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Abstract

The Bäcklund transformation (BT) for the Camassa-Holm (CH) equation is
presented and discussed. Unlike the vast majority of BTs studied in the past, for
CH the transformation acts on both the dependent and (one of) the independent
variables. Superposition principles are given for the action of double BTs on the
variables of the CH and the potential CH equations. Applications of the BT and
its superposition principles are presented, specifically the construction of travelling
wave solutions, a new method to construct multi-soliton, multi-cuspon and soliton-
cuspon solutions, and a derivation of generating functions for the local symmetries
and conservation laws of the CH hierarchy.

1 Introduction

The original Bäcklund transformation (BT) arose in the context of differential geometry
of surfaces in the 1880s [3]. In the modern era, BTs have been recognized as playing
a central role in the theory of integrable differential equations [34, 59, 58]. Their pri-
mary application is as a method to generate explicit solutions, exploiting the so-called
superposition principle, an algebraic rule to “combine” two solutions obtained by BTs
(from a given initial solution). However, in recent work [55] we have also shown how to
derive local symmetries and conservation laws directly from BTs. There is also a deep
relationship between BTs and the associated linear systems of integrable equations.

The Camassa-Holm (CH) equation [9, 10] is by now recognized as one of the archetypes
of integrable equations. It has (weak) “peakon” solutions — solitary waves with discon-
tinuous first derivative at their crest — and numerous other types of travelling wave solu-
tion, including solitons (smooth solitary waves), cuspons and various periodic structures
[40, 41, 7, 8, 33, 47, 48, 50, 37, 54]. The integrability of the CH equation was already firmly
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established in [9], where a Lax pair and a bihamiltonian structure were given, and much
further evidence for this has accumulated since then. There is an inverse scattering for-
malism [13, 14], explicit formulas can be found for multipeakon,multisoliton, multicuspon
and soliton-cuspon solutions [60, 4, 5, 6, 22, 31, 39, 49, 18, 38, 43, 53, 44, 51, 52, 19, 63]
there are an infinite number of local conservation laws [23, 56, 57, 28, 25, 27, 35, 11, 30, 24],
and there is a rich algebra of symmetries [56, 57, 28, 25, 27, 24]. Other significant works
on CH include studies of the stability of peakon and other exact solutions [15, 16, 17, 36]
and interesting numerical studies [32, 45, 21, 12].

The aim of this paper is to fully explore the theory of the BT for the CH equation.
In [60], one of us constructed a BT for the associated CH (aCH) equation, an equation
related by a (field dependent) change of coordinates to the CH equation, and used this to
construct some solutions of CH which could be regarded as superpositions of 2 travelling
waves. However, this work was incomplete; an integration was required to reconstruct a
solution of CH from a solution of aCH, which, in general, could not be done explicitly,
severly limiting applicability. In the current paper we resolve this and other problems.
The BT of CH differs from standard ones (for example, those of KdV and Sine-Gordon)
in that it involves a transformation of both the dependent and one of the independent

variables. However, remarkably, there is a nonlinear superposition principle for both of
these transformations, which we develop and apply to the generation of multisoliton,
multicuspon and soliton-cuspon solutions, as well as to the derivation of symmetries and
conservation laws for CH. The action of the BT on both dependent and independent
variables is not unique to CH; a similar situation exists for the Dym equation, which also
exhibits nonanalytic solitons [62, 61].

The structure of this paper is as follows: In section 2 we recap the known results for the
aCH equation. In section 3 we use them to derive the BT for CH. Section 4 discusses the
various forms of superposition principle. In section 5 we use the BT to obtain travelling
wave solutions. The BT is used to construct soliton and cuspon solutions from which
the standard peakon solutions can be obtained in a certain limit. Alas it does not seem
to give a direct construction of peakons. However, various other unphysical solutions
are also obtained. In section 6 we use the superposition principle to obtain cuspon-
cuspon, soliton-soliton and cuspon-soliton solutions. In section 7, following [55], we use
the BT to construct the conservation laws and symmetries of CH. Section 8 contains
some concluding remarks.

2 Previous results

The Camassa-Holm equation (CH) [9] is

mt + 2uxm+ umx = 0, m = u− uxx, (1)

or equivalently
ut − utxx + 3uux − uuxxx − 2uxuxx = 0. (2)

By translating u and performing a Galilean transformation x → x − ct it is possible to
introduce linear transport and linear dispersion terms into the equation, see for example
[20]. All the results we present here can be generalized for the full class of equations
considered in [20].
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Writing u = vx and integrating once, we obtain the potential Camassa-Holm equation
(pCH)

vt − vtxx +
3

2
v2x − vxvxxx −

1

2
v2xx = 0 ,

or, equivalently,

nt +
1

2
v2x + vxnx −

1

2
(v − n)2 = 0 , n = v − vxx .

