we plug (5.13) in u̇ = J∇E(u) we get

ḟ = J(−∆+ ϑ̇− Ṙ0,2)f +G1(u),

with G1(u) ∈ C0(H1
x, L

1
x). On the other hand, f satisfies also (5.1), which is of the form

ḟ = J(−∆+ ω1 +A′)f +G2(u),

with G2(u) ∈ C0(H1
x, L

1
x). Then we have

κ(u)f = G1(u)−G2(u) with κ(u) := ω1 − ϑ̇+ Ṙ0,2 +A′. (5.14)

We have κ ∈ C0(H1
x,R) and we claim that κ = 0. Indeed, if κ(u(t0)) 6= 0 for a given solution, we

can find solutions for which un(t, ·) ∈ S(R2), un(t0, ·) → u(t0, ·) in H1(R2), ‖un(t0)‖L1(R2) → ∞,
Gj(un(t0)) → Gj(u(t0)) and κ(un(t0)) → κ(u(t0)). This yields a contradiction because on one
hand ‖un(t0)‖L1(R2) → ∞ implies for the corresponding f coordinates ‖fn(t0)‖L1(R2) → ∞, on the
other hand (5.14) is telling us ‖fn(t0)‖L1(R2) ∼ |κ(u(t0))|−1‖G1(u(t0)) − G2(u(t0))‖L1(R2) and so
‖fn(t0)‖L1(R2) 6→ ∞.
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Integrating ω1 − ϑ̇+ Ṙ0,2 +A′ = 0 and by lim
t→+∞

R0,2
k,m = 0 we get for a fixed ϑ0 ∈ R

lim
t→+∞

(ω1t+

∫ t

0

A′(s)ds− ϑ(t)) = ϑ0.

Then (5.12) for h+ := eJϑ0f+ becomes

lim
t→+∞

‖e−Jϑ(t)f(t)− e−Jt∆h+‖H1 = 0.

Using this in formula (5.13) we obtain

lim
t→+∞

‖u(t)− eiϑ(t)φω(t) − eit∆h+‖H1 = 0

which yields (2.12). Combining (3.13) and (5.13) wee have

q(ω(t)) +Q(f) +R0,2
k,m = q(ω0).

Then
lim

t→+∞
q(ω(t)) = q(ω0)−Q(h+).

Then (H5) implies that there must be a ω+ s.t. lim
t→+∞

ω(t) = ω+. The last sentence of Proposition

2.5 follows from (5.13) and the estimates in Proposition 5.1.

By a standard continuity argument, Proposition 5.1 is a consequence of the following proposi-
tion.

Proposition 5.2. There exists ǫ0 > and a constant c0 > 0 such that if T > 0 and if u(t) is a
solution of the NLS which satisfies supt∈I infϑ∈R ‖u(t)− eiϑφω1

‖H1 < ǫ < ǫ0 where I = [0, T ] then,
if the inequalities (5.7)–(5.8) hold for this I and for C = C0 ≥ c0, they hold also C = C0/2.

6 Proof of Proposition 5.2

The proof of Proposition 5.2 is basically the same of Proposition 6.7 in [16]. We give a schematic
description of the main steps. The first is the following, which follows from theory in [21] and whose
proof we review in Appendix A.

Lemma 6.1. Assume the hypotheses of Prop. 5.2. Then there is a fixed c and an s0 such that for
all admissible pairs (p, q) and all s > s0

‖f‖Lp
t ([0,T ],W 1,q

x ) + ‖f‖
L2

t([0,T ],H1,−s
x ) ≤ csǫ+ cs

∑

λ·µ>ω1

|zµ|2L2
t (0,T ), (6.1)

where we sum only on multiindices such that λ · µ − λj < ω1 for any j such that for the j–th
component of µ we have µj 6= 0.

The notation is simpler if we change frame. For M defined below we have M−1iJM = σ3, see
(1.17), and so we have

Kω :=M−1iLωM = σ3(−∆+ V + ω) + σ3M
−1VωM,

where M :=

(
1 1
−i i

)
, M−1 =

1

2

(
1 i
1 −i

)
, σ3 =

(
1 0
0 −1

)
.
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Then we set h =M−1f , which satisfies for Gµν :=M−1Gµν(Q, 0) and E :=M−1R,

iḣ = Kω1
h+Aσ3h+

∑

e·(µ−ν)∈σe(Lω1
)

zµzνGµν +E.
(6.2)

with A defined in (5.3). The last summation in (6.1) originates from the zµzνGµν terms in (6.2) (or
the corresponding ones in the 1st line of (5.4)). We cancel these terms by a normal forms argument
For

g = h+ Y , Y :=
∑

|λ·(µ−ν)|>ω1

zµzνR+
Kω1

(λ · (ν − µ))Gµν , (6.3)

we have

iġ = Kω1
g +Aσ3g + [iẎ −Kω1

Y ] +
∑

e·(µ−ν)∈σe(Lω1
)

zµzνGµν +Aσ3Y +E.
(6.4)

