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Pattern formation in axially symmetric
Landau-Lifshitz-Gilbert-Slonczewski equations

October 2, 2018

C. Melcher1 & J.D.M. Rademacher2

Abstract

The Landau-Lifshitz-Gilbert-Slonczewski equation describes magnetization dynamics
in the presence of an applied field and a spin polarized current. In the case of axial sym-
metry and with focus on one space dimension, we investigate the emergence of space-time
patterns in the form of wavetrains and coherent structures, whose local wavenumber varies
in space. A major part of this study concerns existence and stability of wavetrains and of
front- and domain wall-type coherent structures whose profiles asymptote to wavetrains
or the constant up-/down-magnetizations. For certain polarization the Slonczewski term
can be removed which allows for a more complete charaterization, including soliton-type
solutions. Decisive for the solution structure is the polarization parameter as well as size of
anisotropy compared with the difference of field intensity and current intensity normalized
by the damping.

1 Introduction

This paper concerns the analysis of spatio-temporal pattern formation for the axially sym-
metric Landau-Lifshitz-Gilbert-Slonczewski equation for which the applied magnetic field and
current are aligned with or orthogonal to the material anisotropy. In one space dimension we
thus consider

∂tm = m×
[
α∂tm− ∂2

xm+ (µm3 − h)ê3 +
β

1 + ccp m3
m× ê3

]
(1)

as a model for the magnetization dynamicsm = m(x, t) ∈ S
2 (i.e. m is a direction field) driven

by an external field h = hê3 and current j = β
1+ccp m3

ê3 with polarization parameter ccp ∈
(−1, 1). The parameters α > 0 and µ ∈ R are the Gilbert damping factor and the anisotropy
constant, respectively. A brief overview of the physical background and interpretation of terms
is given below in Section 2.

The constant up- or down-magnetization states m = ±ê3 are always steady states of (1)
and magnetic domain walls spatially separating these states are of major interest. While
the combination of field and current excitations gives rise to a variety of pattern formation
phenomena, see e.g. [5, 14, 15, 19, 23], not much mathematically rigorous work is available so
far, in particular for the dissipative case α > 0 that we consider. The case of axial symmetry
is not only particularly convenient from a technical perspective. It offers at the same time
valuable insight in the emergence of space-time patterns and displays strong similarities to
better studied dynamical systems such as real and complex Ginzburg-Landau equations. In
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Figure 1: Illustration of a wavetrain profile m(ϕ) (a) in the 2-sphere showing their constant
altitude and (b) as a space-time plot of, e.g., m2. In (a) the thick arrow represents m =
(m,m3), the thin line its trajectory as a function of ϕ = kx− ωt.

this framework we examine the existence and stability of wavetrain solutions of (1), i.e.,
solutions of the form

m(x, t) = ei(kx−ωt)m0,

where the complex exponential acts on m0 ∈ S
2 by rotation about the ê3-axis (cf. Figure 1

for an illustration). In the special case ccp = 0 it turns out that (1) can be transformed to the
variational LLG-equation with β = 0: in a rotating frame about the m3-axis with frequency
−β/α the current dependent term vanishes and h changes to h − β/α; see §2.1. This allows
for a complete characterization of wavetrains and their L2-stability.

We also investigate the existence of coherent structure solutions which are locally in space
of wavetrain form

m(x, t) = eiϕ(x,t)m0(x− st) where ϕ(x, t) = φ(x− st) + Ωt (2)

such that m0(ξ) = (sin θ(ξ), 0, cos θ(ξ)). Samples are plotted in Figures 2, 3, 4. In the
variational case ccp = 0 we completely characterize the existence of small amplitude coherent
structures and stationary (s = 0) ones, which in fact correspond to standing waves in the above
rotating frame. Through the coherent structure viewpoint we recover a family of ‘homogenous’
domain wall type solutions of arbitrary velocity, having no azimuthal profile, i.e., constant φ
and thus vanishing local wavenumber dϕ/dx. For general ccp and large speeds, |s| ≫ 1,
we prove existence of a family of more general front-type coherent structures with nontrivial
local wavenumbers, which can also form a spatial interface between ±ê3 and wavetrains. The
analysis of these kinds of solutions is inspired by and bears similarities with that of the real
and complex Ginzburg-Landau equations.

More specifically, the parameter space for existence of wavetrains and coherent structures
is largely organized by the stability of the equilibrium states m = ±ê3. The nature of
bifurcations that we find motivates the following notions to organize the parameter space of
(1): We refer to parameters as being

• ‘supercritical’ if ±ê3 are both unstable

• ‘subcritical’ if ±ê3 have different stability

• ‘subsubcritical’ if ±ê3 are both stable.
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Figure 2: Plots of coherent structure profiles for supercritical anisotropy with µ = 7, h−Ω =
−1,Ω = β/α, ccp = 0, and first integral C = 1, cf. (43). (a) A quasi-periodic solution that
maps to a solution with period ≈ 16 in the reduced equations (44). (b) The same solution
type with period 200 closer to a soliton-type solution with wavetrain as its asymptotic state.

From a physical viewpoint µ and α are material specific, while h, β are control parameters. In
our exposition we choose µ as a primary parameter and speak of super-, sub- or subsubcritical
anisotropy; one may also choose β or h at the price of less convenient conditions.

Our results may be summarized somewhat informally as follows.

The up- and down-magnetization equilibria ±ê3. (Lemma 1) Let β± := β/(1 ± ccp).
The constant state m = ê3 is strictly stable if and only if µ < h − β+/α and m = −ê3
if and only if µ < −(h − β−/α). Instabilities are of Hopf-type for the essential spectrum
with onset via spatially homogenous modes of frequency β/α. In other words, stability of

±ê3 changes when the difference of signed anisotropy ±µ and the force balance h − β±

α
, of

magnetic field strength minus the ratio of current-polarization intensity and damping factor,
changes sign. This corresponds to the well known instability threshold in the more broadly
studied ODE for solutions that are homogeneous in space. Notably, for ccp = 0 the anisotropy
is subsubcritical precisely for −µ > |h − β/α| (‘easy-axis’), and supercritical precisely for
µ > |h− β/α| (‘easy-plane’).

Fast and small amplitude coherent structure. (Theorems 6, 7 and corollaries) For each
sufficiently large speed there exists a family of front-type coherent structures parametrized by
the azimuthal frequency. Their profiles connect ±ê3 with each other or, if there are wavetrains,
there are fronts connecting these and/or ±ê3 in the order of altitudes. An example is plotted
in Figure 3. Small amplitude coherent structures are of front type and, for ccp = 0, exist only
for super- and subcritical anistropy.
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Figure 3: Profile of a ‘fast’ front connecting the wavetrain and the unstable −ê3 computed
with the coherent structure ODE guided by the asymptotic prediction of equation (35). Here
µ = 1, h = 0.5, s = 5,Ω = 2, ccp = 0 and the asymptotic wavetrain on the left has wavenumber
k = Ω/s = 0.4, and is spectrally stable.

Wavetrains. In the case ccp = 0 (Theorems 2, 4) for each wavenumber k ∈ R at most one
wavetrain exists, and moreover:

1. Supercritical anisotropy: Wavetrains exist precisely for k with |k| >
√

µ+ |h− β/α| or
0 ≤ |k| <

√
µ− |h− β/α|. There is (explicitly known) k∗ ∈ (0,

√
µ− |h− β/α| such

that all wavetrains with |k| < k∗ are stable and sideband unstable for |k| > k∗.

2. Subcritical anisotropy: Wavetrain exists precisely for k with |k| >
√

µ+ |h− β/α|, but
are all unstable.

3. Subsubcritical anisotropy: Wavetrains exist for all k, but are all unstable.

The overall picture for wavetrains of (1) with ccp = 0 can be viewed as a combination of
those in a supercritical and a subcritical real Ginzburg-Landau equation; see Figure 11.

For general ccp ∈ (−1, 1) additional effects are (1) a nontrivial nonlinear dispersion relation
ω(k) with nonzero group velocities d

dkω(k), (2) the occurrence of ‘hyperbolic’ and ‘elliptic’
bifurcation points of wavetrains and (3) coexistence of stable wavetrains and stable ±ê3.
Wavetrains for k2 > µ are always unstable (Theorems 2, 3), but for ccp 6= 0 wavetrains are
potentially convectively but not absolutely unstable, though we do not investigate this here.

Domain walls for ccp = 0. (Theorem 5) For any µ < 0 there exists a family of fronts whose
spatial profiles connect ±ê3 with θ′ =

√−µ sin(θ), and that are ‘homogeneous’ in the sense
that q ≡ 0 so there is no azimuthal profile. They corresponds to well known domains walls of
the LLG-equation3 . Here we readily locate these within the coherent structure framework.

Stationary coherent structures for ccp = 0. (Theorems 8, 9)

1. Supercritical anisotropy: For fixed parameters there exist various stationary coherent
structures (s = 0) including ‘homogeneous’ ones (cf. Figure 4). An interesting case of

3After acceptance of the present manuscript for publication, we found these were also obtained in [12].
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Figure 4: Snapshots of sample homogeneous coherent structures with spatially periodic pro-
files, having dφ/dξ = q = 0. Compare Figure 12. Here ccp = 0, α = 1 and Ω = β is arbitrary.
(a) Near a pair of domains walls (µ = −1, h = 10−4 − β). (b) Near an upward ‘phase slip
soliton’ with plateaus near the oscillation at m3 = h− β (µ = 1, h = 0.8− β), and (c) near an
upward-downward pair of such solitons (µ = 1, h = 0.8 − β).

the latter is a symmetric pair of ‘phase slip’ soliton-type coherent structures, whose
spatially asymptotic states are the same spatially homogeneous oscillation (k = 0), but
the intermediate profile crosses either ê3 or −ê3, so that the asymptotic states differ
azimuthally by 180◦. There also exists a non-homogeneous soliton-type solution with
asymptotic state being a wavetrain (cf. Figure 2).

2. Sub- and subsubcritical anisotropy: All stationary coherent structures have periodic
profiles except a homogeneous phase slip soliton with spatially asymptotic state ±ê3 for
sgn(h− β/α) = ±1.

Higher space dimensions. The model for N space dimensions has the second derivative
with respect to x in (1) replaced by a Laplace operator

∑N
j=1 ∂

2
xj
. Wavetrain type solutions

are then of the form
m(x, t) = m∗(k · x− ωt),

where k = (k1, . . . , kN ). Notably, for kj = 0, 2 ≤ j ≤ N these are solutions from one space
dimension extended trivially (constant) in the additional directions.

Conveniently, the rotation symmetry (gauge invariance in the Ginzburg-Landau context),
means that the analyses of ±ê3 and these wavetrains is already covered by that of the one-
dimensional case: the linearization is space-independent and therefore there is no symmetry
breaking due to different kj. Indeed, all relevant quantities are rotation symmetric, depending

only on k2 =
∑N

j=1 k
2
j or ℓ2 =

∑N
j=1 ℓ

2
j , where ℓ = (ℓ1, . . . , ℓN ) is the Fourier wavenumber vec-

tor of the linearization. In particular, the instabilities occur simultaneously for all directions.
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Concerning coherent structures, in higher space dimension the defining equation (see (33)
below) turns into an elliptic PDE in general. The analysis in this paper only covers the trivial
constant extension into higher dimensions.

