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Abstract. We consider the numerical investigation of surface bound orientational order using
unit tangential vector fields by means of a gradient-flow equation of a weak surface Frank-Oseen
energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term
to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete
exterior calculus approach, a method based on vector spherical harmonics, a surface finite-element
method, and an approach utilizing an implicit surface description, the diffuse interface method, are
described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the
influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples
where the energy is decreased by introducing additional orientational defects.
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1. Introduction. We consider surface bound systems of densely packed rod like
particles that tend to align tangentially. The systems are modeled by a mesoscopic
field theoretical description using an average direction and an order parameter, mea-
suring the local variance of alignment towards this average direction. In flat space
an uniformly ordered ground state can be established. This is no longer true for
curved space, which induces distortions of this ground state, eventually inhibiting the
propagation of preferred orientational order throughout the whole system. This leads
to the emergence of defects, which for surfaces S with Euler characteristic χ(S) 6= 0
is a consequence of the Poincaré-Hopf theorem. However, the type of the defects,
their number, as well as their position are mostly unknown. The realization of the
Poincaré-Hopf theorem depends on geometric properties of the surface and dynamics
of the evolution. It is the goal of this paper to provide numerical methods to explore
these interesting and nontrivial connections between topology, geometry and dynam-
ics. Besides the mathematical issues, the problem is of interest in the physics and
materials science community due to its envisioned technological applications [56].

We focus on orientational ordering in polar order dynamics. The model follows as
limit of a thin film formulation of a modified Frank-Oseen energy [31] and is formulated
as an L2-gradient flow, which leads to a vector-valued partial differential equation on
the surface. Previous work has postulated a purely intrinsic formulation, extending
the flat space model to curved space [55, 49, 46]. More recent research [53, 54, 71]
derives a surface Frank-Oseen energy as limit of a thin film formulation. This approach
adds to the intrinsic model an explicit influence of the embedding space by extrinsic
quantities. However, the limit is only established for surfaces with χ(S) = 0 and only
allows defect free configurations. All approaches focus only on the steady state and
utilize continuous optimization methods [41] or Monte-Carlo based methods [15, 45,
57] to evaluate the minimizers. To complement these models and methods we derive
a more general thin film limit, valid also for surfaces with χ(S) 6= 0 and focus on the
dynamics of orientational order on such surfaces.
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Starting from the general surface modeling provided in Section 2 we establish
suitable reformulations to apply different numerical methods and solve the resulting
dynamic equations. We propose methods based on a coordinate free framework as
well as methods adapted for the Cartesian coordinates of the embedding R3 by us-
ing a penalty term approach. Section 3 gives the general notations and Section 4
presents the methods of discrete exterior calculus (DEC), vector spherical harmonics
(SPH), surface finite elements (sFEM) and diffuse interface modeling (DI). We compare
results of these methods in Section 5 to provide estimations on numerical quality and
computational cost. Further, we use these methods to perform experiments investigat-
ing the influence of geometry on emergence and energetical stability of non-minimal
defect configurations and demonstrate the possibility to decrease the energy by in-
troducing additional defects. The model formulations and proposed methods will
provide a modeling and numerical toolkit ready to be applied to polar orientational
order in curved space and related physical systems out of equilibrium. This and the
implication for solving vector-valued partial differential equations on surfaces will be
discussed in Section 6.

2. Model derivation. Two major continuous theories to describe orientational
order in liquid crystals exist. On the one hand, the Frank-Oseen theory uses a vector
field to describe average molecular ordering, while, on the other hand, the Landau-de
Gennes theory is based on a matrix expression (called Q-tensor). Both models are
widely used and indeed coincide in flat 2D space for a specific set of elastic terms,
see [12, 38]. Besides this agreement, the Frank-Oseen modeling can not account for a
physical head-to-tail symmetry of the material, which is naturally considered in the
Landau-de Gennes theory. For a mathematical review on both modeling approaches
we refer to [11]. Due to its relative simplicity we here consider only the Frank-Ossen
theory as a modeling framework. Being aware of the fact that additional physical
effects will occur within a corresponding Landau-de Gennes theory.

In our framework the average alignment of anisometric molecules can be expressed
by a unit vector p, in the following called director, that represents the direction of
the average alignment axis. In order to describe the spatial variation of a director
field a free energy F can be formulated that incorporates energy costs due to spatial
distorsions. The energy reads in simplified form [62]

FF [p,Ω] =
1

2

∫
Ω

K1 (∇ · p)
2

+K2 (p · (∇× p))
2

+K3 ‖p× (∇× p)‖2 dV ,(1)

with K1,K2, and K3 the Frank phenomenological constants and Ω ⊂ R3 a three
dimensional domain. The functional FF contains three contributions related to defor-
mations of p, namely (from left to right) for splay, twist, and bend. We here consider
the one-constant approximation K := K1 = K2 = K3. The distortion energy thus
reads

FOC [p,Ω] =
K

2

∫
Ω

(∇ · p)
2

+ ‖∇ × p‖2 dV .(2)

To arrive at a surface formulation, we consider a thin shell Ω = Ωδ around a compact
smooth Riemannian surface S, with thickness δ sufficiently small, and p parallel to
the surface and parallel transported in normal direction to the surface. The limiting
case of FOC [p,Ωδ], δ ↘ 0, where Ωδ collapses to the surface, has been considered in
[54] for surfaces with χ(S) = 0 and thus only for defect free configurations. This result
cannot simply be extended to more general surfaces, as a smooth vector field with unit
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norm exists if and only if χ(S) = 0. This topological result can also be extended to the
corresponding Sobolev space [72] and thus turns out to be useless for any investigation
of defects in unit vector fields on surfaces. While in mathematical terms these defects
can be considered as discontinuities, in physical terms the liquid crystal undergoes a
phase transition to an isotropic phase at the defect. To enable a continuous director
field p and to incorporate this phase transition, we drop the constraint ‖p‖ = 1 and
consider ‖p‖ as an order parameter. This parameter ranges from 0, describing the
isotropic phase, to 1, for the ordered phase of the liquid crystal. To enforce a prevalent
ordered phase, we add a well-known quartic state potential to the free energy with
penalty parameter ωn. It is evident that the radius of the defect core, the domain
where the local alignment breaks down, is closely connected to ωn. Since we are
interested in orientational ordering of a prevalent ordered state, we choose ωn � K,
effectively enforcing defects with small core radius. The corresponding energy reads

Fωn
[p,Ω] =

K

2

∫
Ω

(∇ · p)
2

+ ‖∇ × p‖2 dV +
ωn
4

∫
Ω

(
‖p‖2 − 1

)2
dV .(3)

Extending the ansatz of [54], the limit δ ↘ 0 can now be considered also for χ(S) 6= 0,
see Appendix A. We obtain limδ↘0