We then compute

iẎ =
∑

|λ·(µ−ν)|>ω1

λ · (ν − µ)zµzνR+
Kω1

(λ · (ν − µ))Gµν +T where

T :=
∑

j

[
∂zjY (iżj + λjzj) + ∂zj

Y (iżj − λjzj)
]
.

(6.5)

Inserting (6.5) in (6.4) we obtain

iġ = Kω1
g +Aσ3g +Aσ3Y +T+E. (6.6)

So we have canceled the zµzνGµν terms. Notice that T contains terms of this type but by (5.5)
they are smaller. So g is smaller than h. In fact the following is true, and is proved in Lemma 4.6
in [21] (the statement in Lemma 4.6 [21] has a systematic typo and L2

tL
2,M
x should be replaced by

L2
tL

2,−M
x , where M there is like our s here).

Lemma 6.2. Assume the hypotheses of Prop. 5.2. Then for fixed s > 1 there exist a fixed c such
that if ε0 is sufficiently small, for any preassigned and large L > 1 we have ‖g‖

L2((0,T ),L2,−s
x ) ≤ cǫ.

For MT the transpose of M , and using MT = 2M−1 , f = Mh and Gµν := M−1Gµν(Q, 0), by
direct computation we have

i〈JGµν(Q, 0), f〉 = i〈MTJMM−1Gµν(Q, 0), h〉 = 2〈σ1σ3Gµν , h〉.

Notice that Gµν(Q, 0) = −Gνµ(Q, 0), see in Lemma 4.1, implies by M
−1

= σ1M
−1

Gνµ =M
−1
Gνµ(Q, 0) = −σ1M−1Gµν(Q, 0) = −σ1Gµν .

Then substituting (6.3) in (5.5) we obtain

isj żj = ∂zj
(H ′

2 + Z0) + 2
∑

|λ·(µ−ν)|>ω1

νj
zµzν

zj
〈g, σ3Gνµ〉+ ∂zj

R

+ 2
∑

|λ·(α−β)|>ω1

|λ·(µ−ν)|>ω1

νj
zµ+αzν+β

zj
〈R+

Kω1

(λ · (β − α))Gαβ , σ3Gνµ〉,
(6.7)
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Let us consider the set of multi–indexes

M := {α : λ · α > ω1 and λ · α− λk < ω1 ∀ k s.t. αk 6= 0}. (6.8)

Set also Λ := {λ · α : α ∈ M}.
Like in [16], there is a new set of variables ζ = z +O(z2) s.t. for a fixed C

‖ζ − z‖L2
t
≤ CC0ǫ

2 , ‖ζ − z‖L∞
t

≤ Cǫ3 and (6.9)

sj iζ̇j = ∂ζj
H ′

2(ζ, h) + ∂ζj
Z0(ζ, h) +Dj

+ 2
∑

λ·α=λ·ν
(α,ν)∈M2

νj
ζαζ

ν

ζj
〈R+

Kω1

(−λ · α)Gα0, σ3Gν0〉, (6.10)

where for a fixed constant c0 we have

n∑

j=1

‖Djζj‖L1[0,T ] ≤ c0(1 + C0)ǫ
2. (6.11)

Now we consider, like in [16],

∂t

n∑

j=1

sjλj |ζj |2 = 2

n∑

j=1

λj Im
(
D′

jζj
)
− (6.12)

− 4
∑

λ·α=λ·ν
(α,ν)∈M2

λ · ν Im
(
ζαζ

ν〈R+
Kω1

(−λ · α)Gα0, σ3 Gν0〉
)
.