This paper is organized as follows. In Section 2, the terms in the model equation (1) and
its well-posedness are discussed. Section 3 concerns the stability of the trivial steady states
±ê3 and in §4 existence and stability of wavetrains are analyzed. Section 5 is devoted to
coherent structures.

Acknowledgement. JR has been supported in part by the NDNS+ cluster of the Dutch
Science Fund (NWO). We thank the anonymous reviewers for suggestions that helped improve
the manuscript, and Lars Siemer as well as Ivan Ovsyannikov for their critical reading.

2 Review of Landau-Lifshitz-Gilbert-Slonczewski equations

The classical equation of dissipative magnetization dynamics, the Landau-Lifshitz-Gilbert
equation [11, 22] for unit vector fields m = m(x, t) ∈ S

2,

∂tm = m× (α∂tm− γ heff) .

features a damped precession of m around the effective field heff = −δE(m), i.e., minus the
variational derivative of the interaction energy E = E(m). The gyromagnetic ratio γ > 0 is
a parameter which appears as the typical precession frequency. By rescaling time, one can
always assume γ = 1. The Gilbert damping factor α > 0 is a constant that can be interpreted
dynamically as the inverse of the typical relaxation time. It is useful to take into account that
there are several equivalent forms of LLG. Elementary algebraic manipulations taking into
account that −m×m× ξ = ξ − (m · ξ)m yield the so-called Landau-Lifshitz form

(1 + α2)∂tm = −m× (αm× heff + heff) , (3)

introduced in the original work [22]. In case α > 0, the energy E(m) is not conserved but is
a Lyapunov functional, i.e., more precisely (recall heff = −δE(m))

d

dt
E(m(t)) = −α‖∂tm(t)‖2 or equivalently

d

dt
E(m(t)) = − α

1 + α2
‖m× heff‖2.

Gilbert damping enables the magnetization to approach (spiral down to) a steady state, i.e.
satisfying m× heff = 0 (Browns equation), as t → ∞.

Spin-torque interaction. The system can be driven out of equilibrium conventionally by
an external magnetic field h which appears as part of the effective field. In modern spin-
tronic applications, magnetic systems are excited by spin polarized currents (with direction of
polarization êp ∈ S

2) giving rise to a spin torque

m×m× j where j = β
êp

1 + ccp m · êp
, (4)

which has been introduced in [2, 34]. Here, the parameters β > 0 and ccp ∈ (−1, 1) depend
on the intensity of the current and ratio of polarization [4]. Typically we have êp = ê3. Ac-
cordingly, the modified Landau-Lifshitz-Gilbert equation, also called Landau-Lifshitz-Gilbert-
Slonczewski equation (LLGS), reads

∂tm = m× (α∂tm− heff +m× j) . (5)

6



One may extend the notion of effective field to include current interaction by letting

Heff = heff −m× j,

where the second term is usually called Slonczewski term. In this framework (5) can also be
written in the form (3) with heff replaced by Heff . Observe, however, that the Slonczewski
term (and henceHeff) is in general non-variational and that the energy is no longer a Lyapunov
functional. Introducing the potential Ψ(m) = β

ccp
ln(1 + ccp m · êp) of j (for ccp 6= 0) reveals

the skew variational structure

m× [α∂tm+ δE(m)] = −m×m× [∂tm+ δΨ(m)] ,

see [6]. In the micromagnetic model the underlying interaction energies are integral functionals
in m containing in particular exchange (Dirichlet) interaction, dipolar stray-field interaction,
crystal anisotropy and Zeeman interaction with external magnetic field, see e.g. [16]. In this
paper we shall mainly focus on the spatially one-dimensional situation and consider energies
of the form

E(m) =
1

2

∫ (
|∂xm|2 + µm2

3

)
dx−

∫
h ·m dx. (6)

Here, h ∈ R
3 is a constant applied magnetic field. The parameter µ ∈ R features easy plane

anisotropy for µ > 0 and easy axis anisotropy for µ < 0, respectively, according to energetically
preferred subspaces. This term comprises crystalline and shape anisotropy effects. Shape
anisotropy typically arises from stray-field interactions which prefer magnetizations tangential
to the sample boundaries. Hence µ > 0 corresponds to a thin-film perpendicular to the ê3-
axis whereas µ < 0 corresponds to a thin wire parallel to the ê3-axis. The effective field
corresponding to (6) reads

heff = ∂2
xm− µm3ê3 + h. (7)

With the choices h = h ê3 and êp = ê3, the Landau-Lifshitz-Gilbert-Slonczewski equation
(5) exhibits the aforemented rotation symmetry about the ê3-axis. The presence of a spin
torque m×m×j exerted by a constant current may induce switching between magnetization
states or magnetization oscillation [3, 4, 7]. For the latter effect, the energy supply due to
the electric current compensates the energy dissipation due to damping enabling a stable
oscillation, called precessional states. In applications the typical frequency is in the range of
GHz, so that a precessional state would basically act as a microwave generator. In the class
of spatially homogeneous states, precessional states are periodic orbits with m3 = const. and
of constant angular velocity β/α when ccp = 0. It is more subtle, however, to understand the
occurrence and stability of spatially non-homogeneous precessional states. This is the theme
of this paper.

Extensions and related work. There is a wealth of literature studying the dynamics of
related Landau-Lifschitz models with and without damping and axial symmetry and including
effects other than spin-torque interaction and as general reference we mention the book [6] as
well as the review article [21]. More specifically, spatially non-trivial states and their stabililty
have been considered in [18], where the spin-torque part of the effective field is replaced by
a demagnetization term solving Maxwell’s equation. Also coupled nano-oscillators of LLGS
type have been considered widely, e.g. recently in [33, 35]. Recently, for a situation without
axial symmetry, Turing patterns of spin states have been numerically found in [23].

7



Non-symmetric variants of our equation (1) have been used e.g. in the description of
the field driven motion of a flat domain wall connecting antipodal steady states m3 = ±1
as x1 → ±∞. A prototypical situation is the field driven motion of a flat Bloch wall in an
uniaxial the bulk magnet governed by

∂tm = m×
(
α∂tm− ∂2

xm+ µ1m1ê1 + (µ3m3 − h)ê3
)
. (8)

In this case µ1 > 0 > µ3, where µ1 corresponds to stray-field and µ3 to crystalline anisotropy.
Explicit traveling wave solutions were obtained in unpublished work by Walker, see e.g. [16],
and reveal interesting effects such as the existence of a terminal velocity (called Walker ve-
locity) and the notion of an effective wall mass. A mathematical account on Walker’s explicit
solutions and investigations on their stability, possible extensions to finite layers and curved
walls can be found e.g. in [9, 25, 30]. Observe that our axially symmetric model is obtained
in the limit µ1 ց 0. On the other hand, the singular limit µ3 → +∞ leads to trajectories
confined to the {m3 = 0} plane (equator map), and can be interpreted as a thin-film limit.
In suitable parameter regimes it can be shown that the limit equation is a dissipative wave
equation governing the motion of Néel walls [8, 24, 26].

Well-posedness of LLGS. It is well-known that Landau-Lifshitz-Gilbert equations and its
variants have the structure of quasilinear parabolic systems. In the specific case of (1), one
has the extended effective field Heff = heff −m× j, more precisely

Heff = ∂2
xm− f(m) where f(m) = (µm3 − h)ê3 +

β

1 + ccpm3
m× ê3. (9)

Hence the corresponding Landau-Lifshitz form (3) of (1) reads

(1 + α2)∂tm = −m×
[
∂2
xm− f(m)

]
− αm×m×

[
∂2
xm− f(m)

]
. (10)

Taking into account

m× ∂2
xm = ∂x(m× ∂xm) and −m×m× ∂2

xm = ∂2
xm+ |∂xm|2m, (11)

valid for m sufficiently smooth and |m| = 1, one sees that (10) has the form

∂tm = ∂x (A(m)∂xm) +B(m, ∂xm) (12)

with analytic functions A : R3 → R
3×3 and B : R3 × R

3 → R
3 such that A(m) is uniformly

elliptic for α > 0, in fact

ξ ·A(m)ξ =
α

1 + α2
|ξ|2 for all ξ ∈ R

3.

Well-posedness results for α > 0 can now be deduced from techniques based on higher
order energy estimates as in [27, 28] or maximal regularity and interpolation as in [29]. In
particular, we shall rely on results concerning perturbations of wavetrains, traveling waves, and
steady states. Suppose m∗ = m∗(x, t) is a smooth solution of (1) with bounded derivatives
up to all high orders (only sufficiently many are needed) and m0 : R → S

2 is such that
m0 −m∗(·, 0) ∈ H2(R). Then there exist T > 0 and a smooth solution m : R× (0, T ) → S

2

of (1) such that m−m∗ ∈ C0([0, T );H2(R)) ∩C1([0, T );L2(R)) with

lim
tց0

‖m(t)−m0‖H2 = 0 and lim
tրT

‖m(t)−m∗(·, t)‖H2 = ∞ if T < ∞.

8



The solution is unique in its class and the flow map depends smoothly on initial conditions
and parameters.

Given the smoothness of solutions, we may compute pointwise ∂t|m|2 = 2m ·∂tm, so that
for |m| = 1 the cross product form of the right hand side of (10) gives ∂t|m|2 = 0. Hence, the
set of unit vector fields, {|m| = 1}, is an invariant manifold of (12) consisting of the solutions
to (1) that we are interested in.

In addition to well-posedness, also stability and spectral theory for (12), see, e.g., [29],
carry over to (1). In particular, the computations of L2-spectra in the following sections are
justified and yield nonlinear stability for strictly stable spectrum and nonlinear instability for
the unstable (essential) spectrum.

Landau-Lifshitz-Gilbert-Slonczewski versus complex Ginzburg-Landau equations.
Stereographic projection of (1) yields

(α+ i)ζt = ∂2
xζ −

2ζ̄(∂xζ)
2

1 + |ζ|2 + µ
(1− |ζ|2)ζ
1 + |ζ|2 − (h+ iβ)ζ where ζ =

m1 + im2

1 +m3
,

valid for magnetizations avoiding the south pole.

Studying LLG-type equations via stereographic projection has a long history and has
been employed in several of the aforementioned references, see, e.g., the review [21] and the
references therein.mThere is also a global connection between LLG and CGL in the spirit
of the classical Hasimoto transformation [13], which turns the (undamped) Landau-Lifshitz
equation in one space dimension (heff = ∂2

x) into the focussing cubic Schrödinger equation
[20, 36]. The idea is to disregard the customary coordinates representation and to introduce
instead a pull-back frame on the tangent bundle along m. In the case of µ = β = h = 0, i.e.
heff = ∂xm, this leads to

(α+ i)Dtu = D2
xu (13)

where u = u(x, t) is the complex coordinate of ∂xm in the moving frame representation,
and Dx and Dt are covariant derivatives in space and time giving rise to cubic and quintic
nonlinearities, see [27, 28] for details.

2.1 Symmetry and the variational structure for ccp = 0

The aforementioned rotation symmetry of (1) about the m3-axis of all terms manifests as
an equivariance of the right hand side of (12) with respect to any such rotation Rϕ: let
m = Rϕm̃, then

∂x (A(m)∂xm) +B(m, ∂xm) = Rϕ(∂x (A(m̃)∂xm̃) +B(m̃, ∂xm̃)).