1
δFωn

[p,Ωδ] = FSωn
[p], which we call the weak

surface Frank-Oseen energy

FSωn
[p] = FSI [p] + FSE[p] +

ωn
4

∫
S

(
‖p‖2 − 1

)2
dS.(4)

It consists of an intrinsic contribution FSI [p] and an extrinsic contribution FSE[p] to
the distortion energy, as in [53, 54], and the additional penalty term, which contains
the 2-norm ‖ · ‖. In the following we assume p ∈ TS the tangent bundle of S. Then,
the intrinsic distortion energy FSI can be expressed in terms of the surface divergence
“div” and the surface curl “rot” of p:

FSI [p] =
K

2

∫
S

(div p)
2

+ (rot p)
2

dS .(5)

Introducing further the shape operator B = − gradν of S with outer surface normal
ν, the extrinsic contributions can be written as

FSE[p] =
K

2

∫
S
‖B · p‖2 dS.(6)

Putting all parts together, we finally obtain

FSωn
[p] =

K

2

∫
S

(div p)
2

+ (rot p)
2

+ ‖B · p‖2 dS +
ωn
4

∫
S

(
‖p‖2 − 1

)2
dS.(7)

For the description of the minimization of FSωn
[p], we define the function spaces

H(div,S,TS) :=
{
p ∈ L2(S; TS) : div p ∈ L2(S)

}
,

H(rot,S,TS) :=
{
p ∈ L2(S; TS) : rot p ∈ L2(S)

}
,

and furthermore the space HDR(S; TS) := H(div,S,TS) ∩H(rot,S,TS). The mini-
mization of the weak surface Frank-Oseen energy reads

p∗ = argmin
{

FSωn
[p] : p ∈ HDR(S; TS)

}
.
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In [21, 71] the convergence of minimizers of FSωn
to the sharp energy FSI [p] + FSE[p],

as ωn →∞, is analyzed and proven for the case χ(S) = 0.
Dynamical equations to minimize the functional FSωn

can be formulated by means
of an L2-gradient flow approach,

∂tp = −
δFSωn

δp
[p] ,

where the gradient of FSωn
has to be interpreted w.r.t. the L2(S; TS)-inner product.

For q ∈ HDR(S; TS) this reads∫
S

〈
δFSωn

δp
[p],q

〉
dS

=

∫
S
−K (div p div q + rot p rot q) +K

〈
Bp,Bq

〉
+ ωn

(
‖p‖2 − 1

)〈
p,q

〉
dS

=

∫
S
K
〈
∆dRp,q

〉
+K

〈
B2p,q

〉
+ ωn

(
‖p‖2 − 1

)〈
p,q

〉
dS ,

with ∆dR the Laplace-deRham operator. This leads to the evolution equation

∂tp +K
(
∆dRp + B2p

)
+ ωn

(
‖p‖2 − 1

)
p = 0 , in S × (0,∞)(8)

with the initial condition p (t = 0) = p0 ∈ TS. The gradient flow approach guarantees
dissipative dynamics and stationary solutions of (8) as local minima of FSωn

. Note that
the sign of the vectorial Laplacian is different from the sign of the scalar Laplacian
found in classical diffusion-like equations, since we follow the convention of [1].

Introducing the covariant director α := p[ ∈ T∗S, an equivalent formulation of
equation (8) in terms of its dual vectors can be stated:

∂tα+K
(
∆dRα+ B2α

)
+ ωn

(
‖α‖2 − 1

)
α = 0 ,(9)

with α0 = (p0)[ ∈ T∗S, where we have used the notation of a musical isomorphism
[ to denote the flattening operation. Both formulations of the gradient-flow problem,
(8) and (9), are implemented in the present paper by means of several numerical
approaches.

3. Notation. We consider a compact closed oriented Riemannian 2-dimensional
manifold S ⊂ R3 parametrized by the local coordinates θ, ϕ:

(10) x : R2 ⊃ U → R3; (θ, ϕ) 7→ x (θ, ϕ) .

Thus the embedded R3 representation of the surface is given by S = x(U). The unit
outer normal of S at point x is denoted by ν(x). An implicit description of the surface
is given by the signed-distance function

(11) dS(x̃) :=

{
− infy∈S ‖x̃− y‖ for x̃ ∈ G
infy∈S ‖x̃− y‖ for x̃ ∈ R3 \ Ḡ ,

with a bounded open set G ⊂ R3 and ∂G = S. The corresponding extended surface
normal ν̃ : R3 → R3 can be calculated by

(12) ν̃ :=
∇dS
‖∇dS‖

, with ν̃
∣∣
S = ν and ‖∇dS‖ = 1 ,
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see, e. g., [28].
The key ingredient in differential geometry and tensor analysis on Riemannian

manifolds is the positive definite metric tensor

g =

[
gθθ gθϕ
gθϕ gϕϕ

]
= gθθ dθ

2 + 2gθϕ dθ dϕ+ gϕϕ dϕ
2 .(13)

The covariant components of the metric tensor are given by R3 inner products of
partial derivatives of x, i. e., gij = ∂ix · ∂jx. The components of the inverse tensor
g−1 are denoted by gij and the determinant of g by |g|. We denote by {∂θx, ∂ϕx}
the canonical basis to describe contravariant (tangential) vectors p(x) ∈ TxS, i. e.,
p = pθ∂θx + pϕ∂ϕx at a point x ∈ S. Furthermore, with the arising dual basis
{dθ, dϕ} we are able to write an arbitrary 1-form (covariant vector) α ∈ T∗xS as
α = pθdθ + pϕdϕ. This identifier choice of the covariant vector coordinates pi in
conjunction with representation of p as above implies that α and p are related by
α = p[ and p = α], respectively. Explicitly lowering and rising the indices can be
done using the metric tensor g by pi = gijp

j and pi = gijpj , respectively.
In a (tubular) neighborhood Ωδ of S, defined by Ωδ := {x̃ ∈ R3 : dS(x̃) < 1

2δ},
a coordinate projection x ∈ S of x̃ ∈ R3 is introduced, such that

(14) x̃ = x + dS(x̃)ν(x).

For δ sufficiently small (depending on the local curvature of the surface), this projec-
tion is injective, see [28]. For a given x̃ ∈ Ωδ the coordinate projection of x̃ will also
be called gluing map, denoted by π : Ωδ → S, x̃ 7→ x.

Scalar functions f : S → R and vector fields p : S → TS can be smoothly
extended in the neighborhood Ωδ of S by utilizing the coordinate projection, i. e.,
extended fields f̃ : Ωδ → R and p̃ : Ωδ → R3 are defined by

(15) f̃(x̃) := f(x) and p̃(x̃) := p(x) ,

respectively, for x̃ ∈ Ωδ and x the corresponding coordinate projection. This extension
can be realized by implementing a Hopf-Lax formula on discrete grids representing
the surface and its neighborhood, similar to a redistancing method, see [17, 19].