In the second line of (6.12) we have a sum

Γ(ζ) := −4
∑

L∈Λ

L Im
〈
R+

Kω1

(−L)G(L, ζ), σ3G(L, ζ)
〉
, for

G(L, ζ) :=
∑

λ·α=L
α∈M

ζαGα0.
(6.13)

ForW = limt→∞ e−itKω1eitσ3(−∆+ω1), there exist F (L,ζ) ∈W k,p(R2,C2) for all k ∈ R and p ∈ (1,∞)

with 2G(L, ζ) =WF (L,ζ), see [21]. Then for tF (L,ζ) = (F
(L,ζ)
1 , F

(L,ζ)
2 )

Γ(ζ) = −4
∑

L∈Λ

lim
εց0

Im[〈R−∆(−L− ω1 + iε)F
(L,ζ)
1 , F

(L,ζ)

1 〉 − 〈R∆(ω1 − L+ iε)F
(L,ζ)
2 , F

(L,ζ)

2 〉]

= 4
∑

L∈Λ

lim
εց0

Im〈R∆(ω1 − L+ iε)F
(L,ζ)
2 , F

(L,ζ)

2 〉 (6.14)

= −4
∑

L∈Λ

lim
εց0

∫

R2

ε

(x2 − (Λ− ω1))2 + ε2
|F̂ (L,ζ)

2 (x)|2dx ≤ 0.

Now we assume:

(H13) for some fixed constant Γ > 0 and for all ζ ∈ Cn we have
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Γ(ζ) < −Γ
∑

α∈M

|ζα|2. (6.15)

Then integrating and exploiting (6.9) we get for t ∈ [0, T ]

Γ
∑

α as in (H14)

‖zα‖2L2(0,t) ≤ cC0ǫ
2 −

∑

j

sjλj |zj(0)|2 +
∑

j

sjλj |zj(t)|2. (6.16)

We want to conclude for some other fixed c′

l.h.s. of (6.16) ≤ 3c′C0ǫ
2. (6.17)

Since sup0≤t≤T infϑ∈R ‖u(t)−eiϑφω1
‖H1 < ǫ by hypothesis, we can conclude that

∑
j λj |zj(t)|2 ≤ c′ǫ2

for any t. Then (6.16) implies (6.17) since here we can assume C0 > 1 we get (6.17).
We conclude that for ǫ0 > 0 sufficiently small and any T > 0, (5.7)–(5.8) in I = [0, T ] and with

C = C0 implies (5.7)–(5.8) in I = [0, T ] with C = c(1 +
√
C0) for c. This yields Proposition 5.2.

Remark 6.3. Notice that in the proof of asymptotic stability in [13], where sj = −1 for all j, orbital
stability is a consequence of (6.17) rather than the other way around. Indeed in that case we have

∑

j

λj |zj(t)|2 + Γ
∑

α as in (H14)

‖zα‖2L2(0,t) ≤ cC0ǫ
2 +

∑

j

λj |zj(0)|2, (6.18)

and taking the initial datum u0 very close to φω1
we can assume

∑
j λj |zj(0)|2 ≤ c′ǫ2. Then each

term in the l.h.s. of (6.18) is small for all t > 0. Furthermore this and and the fact that from (5.5)

we derive that the time derivatives żj(t) remain small, we conclude that zj(t)
t→∞→ 0 for all j.

7 Theorem 1.4 and cubic quintic equations

We have not carried out numerical experiments to check examples to which Theorem 1.4 applies.
In this section we combine numerical results in [63] with number of assumptions to propose some
possible applications of Theorem 1.4. We discuss mainly hypothesis (H14).

We consider the cubic–quintic NLS (1.5). For each m ≥ 0 one can find a family of vortices
eimθψω(r) for ω ∈ O = (0, ω∗) with ψω ≥ 0 [36]. Here, the upper bound ω∗ of O is given by
ω∗ := sup{ω > 0 | ∃s > 0, ω

2 s
2 − 1

4s
4 + 1

6s
6 < 0} which is in this case 3

16 . Notice that if
ω
2 s

2 − 1
4s

4 + 1
6s

6 ≥ 0 for all s > 0, by Pohozaev identity we can show that there are no nontrivial
bound states in the energy space.

As we have already discussed in Section 1, for each m = 1, 2, 3, 4, 5 [63] shows that there is a
critical value ωcr such that for ω ≥ ωcr the vortices are spectrally stable, while for ω < ωcr they
are spectrally unstable. For m = 1 the value is ωcr ≈ 0.1487, see Section 5.5 [63]. In all these cases
spectral instability is generated as follows. As ω approaches ω+

cr from above, two distinct eigenvalues
on the imaginary axis iλ(1)(ω) and iλ(2)(ω) coalesce at ω = ωcr at a point iλcr (iλcr ≈ i0.0478 for
m = 1). As ω decreases further, two eigenvalues bifurcate from iλcr out of the imaginary axis. In
[63] it is not stated explicitly whether or not the eigenvalues iλ(j)(ω) for j = 1, 2 are simple and
whether their algebraic and geometric dimensions coincide. The fact that only eigenvalues with
different signatures can generate by collapse eigenvalues outside iR is well known, and we formalize
it as follows.