For a rotating frame m = eiΩtm, write the rotation about the ê3-axis as RΩt and note
that time derivatives become ∂tm = RΩt (ΩR∗

ΩtR
′
Ωtm̃+ ∂tm̃), where R∗

ΩtR
′
Ωtm = m × ê3.

Therefore, having ccp = 0, (1) is also an equation for m̃ with the parameter β changed to
β + αΩ (from ∂tm within the brackets) and h to h + Ω (from ∂tm on the left hand side).
In other words, for ccp = 0, changing spin torque current has the same effect as changing the
magnetic field.
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Choosing Ω = −β/α yields β = 0 in (1), which is therefore variational with respect to
the energy (6) as discussed above. This has strong structural consequences for the coherent
structures (2) and allows for a (largely) complete characterization. In particular, it turns
out that the existence of coherent structures that are stationary (s = 0), but not necessarily
time independent, requires their superimposed azimuthal frequency Ω to satisfy Ω = β/α; see
§5.3. The reduction to β = 0 thus implies Ω = 0 and therefore turns the stationary coherent
structures into standing waves and hence to time-independent solutions.

3 Hopf instabilities of the steady states m = ±ê3

As a starting point and to motivate the subsequent analysis of more complex patterns, let
us consider the stability of the constant magnetizations ±ê3. It is well-known that a Hopf
bifurcation of these states occurs in the ODE associated to (1) in the absence of diffusion,
that is, for spatially constant solutions. In the following, we account in addition for spatial
dependence.

Use the shorthand β± = β/(1 ± ccp). Substituting m = ±ê3 + δn + o(δ), where n =
(n, 0) ∈ TmS

2, into (1) gives, at order δ, the linear equation

∂tn = (±µ− h)n × ê3 ± ê3 × (α∂tn− ∂2
xn+ β±n× ê3),

which may be written in complex form as

∂tn± β±n = i
(
α∂tn− ∂2

xn− (h∓ µ)n
)
.

Its eigenvalue problem diagonalizes in Fourier space (for x) and yields the matrix eigenvalue
problem ∣∣∣∣

±β± − λ Λ
−Λ ±β± − λ

∣∣∣∣ = 0,

where Λ = ±µ− h∓ αλ∓ ℓ2 with ℓ the Fourier wave number. The determinant reads

(±β± − λ)2 = −Λ2 ⇔ ±β± − λ = σiΛ, σ ∈ {±1}.
Considering real and imaginary parts this leads to

(1 + α2)Re(λ) = ±β± − α(ℓ2 ± h− µ) = α(µ ∓ (h− β±/α)− ℓ2)

Im(λ) = σ(∓Re(λ) + β±/α),

so that the maximal real part has ℓ = 0. At criticality, where Re(λ) = 0 the imaginary
parts are ±β±/α, which (if nonzero) corresponds to a so-called Hopf-instability of the (purely
essential) spectrum and we expect the emergence of oscillating solutions whose frequency at
onset is β±/α [31]. Since the critical mode has ℓ = 0, the onset of instability coincides with
the aforementioned Hopf-bifurcation of the ODE associated with diffusionless (1).

The formulas for real- and imaginary parts immediately give the results mentioned in §1
and

Lemma 1 The constant state m = ê3 is (strictly) L
2-stable if and only if µ < µ+ := h−β+/α

and m = −ê3 if and only if µ < µ− := −(h − β−/α). Instabilities are of Hopf-type for the
essential spectrum and have frequency β/α.

For ccp = 0 the anisotropy is subsubcritical precisely for −µ > |h− β/α|, and supercritical
precisely for µ > |h− β/α|.
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4 Wavetrains

To exploit the rotation symmetry about the ê3-axis, we change to polar coordinates in the
planar components m = (m1,m2) of the magnetization m = (m,m3). With m = r exp(iϕ)
equation (1) changes to

(
α −1
1 α

)(
r2∂tϕ
∂tm3

)
=

(
∂x(r

2∂xϕ)
∂2
xm3 + |∂xm|2m3

)
+ r2

(
β/(1 + ccpm3)

h− µm3

)
, (14)

where
|∂xm|2 = (∂xr)

2 + r2(∂xϕ)
2 + (∂xm3)

2 and r2 +m2
3 = 1.

This can be seen as follows. In view of (3), with heff replaced by the extended effective field
Heff = heff −m× j as in (9) and taking into account (11), (1) reads

α∂tm+m× ∂tm = ∂2
xm+ (h− µm3)ê3 +

(
|∂xm|2 + µm2

3 − hm3

)
m− β

1 + ccpm3
m× ê3.

The third component of the above equation is the second component of (14), whereas the first
component of (14) is obtained upon inner multiplication by m⊥ = (m⊥, 0) = (ieiϕ, 0) and
taking into account that m× ê3 = −m⊥.

The rotation symmetry has turned into the shift symmetry ϕ 7→ ϕ + const. In full spherical

coordinates m =
(
eiϕ sin θ
cos θ

)
, (14) further simplifies to

(
α −1
1 α

)(
sin θ∂tϕ
−∂tθ

)
=

(
2 cos θ∂xθ ∂xϕ+ sin θ∂2

xϕ
−∂2

xθ + sin θ cos θ(∂xϕ)
2

)
+sin θ

(
β/(1 + ccp cos(θ))

h− µ cos θ

)
. (15)

4.1 Existence of wavetrains

Wavetrains are solutions of the form m(x, t) = m∗(kx − ωt), where k is referred to as the
wavenumber and ω as the frequency. A natural type of wavetrains are relative equilibria with
respect to the phase shift symmetry for which ϕ = kx−ωt andm3, r are constant. See Figure 1
for an illustration.

Theorem 1 Wavetrains with frequency ω and wavenumber k are in one-to-one correspon-
dence to solutions of

Γ(ω, k) := ccpαω(ω + h)− (β + αω)(k2 − µ) = 0,

under the constraint |(ω + h)/(k2 − µ)| ≤ 1. In particular, for each k there are at most two
values of ω that yield a wavetrain, and for each ω 6= −β/α there is at most one value of k2

that gives a wavetrain, unless ccpαω(ω + h) = 0 for ω = −β/α. Moreover, for |ccp| < 1,

(a) ω 6= 0, k2 6= µ, sgn(ω) = −sgn(β) and ω ∈ [min{−β±/α},max{−β±/α}].

(b) As |k| → ∞ we have ω → −β/α and m3 → 0.

(c) Bifurcations of k ∼ 0 from k = 0 for fixed ω are unfolded for increasing µ.

11
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Figure 5: Plots of wavetrain locations in the (k, ω)-plane when parameters pass through
an elliptic bifurcation point. Labels are the values of µ. Other parameters are fixed at
ccp = 0.5, h = 2, α = 1, β = 2.1 so that ω± = −β±, β+ = 1.4, β− = 4.2 and µ+ = 0.6, µ− = 2.2.
Therefore, µ = 1.55, 1.57 are both subcritical with ê3 stable and −ê3 unstable. Shaded regions
have |m3| > 1. The elliptic point lies at µsn ≈ 1.558, ωsn = −2.558.

(d) Bifurcations for m 6= ±ê3 occur at ω = ωsn :=
β±

√
β(β−4αh)

2α with |m3| < 1 if | 1
ccp

− h
µ
| < 2

and are either:

... a hyperbolic point for k 6= 0, if h = β/α and then ω = −h, k2 = −ccph+ µ,

... a hyperbolic point for k = 0, if sgn((ccph− µ)(ccph+ µ)) = 1,

... an elliptic point for k = 0, if sgn((ccph− µ)(ccph+ µ)) = −1.

In the following we discuss the existence problem and thereby prove each statement of the
theorem.

The terms elliptic and hyperbolic refers to the use in [32] and will be explained below.
Note that the latter two bifurcation types do not occur for ccp = 0. That case is considered
in detail in §4.2. We note that Γ depends on k only through k2 − µ so that µ ≥ 0 is the same
as µ = 0 up to change in wavenumber and solutions for fixed ω can increase |k| only through
increasing µ.

Substituting the wavetrain ansatz into (15) yields the algebraic equations

(
α −1
1 α

)(
− sin(θ)ω

0

)
=

(
0

sin(θ) cos(θ)k2

)
+ sin(θ)

(
β/(1 + ccp cos(θ))

h− µ cos(θ)

)
.

Thus either θ ≡ 0 mod π or (recall |ccp| < 1)

− αω =
β

1 + ccpm3
, −ω = (k2 − µ)m3 + h. (16)

In the first case we have r = 0, which corresponds to the constant upward or downward
magnetizations, (r,m3) = (0,±1) with unspecified k and ω. In the second case, we notice
aside that absence of dissipation (α = 0) requires absence of current (β = 0) and there is a
two-parameter set of wavetrains given by the second equation. The case we are interested in
is α > 0 and then β = 0 requires ω = 0, and this falls into the special case ccp = 0.

12
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Figure 6: Analogue of Figure 5 with fixed parameters as there, when µ passes through a
hyperbolic bifurcation point at k = 0 with µsn ≈ 0.641, ωsn = −1.641. Note that between
µ = 0.55 and µ = 0.64 the upper branch enters the region |m3| ≤ 1 at a bifurcation of in this
case ê3 at µ = µ+ = 0.6. Therefore, µ = 0.64, 0.65 are supercritical with ±ê3 both unstable.
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Figure 7: Analogue of Figure 5 when parameters pass through hyperbolic bifurcation points
with k 6= 0 so that h = β/α. Notably this cannot be unfolded by variation of µ. Labels are
the values of β and other parameters are fixed at ccp = 0.5, h = 2, α = 1, µ = 1.2. This is
subcritical with ê3 unstable since µ+ = 2(1− β/3), µ− = 2(β − 1) and 1.2 ∈ (µ+, µ−).

In the generic case β, ccp 6= 0, the first equation implies that ω ≈ 0 is not possible for
|m3| ≤ 1 and we obtain

m3 = − 1

ccp

(
β

αω
+ 1

)
, m3 = − ω + h

k2 − µ
(17)

where for k2 = µ we have ω = −h and the first equation holds.

Eliminating m3 and rearranging terms gives the existence condition in terms of ω and k
as zeros of Γ(ω, k) as in the theorem. For ω 6= −β/α this gives k2 as a quadratic function
of ω inverse to the nonlinear dispersion relation ω(k). The exceptional ω = −β/α occurs
precisely when h = β/α and implies m3 = 0, i.e. a solution on the equator (or ccp = 0).
The strict monotonicity of Γ in k away from k = 0 also means that upon parameter change
new solution branches can emerge only through local extrema of Γ at k = 0, i.e., an ‘elliptic’
point. Specifically, this occurs if at a critical point ∂2

kΓ(ω, 0) = 2(β + αω) has the same sign

13



as ∂2
ωΓ(ω, 0) = 2αccp and, e.g. Γ(0, 0) = βµ varies.

In particular, Γ(ω, k) = ∂ωΓ(ω, k) = 0 occurs at

αω2 + β(2ω + h) = 0 (18)

and is a fold point of wavetrains (in the form of homogeneous oscillations) with fixed k. For
k = 0 these have at frequency and parameters (recall ccp 6= 0)

ωsn = −ccph+ µ

2ccp
, 4βµccp = α(µ + ccph)

2. (19)

Note that |m3| < 1 for k = 0 is by (17) equivalent to |ωsn+h| < |µ| which yields | 1
ccp

− h
µ
| < 2.