3.1. Function spaces. For scalar fields f, g : S → K ∈ {R,C} and vector fields
p,q : S → TS an L2 inner product is given by

(f, g)L2(S) :=

∫
S
f ḡ dS ,(16)

(p, q)L2(S;TS) :=

∫
S
〈p, q̄〉 dS ,(17)

respectively, with ḡ, q̄ the complex conjugates1 and 〈·, ·〉 the local inner product, see
Table 1. These L2 inner products define the corresponding L2(S) and L2(S; TS)
Hilbert spaces, respectively.

3.2. Differential calculus. There are many ways to describe classical differen-
tial operators on surfaces. The choice of representation arises from the context that
we want to use. In Table 1 first order differential operations on scalars and vector
fields and an inner product are summarized and listed for the specific context. With

1In the spherical harmonics method the functions are complex-valued and thus, we need a complex
L2 inner product. For all real-valued functions the complex conjugation can be ignored.
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Symbolic Local coord. R3 coord. EC

〈p,q〉 piq
i p̂ · q ∗ (α ∧ ∗β)

grad f gij∂jf∂ix πTS∇f df

rot f 1√
|g|

(∂θf∂ϕx− ∂ϕf∂θx) ν ×∇f ∗df

div p ∂ip
i + 1√

|g|
pi∂i

√
|g| ∇ · p̂− ν · (∇p̂ · ν) ∗d ∗α

rot p 1√
|g|

(∂θpϕ − ∂ϕpθ) (∇× p̂) · ν ∗dα
Table 1

Various representations of the inner product and first order differential operators on surfaces
for scalar fields f : S → R and tangential vector fields p,q : S → TS or R3 vector fields p̂ :
S → TR3 ∼= R3 are listed. Vector-valued images are represented in a contravariant form. In the
formulation in R3 coordinates the scalar field f and vector field p̂ with respect to the Euclidean basis
{ ex, ey , ez} are assumed to be defined in a neighborhood of S. In the column “Exterior Calculus”
(EC) all is in the space of 1-forms that are related to the vector fields p by α = p[, β = q[ and the
images can be compared with other columns by rising the indices.

introduced local coordinate chart above, we can use the inner metric g and partial
derivatives ∂ (column “Local coord.” in Table 1). In the Euclidean space R3, where
the surface is embedded, it is possible to describe the differential operators using R3

operators like ·, × or ∇ and the surface normal ν. The extension from the surface S
to R3 rises some choices of embedding the R3 vector space structure to the tangential
bundle of the surface. We use in this paper a pointwise defined normal projection

πTS(x) : TxR3 ∼= R3 → TxS;

p̂(x) 7→ p̂(x)− ν(x)(ν(x) · p̂(x)) = p(x)
(18)

for all x ∈ S, which maps an R3 vector p̂ = px ex+py ey +pz ez ∈ R3, not necessarily
tangential to the surface, to a tangential vector p ∈ TxS. We drop the argument x
when applied to vector fields living on S. Some flexibility arises in the choice of the
first order differential operators for non-tangential vector fields defined on S, see the
operators listed in column “R3 coord.” in Table 1. With this notation we can express
the shape operator as a linear map B = {Bij} : TS → TS in local and R3 coordinates
by

Bij = −gik (∂jν · ∂kx) i, j, k = 1, 2 and Bij = − [grad νj ]i i, j = 1, 2, 3 ,(19)

respectively. This operator is symmetric, i. e., 〈q,Bp〉 = 〈p,Bq〉 for all p,q ∈ TS.
For the shape operator on the dual space in local coordinates

[B] = {gikBklglj} = {B j
i } : T∗S → T∗S ,(20)

we will omit the superscripts ] and [ and write B shortly, if it is clear on which object
the shape operator is acting. Throughout these definitions, we require the operators
to coincide with surface operators for tangential fields.

From a physical point of view, neither p ∈ TS nor the differential operator listed
in column “Symbolic” in Table 1 need explicitly defined coordinate charts. Such a
coordinate-free formulation ensures conformance in every smooth coordinate system.
In the context of exterior calculus (EC) a graded associative algebra referring to the
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wedge product ∧ and differential forms is introduced to implement such a coordinate-
free formulation. All fundamental first order differential operators listed in column
“EC” in Table 1 can be described by the Hodge star ∗ and the exterior derivative d,
which arise algebraically, see [1] for details.

The Laplace operators in this paper can be obtained by composing first order
operators. The Rot-Rot-Laplace and Grad-Div-Laplace for vector-valued functions
(and 1-forms) are defined by

∆RRp := rot rot p and ∆GDp := grad div p .(21)

In [1] the Laplace-deRham operator is defined for k-forms on an n-dimensional Rie-

mannian manifold by ∆dR := (−1)
nk+1

(∗d ∗ d + d ∗ d∗). For vector fields, we define
the Laplace-deRham operator canonically as composition (] ◦∆dR ◦ [). Finally, we
obtain

∆dRp = −
(
∆RR + ∆GD

)
p .(22)

for vector-valued functions (and 1-forms) p (and α).

4. Numerical methods. The growing interest in partial differential equations
on surfaces is driven by various applications, but also by challenging numerical prob-
lems, which result from the nonlinearity due to the underlying curved space. Various
numerical methods have been developed to deal with these problems for scalar-valued
surface partial differential equations. Finite element spaces are constructed on trian-
gulated surface [24, 25, 26]. These surface finite elements essentially allows to use the
same concepts and tools as in flat space [81, 28] and also the computational cost is
comparable. The same holds for finite volume methods on quadrilateral grids on sur-
faces [20]. Other approaches consider an implicit representation of the surface, either
through a level set description [14, 35, 75, 27], within a diffuse interface approximation
[66, 67] or a closest point method [69, 50]. All these methods only require minimal
information on the surface. All geometric information is constructed solely through
knowledge of the vertices of the discretization, or through the implicit description
of a level set, phase field function, or point cloud. This has been proven to be suf-
ficient and leads to efficient numerical methods also for complex physical problems
[29, 48, 5, 65, 6, 60, 76].

For vector-valued surface partial differential equations the coupling between the
equation and the geometry is much stronger and numerical methods which reduce
the geometric information to a minimum might no longer be the most efficient. The
literature on numerical methods for such problems is rare and mainly restricted to
special surfaces, like the sphere. Here, spectral methods based on spherical harmonics
expansions are a popular tool [10, 13, 32, 40, 30, 33]. Another method which makes use
of detailed geometric properties is an exterior calculus approach [37, 22, 7, 8], which
has recently also been applied to vector-valued surface partial differential equations,
e. g., surface Navier-Stokes equations [52, 59].