In the following, Lω will denote the linearized operator of the vortices eiωteimθψω(r) of the
cubic-quintic NLS (1.5).
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Lemma 7.1. Consider equation (1.5), an m = 1, 2, 3, 4, 5 , a corresponding vortex and the operators
Lω. Suppose that there exists ε0 > 0 s.t. for ω ∈ (ωcr, ωcr + ε0) the eigenvalues iλ(j)(ω) for j = 1, 2
are simple and their algebraic and geometric dimensions coincide (and so are 1). Then one of them
satisfies (H14).

Proof. Recall, preliminarily, that if z is an eigenvalue of Lω with z 6= −z, that is if z 6∈ iR, then
Ω(v, v) = 0 for any v ∈ ker(Lω − z). This follows from

z〈J−1v, v〉 = 〈J−1Lωv, v〉 = −〈v, J−1Lωv〉 = −z〈J−1v, v〉, (7.1)

which uses J−1Lω = −L∗
ωJ

−1. If z = iλ ∈ R we have

iλ〈J−1v, v〉 = iλ〈J−1v, v〉,
so that 〈J−1Lωv, v〉 ∈ R for any v ∈ ker(Lω − iλ). When iλ ∈ R is simple we have 〈J−1Lωv, v〉 6= 0
for any v ∈ ker(Lω − iλ)\{0} and the sign is called the Krein signature. Since

〈J−1Lωv, v〉 = iλ〈J−1v, v〉,
it is clear that the Krein signature of iλ is positive exactly if 〈J−1v, v〉 = iς with ς < 0 (this
explains why in (H14) the hypothesis sj = 1 implies negative Krein signature and that positive
Krein signature corresponds to sj = −1). Notice that for iλ to have a well defined Krein signature
it is not necessary that be simple, and it is sufficient that 〈J−1Lωv, v〉 have constant sign as v 6= 0
varies in ker(Lω − iλ).

Now let us proceed with the proof of Lemma 7.1. By hypothesis the iλ(j)(ω) for ω > ωcr are
simple and hence they have a well defined Krein signature, which is constant in ω > ωcr (see [45]) and

can be written in the form s(j) := −iΩ(ξ
(j)
ω , ξ

(j)

ω ) for appropriate generators ξ
(j)
ω ∈ ker(Lω− iλ(j)(ω)).

We have s(j) ∈ {−1, 1}. For ω < ωcr in [63] it is proved that there are two eigenvalues z(1)(ω) and
z(1)(ω) with Re z(j)(ω) 6= 0, which for reasons of symmetry satisfy z(2)(ω) = −z(1)(ω). These two
eigenvalues exit from iλ(j)(ωcr) as ω decreases. With an argument by contradiction we suppose now
that s(1) = s(2) for ω > ωcr. Then, by Section 6.1 in [45], this continues to be true for ω < ωcr in the
sense that the quadratic form 〈J−1Lω·, ·〉, which is definite in ker(Lω− iλ(1)(ω))⊕ker(Lω− iλ(2)(ω))
for ω > ωcr must continue to be definite also in ker(Lω − z(1)(ω))⊕ ker(Lω − z(2)(ω)) for ω < ωcr.
But from what we saw in (7.1) this is not possible. This gets us to a contradiction. So s(1) 6= s(2)

for ω > ωcr and one of the two must be equal to 1.

Since (1.5) is translation invariant it is beyond the scope of our theory. In order to find
examples of equations not translation invariant which satisfy (H14) it is natural to add to (1.5) a
small potential εV (|x|) with a point of relative minimum in 0. We will show that the perturbed
equation has vortices. As ε→ 0 they converge to vortices of (1.5) in any space Σk(R

2,C).

Then the spectrum and the eigenfunctions of the linearizations L(ε)
ω converge to spectrum and

eigenfunctions of Lω. In particular, assuming our mixed rigorous and numerical proof that (1.5)
satisfies (H14) for ω > ωcr, then we will have obtained this result also for the operators Lε

ω with
ε 6= 0.