At such critical point we also have

∂2
kΓ(ω, 0) = − α

ccp
(ccph− µ)(ccph+ µ), (20)

so that the relative size of ccph and µ determines whether such a bifurcation point is elliptic
or hyperbolic in the language of [31]. In terms of critical parameters, substituting ω = ωsn+ ω̃
and, for instance µ = µsn + µ̃ to unfold with µ and other parameters fixed we obtain

µ̃ = k2 − ccpα

β + αωsn
ω̃2 (21)

which gives the options of hyperbola or ellipses for level sets. Hyperbolic points are saddle
points of Γ and at such points the connectivity of existing branches changes. For k 6= 0 this
occurs in particular, if h = β/α when the two branches of Γ = 0 are the line ω = −h for any
k and ω = 1

ccp
(k2 − µ).

We plot examples of these situations in Figures 5, 6, 7.

More globally, since Γ is quadratic in ω there are at most two solutions for each k and by
strict monotonicity in k2, away from h = β/α, there is at most one solution for each ω or the
whole line ω = −β/α. The only complication is the constraint |m3| ≤ 1 – dispersion curves
touch the boundary m3 = 1 at bifurcations of ±ê3, which were studied in §3. The figures
illustrate the essential scenarios.

4.2 Existence in the case ccp = 0

In this case the existence conditions can be conveniently written as

ω = −β

α
(22)

cos(θ) =
h− β/α

µ− k2
, (µ 6= k2). (23)

As expected from the variational structure in rotating coordinates discussed in §2.1, all wave-
trains oscillate with frequency given by the ratio of applied current and dissipation. In par-
ticular, in this case the natural representation of wavetrains is that (θ, k)-plane rather than
(ω, k) as above.

An involution symmetry involving parameters is

(h− β/α, θ) → (β/α− h, θ + π), (24)
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Figure 8: Plots of equilibrium locations in the (k,m3)-plane including the trivial equilibria
±ê3 plotted with thick line if stable (when not intersecting wavetrain parameters). Compare
Figure 9. See (23). (a) supercritical (easy plane) anisotropy (µ = 1, h − β/α = 1/2), (b)
subcritical anisotropy (µ = 1, h− β/α = 2), where no homogeneous oscillations (k = 0) exist,
and (c) subsubcritical (easy axis) anisotropy µ = −1, h− β/α = 0.9.

supercritical

subcritical

subsubcritical
−|h− β/α|

|h− β/α|
σê3 stable

±ê3 unstable

±ê3 stable

µ

k

Figure 9: Sketch of existence region (shaded) in the (k, µ)-plane, with boundary given by (25)
for σ := sgn(h− β/α) 6= 0. The sign of σ determines which of ±ê3 is stable in the subcritical
range.

so that the sign of h− β/α is irrelevant for the qualitative picture.

Solvability of (23) requires that |µ− k2| > |h−β/α| (unless r = 0), so that only for super-
and subsubcritical anisotropy,

|µ| > |h− β/α|, (25)

there exist wavetrains with wavenumber in an interval around k = 0. In other words, non-
trivial spatially nearly homogeneous oscillations require sufficiently small (in absolute value)
difference between applied magnetic field and oscillation frequency (ratio of applied current and
dissipation). The transition into this regime goes via the ‘Hopf’ instability from §3. Combining
(25) with Lemma 1 and straightforward analysis of (23) gives the following lemma. The three
types of solution sets are plotted in Figure 8. Clearly, the solution sets are symmetric with
respect to the signs of k and θ, respectively.

Theorem 2 There are three types of wavetrain parameter sets solving (23):
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1. For supercritical anisotropy there is one connected component of wavetrain parameters
including k = 0, and two connected components with unbounded |k|, each with constant
sign of k.

2. For subcritical anisotropy there are two connected components with unbounded |k|, each
with constant sign of k.

3. For subsubcritical anisotropy there are two connected components, each a graph over the
k-axis.

The Hopf-type instabilities of ±ê3 noted in §3 at the transition from sub- to supercritical
anisotropy is a supercritical bifurcation in the sense that solutions emerge at the loss of stability
of the basic solution, here ±ê3, while that from sub- to subsubcritical is subcritical in the sense
that solutions emerge at the gain of stability.

Proof. Let us consider the existence region of wavetrains in wavenumber-parameter space.
From (23), r = 0 at θ ≡ 0 mod π gives the boundary for nontrivial amplitude,

µ = k2 ± (h− β/α), (26)

as a pair quadratic parabolas in (k, µ)-space. The solution set in this projection is sketched in
Figure 9. Remark that this set is non-empty for any parameter set α, β, h ∈ R of (1). However,
as in the general case not all wavenumbers are possible due to the geometric constraint.
Notably, the existence region consists of two disjoint sets, one contained in {µ > 0} with
convex boundary and one extending into {µ < 0} with concave boundary.

4.3 Stability of wavetrains

In this section we discuss spectral stability of wavetrains and in summary we obtain the
following result.

Theorem 3

(a) Wavetrains bifurcating from ±ê3 at k = 0 are stable if µ± > max{0, ccpβ±/α}, which
implies supercritical bifurcation, i.e., for increasing µ. They are unstable if µ± <
max{0, ccpβ±/α}, which means subcritical bifurcation, i.e., decreasing µ.

(b) For µ > 0 there is k∗ > 0 such that precisely the wavetrains with wavenumber |k| < k∗
and µ > k2 + αω2ccp/β are sideband stable. These are fully spectrally stable if βccp ≥ 0
or α ≥ 0 is sufficiently small. A wavetrain and ê3 or −ê3 can be simultaneously stable
only for ccp 6= 0.

(c) For each k at most one wavetrain can be stable. Wavetrains with r ∼ 0 and k 6= 0 are
unstable. All wavetrains with k2 > µ are unstable.

(d) Near the hyperbolic or elliptic bifurcation points at k = 0 the sideband stable wavetrains
lie in a sector that is to leading order bounded by |ω − ωsn| = S|k| whose opening angle
less than π and which includes ω with a selected sign of ω − ωsn.
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Figure 10: Dispersion curves and stability regions. Wavetrains on the dispersion curves in the
green shaded region are unstable due to unstable eigenvalue of A(0, 0) using (29), and in the
red shaded region due to unstable sideband only, using λ̃′′

0(0) with k2 from Γ = 0. Parameters
are as in (a): Figure 5; (b): Figure 6; (c),(d): Figure 7. Only the wavetrains near k = 0 are
stable (except for the lower branch in (b)).

Remark 1 Item (a) should be compared with the Hopf instabilities discussed in §3. The case
ccp = 0 is simplest: the constraint simply means that wavetrains bifurcating at the subsub- to
subcritical transition are unstable. For general ccp the condition also accounts for interaction
with folds.

Concerning item (b), notably in the easy axis case µ < 0 all wavetrains are unstable. The
condition ccpβ ≥ 0 is not sharp. However, we do not know whether a ‘Hopf’ instability can
occur for otherwise stable wavetrains if ccpβ < 0 is sufficiently large negative. Item (d) is an
analog to the results in [32].

In order to study spectral stability of wavetrains we consider the comoving frame y =
x − cpht with cph = ω/k the wavespeed so that the wavetrain is an equilibrium of (14). For
convenience, time is rescaled to t = (1 + α2)t̃. The explicit formulation of (14) then reads

∂t̃

(
ϕ
m3

)
=

(
α(∂y(r

2∂yϕ)/r
2 + β̃(m3)) + (∂2

ym3 + |∂ym|2m3)/r
2 + h− µm3 + cph∂yϕ

α(∂2
ym3 + |∂ym|2m3 + r2(h− µm3))− ∂y(r

2∂yϕ)− r2β̃(m3) + cph∂ym3

)
,

(27)
where r2 = 1−m2

3 and β̃(m3) := β/(1 + ccpm3).

Let F = (F1,F2)
t denote the right hand side of (27). Wavetrains have constant r and m3

so that quadratic terms in their derivatives can be discarded for the linearization L of F in a
wavetrain, and from |∂ym|2 only r2(∂yϕ)

2 is relevant. The components of L are

∂ϕF1 = α∂2
y + cph∂y + 2km3∂y

∂m3
F1 = r−2∂2

y + k2 − µ− 2αkm3r
−2∂y + αβ̃′(m3)

∂ϕF2 = 2αkm3r
2∂y − r2∂2

y

∂m3
F2 = α∂2

y + αr2(k2 − µ) + cph∂y − 2αm3(m3k
2 + h− µm3) + 2m3(k∂y + β̃(m3))

− r2β̃′(m3) = α∂2
y + αr2(k2 − µ) + cph∂y + 2m3k∂y − r2β̃′(m3),

where the last equation is due to (17) and β̃′(m3) = −ccpβ/(1+ ccpm3)
2. Since all coefficients

are constant, the eigenvalue problem
Lu = λu
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is solved by the characteristic equation arising from an exponential ansatz u = exp(νy)u0,
which yields the matrix

A(ν, cph) :=

(
αν2 + (cph + 2km3)ν −r−2ν(−ν + 2αkm3) + k2 − µ+ αβ̃′(m3)

r2ν(−ν + 2αkm3) αν2 + (cph + 2km3)ν + αr2(k2 − µ)− r2β̃′(m3)

)
.

The characteristic equation then reads

dcph(λ, ν) := |A(ν, cph)− λ| = |A(ν, 0) − (λ− νcph)| = d0(λ− cphν, ν)

d0(λ, ν) = λ2 − t(ν)λ+ d(ν) (28)

with trace and determinant of A(ν, 0)

t(ν) := trA(ν, 0) = 2ν(αν + 2km3) + αr2(k2 − µ)− r2β̃′(m3)

d(ν) := detA(ν, 0) = (1 + α2)ν
(
ν(ν2 + 4k2m2

3 + r2(k2 − µ))− 2r2β̃′(m3)km3

)

= (1 + α2)ν

(
ν

(
ν2 + (3k2 + µ)

(β̃(m3)/α − h)2

(k2 − µ)2
+ k2 − µ

)
− 2r2β̃′(m3)km3

)
.

In the last equation (23) was used.

The characteristic equation is also referred to as the complex (linear) dispersion relation.
The spectrum of L, for instance in L2(R), consists of solutions for ν = iℓ and is purely essential
spectrum (in the sense that λ−L is not a Fredholm operator with index zero). Indeed, setting
ν = iℓ corresponds to Fourier transforming in y with Fouriermode ℓ. Note that the solution
d(0, 0) = 0 stems from spatial translation symmetry in y. For the same reason the real part
of solutions λ of (28) for any given ν ∈ iR does not depend on cph, which means that spectral
stability is independent of cph and is therefore completely determined by d0(λ, iℓ) = 0.

As a first observation concerning stability we note that at r = 0, |m3| = 1 the solutions λ±

to d0(λ, iℓ) = 0 have Re(λ±) = −ℓ(ℓ± 2k) whose maximum is k2. Hence, wavetrains at (and
thus near) r = 0 are unstable for k 6= 0.