We will consider four different methods to solve the weak surface Frank-Oseen
problem (8), and (9). The first method is a Discrete Exterior Calculus (DEC) formula-
tion of equation (9), to be discussed in Section 4.2. Handling the penalty term requires
an implementation of a pair of discrete equations for the dual vector and its hodge-
dual variant and leads to a coupled system of primal-dual equations, which to the best
of our knowledge has not been considered before in this context. In Section 4.3 the
second method based on spherical harmonics (SPH) is introduced. This approach ex-
pands p in a spherical function basis, given as eigenfunctions of the Laplace-deRham
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operator. This results in a discrete set of equations for the expansion coefficients.
The third approach is the surface finite element method (sFEM), to be explained in
Section 4.4. It relaxes the requirement of p to be a tangential field, by introducing an
additional penalty term that weakly enforces tangentiality. The vector field is repre-
sented in an Euclidean basis, leading to a system of scalar-valued surface PDEs. The
representation of the Laplace-deRham operator in an Euclidean basis restricted to
the tangent-plane by penalty terms is a new ansatz to discretize vector-valued surface
PDEs. The fourth method is the diffuse interface method (DI), see Section 4.5. It
extends the domain to the embedding space R3, enforces tangentiality weakly and
additionally restricts the differential operators to the surface using an approximation
of a surface delta function. This leads to a system of coupled scalar-valued PDEs
in a three dimensional domain and extends the established concept to vector-valued
surface PDEs.

In the following section the time-discretization for the evolution problem is intro-
duced. It is shared by all considered methods.

4.1. Discretization in time. Let 0 < t0 < t1 < . . . be a sequence of discrete
times with time step width τk := tk+1 − tk in the k-th iteration. The fields pk(x) ≡
p(x, tk) and αk(x) ≡ α(x, tk), respectively, correspond to the time-discrete functions
at tk. Applying a semi-implicit Euler discretization to (8) and (9) results in time
discrete systems of equations as follows: Let p0 ∈ C(S; TS) be a given initial director
field. For k = 0, 1, 2, . . . find pk+1 ∈ C2(S; TS) s.t.

(23)
1

τk
pk+1 +K(∆dRpk+1 + B2pk+1) + ωnf(pk,pk+1) =

1

τk
pk in S ,

with f(pk,pk+1) a linearization of the non-linear term. In the methods DEC, sFEM,
and DI we consider a linear Taylor expansion around pk, see (24), and in the method
SPH we implement an explicit evaluation at the old time step tk, see (25):

fTaylor(pk,pk+1) := (‖pk‖2 − 1)pk+1 + 2〈pk+1,pk〉pk − 2‖pk‖2pk(24)

f expl(pk,pk+1) := ‖pk‖2pk − pk+1 .(25)

The corresponding time discretization of the dual vector formulation (9) is similar
to (23) utilizing the correspondence between vectors and dual vectors by the musical
isomorphism [ for the initial condition: Let α0 := p[0 be given. For k = 0, 1, 2, . . . find
αk+1 ∈ Λ1(S) s.t.

(26)
1

τk
αk+1 +K(∆dRαk+1 + B2αk+1) + ωnf(αk,αk+1) =

1

τk
αk in S .

4.2. DEC. For a Discrete Exterior Calculus the surface discretization is a simpli-
cial complex K = VtEtT containing sets of vertices V, edges E , and (triangular) faces
T . The quantities of interest in our DEC discretization are 1-forms α ∈ Λ1(S) = T∗S.
We do not approximate the coordinate function of α on a discrete set of points or
vertices, but rather introduce a finite set of degrees of freedom (DOFs) as integral
values on the edges e ∈ E ,

αh(e) :=

∫
π(e)

α ,(27)

with the gluing map π : E → S, which projects geometrically the edge e to the surface
S. The mapping αh ∈ Λ1

h(K) is called the discrete 1-form of α, since αh(e) approxi-
mates α(e) ≡ α(e) =

〈
p, e

〉
on an intermediate point ξ ∈ π(e) ⊂ S, where the edge
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vector e exists in TξS|π(e) by the mean value theorem. Therefore, we approximate
1-forms on the restricted dual tangential space TξS|π(e), which is a one dimensional
vector space in ξ ∈ S likewise the space of discrete 1-forms Λ1

h (K) |e = Λ1
h ({e}) re-

stricted to the edge e. Hence, a discrete 1-form problem on surfaces leads to a one
dimensional problem, like a scalar-valued problem.

The simplicial complex K is manifold-like, orientable and well-centered. For a
detailed discussion of these requirements and general introduction to DEC, see [37, 22].

Discrete linear differential operators composed of the exterior derivative d and
the Hodge operator ∗, like the Laplace-deRham operator ∆dR, see Section 3, can be
implemented by successively utilizing a discrete version of the Hodge operator and
the Stokes theorem for the exterior derivative, see [37]. This procedure leads to a DEC

discretized Rot-Rot-Laplace ∆RR
h and Grad-Div-Laplace ∆GD

h . For discrete 1-forms
αh ∈ Λ1

h(K), sign mappings s◦,◦ ∈ {−1,+1}, volumes |·|, Voronoi cells ?v, Voronoi
edges ?e, and the “belongs-to” relations � and ≺ we obtain

∆RR
h αh(e) = − |e|

|?e|
∑
T�e

sT,e
|T |

∑
ẽ≺T

sT,ẽ αh(ẽ) ,(28)

∆GD
h αh(e) = −

∑
v≺e

sv,e
|?v|

∑
ẽ�v

sv,ẽ
|?ẽ|
|ẽ|

αh(ẽ) .(29)

Hence, in analogy to Section 3, we get the DEC discretized Laplace-deRham operator
∆dR
h αh(e) = −(∆RR

h αh(e) + ∆GD
h αh(e)). See Appendix D for details in notation and

derivation of the DEC operators. The value for ∆dR
h αh(e) on an edge e is determined

as a linear combination of few edge values αh(ẽ) in a proximate neighborhood of e,
i. e., it exists a vertex v that connects the edges e � v and ẽ � v.

Restricting the time-discrete evolution equation (26) to the edges, using (27),
leads to a system of equations for all edges e ∈ E :
(30)
1

τk
αk+1
h (e) +K

(
∆dR
h αk+1

h (e) +
(
B2αk+1

)
h

(e)
)

+ ωn
(
f(αk,αk+1)

)
h

(e) =
1

τk
αkh(e) ,

with (B2αk+1)h(e) =
∫
π(e)
B2αk+1. Using Taylor expansion (24) in its covariant form,

we obtain in the (k + 1)-th time step for the non-linear term(
f(αk,αk+1)

)
h

(e) =

∫
π(e)

(‖αk‖2 − 1)αk+1 + 2〈αk+1,αk〉αk − 2‖αk‖2αk

=

∫
π(e)

(
(‖αk‖2 − 1)IdT∗S + 2αk ⊗

(
αk
)])

αk+1

−
∫
π(e)

2‖αk‖2IdT∗Sα
k

=:
(
Lkαk+1

)
h

(e)−
(
Rkαk

)
h

(e) ,

(31)

with the identity map IdT∗S : T∗S → T∗S.
In the remaining section we discuss how to implement the norm ‖αh(e)‖, the

upcoming inner product 〈αh(e), α′h(e)〉 in the evaluation of the non-linear term, and
the endomorphisms B2, Lk, and Rk.