Evidently n is a potential for m, m = nx.
In [60] equation (1), under the assumption m > 0, was transformed to the associated

Camassa-Holm equation (aCH)

2pτ = −p2uξ , u = −p

2

(

pτ
p

)

ξ

+ p2 ,

with the help of transformation

p =
√
m , dξ =

1

2
pdx− 1

2
pudt , τ = t. (3)

This transformation implies

∂x

∂ξ
=

2

p
,

∂x

∂τ
= u ,

∂t

∂ξ
= 0 ,

∂t

∂τ
= 1 . (4)

A BT for aCH was found in [60]:

p → p− sξ , u → u+
2sτ

p(p− sξ)
, (5)

where s satisfies

sξ =− s2

pα
+

α

p
+ p , (6)

sτ =− s2 +
pτ
p
s+ α(α + u) . (7)

The following nonlinear superposition principle was also given:

p → p−
(

(α− β)(αβ − sαsβ)

βsα − αsβ

)

ξ

, (8)

where sα, sβ are the solutions of (6,7) with parameters α and β respectively.
In [55] the BT was used to find an infinite number of symmetries for aCH. These are

given by the generating symmetry X = Qp ∂
∂p

+Qu ∂
∂u

where

Qp =
p(s

(1)
α + s

(2)
α )

α(s
(1)
α − s

(2)
α )

, Qu = −2s
(1)
α + 2s

(2)
α + puξ

s
(1)
α − s

(2)
α

. (9)

Here s
(1)
α , s

(2)
α are two different solutions of (6,7) for the same parameter α. This symmetry

depends upon α; expansion in a (formal) power series in α gives the infinite hierarchy of
symmetries.
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3 The Bäcklund transformation for the Camassa-Holm

equation

In this section we obtain the BT for CH and pCH from the BT for aCH. With the help
of (4) we write the BT (5),(6),(7) as

u → u− 2α− 2α(uxs− αu)

s2 − α2
, (10)

where s satisfies

sx =− s2

2α
+

1

2
(m+ α) , (11)

st =− s2
(

1− u

2α

)

− uxs+
1

2
(2α2 + αu− um) . (12)

This system for s is equivalent to the Lax pair for CH. Note (12) can be simplified with
the help of (11) and (1) to

st = αuxx + 2αsx − usx − uxs . (13)

In light of (4) the BT for CH must also involve the independent variable x. Using the
first equation in (4), the change of the independent variable is

xnew − x =

∫
(

2

pnew
− 2

p

)

dξ

=

∫
(

2

p− sξ
− 2

p

)

dξ

=

∫

2sξ
p(p− sξ)

dξ

=

∫

2ds
s2

α
− α

= ln

∣

∣

∣

∣

s− α

s+ α

∣

∣

∣

∣

+ f(τ) .

In moving from the third to the fourth line here the formula for sξ in (6) is used in the
denominator but not in the numerator. The integration leaves undetermined an arbitrary
function f(τ). Using the second equation in (4) it is straightforward to show this must
be a constant, which can be taken, without loss of generality, to be zero. Thus the effect
of the BT on the independent coordinates is

x → x+ ln

∣

∣

∣

∣

s− α

s+ α

∣

∣

∣

∣

, t → t. (14)

There is no guarantee that this mapping will be a bijection. We will see later an example
in which the BT generates several solutions out of one, in the case that this mapping is
not 1 to 1.

Using (5) and (6) it is straightforward to write down the BT for the field p

p → s2 − α2

αp
(15)
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and hence also for the field m = p2 = u− uxx

m → (s2 − α2)
2

α2m
. (16)

Further calculations give the action of the BT for the pCH fields v (satisfying u = vx)
and n = v − vxx:

n → n− 2s , (17)

v → v +
2α(αux − us)

s2 − α2
. (18)

As mentioned above, the BT can be generalized for the full family of equations from
[20]

c1ux + c2uxxx + c3(ut + 3uux) = c4(utxx + uuxxx + 2uxuxx) , (19)

where c1, c2, c3, c4 are constants. (This generalized equation is referred to in [26, 64] as
the “CH-r equation”.) The BT is

x → x+

√

c4
c3

ln

∣

∣

∣

∣

s
√
c4 − α

√
c3

s
√
c4 + α

√
c3

∣

∣

∣

∣

, u → u− 2α− 2c3α
2u− 2c4αsux + c1α

2 + c2s
2

c3α2 − c4s2
.

Here s satisfies

sx = − s2

2α
+

α

2

2c3u− 2c4uxx + 2c3α+ c1
2c4α− c2

, (20)

st = αuxx + 2αsx − usx − uxs. (21)

Equation (19) includes the KdV, CH, and Hunter-Saxton (HS) [29] equations. The KdV
equation can be obtained by putting c1 = c4 = 0. The HS equation

utx +
1

2
u2
x + uuxx = 0 (22)

can be obtained by putting c1 = c2 = c3 = 0 and integrating with respect to x. The BT
in this case is

x → x− 2α

s
, u → u− 2αux

s
− 2α,

where

sx = − s2

2α
− uxx

2
, (23)

st = αuxx + 2αsx − usx − uxs. (24)

4 The double Bäcklund transformation and super-

position principles

In this section we discuss double BTs for CH and pCH. We also show the superposition
principles for these equations.