Fold stability. First note the eigenvalues A(0, 0) are 0 and

τ(k2) := t(0) = r2(α(k2 − µ)− β̃′(m3))

so that a ‘fold instability’ occurs precisely for r = 0 (compare §3) or α(k2 − µ) = β̃′(m3).
We readily compute that the latter corresponds to the critical points in (18). Note that
β̃′(m3) = −α2ω2ccp/β. In particular, for the loops of wavetrains emerging from an elliptic
point, the upper and lower ω-values have opposite signs of τ(0); specifically the lower is stable
if βccp > 0, cf. Figure 5.

At the bifurcation points of ±ê3 (see §3) where r = 0, we have µ = µ± and ω = −β±/α
which yields Theorem 3(a) except for the super-/subcriticality. To see this recall that ±ê3
destabilize always through increasing µ. Whether wavetrains with k = 0 emerge from ±ê3
depends on the sign of ∂µm3. From (16) we find µ = h

m3
− β

αm3(1+ccpm3)
and compute

∂m3
µ(±1) = ± τ(0)

αr2

∣∣∣∣
m3=±1

.
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Hence, fold-stability implies ∂µm3(µ
+) < 0 or ∂µm3(µ

−) > 0, respectively, so that increasing
µ yields |m3| < 1 and thus emergence of solutions.

More generally, sign changes of τ(k2) correspond to fold points and a curve of spectrum
crosses the origin. We plot some fold stability boundaries in Figure 10. Using τ(k2) we have
that wavetrains with µ < k2 + ccp

α
β
ω2 are unstable. In particular, for ccpβ ≥ 0 all wavetrains

with k2 > µ are unstable. Using the existence condition we may also write this condition
independent of k as

ω(β(2ω + h) + αω2)

β(β + αω)
< 0, (29)

which explains the changes in the fold stability indicator at ω = −β/α in the figure.

Coming back to k = 0, at the bifurcation points of ±ê3 (see §3) where r = 0, we have
µ = µ±. Fold-stability is then µ > αccpω

2/β which holds if

±
(
h− β±

α

)
>

βccp
α(1± ccp)2

⇔ ±h >
β

α

2ccp ± 1

(1± ccp)2
,

as noted in Theorem 3 item (a).

We next check the other possible marginal stability configurations case by case.

Sideband instability. A sideband instability occurs when the curvature of the curve of
essential spectrum attached to the origin changes sign so that the essential spectrum extends
into positive real parts. Let λ̃0(ℓ) denote the curve of spectrum of A(iℓ, 0) attached to the
origin, that is λ̃0(0) = 0, and let ′ denote the differentiation with respect to ℓ. Derivatives of
λ̃0 can be computed by implicit differentiation of d0(λ, iℓ) = λ2 − t(iℓ) + d(iℓ) = 0.

This gives λ̃′
0(0) = id

′(0)
t(0) = −iβ̃′(m3)

2(1+α2)km3

α(k2−µ)−β̃′(m3)
therefore

λ̃′′
0(0) = −2d′(d′ − t′t) + d′′t2

t3

∣∣∣∣
ℓ=0

=: Λ(k2)
2(1 + α2)r4

τ3(k2)
,

where the ω-dependence is suppressed. Some calculations yield Λ as a cubic polynomial in
K = k2 given by Λ = a3K

3 + a2K
2 + a1K + a0 with

a3 = −α2(4− 3r2),

a2 = α(2β̃′r2 + αµ(8 − 5r2)),

a1 = −α2µ2(4− r2)− 4(1− r2)α2β̃′(m3)
2 − (β̃′(m3)

2 + 4αβ̃′(m3)µ)r
2,

a0 = µ(β̃′(m3) + αµ)2r2.

Notably, a0 = µτ(0)2 and also a3 < 0 since r ∈ (0, 1). A wavetrain with wavenumber k is
therefore (strictly) sideband stable precisely when Λ(k2)τ(k2) < 0 and sideband unstable for
Λ(k2)τ(k2) > 0. As mentioned above, τ(k2) > 0 for large enough k2 so that all such (already
unstable) wavetrains are also sideband unstable as a3 < 0 holds always.

Since τ(k2) > 0 is the unstable fold case, we next assume τ(k2) < 0 so that sideband
stability is precisely Λ(k2) > 0.
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Homogeneous oscillations. For k = 0 we obtain λ̃′′
0(0) = Λ(0)2(1+α2)r4

τ3(0)
= −2(1 + α2) µ

τ(0) ,

so that µ > 0 is required for sideband stability (given fold stability τ(0) < 0).

Let us study this situation near the Hopf instability of ±ê3, where µ ≈ µ± = ±(h−β±/α)
with µ > µ± and ω = β±/α. Hence, sideband stability of the emerging wavetrains requires
h > β+/α or h < β−/α, that is, µ± > 0. Compare Theorem 3(a).

Near homogeneous. To leading order Λ(k2) = 0 is a1k
2 + a0 = O(k4) and via (21) we have

a1 = a1(ω̃, k
2), a0 = a0(ω̃, k

2), where at bifurcation a0(0) = ∂ωa0(0) = 0. Upon expanding we
therefore find sideband instabilities to leading order at

ω̃2 =
a1(0)− ∂k2a0(0)

∂ω̃2a0(0)
k2 +O(|k|3 + |ω̃|3),

where ∂ω̃2a0(0) = µsnr
2
sn

(
2
β
α2ωsnccp

)2
and ∂k2a0(0) = αµsnr

2
sn with rsn = 1 −

(
ωsn+h

µ

)2

the r-coordinate of the wavetrain at the bifurcation point. Some algebra yields a1(0) =
−4α(1 + α2)(h + ωsn)

2.

In accordance with the results in [31], this means that wavetrains in a sector in the (ω, k)-
plane near the fold point are sideband stable, while wavetrains outside this sector are sideband
unstable. We expect that the opening angle of this sector can be changed while keeping
the dispersion curves essentially fixed. Here we do not pursue this further, but note that
since sideband instabilities do occur and the stable region cannot include the fold points,
the prefactor of k2 is positive and ω̃ has a selected sign. The sideband boundaries for some
examples are plotted in Figure 10.

General wavetrains. Concerning the sign of Λ in general, Λ(0) = a0 has the sign of
µ and thus all wavetrains for µ < 0 are sideband unstable. For µ > 0 we have Λ(µ) =
−4α2(β̃′(m3))

2m2
3µ < 0, so a sign change occurs at some Ksb ∈ (0, µ), which implies sideband

instability for k2 ≥ µ. Moreover, µ > 0 and ccpβ ≤ 0 imply a1 < 0 and a2 > 0. Since
a3 < 0 this means both roots of Λ′, (2a2 ±

√
4(a22 − 3a3a1))/(6a3) lie at negative K and so Λ

is monotone decreasing for all K > 0. Therefore Ksb is the unique sideband instability in this
case.

On the other hand, for a1 > 0 the roots of Λ′ have opposite signs so that due to the sign
change in the interval (0, µ) the positive one must be a local maximum so that also in this
case Ksb is the unique sideband instability. Moreover, in all cases wavetrains with k2 > µ are
unstable since Λ < 0 in this range.

Hopf instability. A Hopf instability occurs when the essential spectrum touches the imag-
inary axis at nonzero values. In particular, there is γ 6= 0 so that d0(iγ, iℓ) = 0. At k = 0
we have Im(d0(iγ, iℓ)) = γ(2αℓ2 − τ(0)) so that in the fold stable case τ(0) < 0 there is real ℓ
for γ 6= 0. Recall τ(0) = −(β̃′(m3) + αµ)r2. Therefore, there is no (relevant) Hopf instability
near k = 0.

More generally, solving Im(d0(iγ, iℓ)) for γ and substituting the result into Re(d0(iγ, iℓ))
we obtain up to a factor (1 + α2)ℓ2

ℓ2 + (µ− k2)r2 + 4α2m2
3k

2G(ℓ2), G(L) = −4L2 − 4L(k2 − µ)r2 + (β̃′(m3)
2 + (k2 − µ)2)r4

(2αL− τ(k2))2
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Figure 11: Analogues of Figures 8(a) and 9 with stable range of wavetrains in (a) bold line,
and in (b) the dark shaded region.

where all terms except possibly G(L) are positive in the interesting range µ > k2. Note that
for sufficiently small α > 0 there is no root besides ℓ = 0 and thus no Hopf and in fact no
sideband instability. But there seems to be no satisfying explicit bound. (While the same
seems to occur for m3 ∼ 0, such wavetrains have k2 > µ and are thus unstable.)

However, G is nondecreasing for β̃′(m3) ≤ 0, i.e., ccpβ ≥ 0, since then

G′(L) = −4β̃′(m3)r
2 2L+ (µ − k2 − αβ̃′(m3))r

4

(2αL− τ(k2))3
≥ 0,

in the fold stable case τ(k2) ≤ 0. Thus, besides ℓ = γ = 0, there is at most one solution
d0(iγ, iℓ) = 0 for ccpβ ≥ 0, which rules out a Hopf instability as this requires two such
solutions. We do not know whether or not Hopf instabilities can occur for general α and
ccpβ < 0.

Turing instability. A Turing instability occurs when the spectrum touches the origin for
nonzero ℓ, that is, there is ℓ 6= 0 so that d0(0, iℓ) = 0, which means detA(iℓ, 0) = 0. Since
Im(detA(iℓ, 0)) = −2(1 + α2)β̃′(m3)ℓkm3r

2 and our previous considerations already cover
zeros of this, such instabilities do not occur.

This exhausts the list of possible marginal stability.

4.4 Stability of wavetrains for ccp = 0

For ccp = 0 the wavetrain frequency ω is independent of the wavenumber k in (22) so that
the phase velocity ω/k of all wavetrains is −β/(αk) and the group velocity dω/dk, which
describes the motion of perturbations by localized wave packets, vanishes for all wavetrains.
Due to Theorem 3 destabilizations of stable wavetrains can only occur through a unique
sideband instability |k| = k∗ > 0. This value can be explicitly determined since d′(0) = 0 and
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d′′(0) = −2(1 + α2)((3K + µ)r2 − 4K) so that λ̃′′
0(0) = 0 at

k2∗ = µ
r2

4− 3r2
.

Taking into account that k2 = µ for a wavetrain can occur only if h = β/α we thus have

Theorem 4 Consider ccp = 0. All wavetrains whose wavenumber k satisfies |k| > k∗ are
unstable. For µ > 0 wavetrains with wavenumber |k| < k∗ are spectrally stable, while those
with |k| > k∗ are unstable. In case h 6= β/α a sideband instability occurs at k = ±k∗. There
is no secondary instability for k2 < µ. Nontrivial spectrally stable wavetrains exist only for
supercritical anisotropy, |h− β/α| < µ.

The overall picture for wavetrains of (1) with ccp = 0 is thus a combination of the scenarios
from a supercritical and a subcritical real Ginzburg-Landau equation ∂tA = ∂2

xA + µ̃A ∓
A|A|2, A(x, t) ∈ C, which describes the dynamics near pattern forming Turing instabilities
and possesses the gauge-symmetry A → eiϕA. The interested reader is referred to the review
[1] and the references therein.