For the edge e0 := e we choose another edge e1 in the proximate neighborhood of
e0. These two edges define a vector space VT := Span{e0, e1} for the face T � e0, e1

at the contact vertex v ≺ e0, e1. A barycentric parametrization of VT , regarding the
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basis vectors, results in a flat discrete metric

g = (ei · ej)deidej ,(32)

with the ordinary R3 dot product and the canonical dual basis
{
de0, de1

}
, which spans

the flat vector space for covariant vectors. So, we can construct a 1-form α(e) ∈ T∗VT ,
which is constant on T, by α(e) = αh(ei)de

i. Hence, if gij are the components of the
inverse of the metric (32), the square of the norm is given by

‖αh(e)‖2 ≡ ‖α(e)‖2 = αh(ei)g
ijαh(ej) .(33)

This norm strongly depends on the choice of the additional edge e1. Considering the
Voronoi edge ?e (see Appendix D), which is not an edge in a pure simplicial sense, but
a chain containing two edges orthogonal to e, one on the left face T2 � e and one on
the right face T1 � e, i. e., ?e = ?e|T1 + ?e|T2 , leads to a stable pair of edges. With a
piecewise linear barycentric parametrization γ : [0, 1]→ ?e of the polygonal chain ?e,
with piecewise constant derivative ‖γ′‖ = |?e| we can define the Voronoi edge vector

e? := γ′ ∈ TT1 t TT2 .

This leads to the discrete metric in terms of the orthogonal basis {e, e?} and the dual
basis {de, de?},

g = |e|2 (de)
2

+ |?e|2 (de?)
2

(34)

and, with αh(?e) ≈ − |?e||e| (∗αh)(e) (see [37]), the discrete (covariant) vector-valued

1-form

α(e) = αh(e)de+ αh(?e)de? ≈ αh(e)de− |?e|
|e|

(∗αh)(e)de? .(35)

The resulting vector spaces on all edges e ∈ E can be summarized as disjoint unions to
TE :=

⊔
e∈E

⊔
T�e Span{e, e?|T }. We call

(
αh, ∗αh

)
:= α : E → T∗E a discrete primal-

dual-1-form (PD-1-form) with components αh and ∗αh in Λ1
h(K). Let Λ1

h(K;T∗E) be
the space of discrete PD-1-forms. All discrete PD-1-forms are uniquely defined and
depend only on the edge e and geometrical informations about it and its Voronoi
edge. Henceforward, we omit the argument e for a better readability. The norm of
α = α(e) is computed on all edges e with the discrete metric (34) by

‖α‖2 =
1

|e|2
(
α2
h + (∗αh)2

)
(36)

and the discrete inner product with another discrete PD-1-form β =
(
βh, ∗βh

)
is

computed by 〈
α,β

〉
=

1

|e|2
(αhβh + (∗αh)(∗βh)) .(37)

The Hodge operator ∗ applied to (26) results in the Hodge dual equation

1

τk
(∗α)k+1 +K

(
∆dR(∗α)k+1 + ∗B2αk+1

)
+ ωn ∗ f(αk,αk+1) =

1

τk
(∗α)k ,(38)
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where the identity ∗∆dR = ∆dR∗ for the Laplace-deRham operator is used. Restrict-
ing (38) to the edges e ∈ E , utilizing (27), and combining the result with (30) leads
to

(39)
1

τk
αk+1 +K

(
∆dR
h α

k+1 +

[ (
B2αk+1

)
h(

∗B2αk+1
)
h

])
+ ωn

[ (
Lkαk+1

)
h(

∗Lkαk+1
)
h

]
=

1

τk
αk + ωn

[ (
Rkαk

)
h(

∗Rkαk
)
h

]
in E .

In Appendix D it is shown, how to approximate endomorphisms M : T∗S → T∗S
in a DEC-PD context, so that[

(Mα)h
(∗Mα)h

]
≈M ·α in E(40)

with the mixed co- and contravariant discrete PD-(1,1)-Tensor M. Evaluating the

R3 representation of the shape operator at the midpoint of the edge e ∈ E projected
to the surface, i. e., B2(e) := B2|π(c(e)) ∈ R3×3, utilizing (110), results in a matrix
form of the shape operator, applicable in (40),

B2(e) =

[
e·B2(e)·e
|e|2 −e·B2(e)·e?

|e||?e|

−e?·B2(e)·e
|e||?e|

e?·B2(e)·e?
|?e|2

]
.(41)

Similarly, with (36) and Id[T∗S = g, considering the discrete metric, we get

Rk(e) = 2
∥∥αk(e)

∥∥2
[
1 0
0 1

]
,(42)

Lk(e) =
(∥∥αk(e)

∥∥2 − 1
)[1 0

0 1

]
+ 2

 αkh(e)αkh(e)
|e|2 −α

k
h(e)αkh(?e)
|e||?e|

−α
k
h(e)∗αkh(?e)
|e||?e|

αkh(?e)αkh(?e)
|?e|2

(43)

≈
(∥∥αk(e)

∥∥2 − 1
)[1 0

0 1

]
+

2

|e|2

[
αkh(e)αkh(e) αkh(e) (∗α)

k
h (e)

αkh(e) (∗α)
k
h (e) (∗α)

k
h (e) (∗α)

k
h (e)

]
=: L̃k(e) .

Finally, with the discrete inner product (37), Rk ·αk = 2
∥∥αk∥∥2

αk, and

L̃k ·αk+1 =
(∥∥αk∥∥2 − 1

)
αk+1 + 2

〈
αk+1,αk

〉
αk in E ,(44)

the introduced Taylor linearization of f , i. e., fTaylor(αk,αk+1), is found.
This results in a series of time-discrete linear DEC-PD problems: For k =

0, 1, 2, . . ., and a given initial value α0, find αk+1 ∈ Λ1
h(K;T∗E) s.t.

1

τk
αk+1 +K

(
∆dR
h α

k+1 + B2 ·αk+1
)

+ ωnf
Taylor(αk,αk+1) =

1

τk
αk in E .(45)

These stationary problems can be implemented2 by assembling a matrix and
vector for the components αh(e) and (∗αh)(e) on edges e ∈ E . The resulting linear
system is solved with the TFQMR method, see [34].

2For a software framework, see also the discretization library Dune-DEC [63].
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Many conceivable ways exist to interpolate the initial condition α0 ∈ Λ1
h(K;T∗E),

with α0 = [α0, ∗α0], from a given vector field p0 ∈ TS. We assume that the simplicial
complex and its polytope |K| are immersed in a sufficiently small neighborhood Ωδ of
the surface, so that the initial condition p0 can be smoothly extended.