As we saw in the previous section, a BT (which acts on the CH fields u,m, p =
√
m,

the pCH fields v, n and the independent coordinate x according to equations (10), (16),
(15), (18), (17), (14) respectively) is determined by a solution s of (11),(12). We use
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the following notation: Denote by sα, sβ etc the solutions of (11),(12) corresponding to
parameters α, β etc. Denote the associated action on the fields by u → uα, m → mα etc.
Denote by sαβ the solution of (11),(12) with u,m replaced by uα, mα and parameter β (i.e.
we start with a solution obtained from a BT with parameter α and are now considering
acting upon it by a further BT with parameter β). Denote the corresponding action on
the fields by uα → uαβ, mα → mαβ etc.

The fundamental fact about double BTs, as proved in [60], is that they commute, i.e.
uαβ = uβα, mαβ = mβα etc. From, for example, the transformation law for the pCH field
n, (17), it immediately follows that

sα + sαβ = sβ + sβα . (25)

Checking the consitency of this with the versions of (11) and (12) satisfied by sα, sβ, sαβ, sβα
we obtain

sαβ = −sα +
(α− β)(αβ − sαsβ)

βsα − αsβ
, sβα = −sβ +

(α− β)(αβ − sαsβ)

βsα − αsβ
. (26)

In fact it is possible to check directly that these formulas for sαβ, sβα give solutions of the
relevant versions of (11) and (12) without any need to assume (25).

From (26) it follows that once sα and sβ are known, it is possible to immediately find
the action of a double BT. Using the transformation laws for m, p, n, x and (26) we find

pαβ =
αβ ((sα − sβ)

2 − (α− β)2)

(βsα − αsβ)2
p (27)

mαβ =
α2β2 ((sα − sβ)

2 − (α− β)2)
2

(βsα − αsβ)4
m (28)

nαβ = n− 2
(α− β)(αβ − sαsβ)

βsα − αsβ
(29)

xαβ = x+ ln

∣

∣

∣

∣

sβ − sα + α− β

sβ − sα − α + β

∣

∣

∣

∣

(30)

For u and v we proceed as follows. From (10) and (18) we obtain

uα + u+
1

α
(vα − v)sα = −2α (31)

and similarly

uβ + u+
1

β
(vβ − v)sβ = −2β , (32)

uαβ + uβ +
1

α
(vαβ − vβ)sβα = −2α , (33)

uαβ + uα +
1

β
(vαβ − vα)sαβ = −2β . (34)

Eliminating vα, vβ, vαβ from these 4 relations, using (26) for sαβ and (10) for uα, uβ we
obtain

uαβ = u− 2(α− β) ((α− β)(α+ β + u) + (sβ − sα)(sβ + sα + ux))

(α− β)2 − (sβ − sα)2
. (35)
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Similarly, by first eliminating the fields u,

vαβ = v − 2(α− β) ((α− β)ux + (sβ − sα)u+ 2(αsβ − βsα))

(α− β)2 − (sβ − sα)2
. (36)

Equations (27),(28),(29),(30),(35) and (36) are algebraic formulas for the implemen-
tation of a double BT given sα and sβ. However sα and sβ also determine the imple-
mentation of the original single BTs, so it is natural to try to eliminate them to obtain
nonlinear superposition formulae for each of the quantities p,m, n, x, u, v. For example,
for x we have, from (14),

sα =
ex + exα

ex − exα
α , sβ =

ex + exβ

ex − exβ
β

and using these in (30) gives

(ex − exα)(exβ − exαβ)

(ex − exβ)(exα − exαβ)
=

α

β
. (37)

Thus we see ex satisfies the cross-ratio equation, equation A1[δ = 0] in the ABS classif-
ciation [1]. Similarly for n we obtain

β(2α+ n− nα)(2α− nβ + nβα) = α(2β + n− nβ)(2β − nα + nαβ) , (38)

which is also the cross-ratio equation after a simple field redefintion. For p the situation
is a little more complicated as we have

s2α = α(α + ppα) , s2β = β(β + ppβ) ,

and knowledge of pα only determines sα up to a sign. As a result, for given p, pα, pβ
there are 4 possibilities for pαβ , which are given by solutions of the two multiquadratic
quad-graph equations

4αβ(α− β)(p− pαβ)(pα − pβ) + αβ(p− pαβ)
2(pα − pβ)

2

+α(α− β)(ppα − pβpαβ)
2 + β(β − α)(ppβ − pαpαβ)

2 = 0 , (39)

−4αβ(α + β)(p+ pαβ)(pα + pβ)− αβ(p+ pαβ)
2(pα + pβ)

2

+α(α + β)(ppα − pβpαβ)
2 + β(β + α)(ppβ − pαpαβ)

2 = 0 . (40)

The first of these is precisely the H3* equation in the Atkinson-Nieszporski classification
of integrable multiquadratic quad graph equations [2], as is the second after a simple field
redefinition.