5 Coherent structures

The coexistence of wavetrains and constant magnetizations raises the question how these
interact. In this section we study solutions that have spatially varying local wave number. In
particular, we consider solutions that spatially connect wavetrains or ±ê3 in a coherent way.
In order to locate such solutions induced by symmetry we make the ansatz

ξ = x− st
ϕ = φ(ξ) + Ωt
θ = θ(ξ),

(30)

with constant s,Ω. Solutions of (14) of this form are generalized travelling waves to (1)
with speed s that have a superimposed oscillation about ê3 with frequency Ω. This ansatz
is completely analogous to that used in the aforementioned studies of the real and complex
Ginzburg-Landau equations [1].

Let β̄(θ) := β̃(cos(θ)) = β/(1 + ccp cos(θ)) denote the (β, ccp)-dependent term of (15).
Substituting ansatz (30) into (15) with ′ = d/dξ and q = φ′ gives, after division by sin(θ), the
ODEs
(
α −1
1 α

)(
sin(θ)(Ω− sq)

sθ′

)
=

(
2 cos(θ)θ′q + sin(θ)q′

−θ′′ + sin(θ) cos(θ)q2

)
+ sin(θ)

(
β̄(θ)

h− µ cos(θ)

)
, (31)

on the cylinder (θ, q) ∈ S1 × R, which is the same as {(m3, r, q) ∈ R
3 : m2

3 + r2 = 1}.

Wavetrains. Steady states with vanishing ξ-derivative of θ and q have ϕ = q(x− st) + Ωt
and thus correspond to the wavetrains discussed in §4 with wavenumber k = q and frequency
ω = sq −Ω. Hence, the ansatz (30) removes all wavetrains whose wavenumber and frequency
do not lie on the line {ω = sk − Ω} in (ω, k)-space.
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We may visualize this by drawing the line ω = sk − Ω into the wavetrain existence and
stability plots in the (ω, k)-plane such as Figure 10. Specifically, for s 6= 0, steady states of
(31) with m3 6= ±1 are wavetrains with wavenumber q for which there exists θ such that

q =
Ω− β̄(θ)/α

s
. (32)

In particular, for ccp = 0 we have constant β̄(θ) = β so that equilibria of (31) (other than
±ê3) have uniquely selected wavenumber q. Hence, heteroclinic solutions to (31) for ccp = 0
can only be domain walls connecting ±ê3 or connect one of ±ê3 to a wavetrain.

Coherent structure ODEs. Writing (31) as an explicit ODE gives

θ′ = p
p′ = sin(θ)

(
h+ (q2 − µ) cos(θ)− (Ω− sq)

)
− αsp

q′ = α(Ω − sq)− β/(1 + ccp cos(θ))−
s+ 2cos(θ)q

sin(θ)
p,

(33)

whose study is the subject of the following sections. For later use we also note the ‘desingu-
larization’ by the (singular) coordinate change p = sin(θ)p̃ so that p̃′ = p′/ sin(θ)− p̃2 cos(θ),
which gives

θ′ = sin(θ)p̃
p̃′ = h+ (q2 − µ) cos(θ)− (Ω− sq)− αsp̃− cos(θ)p̃2

q′ = α(Ω− sq)− β/(1 + ccp cos(θ))− (s+ 2cos(θ)q)p̃.
(34)

Hence, (33) is equivalent to (34) except at zeros of sin(θ). In particular, for p̃ = 0 the equilibria
of (34) with sin(θ) 6= 0 are those of (33), but θ = nπ, n ∈ Z are invariant subspaces which
may contain equilibria with p̃ 6= 0.

Next, we first consider various moving heteroclinic coherent structures with s 6= 0 and for
ccp = 0 give a complete analysis of stationary coherent structures (s = 0). Coherent structures
also emerge near the elliptic and hyperbolic wavetrain bifurcations that arise from fold points
for ccp 6= 0. However, the detailed analysis of this case is beyond the scope of this paper.

5.1 Homogeneous domain walls

Classical domain walls connect antipodal equilibria at x = ±∞. For the model equation (8)
explicit (Walker) solutions are known to exist below a critical field h. These solutions exhibit a
tilting of the azimuthal angle ϕ = const. in order to balance precessional forces. An analogue
situation arises in our context when q = q′ = 0. In this case we have ϕ = Ωt and therefore no
spatially varying azimuthal profile.4

Theorem 5 Non-equilibrium coherent structure solutions with q ≡ 0 for s 6= 0 and |ccp| < 1

exist for µ < 0 and ccp = 0 or β = 0 only, and have Ω = h+αβ
1+α2 , s2 = − (β−αh)2

µ(1+α2)2
. They

are oscillating heteroclinic fronts connecting ±ê3 that solve θ′ = σ
√−µ sin(θ) where σ =

sgn(s(αh−β)). The family of such fronts is smooth and extends to s = 0, where h = Ω = β/α,
and fronts exist for both signs of σ.

4After acceptance of the present manuscript for publication, we found that the sufficiency of ccp = 0 for
existence of such domains walls in Theorem 5 is contained in [12].
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Proof. Recall β̄(θ) = β/(1 + ccp cos(θ)) so
d
dξ β̄(θ) = ccpβ sin(θ)θ′/(1 + ccp cos(θ))

2.

Suppose a solution (θ, p, q) to (33) has q ≡ 0, so also q′ ≡ 0. Then the third equation of

(33) for s 6= 0 yields, using the first equation, θ′ = αΩ−β̄(θ)
s

sin(θ). Differentiation gives

θ′′ =
αΩ− β̄(θ)

s
cos(θ)θ′ − ccpβ sin2(θ)

s(1 + ccp cos(θ))2
θ′

= sin(θ)
αΩ− β̄(θ)

s2

(
(αΩ − β̄(θ)) cos(θ)− ccpβ(1− cos2(θ))

(1 + ccp cos(θ))2
)

)
.

On the other hand, the second equation of (33) requires

θ′′ = sin(θ)(h− µ cos(θ)− Ω− α(αΩ − β̄(θ))).

First consider ccp = 0 or β = 0 so that β̄(θ) = β and these two right hand sides for θ′′ simplify.
Equating them and comparing the coefficients of cos(θ)j, j = 0, 1, yields h = Ω+ α(αΩ − β)

and µ = −
(
αΩ−β

s

)2
, which means (αΩ − β)/s = σ

√−µ for σ = sgn(s(αΩ − β)). Taken

together, the parameter conditions can be equivalently cast as the equations for Ω, s2 and σ
in the theorem statement.

Hence, for ccp = 0 or β = 0 these parameter choices and θ′ = σ
√−µ sin(θ) are necessary

conditions for q ≡ 0. As a scalar equation, the only non-trivial and bounded solutions are
heteroclinic orbits between equilibria. Taking Ω = β/α + sµ̃ for some µ̃ 6= 0 gives a smooth
parametrization up to s = 0 and σ = sgn(µ̃).

Conversely, for ccp = 0 or β = 0 and these choices of parameters, any (θ, p, q)(ξ) where
θ(ξ) satisfies θ′ = σ

√−µ sin(θ), p = θ′ and q ≡ 0 is a solution to (33).

It remains to show that if β 6= 0 then ccp = 0 is necessary for a non-trivial solution
with q ≡ 0: Subtracting the two right hand sides for θ′′ from above and multiplication with
(1 + ccp cos(θ))

3 gives a polynomial in cos(θ) of degree four. A straightforward computation
shows that the 4th order term to vanish requires µ = −α2Ω2/s2. Using this the coefficients
aj of cos(θ)j, j = 0, 1, 2, 3, in this polynomial can be computed as

a0 = −h+ (1 + α2)Ω− αβ + (β − αΩ)βccp/s
2,

a1 = 3ccp((1 + α2)Ω− h) + β2/s2 − αβ(2ccp + (2 + c2cp)Ω/s
2),

a2 = c2cp(3((1 + α2)Ω− h)− αβ)− 3αβΩccp/s
2,

a3 = c3cp((1 + α2)Ω − h)− αβΩc2cp/s
2.

We first solve a0 = 0 trivially for h and proceed with somewhat tedious, but straightforward
calculations: substituting this h into a1 = 0 (which is linear in Ω) we solve for Ω, which uses
|ccp| < 1. Substituting the resulting h,Ω gives

a2 =
ccpβ

2s2
(
3β(c2cp − 1) + αccps

2
)
,

so that for a2 = 0 either ccp = 0 (since β 6= 0; note that then also a3 = 0) or s2 = 3β
c2cp−1

αccp
. In

the latter case, substituting the previous h,Ω and this s2 into a3 would give a3 = αβc3cp/3 6= 0.
Hence, ccp = 0 is necessary as claimed.
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Remark 2

1. For s = 0 further coherent structure solutions exist, but not as domain walls. See
Theorem 8 below.

2. In §5.2.1 we find fast domain walls and fronts that have non-trivial q.

3. Numerical simulations suggest that these domain walls are dynamically stable solutions
in the subsubcritical case. They are unstable in the subcritical case |h − β/α| > −µ,
which occurs for large |s|, since then either ê3 or −ê3 is unstable.

4. The profile of these domain walls depends only on the parameter µ. In particular, the
subfamily parameterized by h has arbitrarily large speed but constant shape, though the
oscillation frequency Ω depends on h.

5.2 Moving front-type coherent structures

Using the desingularized system (34), we prove existence of some non-stationary coherent
structures of front-type, spatially connecting wavetrains or ±ê3.

5.2.1 Near the fast limit |s| ≫ 1

Theorem 6 For any bounded set of (α, β, µ,Ω0,Ω1) and ccp ∈ (−1, 1) there exists s0 > 0 and
neighborhood U of M0 := {θ ∈ [0, π], p̃ = q − Ω1 = 0} such that for all |s| ≥ s0 the following
holds for (34) with Ω = Ω0 +Ω1s. The heteroclinic orbits of (34) in U form a smooth family
in the parameter s−1 for each sign of s, which reverses their orientation. These heteroclinics
and are in one-to-one correspondence with those of the ODE

d

dη
θ = − α

1 + α2
sin(θ)

(
β̄(θ)

α
− h+ (Ω2

1 − µ) cos(θ)

)
, (35)

on the spatial scale η = ξ/s, which also gives the θ-profile to leading order in s−1. Moreover,
for such a heteroclinic orbit (θh, p̃h, qh)(ξ) with θσ := limξ→σ∞ θh(ξ) ∈ {0, π} for σ = 1 or
σ = −1, the q-limit is/are

lim
ξ→σ∞

qh(ξ) = Ω1 −
1

s

(
h+ αβ̄(θσ)− σµ

1 + α2
− Ω0

)
+O(s−2). (36)

In particular, for Ω1 6= 0 or (1 + α2)Ω0 6= h+ αβ̄(θσ)− σµ local wavenumbers are nontrivial:
qh 6≡ 0.

Before proving the theorem we note the consequences of this for coherent structures and
domains walls in in (33) and (1).

Corollary 1 The heteroclinic solutions of Theorem 6 are in one-to-one correspondence with
heteroclinic solutions to (33) and thus heteroclinic coherent structures in (1) that lie in U and
connect θ = 0, π or a wavetrain with r 6= 0. For θ ∈ (0, π) all properties carry over to (33)
with the bijection given by p = sin(θ)p̃.
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Proof. Recall that (34) and (33) are equivalent for θ ∈ (0, π). Since the limit of the vector
field of (33) along such a heteroclinic from (34) is zero by construction in all cases. Hence, for
each of the heteroclinic orbits in (34) of Theorem 6, there exist a heteroclinic orbit in (33) in
the sense of the corollary statement.