Let φω(e
iθr) = eimθψω(r) be the vortex of [63] with ψω ≥ 0. Under the assumption that for

(1.5) the kernel of Lω restricted in L2
m := {u ∈ L2 | e−imθu is radially symmetric} is Span{Jφω} (in

[63] it is shown that numerically this appears to be generically true) we show that for small ε there
exists φω,ε(e

iθr) = eimθψω,ε(r) which is a solution of

0 = −∆φω,ε + ωφω,ε + εV φω,ε − |φω,ε|2φω,ε + |φω,ε|4φω,ε. (7.2)

More precisely, we have the following proposition.
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Proposition 7.2. Assume ker Lω0
|L2

m
= {Jφω0

}. Then there exist δ0 > 0 and ε0 > 0 s.t. for

ε ∈ (−ε0, ε0) and ω ∈ (ω0 − δ0, ω0 + δ0) there exists φω,ε ∈ ∩k≥0Σk(R
2,C) which satisfies (7.2).

Furthermore, the map (ω, ε) → φω,ε is in C1((ω0 − δ0, ω0 + δ0)× (−ε0, ε0),Σk) for arbitrary k ≥ 0.

To prove Proposition 7.2 we consider a preparatory and standard lemma.

Lemma 7.3. Assume ker Lω |L2
m
= {Jφω}. Then Aω = −∆r +

m2

r2
+ω− 3ψ2

ω +5ψ4
ω is invertible in

L2
rad(R

2,R) and ‖eimθA−1
ω u‖H2 . ‖u‖L2.

Proof. Let v ∈ L2
rad(R

2,R) satisfy Aωv = 0. Then, multiplying by eimθ we have

(−∆+ ω − 2|φω|2 + 3|φω|4)u+
(
−φ2ω + 2φ2ω|φω |2

)
ū = 0,

where u = eimθv. Therefore, using the natural identification between C and R2, we have

Lωu = 0.

By the assumption, we have u = aJφω and thus v = aJψω. However, v has values in R× {0} while
Jψω has values in {0}×R. So a = 0 and kerAω = {0}. Therefore, Aω is invertible. Finally suppose
Aωv = u. Then, first we have ‖eimθv‖L2 = ‖v‖L2 . ‖u‖L2. Next, multiplying by eimθ, we have

(−∆+ ω)eimθv =
(
3ψ2

ω − 5ψ4
ω

)
eimθv + eimθu.

Taking the L2 norm of both sides, we have the conclusion.

Proof of Proposition 7.2. Set δ = ω − ω0 and consider φω0+δ,ε = eimθ(ψω0+δ + vδ,ε), where vδ,ε is
radially symmetric and real valued. Then, substituting this into (7.2) and for v = vδ,ε, we have

Aω0
v = G(δ, ε, v) where G(δ, ε, v) := −εV (ψω0+δ + v) +

[(
3ψ2

τ − 5ψ4
τ

)]ω0+δ

ω0
v − δv +Nω0+δ(v),

(7.3)

with Nω0+δ(v) nonlinear in v and the convention [f(τ)]
b
a = f(b)− f(a). We can rephrase (7.3) as

F (δ, ε, v) = 0 where F (δ, ε, v) := v − A−1
ω0
G(δ, ε, v). (7.4)

The function F is in C1((ω0 − δ0, ω0 + δ0) × (−ε0, ε0) × H2, H2). An elementary application of
the implicit function theorem yields a function vδ,ε in C1((ω0 − δ0, ω0 + δ0) × (−ε0, ε0), H2). By a
standard bootstrapping argument, H2 can be replaced by Σk for arbitrary k.

In [63] it is checked numerically that for a generic vortex of the (1.5)

Ng(Lω) = Span{Jφω, ∂x1
φω, ∂x2

φω , ∂ωφω, Jx1φω , Jx2φω}. (7.5)

We have chosen V (|x|) with a relative minimum at 0. The following fact is well known, see Theorem
4.1 [24] and Theorem 3.0.2 [25].

Lemma 7.4. Consider an m = 1 vortex of the(1.5). Assume d
dω

‖φω‖2 6= 0 and (7.5) for the
linearized operator Lω. Then for ε > 0 sufficiently small we have

kerL(ε)
ω = Span{Jφω,ε} and Ng(L(ε)

ω ) = Span{Jφω,ε, ∂ωφω,ε}. (7.6)