For u and v we have not succeeded to write a single superposition principle not
involving any of the other fields. However, using the relations (31)-(34) it is possible to
write the following superposition principles involving, respectively, just u and n, and just
v and n:

α

(

uα + u+ 2α

nα − n
− uαβ + uβ + 2α

nαβ − nβ

)

− β

(

uβ + u+ 2β

nβ − n
− uαβ + uα + 2β

nαβ − nα

)

= 0 (41)

(vβ − v)(nβ − n) + (vαβ − vα)(nαβ − nα)

β
− (vα − v)(nα − n) + (vαβ − vβ)(nαβ − nβ)

α

= 8(β − α) . (42)

Here the fields n satisfy the cross-ratio type equation (38).
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5 Travelling wave solutions

In this section we apply the BT (10),(14) where s satisfies (11),(12) to the constant
solution of CH u = u0 6= 0, to obtain travelling wave solutions, specifically soliton and
cuspon solutions. These and other travelling wave solutions have been extensively studied
in the literature, see for example [40, 41, 7, 8, 33, 47, 48, 50, 37, 54], and the BT is just
one of many methods to derive them. The advantages of the BT will become apparent
when we study superposition in the next section.

If α(α+ u0) > 0 there are two kinds of real solutions of (11),(12):

sα =
√

α (u0 + α) tanh

(

√

α (u0 + α) (x− x0 + (2α− u0) t)

2α

)

, (43)

which we call the “tanh-type” solution, and the same with tanh replaced by coth, which
we call the “coth-type” solution. As we will see both of these give rise to travelling wave
solutions. If α(α+ u0) < 0 then there are real solutions

sα =
√

−α (u0 + α) tan

(

√

−α (u0 + α) (x− x0 + (2α− u0) t)

2α

)

, (44)

and the same with tan replaced by cot, and an overall minus sign. Both of these give rise
to periodic solutions (see for example [7, 37]), but these will not be studied here.

Returning to the case α(α+ u0) > 0, it is useful to write α+ u0 = αU2, where U > 0,
so the solution (43) becomes

sα = αU tanh

(

U

2

(

x− x0 +
(

3− U2
)

αt
)

)

, (45)

and the same with coth for a coth-type solution. Using (10),(14) the resulting solution
is uα(xα, t) where

uα = α(U2 − 3) +
2α(U2 − 1)

U2 tanh2
(

U
2
(x− x0 + (3− U2)αt)

)

− 1
, (46)

xα = x+ ln

∣

∣

∣

∣

∣

U tanh
(

U
2
(x− x0 + (3− U2)αt)

)

− 1

U tanh
(

U
2
(x− x0 + (3− U2)αt)

)

+ 1

∣

∣

∣

∣

∣

(47)

or the same with coth. Finally, writing z = x − x0 + (3− U2)αt, the solution becomes
uα(xα, t) where

uα = α(U2 − 3) +
2α(U2 − 1)

U2 tanh2 1
2
Uz − 1

, (48)

xα − x0 + (3− U2)αt = z + ln

∣

∣

∣

∣

U tanh 1
2
Uz − 1

U tanh 1
2
Uz + 1

∣

∣

∣

∣

, (49)

this being a tanh-type solution, or a coth-type solution, which is the same with tanh
replaced by coth. Both tanh-type and coth-type solutions are travelling waves with speed
c = (U2−3)α, written in an implicit form. The first step in analyzing these solutions is to
decide whether the maps from xα to z are bijections. For tanh-type solutions with U < 1,
neither the factor in the numerator or in the denominator inside the ln can vanish, and
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thus xα only tends to (plus or minus) infinity as z tends to (plus or minus) infinity. The
corresponding solutions are solitons which tend to u0 = α(U2−1) at spatial infinity, with
speed c = α(U2 − 3) and central elevation −α(1 + U2) = c− 2u0. Note that since

U =

√

3u0 − c

u0 − c

and 0 < U < 1 we must either have c < 3u0 < 0 or 0 < 3u0 < c. Figure 1 displays
the soliton profile for c = 2 and u0 = 0.5, 0.1, 0.02. (For negative u0 and c the soliton is
inverted.)

Figure 1: Soliton profile, c = 2, u0 = 0.5, 0.1, 0.02.

Of particular interest is the limit of the soliton for fixed c and u0 ↓ 0 (for c > 0) or
u0 ↑ 0 (for c < 0). Figure 2 shows xα as a function of z (for x0 = t = 0), uα as a function
of z and uα as a function of xα in the case c = 2, u0 = 10−8. xα is close to zero, and
uα is close to c for a large interval of z values of size O (|ln(u0/c)|) around z = 0. In the
plot of uα against xα this gives rise to a sharp peak. This is the peakon limit. To see this
analytically it is possible to use (48) to find z in terms of u (with a ± uncertainty as it
is necessary to take a square root), and then (49) becomes

xα − x0 + (3− U2)αt = ±
(

2

√

c− u0

c− 3u0

arctanh

(
√

c− u0

c− 3u0

√

1− 2u0

c− uα

)

+ ln

(

c− uα

2u0

(

1−
√

1− 2u0

c− uα

)2
))

. (50)

Both terms on the RHS diverge as u0 → 0, but it is straightforward to extract the
divergent behavior, which cancels between the terms, and to obtain the limit, which is
simply ± ln

(

uα

c

)

.
Moving now to tanh-type solutions with U > 1, from (49) we expect xα to diverge

when tanh 1
2
Uz = ± 1

U
and thus the map from z to xα will not be a bijection. Figure 3

shows xα and uα as functions of z for c = 2 and u0 = 3. The map from z to xα is 3 to

9



Figure 2: The soliton with c = 2, approaching the peakon limit. u0 = 10−8. x as a
function of z, u as a function of z and u as a function of x.