Corollary 2 For any ‘bandgap’ parameter set of (33) such that there exist no wavetrains
satisfying (32) for any |s| > s1, for some s1 > 0, there exist fast domain wall type coherent
structures spatially connecting ±ê3 for all sufficiently large velocity |s|.

Proof. Choosing Ω1 = k there are by assumption no equilibria in (35) besides ±ê3, which
are therefore connected by a heteroclinic orbit. Theorem 6 then implies the claim.

Such ‘bandgaps’ occur in particular if µ > 0 for Ω2
1 ∼ µ.

Remark 3

1. Concerning stability, Lemma 1 and Theorem 4 imply that for ccp = 0 the domain walls
connecting ±ê3 might be stable in the subsubcritical case only since otherwise one of the
asymptotic states is unstable: the unique wavetrain with θ ∈ (0, π) in the subsubcritical
case and ê3 or −ê3 in the sub- and supercritical cases. However, it may be that some
fronts are stable in a suitable weighted sense as invasion fronts into an unstable state.

2. For increasing speeds these solutions are decreasingly localized, hence far from a sharp
transition.

3. The uniqueness statement in the corollaries is limited, since in the (θ, p, q)-coordinates
the neighborhood U from the theorem is ‘pinched’ near θ = 0, π: a uniform neighborhood
in (θ, p̃) has a sinus-shaped boundary in (θ, p).

Remark 4 Part of the family homogeneous domains walls from Theorem 5, where ccp = 0, is
a continuation to smaller |s| of homogeneous (q ≡ 0) fronts in the family of Theorem 6. The
latter are decreasingly localized, which requires in the former that

√
µ = O(s). Specifically,

µ = − (β−αh)2

s2(1+α2)2
and Ω0 = h+αβ

1+α2 , Ω1 = 0 in the heteroclinics of Theorem 6. Then µ → 0 as

s2 → ∞ so that µ = 0 in the leading order equation (35) and in (36) µ is removed from the

order s−1 term. Since σs
√−µ = −(β−αΩ0) and β−αΩ = − α

1+α2

(
h− β

α

)
indeed (35) equals

the equation in Theorem 5. In particular, (36) is consistent with q ≡ 0.

Finally, remark that the ODE (35) is the spatial variant of the temporal heteroclinic
connection in (15): setting all space derivatives to zero, the θ-equation of (15) reads

−∂tθ =
α

1 + α2
sin(θ)

(
h− β̄(θ)

α
− µ cos(θ)

)
,

which is (35) with µ replaced by Ω2
1 − µ and up to possible direction reversal. Since Ω1 = q

on the slow manifold M0 (i.e. at leading order), the reduced flow equilibria reproduce the
wavetrain existence condition (23). This kind of relation between temporal dynamics and fast
travelling waves holds formally (but in general not rigorously) for any evolution equation in
one space dimension. Here the symmetry makes the temporal ODE scalar.
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Proof (Theorem 6) Let us set s = ε−1 so that the limit to consider is ε → 0. Since we will
rescale space with ε and ε−1 this means sign changes of s reflect the directionality of solutions.

The existence proof relies on a geometric singular perturbation argument and we shall use
the terminology from this theory, see [10, 17], and also sometimes suppress the ε-dependence
of θ, p̃, q.

Upon multiplying the p̃- and q-equations of (34) by ε we obtain the, for ε 6= 0 equivalent,
‘slow’ system

θ′ = sin(θ)p̃

εp̃′ = −αp̃+ q − Ω1 + ε(h + (q2 − µ) cos(θ)−Ω0 − cos(θ)p̃2)

εq′ = −p̃− α(q − Ω1) + ε(αΩ0 − β̄(θ)− 2 cos(θ)qp̃).

(37)

Setting ε = 0 gives the algebraic equations

A

(
p̃
q

)
= −Ω1

(
−1
α

)
, where A = −

(
α −1
1 α

)
.

Since detA = 1 + α2 > 0 the unique solution is p̃ = q − Ω1 = 0 and thus the ‘slow manifold’
is M0 as defined in the theorem, with ‘slow flow’ given by

θ′ = sin(θ)p̃.

Since p̃ = 0 at ε = 0, M0 is a manifold (a curve) of equilibria at ε = 0, so that the slow
flow is in fact ‘superslow’ and will be considered explicitly below. Since the slow manifold is
one-dimensional (and persists for ε > 0 as shown below) it suffices to consider equilibria for
ε > 0. These lie on the one hand at θ = θ0 ∈ {0, π}, if

A

(
p̃
q

)
+Ω1

(
−1
α

)
+ εF (p̃, q) = 0 , F (p̃, q) :=

(
h+ σ(q2 − µ)−Ω0 − σp̃2

αΩ0 − β̄(θ0)− 2σqp̃

)
,

where σ = cos(θ0) ∈ {−1, 1}. Since detA = −(1 + α2) < 0 the implicit function theorem
provides a locally unique curve of equilibria (p̃ε, qε) for sufficiently small ε, where

d

dε

∣∣∣∣
ε=0

(
p̃ε
qε

)
= −A−1F (0, 0) = −A−1

(
h− σµ −Ω0

αΩ0 − β±

)
.

This proves the claimed location of asymptotic states.

On the other hand, for θ 6= 0 system (34) is equivalent to (33). From the previous consid-
erations of equilibria (=wavetrains) we infer that the unique equilibria in an ε-neighborhood
of M0 are those at θ = θ0, (p̃, q) = (p̃ε, qε) together with the possible additional θ-values of
wavetrains, where k is now replaced by q = ε(Ω0 − β̄(θ)/α).

Towards the persistence of M0 as a perturbed invariant manifold for |ε| > 0, let us switch
to the ‘fast’ system by rescaling the time-like variable to ζ = ξ/ε. With θ̇ = dθ/dζ etc., this
gives

θ̇ = ε sin(θ)p̃

˙̃p = −αp̃ + q − Ω1 + ε(h+ (q2 − µ) cos(θ)− Ω0 − cos(θ)p̃2)

q̇ = −p̃− α(q − Ω1) + ε(αΩ0 − β̄(θ)− 2 cos(θ)qp̃).

(38)
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Note that M0 is (also) a manifold of equilibria at ε = 0 in this system and the linearization of
(38) in M0 for transverse directions to M0 is given by A. Since the eigenvalues of A, −α± i,
are away from the imaginary axis, M0 is normally hyperbolic and therefore persists as an
ε-close invariant one-dimensional manifold Mε, smooth in ε and unique in a neighborhood of
M0. See [10]. The aforementioned at least two and at most three equilibria lie in Mε, and,
Mε being one-dimensional, these must be connected by heteroclinic orbits.

For the connectivity details it is convenient to derive an explicit expression of the leading
order flow. We thus switch to the superslow time scale η = εξ and set p = p̃/ε, q = (q−Ω1)/ε,
which changes (37) to (subdindex η means d/dη)

θη = sin(θ)p

εpη = −αp+ q + h+ (Ω2
1 − µ) cos(θ)− Ω0 + ε cos(θ)(ε(q2 − p2) + 2qΩ1)

εqη = −p− αq + αΩ0 − β̄(θ)− 2ε cos(θ)(εqp+Ω1p).

(39)

At ε = 0, solving the algebraic equations for (p, q) gives

(
p
q

)
= −A−1

(
h+ (Ω2

1 − µ) cos(θ)− Ω0

αΩ0 − β̄(θ)

)
=

1

1 + α2

(
αh+ α(Ω2

1 − µ) cos(θ)− β̄(θ)
(1 + α2)Ω0 − h− (Ω2

1 − µ) cos(θ)− αβ̄(θ)

)

whose first component gives p so that the leading order superslow flow on the invariant man-
ifold is indeed given by (35).

5.2.2 The case of small amplitudes

In this section we consider small amplitude coherent structures, which means q must lie near
a bifurcation point of wavetrains. Here we focus on the intersection points of the solution
curves from (16) with θ = θ0 = 0, π, which gives

cos(θ0)
(
q2 − µ

)
=

β̄(θ0)

α
− h. (40)

For ccp = 0 this is possible for super- and subcritical anisotropy only, compare Figure 8.

We show that these intersection points are pitchfork-type bifurcations in (34) that give
rise to front-type coherent structures. As in the previous section, we locate such solutions in
(33) from an analysis of (34).

It is convenient to write (16) in terms of m3 = cos(θ) so equilibria of (34) with p̃ = 0 solve

Γ̃(m3) :=
β̃(m3)

α
−
(
q2(m3)− µ

)
m3 − h = 0,

where q(m3) is the selected q from (32). Recall β̃(m3) =
β

1+ccpm3
.

Theorem 7 Consider θ = θ0 ∈ {0, π} and set m0
3 := cos(θ0). Suppose that parameters of (34)

are such that s 6= 0, Γ̃(m0
3) = 0 and ∂m3

Γ̃(m0
3) 6= 0. Then the equilibrium point (θ0, 0, q(m

0
3))

of (34) undergoes a pitchfork bifurcation upon any perturbation of h or µ.

More precisely, let Sε = (αε, βε, hε, µε,Ωε, ccp(ε), sε), ε ∈ (−ε0, ε0) for some ε0 > 0, be
a curve in the parameter space of (34) with |ccp(ε)| < 1, αε > 0, sε 6= 0 and such that S0

satisfies Γ̃(m0
3) = 0 and γ̃ := ∂m3

Γ̃(m0
3) 6= 0.
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Then (34) has a curve of equilibria (θ0, p̃ε, qε), with possibly adjusted ε0, such that p̃0 =
0, q0 = q(m0

3) and two equilibria with θ 6= θ0 bifurcate from (θ0, 0, q(m
0
3)) for increasing ε

if, with parameters Sε, m0
3γ̃∂εΓ̃(m

0
3)|ε=0 > 0. The bifurcating equilibria are connected to

(θ0, p̃ε, qε) by heteroclinic orbits which converge to (θ0, p̃ε, qε) as ℓξ → ∞ for ℓ = −m0
3p̃ε.

Specifically, this occurs if hε = h0−m0
3γ̃ε or µε = µ0+ γ̃ε and ℓ = γ̃s, or if βε = β0+m0

3γ̃ε
and ℓ = −(2q(m0

3)m
0
3 + s)γ̃, with all other parameters fixed in each case.

Analogously to Corollary 1 we have

Corollary 3 The heteroclinic solutions of Theorem 7 are in one-to-one correspondence with
heteroclinic solutions to (33), connecting to θ ≡ 0 or θ = π in U . Bounded solutions for
θ 6∈ {0, π} are also in one-to-one correspondence.

Proof (Theorem 7) Note that Γ̃(m3) = 0 with |m3| < 1 is equivalent to (and if |m3| = 1
sufficient for) the existence of an equilibrium of (34) at θ with cos(θ) = m3, q = q(m3) from
(40) and p̃ = 0. Assuming γ̃ = ∂m3

Γ̃(m0
3) 6= 0 and ∂νΓ̃(m

0
3) 6= 0 for ν = h or ν = µ implies

existence of a locally unique curve of equilibria m3(ν) that transversely crosses m0
3. The case

of parameters Sε is analogous with a curve m3(ε), where ∂εm3(0) = −∂εΓ̃(m
0
3)/∂m3

Γ̃(m0
3)|ε=0

having the sign of −m0
3 means bifurcation of two equilibria for ε > 0.