Furthermore, L(ε)
ω has an eigenvalue of algebraic and geometric multiplicity 2 which is of the form

iµ(ε) = iε
√
2e + o(ε), with e the eigenvalue of the Hessian matrix of the potential in 0, and with

eigenfunctions

Ψ
(ε)
j =

√
2∂xj

φω + i
√
eεJxjφω + o(ǫ), (7.7)

with ‖o(ε)‖Σk
= o(ε) for any k.
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Proof. Everything is proved in Theorem 3.0.2 [25]. We only remark that there is only one small

eigenvalue iµ(ε) ∈ iR+ which has to be of multiplicity 2. Indeed, L(ε)
ω Ψ

(ε)
1 = iµ(ε)Ψ

(ε)
1 implies by

the symmetry J−1Vω(x1, x2)J = Vω(x2,−x1) also L(ε)
ω JΨ

(ε)
1 (x2,−x1) = iµ(ε)JΨ

(ε)
1 (x2,−x1). By

Jφω(x1, x2) = −φω(x2,−x1) we have

JΨ
(ε)
1 (x2,−x1) = J

√
2(∂x1

φω)(x2,−x1)− i
√
eεx2φω(x2,−x1) + o(ǫ) =

√
2∂x2

[Jφω(x2,−x1)] + i
√
eεJx2φω(x1, x2) + o(ǫ) =

√
2∂x2

φω(x1, x2) + i
√
eεJx2φω(x1, x2) + o(ǫ)

and hence necessarily JΨ
(ε)
1 (x2,−x1) = Ψ

(ε)
2 (x1, x2). This implies that iµ(ε) has multiplicity 2.

In the following remarks we discuss whether the perturbations of equation (1.5) satisfy the
hypotheses of Theorem 1.4.

Remark 7.5. (H1)–(H3) are trivially satisfied.

Remark 7.6. It is known that equation (1.5) satisfies (H4) and the same holds for the perturbations.

Remark 7.7. According to the numerical experiments in [63] hypothesis (H5) is true generically. The
same will be true for the perturbations.

Remark 7.8. (H6) is proved numerically for ω ≥ ωcr in [63] and for the perturbations is a consequence
of Proposition 7.2 and Lemma 7.4.

Remark 7.9. Assuming the numerical results in [63] which claim that (7.5) is true for generic ω,
then for the perturbations (H7) is a consequence of Lemma 7.4.

Remark 7.10. We don’t know the status of hypotheses (H8)–(H12) for (1.5), but if they hold, they
hold also for the perturbations.
As we have already mentioned, failure of (H8) would yield some Jordan block of dimension 2 or higher
forcing etLω to grow algebraically in the invariant space N⊥

g (L∗
ω) in (2.10) producing essentially a

linear instability, which would yield an easy to detect nonlinear instability. Since this is not what
the numerical experiments show, we conclude that probably [63, 77] confirm (H8).
In [63] embedded eigenvalues and singularities at the edges are not discussed explicitly but hypotheses
(H9)–(H10) seem to be confirmed. In [63] isolated eigenvalues are obtained as zeros of an Evans
function. It is observed, see the discussion on pp. 371–372, that sometimes the Evans function
is small near the continuous spectrum. This smallness is attributed not to eigenvalues sitting in
the continuous spectrum, but rather to resonances on the other side of the continuous spectrum (in
essence, to zeros of an analytic continuation of the Evans function beyond the continuous spectrum).
Hypotheses (H11)-(H12) state that the eigenvalues between 0 and iω are positioned in a generic way.
This is plausible to expect and probably can be proved for V generic. We did not attempt the proof.

Remark 7.11. We have discussed at length Hypothesis (H13) in Section 1. It ought to be checked
directly for perturbations of (1.5) or for equation (1.5). Notice that, since (1.5) is translation
invariant, the search of an effective Hamiltonian is somewhat more involved, see [12, 16].

Remark 7.12. We have already discussed (H14) which is true, assuming that each of the eigenvalues
iλ(j)(ω) has some fixed Krein signature. Indeed this is what happens if each eigenvalue is simple, as
we assumed in Lemma 7.1. Even if there is an eigenvalue of higher multiplicity, it is enough to ask
for iΩ(v, v) to have fixed sign for any eigenvector. This property on the signatures continue to hold
for the perturbations.
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A Appendix: proof of Lemma 6.1

First of all, it is equivalent to consider equation 6.2 for h. Let Xc =M−1L2
c(ω1) and by an abuse of

notation let us set P̃c =M−1Pc(ω1)M , where Pc is introduced under Lemma 2.3. Set also K = Kω1

The following three lemmas are Lemma 3.1–3.3 in [21].