Given such an extension p̃0 of an initial vector field p0 we can choose the inter-
section point c(e) of an edge e ∈ E and ?e for approximating the integral expressions,
i. e., let the edge e be given so that it points from the vertex v1 to the vertex v2 and
the dual edge ?e from the circumcenter c(T1) to c(T2), then we obtain

α0(e) =

∫
π(e)

(
p0
)[ ≈ ∫ 1

0

p̃0(c(e)) · e dλ = p̃0(c(e)) · (v2 − v1)(46)

(∗α)0(e) ≈ − |e|
|?e|

∫
?π(e)

(
p0
)[ ≈ − |e|

|?e|

∫ 1

0

p̃0(c(e)) · e? dλ(47)

= − |e|
|?e|

p̃0(c(e)) · (c(T2)− c(T1)) .

On the other hand, if p0 arise from the gradient of a scalar function f : S → R,
i. e., p0 = grad f = (df)], we obtain for a smooth extension f̃ of f :

α0(e) =

∫
π(e)

df = f(v2)− f(v1)(48)

(∗α)0(e) ≈ − |e|
|?e|

∫
?π(e)

df(49)

≈ − |e|
|?e|

(
f̃(c(T2))− f̃(c(T1))

)
,

utilizing Stoke’s theorem.

4.3. Spectral method. In this section we restrict our consideration to spher-
ical surfaces S = S2 parametrized by θ ∈ [0, π] and ϕ ∈ [0, 2π), i. e., the co-latitude
and azimuthal coordinates, respectively. So each point xS2 ∈ S2 can be written as
xS2(θ, ϕ) = sin(θ) cos(ϕ) ex + sin(θ) sin(ϕ) ey + cos(θ) ez. Based on the observation
that the tangential part of a spherical vector field can be split into a curl-free and a
divergence-free field by using derivatives of scalar fields, an efficient numerical meth-
ods can be constructed. The Helmholtz decomposition theorem [33] states that every
continuously differentiable spherical tangent vector field f : S → TS can be repre-
sented by uniquely determined scalar functions f1, f2 ∈ C1(S) as

f(x) = grad f1(x) + rot f2(x).

An efficient solution method for linear surface PDEs on the sphere is based on a spec-
tral expansion of the objective scalar functions f ∈ L2(S) in the spherical harmonics
Y ml : S → C, (l,m) ∈ I∞ with IN := {(l,m) : 0 ≤ l ≤ N,−l ≤ m ≤ l}, which build
an L2(S)-orthonormal system of eigenfunctions of the Laplace-Beltrami operator ∆S ,
i. e.,

(50) ∆SY
m
l = ∆lmY

m
l with ∆lm := −l(l + 1), for (l,m) ∈ I∞

and
(
Y ml , Y m

′

l′

)
L2(S)

= δll′δmm′ , cf. [36, 9]. Due to the symmetries of the sphere, ana-

lytic representations of Y ml can be found in terms of Associated Legendre polynomials.
This allows for an efficient evaluation of the basis functions.
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A scalar function f ∈ L2(S) can be represented in the series expansion

(51) f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

flmY
m
l (θ, ϕ)

with expansion coefficient flm =
(
f, Y ml

)
L2(S)

.

Taking the gradient and curl of the spherical harmonics, an expansion for tan-
gential vector fields can be constructed. Therefore, we introduce two vector spherical

harmonics y
(1)
lm , y

(2)
lm as

y
(1)
lm (θ, ϕ) := Nlm gradY ml (θ, ϕ) ,

y
(2)
lm (θ, ϕ) := Nlm rotY ml (θ, ϕ)

(52)

with normalization constants Nlm = (−∆−1
lm)1/2. These functions are normalized in

such a way, that they build again an L2(S; TS)-orthonormal system of eigenfunctions
of a Laplace operator, namely the spherical Laplace-deRham operator [32, 33], i. e.,

(53) ∆dRy
(i)
lm = −∆lmy

(i)
lm, for i = 1, 2, (l,m) ∈ I∞

and
(
y

(i)
lm, y

(j)
l′m′

)
L2(S;TS)

= δijδll′δmm′ .

A series expansion of a tangent vector field f ∈ L2(S; TS), based on the expansion
of scalar fields (51) and the gradient and curl basis representation (52), can thus be
written as

(54) f(θ, ϕ) =

2∑
i=1

∞∑
l=0

l∑
m=−l

f
(i)
lmy

(i)
lm(θ, ϕ)

with expansion coefficients f
(i)
lm =

(
f , y

(i)
lm

)
L2(S;TS)

. In the following we use the

notation f lm :=
(
f

(1)
lm , f

(2)
lm

)
to denote the pair of coefficients.

The spherical harmonics method is based on the idea to approximate any scalar
function (51) and vector-valued function (54) by truncated expansions with band-
width lmax =: N . Therefore, we introduce the space of spherical vector polynomials

~ΠN (S) :=
{

f =

2∑
i=1

N∑
l=0

l∑
m=−l

f
(i)
lmy

(i)
lm

}
.

The evaluation of expansion coefficients, in other words, the calculation of the L2 inner
product, is implemented by approximating the integral by an appropriate quadrature
rule. Let V = {xk = (θk, ϕk)} be a set of quadrature points on the sphere and {wk}
the corresponding quadrature weights. We introduce the discrete L2 inner product:(

f , y
(i)
lm

)
h,L2(S;TS)

:=
∑
k

wk

〈
f(θk, ϕk), ȳ

(i)
lm(θk, ϕk)

〉
In order to derive an equation for the expansion coefficients p

lm
of p ∈ ~ΠN (S)

in terms of a Galerkin approach, see, e. g., [36], we require the residual r of the
differential equation (8),

r :=
1

τk
(pk+1 − pk) +K(∆dRpk+1 + B2pk+1) + ωnf(pk,pk+1) ,
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to be orthogonal to the basis of ~ΠN (S) w.r.t. the L2 inner product, i. e.,

(55)
(
r, y

(i)
lm

)
L2(S;TS)

= 0, for i = 1, 2, (l,m) ∈ IN .

The shape operator on S2 simplifies to the surface identity, i. e., B = −πTS . With
f := f expl, this term can be evaluated in discrete grid points on the sphere rather than
by forming convolution sums of the coefficients, see [18]. Therefore, let the non-linear

term fk := ‖pk‖2pk at time step tk be expanded in the space ~ΠN (S) with expansion
coefficients fklm.

By requiring the new time step solution pk+1 to be an element of ~ΠN (S), we
can insert the truncated expansion of the solution into the residual equation (55).
Utilizing the property that the Laplace-deRham operator is the eigen-operator of the
basis functions results in an equation for the expansion coefficients directly. Finally,
the time step procedure for the spherical harmonics approach reads: Let

p0,(i)
lm

=
(
p0, y

(i)
lm

)
h,L2(S;TS)

for i = 1, 2, (l,m) ∈ IN

be the expansion coefficients for the initial solution. For k = 0, 1, 2, . . .
1. Evaluate fk(x) := ‖pk(x)‖2pk(x) for all x ∈ V.