It remains to show that the center manifold associated to the bifurcation is one-dimensional,
and to obtain the directionality of heteroclinics.

For the former it suffices to show that the linearization at the bifurcation point has only
a simple eigenvalue on the imaginary axis, namely at zero. The linearization of (34) in any
point with p̃ = 0, θ = θ0 gives the 3× 3 matrix

Ã =




0 0 0

0
0

B


 , B =

(
−αs 2qm0

3 + s
−(s+ 2qm0

3) −αs

)
,

which has a kernel with eigenvector (1, 0, 0)t . The remaining eigenvalues are those of B,
which are −αs ± (s +m0

32q)i. Since these lie off the imaginary axis for s 6= 0 there is indeed
at most one simple zero eigenvalue on the imaginary axis. This implies the existence of a
one-dimensional center manifold which includes all equilibria and heteroclinic connections
near (θ0, 0, q(m

0
3)) for nearby parameters. Equilibria in the symmetry plane {m3 = m0

3} are
solutions of (p̃′, q′) =: G(p̃, q) = 0 with G given by (34). Since DG(0, q(m0

3)) = B is invertible
we obtain a curve (θ0, p̃ε, qε) for parameters at Sε as claimed.

The uniqueness of bifurcating equilibria on either side of the symmetry plane and invariance
of the one-dimensional center manifold implies existence and local uniqueness of heteroclinic
connections for sgn(ε) = sgn(m0

3γ̃∂εΓ̃(m
0
3)|ε=0). In order to determine the directionality of

these, a perturbation in the kernel gives θ′ = sin(θ0+δ)p̃ = m0
3δp̃+O(δ2) so that for m0

3p̃ε < 0
the equilibrium at (θ0, p̃ε, qε) is stable in the center manifold, and unstable for reversed sign.
Since existence of heteroclinics requires sgn(ε) = sgn(m0

3γ̃∂εΓ̃(m
0
3)|ε=0) this implies stability

if ℓ := −γ̃∂εΓ̃(m
0
3)∂εp̃|ε=0 < 0 and thus convergence to (θ0, p̃ε, qε) as ℓξ → ∞.

For hε = h0 − m0
3γ̃ε with otherwise fixed parameters ∂εΓ̃(m

0
3) = m0

3γ̃ so heteroclinics
exist for ε > 0. On the other hand, ∂εp̃ε|ε=0 is the first component −m0

3γ̃αs det(B) of
−B−1∂hG(0, q(m0

3))(−m0
3γ̃), where α det(B) > 0. Hence, ℓ = sγ̃ as claimed. The cases

ε = µ, β are determined analogously using ∂µΓ̃(m
0
3) = m0

3, ∂µG(0, q(m0
3) = (−m0

3, 0) and
∂βΓ̃(m

0
3) = ((1 + ccpm

0
3)α)

−1 > 0, ∂βG(0, q(m0
3) = (0,−((1 + ccpm

0
3)α)

−1).
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Figure 12: Phase plane streamplots of (42) with Mathematica. (a)-(c) have h − Ω = 1/2.
(a) supercritical anisotropy (here µ = 1), (b) subcritical (here µ = 0), (c) subsubcritical (here
µ = −1), (d) subsubcritical case that allows for standing domain walls, h = Ω, µ = −1.

5.3 Stationary coherent structures for ccp = 0

In this section we consider the case s = 0 (which does not imply time-independence) and
ccp = 0 (which will imply integrability), so that equations (33) reduce to

θ′′ = sin(θ)
(
h− Ω+ (q2 − µ) cos(θ)

)

q′ = αΩ − β − 2 cot(θ)θ′q.
(41)

In case Ω 6= β/α there are no equilibria and it will be shown at the end of this section
that there are no coherent structure-type solutions in that case. Recall from §2.1 that for
ccp = 0 we may choose coordinates so that β = 0, which means Ω = 0 and thus stationary
coherent structures are turned into standing waves. However, we choose not to remove the
parameter β in order to emphasize the typically oscillatory nature of solutions to (1) and for
consistency in parameter relations. Nevertheless, the symmetries and integrals that we will
find are consequences of this reducibility.

For Ω = β/α, system (41) is invariant under the reflection q → −q so that {q = 0} is an
invariant plane which separates the three dimensional phase space. In particular, there cannot
be connections between equilibria (=wavetrains) with opposite signs of q, that is, sign reversed
spatial wavenumbers.

5.3.1 Homogeneous solutions (q = 0)

Solutions in the invariant set {q = 0} have the form m(ξ) = r(ξ) exp(itΩ) and (31) turns into
a second order ODE on the circle {m2

3 + r2 = 1}. The ODE for θ from (41) is given by the
nonlinear pendulum equation

θ′′ = sin(θ) (h− Ω− µ cos(θ)) , (42)

which is invariant under θ → −θ and is Hamiltonian with potential energy

P0(θ) = cos(θ)(h− Ω− µ

2
cos(θ)).

The symmetry (24) applies and we therefore assume in the following that Ω = β/α < h.
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We plot the qualitatively different vector fields of (42) in Figure 12 and some profiles
in Figure 4. Coherent structure solutions are completely characterized via the figure, which
we formulate next explicitly for the original PDE with m = (m,m3), m = reiϕ, r = sin(θ),
m3 = cos(θ). Homoclinic profiles may be interpreted as (dissipative) solitons. The heteroclinic
connections in item 2(a) can be viewed as (dissipative) solitons with ‘phase slip’.

Theorem 8 Let s = 0 and Ω = β/α and consider solutions to (14) of the form (30) with ϕ
constant in ξ, i.e., q = 0. These oscillate in time pointwise about the ê3-axis with frequency
Ω = β/α. Assume without loss of generality, due to (24), that h > Ω.

1. Subcritical anisotropy h−Ω > |µ| > 0. There exist no nontrivial wavetrains with q = 0,
and the coherent structure solutions with q = 0 are a pair of homoclinic profiles to ê3, and
three one-parameter families of periodic profiles, one bounded and two semi-unbounded.
The homoclinic profiles each cross once through −ê3 in opposite θ-directions. The limit
points of the bounded curve of periodic profiles are −ê3 and the union of homoclinic
profiles. Each of the homoclinics is the limit point of one of the semi-unbounded families,
each of which has unbounded θ-derivatives. The profiles from the bounded family each
cross −ê3 once during a half-period, the profiles of the unbounded family cross both ±ê3
during one half-period.

2. Suppose super- or subsubcritical anisotropy |µ| > h − Ω. There exists a wavetrain with
k = 0, which is stable in the supercritical case (µ > 0) and unstable in the subsubcritical
case (µ < 0). In (42) this appears in the form of two equilibria being the symmetric pair
of intersection points of the wavetrain orbit and a meridian on the sphere, phase shifted
by π in ϕ-direction. Details of the following can be read off Figure 12 analogous to item
1.

(a) In the supercritical case (µ > h − Ω) the coherent structure solutions with q = 0
are two pairs of heteroclinic connections between the wavetrain and its phase shift,
and four curves of periodic profiles; two bounded and two semi-unbounded.

(b) In the subsubcritical case (µ < h−Ω) the coherent structure solutions with q = 0 are
two pairs of homoclinic connections to ±ê3, respectively, and five curves of periodic
profiles, three bounded and two semi-unbounded.

3. The degenerate case h = Ω, µ < 0 is the only possibility for profiles of stationary coherent
structures to connect between ±ê3, which then come in a pair as in the corresponding
panel of Figure 12. The remaining coherent structures with q = 0 are analogous to the
supercritical case with ±ê3 and the pair of wavetrain and its phase shift interchanged.

Proof. As for wavetrains discussed in §4, the condition cos(θ) = (h−Ω)/µ yields the existence
criterion |h − Ω| < |µ| for an equilibrium to (42) in (0, π). The derivative of the right hand
side of (42) at θ = 0 is h − Ω − µ, which dictates the type of all equilibria and only saddles
generate heteroclinic or homoclinic solutions.

It remains to study the connectivity of stable and unstable manifolds of saddles, which is
given by the difference in potential energy P0(θ). Since P0(0) − P0(π) = 2(h − Ω) the claims
follow.
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Figure 13: (a) Figure 11(a) with solutions to (43) for θ ∈ (0, π) and C = 0.1 (thick solid line),
and C = 0.4 (thick dashed line). (b) Upper panel: potential P (θ) for parameters as in (a) and
C = 0.1. Lower panel: same with C = 0.4.

5.3.2 Non-homogeneous solutions (q 6= 0)

In order to study (41) for q 6= 0, we note the following first integral. Since Ω = β/α, the
equation for q can be written as

(log |q|)′ = −2(log | sin(θ)|)′,

and therefore explicitly integrated. With integration constant C = sin(θ(0))2|q(0)| this gives

q =
C

sin(θ)2
. (43)

Substituting this into the equation for θ yields the nonlinear pendulum

θ′′ = sin(θ) (h− Ω− µ cos(θ)) + C2 cos(θ)

sin(θ)3
, (44)

with singular potential energy

P (θ) = P0(θ) +
1

2
C2 cot(θ)2.

The energy introduces barriers at multiples of π so that solutions for q 6= 0 cannot pass ±ê3,
and as C increases the energy landscape becomes qualitatively independent of Ω, h, µ.

As an immediate consequence of the energy barriers and the fact that only stable wavetrains
are saddle points we get

Theorem 9 Let s = 0 and Ω = β/α. Consider solutions to (14) of the form (30). Intersec-
tions in (q, θ)-space of the curve C given by (43) with the wavetrain existence curves W from
(23) (with k replaced by q) are in one-to-one correspondence with equilibria of (41).
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Consider supercritical anisotropy 0 ≤ h−Ω < µ and assume C is such that C transversely
intersects the component of W which intersects {q = 0}. Then the intersection point with
smaller q-value corresponds to a spectrally stable wavetrain, and in (41) there is a pair of
homoclinic solutions to this wavetrain. All other intersection points are unstable wavetrains.

All other non-equilibrium solutions of the form (30) with s = 0 are periodic in ξ, and this
is also the case for all other parameter settings.

The homoclinic orbit is a soliton-type solution to (1) with asymptotic state a wavetrain
(cf. Figure 2).

Notably, the tangential intersection of C and W is at the sideband instability.

In Figure 13 we plot an illustration in case of supercritical anisotropy µ > Ω − h > 0. In
the upper panel of (b) the local maxima each generate a pair of homoclinic solutions to the
stable wavetrain it represents. The values of q that it visits lie on the bold curve in (a), whose
intersections with the curve of equilibria are the local maxima and minima. The lower panel
in (b) has C = 0.4 and the local maxima disappeared. All solutions are periodic and lie on
the thick dashed curve in (a).

5.3.3 Absence of wavetrains (Ω 6= β/α)

In this case the first integral Q = log(|q| sin(θ)2) is monotone,

Q′ =
Ω− β/α

q
6= 0,

and therefore |q| is unbounded as ξ → ∞ or ξ → −∞. In view of (44), we also infer that θ
oscillates so that there are no relevant solutions of the form (30).
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