Lemma A.1 (Strichartz estimate). There exists a positive number C such that for any k ∈ [0, 2]:

(a) for any h = P̃ch and any admissible all pair (p, q),

‖e−itKh‖
L

p
tW

k,q
x

≤ C‖h‖Hk ;

(b) for any g(t, x) ∈ S(R2) and any couple of admissible pairs (p1, q1) (p2, q2) we have

‖
∫ t

0

e−i(t−s)KP̃cg(s, ·)ds‖Lp1
t W

k,q1
x

≤ C‖g‖
L

p′
2

t W
k,q′

2
x

.

Lemma A.2. Let s > 1. ∃ C = C such that:

(a) for any f ∈ S(R2),

‖e−itKP̃cf‖L2
tL

2,−s
x

≤ C‖f‖L2;

(b) for any g(t, x) ∈ S(R2) ∥∥∥∥
∫

R

eitKP̃cg(t, ·)dt
∥∥∥∥
L2

x

≤ C‖g‖L2
tL

2,s
x
.

Lemma A.3. Let s > 1. ∃ C such that ∀ g(t, x) ∈ S(R2) and t ∈ R:

∥∥∥∥
∫ t

0

e−i(t−s)KP̃cg(s, ·)ds
∥∥∥∥
L2

tL
2,−s
x

≤ C‖g‖L2
tL

2,s
x
.

Lemma A.4. Let (p, q) be an admissible pair and let s > 1. ∃ a constant C > 0 such that ∀
g(t, x) ∈ S(R2) and t ∈ R:

∥∥∥∥
∫ t

0

e−i(t−s)KP̃cg(s, ·)ds
∥∥∥∥
L

p
tL

q
x

≤ C‖g‖L2
tL

2,s
x
.

The following is Proposition 1.2 in [21].

Lemma A.5. The following limits are well defined isomorphism, inverse of each other:

Wu = lim
t→+∞

eitKeitσ3(∆−ω1)u for any u ∈ L2

Zu = lim
t→+∞

eit(−∆+ω1)e−itK for any u = P̃cu.

For any p ∈ (1,∞) and any k the restrictions of W and Z to L2 ∩W k,p extend into operators such
that for for a constant C we have

‖W‖
Wk,p(R2),Wk,p

c
+ ‖Z‖

W
k,p
c ,Wk,p(R2) < C

with W k,p
c the closure in W k,p(R2) of W k,p(R2) ∩ P̃cL

2
c.

The following is Lemma 3.5 [21].
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Lemma A.6. Consider the diagonal matrices E+ = diag(1, 0) E− = diag(0, 1). Set P± = ZE±W

with Z and W the wave operators associated to K. Then we have for u = P̃cu

P+u = lim
ǫ→0+

1

2πi
lim

M→+∞

∫ M

ω

[RK(λ+ iǫ)−RK(λ− iǫ)]udλ

P−u = lim
ǫ→0+

1

2πi
lim

M→+∞

∫ −ω

−M

[RK(λ+ iǫ)−RK(λ− iǫ)]udλ

and for any s1 and s2 and for C = C(s1, s2) we have

‖(P+ − P− − P̃cσ3)f‖L2,s1 ≤ C‖f‖L2,s2 .

Now we look at the term E in (6.2).

Lemma A.7. For any preassigned s and for ǫ0 > 0 small enough we have

E = R1 +R2 with ‖R1‖L1
t ([0,T ],H1

x)
+ ‖R2‖L2

t([0,T ],H1,s
x ) ≤ C(s, C0)ǫ

2. (A.1)

Furthermore for a fixed constant c we have

‖A‖L∞((0,T ),R) ≤ cC2
0ǫ

2. (A.2)

Proof. The estimate on A = A′ +A′′ follows from the definitions of A′ in (5.2) and of A′′ in (5.3).
E is a sum of various terms. For example we have

‖zµzνM−1[Gµν(Q, 0)−Gµν(Q,Q(f))]‖L2
t ([0,T ],H1,s

x )

≤ ‖zµzν‖L2
t [0,T ]‖Gµν(Q, 0)−Gµν(Q,Q(f))‖L∞

t ([0,T ],H1,s
x ) . C3

0ǫ
3.

So this term can be absorbed in R2. Another example is β(|f |2)f = χ|f |≤1β(|f |2)f +χ|f |≥1β(|f |2)f .
The 1st term can be bounded, schematically, by

‖|f |2f‖L1
t([0,T ],H1

x)
.