2. Calculate f
k,(i)
lm =

(
fk, y

(i)
lm

)
h,L2(S;TS)

for i = 1, 2, (l,m) ∈ IN .

3. Solve

1

τk
pk+1
lm
−K∆lmpk+1

lm
+ (K − ωn)pk+1

lm
=

1

τk
pk
lm
− ωnfklm, ∀(l,m) ∈ IN

to be understood component-wise.
4. Evaluate (54) with coefficients pk+1

lm
to get pk+1.

The discrete spherical harmonics transform, that is, the evaluation of (51) for a
band-width N , can be split up into a discrete Fourier transform, realizable by a fast
Fourier transform, and discrete Legendre transforms, implemented thanks to discrete
cosine transforms [43] or a fast multipole method [77]. The inverse transform, i. e.,
the calculation of the expansion coefficients, may be realized by the Gauss-Legendre
algorithm. There, the integral is replaced by a Gauss-Legendre quadrature rule with
Gauss nodes and weights in latitudinal direction [70]. Therefore, the spherical coor-
dinate space is discretized by the set of vertices

V := {x(θi, ϕj) : 0 ≤ i < Nθ , 0 ≤ j < Nϕ} ,

with θi Gauss nodes in [0, π] and ϕj equally distributed in [0, 2π). To respect the
sampling theorem, we have chosen Nθ > N and Nϕ > 2N . Therewith, the coefficients

of the non-linear term are only approximated, since fk is not in ~ΠN (S) for pk ∈ ~ΠN (S).
Finally, the discrete vector harmonic transform can be implemented by two scalar

transforms, see, e. g., [40]. Thus, the complexity of the transform is dominated by the
scalar transform that can be realized in O(N2 logN) [77].

4.4. Surface finite elements. We consider a reformulation of FSωn
and dynamic

equation (8) suitable for a component-wise surface finite element approximation. To
do so, we extend FSωn

to a domain of vector-valued functions p̂ : S → TR3 and
penalize any energy contributions by normal components p̂ · ν 6= 0 with a penalty
factor ωt � 1. The previously introduced Laplace-deRham operator has been defined
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as a differential operator on sections of tangent bundles. This needs to be extended
to R3 vector fields. In a first step we use the surface projection πTS introduced in
(18) and a result from [23] to express div p by div p̂, i. e.,

div p = div (πTS p̂) = ∇ · p̂− ν · (∇p̂ · ν)︸ ︷︷ ︸
=div p̂

−H (p̂ · ν) ,(56)

where H = div ν denotes the mean curvature of S. Note that the curl of a vector
field reduces to the curl of its tangential part, i. e., rot p = rot p̂. Further, we apply
a decomposition of p̂ = p + ν (p̂ · ν) and q̂ = q + ν (q̂ · ν) to express the L2 inner
product of ∆dRp and q in terms of p̂ and q̂ (for details see Appendix B),∫
S
〈∆dRp,q〉dS =

∫
S

(div p̂) (div q̂) + (rot p̂) (rot q̂) dS +

∫
S
H2 (p̂ · ν) (q̂ · ν) dS

−
∫
S
H ((q̂ · ν) (div p̂) + (p̂ · ν) (div q̂)) dS .

In order to neglect the terms involving normal components (p̂ · ν) and (q̂ · ν), the

penalty term ωt
2 (p̂ · ν)

2
is added to the energy FSωn

. The functional derivative of this
contribution results in a symmetric term∫

S

ωt
2

〈
δ(p̂ · ν)

2

δp̂
[p̂], q̂

〉
dS =

∫
S
ωt (p̂ · ν) (q̂ · ν) dS(57)

leading in the context of a minimization process to (p̂ · ν) → 0 and (q̂ · ν) → 0 as
ωt → ∞. As a result, we obtain an approximation of the Laplace-deRham operator
for finite ωt by∫

S
〈∆dRp, q̂〉dS ≈

∫
S

(div p̂) (div q̂) + (rot p̂) (rot q̂) dS

=

∫
S
− [grad (div p̂) + rot (rot p̂)]︸ ︷︷ ︸

=∆̂dRp̂

· q̂ dS .
(58)

A brief numerical study justifying this approach can be found in Appendix C. With
this established, we formulate the extended weak surface Frank-Oseen energy for
p̂ ∈ HDR(S; R3) as:

FSωn,ωt
[p̂] =

∫
S

K

2

[
(div p̂)

2
+ (rot p̂)

2
+ ‖B · p̂‖2

]
dS

+

∫
S

ωn
4

(
‖p̂‖2 − 1

)2
+
ωt
2

(p̂ · ν)
2

dS .

(59)

A straightforward first variation of the energy leads to the associated equation

∂tp̂ +K
(
∆̂dRp̂ + B2p̂

)
+ ωt (ν · p̂)ν + ωn

(
‖p̂‖2 − 1

)
p̂ = 0 in S × (0,∞)(60)

with the initial condition p̂(t = 0) = p0 ∈ TS. Using the vector space property
of the extended variational space HDR(S; R3) we split the vector-valued variational
problem into a set of component-wise scalar variational problems3. Therefore, let q̂

3Here, we use lower indices to denote the components of a vector, not to mix up with the covariant
indices used in the context of differential geometry.
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be decomposed as

HDR(S; R3) ⊇
[
H1(S)

]3 3 q̂ =

3∑
i=1

q̂iei, q̂i ∈ H1(S) ,(61)

with {ei}i the Euclidean basis of R3. We obtain a set of coupled variational problems
for p̂i ∈ L2(0,∞; H1(S))

(62)

∫
S
∂tp̂iq̂ dS +

∫
S
K
[
(div p̂) (grad q̂ )i + (rot p̂) (rot(q̂ ei)) +

(
B2 · p̂

)
i
q̂
]

dS

+

∫
S
ωt (ν · p̂) νiq̂ + ωn

(
‖p̂‖2 − 1

)
p̂iq̂ dS = 0, ∀ q̂ ∈ H1(S) ∀ t ∈ (0,∞)

for i = 1, . . . , 3. To solve this set of variational problems, we have implemented the
time-discretization introduced in Section 4.1. The tangential penalty term is evaluated
at the new time step tk+1 and the non-linear term is linearized using the expression
fTaylor. For the discretization in space, we apply the surface finite element method
for scalar-valued PDEs [24, 25, 26] for each component. Therefore, the surface S is
discretized by a conforming triangulation Sh, given as the union of simplices in a
simplicial complex, i. e.,

Sh :=
⋃
σ∈K

σ .

We use globally continuous, piecewise linear Lagrange elements

Vh(Sh) =
{
vh ∈ C0(Sh) : vh|T ∈ P1, ∀T ∈ T

}
as trial and test space for all components p̂i of p̂, with T the set of triangular faces.