Figure 3: tanh-type solutions with c = 2 and u0 = 3 (U =
√
7 > 1), xα and uα as

functions of z. The map from z to xα is not 1− 1.

1 and thus there are 3 corresponding solutions of CH, depicted in Figure 4. Since these
are all unbounded we do not devote further attention to them.

Moving now to coth-type solutions, the situation is very similar, but now the map
from z to xα will be 1 − 1 if U > 1 and many to 1 if U < 1, and there is a subtlety
arising due to the divergence of coth 1

2
Uz at z = 0. For coth-type solutions with U < 1,

xα diverges when coth 1
2
Uz = ± 1

U
. The map from z to xα is once again 3 to 1. Figure

5 shows xα and uα as functions of z for c = 2 and u0 = 1
2
, and Figure 6 shows the

3 corresponding solutions of CH. The subtlety, as can be seen in Figure 7, is that the
solution corresponding to the range of z’s that includes zero, has a cusp at z = 0, arising
from the divergence of coth 1

2
Uz. Since at this point uα is not differentiable, it is necessary

to ask in what sense this is a solution of CH. Fortunately, the value of uα at the cusp is
c, which makes it possible to interpret the solution in a weak sense [37], though we do
not go into details here.
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Figure 4: tanh-type solutions with c = 2 and uo = 3 (U =
√
7 > 1), uα as a function of

xα for the 3 unbounded solutions of CH.

Figure 5: coth-type solutions with c = 2 and u0 = 1
2
(U = 1√

3
< 1), xα and uα as

functions of z. The map from z to xα is not 1− 1.

For coth-type solutions with U > 1, the map from z to xα is a bijection, and once
again there is a single solution of CH, but with a cusp at z = 0 — this is the cuspon
solution. Due to the requirement U > 1 cuspon solutions only exist with speed c < u0

if u0 is positive, and speed c > u0 if u0 is negative. Figure 8 illustrates cuspon solutions
with c = 2 for u0 = −1,−0.5,−0.1. (For positive u0 the cuspon is inverted.) Note that
the central elevation of the cusp is c, as required for it to be a weak solution. For c > 0
(c < 0) it is possible to consider the limit of the cuspon as u0 ↑ 0 (u0 ↓ 0), and this is
once again the peakon limit.

11



Figure 6: coth-type solutions with c = 2 and u0 = 1
2
(U = 1√

3
< 1), uα as a function of

xα for the 3 unbounded solutions of CH.

Figure 7: coth-type solutions with c = 2 and u0 =
1
2
(U = 1√

3
< 1), close up on the cusp

in one of the solutions of CH.

We summarize the travelling waves presented in this section in the following table.
All the solutions have asymptotic height u0:

tanh-type U < 1 soliton central elevation c− 2u0

u0 > 0: c > 3u0

u0 < 0: c < 3u0 inverted
U > 1 unphysical

coth-type U < 1 unphysical
U < 1 cuspon central elevation c

u0 > 0: c < u0 inverted
u0 < 0: c > u0

12



Figure 8: Cuspon profile, c = 2, u0 = −1,−0.5,−0.1.

6 Two wave solutions

The first investigations of two wave solutions were [60] and [22], both of which required
some element of numerical computation. However, since then, a substantial literature
[31, 39, 49, 18, 38, 43, 53, 44, 52, 19, 63] has developed on multisoliton, multicuspon and
soliton-cuspon solutions. The known methods for analytic construction of solutions in-
clude a determinantal formula based on the inverse scattering approach, a Hirota bilinear
form for CH and a reciprocal transformation relating the CH hierarchy to the KdV hierar-
chy. (For multipeakon solutions very different techniques are involved [9, 4, 6, 5, 51].) As
we will shortly see, use of the superposition principle gives a further very simple method.

In our approach, two wave solutions should be obtained using formulas (35) and (30),
taking u = u0 to be constant and sα (sβ) either of tanh-type, as given in (45) where

U = Uα =
√

1 + u0

α
(U = Uβ =

√

1 + u0

β
) and x0 = xα,0 (x0 = xβ,0), or of coth-type,

which is identical but with coth. The only question is which superpositions of this type
give maps from x to xαβ that are 1-1.

Proposition. The following 3 superpositions give maps from x to xαβ which are 1-1:

1. tanh-type solutions sα with Uα < 1 with tanh-type solutions sβ with Uβ > 1 (so
u0

α
< 0 < u0

β
) — soliton-cuspon superpositions.

2. tanh-type solutions sα with Uα < 1 with coth-type solutions sβ with Uβ < 1, with
Uα < Uβ — soliton-soliton superpositions.