∥∥∥‖f‖W 1,6
x

‖f‖2L6
x

∥∥∥
L1

t [0,T ]
≤ ‖f‖3

L3
t([0,T ],W 1,6

x )
. C3

0 ǫ
3

(A.3)

while the 2nd term can be bounded by

‖fL‖L1
tH

1
x
.

∥∥∥‖f‖W 1,2L
x

‖f‖L−1
L2L

x

∥∥∥
L1

t

≤ ‖f‖
L

2L
L−1

t W
1,2L
x

‖f‖L−1

L
2L

L−1
L+1

t W
1,2L
x

. CL
0 ǫ

L, (A.4)

where in the last step we use ‖f‖
L

2L
L−1
L+1

t W
1,2L
x

. ‖f‖α
L

2L
L−1

t L2L
x

‖f‖1−α
L∞

t H1
x
for some 0 < α < 1 by L > 3

(which we can always assume), interpolation and Sobolev embedding.
Notice that by ∇fR1,2

k,m(Q, ̺, f)|̺=Q(f) = S1,1
k,m−1(Q,Q(f), f) we have by (3.16)

‖∇fR1,2
k,m(Q, ̺, f)|̺=Q(f)‖L2

tH
1,s
x

≤ ‖‖f‖
L

2,−σ
x

‖L2
t
(‖f‖L2 + |z|+ |Q(f)|)‖L2

t

≤ ‖f‖
L2

tL
2,−σ
x

(‖z‖L∞
t
+ ‖f‖L∞

t
L2) ≤ 2C2

0ǫ
2.

Consider for example the contribution of

∇f

∫

R2

BL(x, f(x), Q, z, ̺, f)f
L(x)dx|̺=Q(f) ∼ BL(x, f(x), Q, z,Q(f), f)fL−1(x)

+

∫

R2

∂6BL(x, f(x), Q, z,Q(f), f)fL(x)dx + ∂2BL(x, f(x), Q, z,Q(f), f)fL(x).

(A.5)
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The last term can be treated like fL above, since ‖BL(x, f(x), Q, z,Q(f), f)‖L∞
tx

≤ C by (3.20). We
can use (A.3) or (A.4) for the 1st term of the r.h.s., since L− 1 ≥ 3. Finally let us consider the 2nd
term in the r.h.side. If we take g ∈ L∞

t H
−1
x we need to bound

∫ T

0

dt

∫

R2

|〈g, ∂6BL(x, f(x), Q, z,Q(f), f)〉L2

x′
fL(x)dx|

≤
∫ T

0

dt‖|〈g, ∂6BL(x, f(x), Q, z,Q(f), f)〉L2

x′
‖L2

x
‖fL‖L2

x

≤ ‖|〈g, ∂6BL(x, f(x), Q, z,Q(f), f)〉L2

x′
‖L∞

t L2
x
‖fL‖L1

tL
2
x

and we bound the last factor by (A.4). We have for fixed t

‖|〈g, ∂6BL(x, f(x), Q, z,Q(f), f)〉L2

x′
‖L2

x
≤ ‖∂6BL‖B(Σ−k,Σk)‖g‖Σ−k

so that by (3.20), or by its analogue for the BL in Lemma 4.1, we have that the last quantity is
bounded by C‖g‖H−1 . This yields a bound ‖1st term 2nd line (A.5)‖L1

tL
2
x
. CL

0 ǫ
L.

Proof of Lemma 6.1 We rewrite (6.2) as

iḣ = [Kh+A(P+ − P−)]h+A[P̃cσ3 − P+ + P−]σ3h+
∑

e·(µ−ν)∈σe(Lω1
)

zµzνGµν + P̃cE.

Then we have

h(t) = U(t, 0)eitKh(0) +
∫ t

0

U(t, s)ei(t−s)K
[
A[P̃cσ3 − P+ + P−]σ3h

+
∑

e·(µ−ν)∈σe(Lω1
)

zµzνGµν + P̃cE


 ds,

(A.6)

where the following operator commutes with K:

U(t, s) =i
∫

t

s
A(s′)ds′(P+−P−) .

Then
‖h‖

L
p
tW

1,q
x ∩L2

tH
1,−s
x

. ‖h(0)‖H1 +
∑

µν

‖zµzν‖L2
t
‖Gµν‖L∞

t H
1,s
x

+ ‖A‖L∞
t
‖h‖

L2
tH

1,−s
x

+ ‖R1‖L1
tH

1
x
+ ‖R2‖L2

tH
1,s
x
.

The terms on the second line are O(ǫ2) and the r.h.s. is bounded by the r.h.s. of (6.1), proving
Lemma 6.1.
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