3. tanh-type solutions sα with Uα > 1 with coth-type solutions sβ with Uβ > 1, with
Uβ < Uα — cuspon-cuspon superpositions.

Note here, for example, that a soliton-soliton superposition is not as we might expect, the
superposition of two tanh-type solutions with U < 1, but the superposition of a tanh-type
solution with U < 1 with a unphysical coth-type solution with U < 1.
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Proof. It is necessary to show in each case that neither the numerator or denominator
of the expression inside the ln in (30) vanishes, i.e. that |sβ − sα| 6= |β − α|. In the
calculations below we repeatedly use the identities

α =
u0

U2
α − 1

, β =
u0

U2
β − 1

.

1. In this case we have

|sβ − sα| = |βUβ tanh (. . .)− αUα tanh (. . .)|
< |βUβ|+ |αUα| as | tanh | < 1

=

∣

∣

∣

∣

∣

u0Uβ

U2
β − 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

u0Uα

U2
α − 1

∣

∣

∣

∣

= |u0|
(

Uβ

U2
β − 1

− Uα

U2
α − 1

)

as 0 < Uα < 1 < Uβ

= |u0|
(

1

U2
β − 1

+
1

Uβ + 1
− 1

U2
α − 1

− 1

Uα + 1

)

< |u0|
(

1

U2
β − 1

− 1

U2
α − 1

)

as
1

Uα + 1
>

1

Uβ + 1

= |β − α| .

2. In this case we have

|sα|+ |β − α| = |αUα tanh (. . .) |+ |β − α|
< |αUα|+ |β − α| as | tanh | < 1

=

∣

∣

∣

∣

u0Uα

U2
α − 1

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

u0

U2
β − 1

− u0

U2
α − 1

∣

∣

∣

∣

∣

= |u0|
(

Uα

1− U2
α

+
1

1− U2
β

− 1

1− U2
α

)

as 0 < Uα < Uβ < 1

= |u0|
(

1

1− U2
β

− 1

1 + Uα

)

= |u0|
(

Uβ

1− U2
β

+
1

1 + Uβ
− 1

1 + Uα

)

< |u0|
Uβ

1− U2
β

as
1

1 + Uβ

<
1

1 + Uα

= |βUβ|
< |βUβ coth (. . .) | as | coth | > 1

= |sβ| .

This contradicts |sβ − sα| = |β − α|, as the latter implies |sβ| ≤ |sα|+ |β − α|.
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3. Similarly to case 2 we have

|sα|+ |β − α| = |αUα tanh (. . .) |+ |β − α|
< |αUα|+ |β − α| as | tanh | < 1

=

∣

∣

∣

∣

u0Uα

U2
α − 1

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

u0

U2
β − 1

− u0

U2
α − 1

∣

∣

∣

∣

∣

= |u0|
(

Uα

U2
α − 1

+
1

U2
β − 1

− 1

U2
α − 1

)

as 1 < Uβ < Uα

= |u0|
(

1

U2
β − 1

+
1

Uα + 1

)

= |u0|
(

Uβ

U2
β − 1

− 1

Uβ + 1
+

1

Uα + 1

)

< |u0|
Uβ

U2
β − 1

as
1

Uα + 1
<

1

Uβ + 1

= |βUβ|
< |βUβ coth (. . .) | as| coth | > 1

= |sβ| .

It remains to present the plots of some superpositions. Figure 9 shows a tanh-tanh
superposition with u0 = 1, xα,0 = 0, xβ,0 = 2, cα = u0 − 2α = 4, cβ = u0 − 2β = −1.
(For u0 > 0 such solutions exist provded cα > 3u0 and cβ < u0 — note here that cβ
can be positive or negative.) Figure 10 shows a tanh-coth soliton-soliton superposition
with u0 = 1, xα,0 = 0, xβ,0 = −10, cα = u0 − 2α = 4, cβ = u0 − 2β = 6. Figure
11 shows a tanh-coth cuspon-cuspon superposition with u0 = 1, xα,0 = 0, xβ,0 = −2,
cα = u0 − 2α = −1, cβ = u0 − 2β = −2.

Figure 9: Tanh-Tanh Superposition. u0 = 1, xα,0 = 0, xβ,0 = 2, cα = 4, cβ = −1. Plots
for times t = −4,−1.4, 0.4, 4.6 from left to right.

Note that in all the plots we have taken u0 > 0, in which case, as in the previous
section, the soliton solutions have positive speed c > 3u0 and central elevation c− 2u0 >
u0, whereas the cuspon solutions have speed c < u0, which can be positive or negative,
and central elevation c < u0 (i.e. they might be called “anticuspons”). In the case u0 < 0
everything is inverted and reversed (reflecting the t → −t, u → −u symmetry of (2):
solitons have negative speed c < 3u0 and central elevation c − 2u0 < u0 (antisolitons),
and cuspons have speed c > u0 and central elevation c > u0.
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Figure 10: Tanh-Coth Soliton-Soliton Superposition. u0 = 1, xα,0 = 0, xβ,0 = −10,
cα = 4, cβ = 6. Plots for times t = −6,−1, 5, 8 from left to right.

Figure 11: Tanh-Coth Cuspon-Cuspon Superposition. u0 = 1, xα,0 = 0, xβ,0 = −2,
cα = −1, cβ = −2. Plots for times t = −10,−5,−2, 4 from left to right.

7 Symmetries and conservation laws for the Camassa-

Holm equation

In this section we show how to use the BT to obtain infinite hierarchies of symmetries
and conservation laws for CH and pCH, following the general methodology described in
[55]. The discussion of symmetries of CH in the literature is limited, though the existence
of an infinite number of symmetries is implicit from the bihamiltonian structure given in
[9]. In the series of papers [56, 57, 28, 25, 27], Reyes and collaborators present nonlocal

symmetries of CH depending on a parameter, and then expand in powers of the parameter
to obtain local symmetries, though limited details are given. Some explicit formulae
appear in [24]. Our approach is related, but we will not discuss the connection explicitly.

As a starting point for our discussion of symmetries we could take the generating
symmetry (9) for aCH, and work out the induced action on x, the independent variable
in CH. But a more direct approach is to look at the superposition principle (35),(30) in
the limit that β tends to α, but sβ tends to a second solution of (11)-(12) distinct from

sα. More explicity, setting β = α− 1
2
ǫ, sα = s

(1)
α , sβ = s

(2)
α +O(ǫ) in (35),(30) we obtain

uα,α− 1
2
ǫ = u+ ǫ

s
(1)
α + s

(2)
α + ux

s
(2)
α − s

(1)
α

+O(ǫ2) ,

xα,α− 1
2
ǫ = x+

ǫ

s
(2)
α − s

(1)
α

+O(ǫ2) .
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We deduce the generating symmetry for CH X = Qx ∂
∂x

+Qu ∂
∂u

where

Qx =
1

s
(2)
α − s

(1)
α

, Qu =
s
(1)
α + s

(2)
α + ux

s
(2)
α − s

(1)
α

. (51)

Here s
(1)
α , s

(2)
α are two different solutions of (11),(12) for the same parameter α. This

symmetry depends upon α; expansion in a (formal) power series in α will give an infinite
hierarchy of symmetries. However before we do this, we exploit the fact that a gener-
alized symmetry of the form X = Qx ∂

∂x
+ Qu ∂

∂u
which acts on both the dependent and

independent variables can be transformed to a generalized symmetry which acts only on
the dependent variable [46] with characteristic Q = Qu −Qxux. Here we have

Q =
s
(1)
α + s

(2)
α

s
(2)
α − s

(1)
α

. (52)

This is also the characteristic for a symmetry of the full family of equations (19).
The next thing to do is to find a (formal) asymptotic series solution of (11)-(12) for

small |α|. This takes the form

sα =
∞
∑

n=1

snα
n
2 , (53)

where

s1 =
√
m, s2 = −s1,x

s1
, sn+1 = −sn,x

s1
+

1

2s1

(

δn,2 −
n−2
∑

i=0

si+2sn−i

)

, n = 2, 3....

A second solution of (11)-(12) can be obtained by replacing α
1
2 by −α

1
2 . So we get

s(1)α =

∞
∑

n=1

snα
n
2 , s(2)α =

∞
∑

n=1

sn(−α
1
2 )n. (54)

Plugging this into (52) we obtain

Q√
α

=

∑∞

n=1 s2nα
n

∑∞

n=1 s2n−1αn
. (55)

The expansion of (55) around α = 0 gives an infinite hierarchy of symmetries of CH. The
first few of these take the form

X1 =

(

1√
m

)

x

∂

∂u
, (56)

X2 =

(

4mmxx − 5m2
x + 4m2

m7/2

)

x

∂

∂u
, (57)

X3 =









64m3mxxxx − 448m2mxmxxx − 160m3mxx + 1848mm2
xmxx

−336m2m2
xx + 280m2m2

x − 1155m4
x − 48m4

m13/2









x

∂

∂u
. (58)
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The fact that all the characteristics are x-derivatives is indicative that these symmetries
can be derived from corresponding symmetries of pCH. The generating symmetry for
pCH (up to an irrelevant overall constant factor) is thus Qv ∂

∂v
where

Qv =
1

s
(1)
α − s

(2)
α

. (59)

As stressed before, the symmetry with characteristic (52) is a symmetry for the full
family of equations (19), including the HS equation. For HS the asymptotic series solu-
tions of (23)-(24) takes the form

s(1)α =

∞
∑

n=1

snα
n
2 , s(2)α =

∞
∑

n=1

sn(−α
1
2 )n , (60)

where

s1 = i
√
uxx, s2 = −s1,x

s1
, sn+1 = −sn,x

s1
− 1

2s1

(

n−2
∑

i=0

si+2sn−i

)

, n = 2, 3....

Proceeding as before gives an infinite hierarchy of symmetries for HS, with the first few
taking the form

X1 =

(

1√
uxx

)

x

∂

∂u
,

X2 =

(

4
uxxxx

u
5/2
xx

− 5
u2
xxx

u
7/2
xx

)

x

∂

∂u
,

X3 =

(

1155
u4
xxx

u
13/2
xx

− 1848
u2
xxxuxxxx

u
11/2
xx

+ 448
uxxxuxxxxx

u
9/2
xx

+ 336
u2
xxxx

u
9/2
xx

− 64
uxxxxxx

u
7/2
xx

)

x

∂

∂u
.

Using the fact that if a single solution of the Riccati equation (11) is known then it is
possible to find the general solution by quadratures, it is possible to rewrite (52) in the
form

Q = 1 +
s
(1)
α (x)

α

(∫ x

x0

e
1
α

∫ x

y
s
(1)
α (z)dzdy + Ce

1
α

∫ x

x0
s
(1)
α (z)dz

)

.

and (59) in the form

Qv =

∫ x

x0

e
1
α

∫ x

y
s
(1)
α (z)dzdy + Ce

1
α

∫ x

x0
s
(1)
α (z)dz

.

Here C is an arbitrary constant. Since a linear combination of symmetries is a symmetry,
both terms on the RHS are by themselves the characteristics of symmetries. The sym-
metry associated with the factor multiplying C is the nonlocal symmetry first presented
in [56]. The relation between Bäcklund transformations and nonlocal symmetries has
recently been discussed in [42].

A conservation law (CL) for a PDE for the scalar function u(x, t) is an expression

Tt +Xx = 0

which holds on solutions of the equation. Conservation laws for CH can be obtained from
(13) by writing it in the form

st + (su− α(ux + 2s))x = 0 (61)
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Using the expansion (53) for s in (61) we obtain an infinite hierarchy of conservation laws.
Terms with integer powers of α in this expansion give trivial CLs. To prove this, observe

from (54) that the terms with integer powers are obtained by setting s = 1
2

(

s
(1)
α + s

(2)
α

)

in (61). But from (11) it is simple to verify that

1

2

(

s(1)α + s(2)α

)

= −α
(

ln |s(1)α − s(2)α |
)

x
.

Thus to obtain nontrivial laws we look at only the half-integer powers of α. Thus we set
s = s

(1)
α − s

(2)
α in (61) to obtain the generating conservation law

T = s(1)α − s(2)α , (62)

X = (u− 2α)(s(1)α − s(2)α ) . (63)

The expansion of the generating conservation law around α = 0 gives an infinite hierarchy
of nontrivial CLs for CH and pCH. The first few take the form

T1 =
√
m ,

X1 = uT1 ,

T2 =
1

8m5/2

(

4m2 + 4mmxx − 5m2
x

)

,

X2 = uT2 − 2T1 ,

T3 =
1

128m11/2

(

64m3mxxxx − 1105m4
x + 1768mm2

xmxx − 304m2m2
xx − 448m2mxmxxx

−96m3mxx + 200m2m2
x − 16m4

)

,

X3 = uT3 − 2T2 .

Similar results can be obtained for HS and the full family of equations (19). The existence
of an infinite number of conservation laws for CH follows from the bihamiltonian structure
for CH discovered in [9]. The local form of these conservations laws was first obtained
in [23], and they were subsequently further studied, and their derivation simplified, in
numerous works such as [56, 57, 28, 25, 27, 35, 11, 30, 24]. The derivation given here can
be easily related to previous ones, though the use of 2 solutions of (11)-(12) to understand
the triviality of “half” of the conservation laws, is, we believe, new.

8 Concluding remarks

In this paper we have explored the theory of the Bäcklund transformation for the Camassa-
Holm equation. This is an unfamiliar type of BT, as it acts on one of the independent
variables, as well as the dependent variables. However, it has emerged that it is just as
useful — using the superposition principles for the action on the different variables, we
can exploit the BT to write down two wave solutions, just as is done for standard inte-
grable equations such as KdV. Furthermore, we have shown how a double BT encodes an
infinite set of symmetries for CH, and the relationship of the BT and conservation laws.

We have seen that the BT can also generate “unphysical” solutions, by which we
mean solutions for which the new independent variable is not a 1 − 1 function of the
old independent variable. Going beyond two wave solutions, it is not clear exactly what
superpositions are allowed without creating singularities, though it seems to be a rea-
sonable hypothesis that all possible combinations of solitons and cuspons can be formed,
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with the speeds permitted by the value of u0, as listed in the table at the end of section
5. It seems to us that this is a problem that remains to be handled indepdendent of the
method used for constructing multiwave solutions.

Peakons emerge from both solitons and cuspons in the limit u0 → 0 (with one giving
rise to peakons of positive speed and one to peakons of negative speed, depending on
whether the limit is taken from below or from above). This is an extremely singular limit.
We have not yet found a way to apply a superposition principle directly to peakons, but
we continue to search.

Finally, one more general comment. The BT, in its minimalist form, is the transfor-
mations (10) and (14) where s satisfies (11)-(12). The latter equations for s are equivalent
to the Lax pair, or linear system, for CH. So the BT seems to be more than the linear
system. We wonder if there is a case of an integrable system without a BT?
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