The resulting discrete problem reads: For k = 0, 1, 2, . . . find p̂k+1
i ∈ Vh(Sh) s.t.

(63)
1

τk

∫
Sh

p̂k+1
i q̂ dS +K

∫
Sh

div p̂k+1 (grad q̂ )i + rot p̂k+1 rot(q̂ei) +
(
B2 · p̂

)
i
q̂ dS

+ ωt

∫
Sh
ν · p̂k+1νiq̂ dS + ωn

∫
Sh

(
‖p̂k‖2 − 1

)
p̂k+1
i q̂ + 2p̂ki p̂

k · p̂k+1q̂ dS

=
1

τk

∫
Sh

p̂ki q̂ dS + 2ωn

∫
Sh
‖p̂k‖2p̂ki q̂ dS, ∀ q̂ ∈ Vh(Sh)

for i = 1, . . . , 3. To assemble and solve the resulting system we use the FEM-toolbox
AMDiS [81, 83] with domain decomposition on 8 processors. As linear solver we have
used a restarted GMRES method with a restart cycle of 30, modified Gram-Schmidt
orthogonalization, and a block Jacobi preconditioner with ILU(0) local solver on each
partition.

4.5. Diffuse interface approximation. Based on the penalty formulation, de-
scribed in Section 4.4, we formulate a diffuse interface approximation following the
general treatment introduced in [66]. We use a simple (e.g. box like) embedding do-
main S ⊂ Ω ⊂ R3 and describe the surface as the 1/2 levelset of a phase-field variable
φ defined on Ω:

φ(x) =
1

2

(
1− tanh

(
3

ε
dS(x)

))
,(64)
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with interface thickness ε and dS(x) a signed-distance function. This gives an ap-
proximation of the surface delta function

δS '
36

ε
φ2(φ− 1)2 = W (φ).(65)

In this diffuse interface framework we consider vector fields p̃ : Ω → TR3 extended
from the surface to the embedding domain Ω. The outward pointing surface normals
are extended smoothly to Ω by using ν̃ = ∇φ/‖∇φ‖ and the shape operator in the em-

bedding domain is defined in terms of this extended normal, i. e., B̃ij = − [πTS∇ν̃j ]i.
Considering the diffuse interface approximation of the extended weak surface

Frank-Oseen energy

FΩ
ωn,ωt

[p̃] =

∫
Ω

K

2
W (φ)

[
(div p̃)

2
+ (rot p̃)

2
+ ‖B̃ · p̃‖2

]
dS(66)

+

∫
Ω

ωn
4
W (φ)

(
‖p̃‖2 − 1

)2
+
ωt
2
W (φ) (p̃ · ν̃)

2
dS

with p̃ ∈ HDR(Ω; R3), we obtain, by straightforward first variation, the L2-gradient
flow formulation

(67) W (φ)∂tp̃ +K∆̃dRp̃ +W (φ)
[
K
(
B̃2 · p̃

)
+ ωt (ν̃ · p̃) ν̃ + ωn

(
‖p̃‖2 − 1

)
p̃
]

= 0

in Ω×(0,∞). Here, we have introduced the diffuse interface Laplace-deRham operator

∆̃dR by

∆̃dRp̃ := − [∇ (W (φ)∇ · p̃) + ν̃ ×∇ (W (φ)∇ · (p̃× ν̃))] .(68)

As initial condition we set p̃(t = 0) = p̃0 in Ω such that p̃0|S = p0. As boundary
condition we specify

∇p̃i · n = 0, on ∂Ω× (0,∞) ,

for i = 1, . . . , 3, where n denotes the outward pointing normal of ∂Ω. For Ω big
enough, the condition on the outer boundary does not influence the solution on the sur-
face. Finally, we obtain a set of coupled variational problems for p̃i ∈ L2(0,∞; H1(Ω))∫

Ω

W (φ)∂tp̃iq̃ dV(69)

+

∫
Ω

KW (φ)
[
(∇ · p̃) ∂iq̃ +∇ · (p̃× ν̃)∇ · (q̃ei × ν̃) +

(
B̃2 · p̃

)
i
q̃
]

dV

+

∫
Ω

ωtW (φ) (ν̃ · p̃) ν̃iq̃ + ωnW (φ)
(
‖p̃‖2 − 1

)
p̃iq̃ dV

= 0 ∀ q̃ ∈ H1(Ω) ∀ t ∈ (0,∞) ,

for i = 1, . . . , 3.
The definition of ∆̃dR in (68) is motivated by the component-wise formulation of

∆̂dR in combination with the diffuse approximations of surface differential operators
for scalar functions f : S → R with smooth extension f̃ : Ω → R. In this framework
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we have the following convergence results:

lim
ε→0

∫
Ω

W (φ)f̃ q̃ dV =

∫
S
f q̃ dS ,

lim
ε→0

∫
Ω

W (φ)∂if̃ q̃ dV =

∫
S

(grad f(x) )i q̃ dS ,

lim
ε→0

∫
Ω

∇ ·
(
W (φ)∇f̃

)
q̃ dV =

∫
S

div (grad f) q̃ dS ,

for q̃ ∈ H1(Ω), see [67]. A regularization is added to the function W (φ) in some of the
terms, to allow for a more stable solution of the linear system: Wζ(φ) := max(W (φ), ζ)
with ζ � 1. This regularization is justified in [66, 44].

Applying a standard finite element method with globally continuous, piecewise
linear elements Vh(Ωh) = {vh ∈ C0(Ωh) : vh|T ∈ P1, ∀T ∈ Ωh} on a triangulation
Ωh of Ω, the time discretization as above and inserting the regularized delta function
approximation Wζ , results in a sequence of diffuse interface problems: For k = 0, 1, . . .,

find p̃k+1
i ∈ Vh(Ω) s.t.

(70)
1

τk

∫
Ωh

Wζ(φ)p̃k+1
i q̃ dV

+K

∫
Ωh

Wζ(φ)∇ · p̃k+1∂iq̃ +W (φ)
[
∇ ·
(
p̃k+1 × ν̃

)
∇ · (eiq̃× ν̃) +

(
B̃2 · p̃

)
i
q̃
]

dV

+ωt

∫
Ωh

W (φ)ν̃ · p̃k+1ν̃iq̃ dV +ωn

∫
Ωh

W (φ)
[(
‖p̃k‖2 − 1

)
p̃k+1
i + 2p̃ki p̃

k · p̃k+1
]

q̃ dV

=
1

τk

∫
Ωh

Wζ(φ)p̃ki q̃ dV + 2ωn

∫
Ωh

W (φ)‖p̃k‖2p̃ki q̃ dV, ∀ q̃ ∈ Vh(Ω) ,

for i = 1, . . . , 3, with p̃0 a smooth extension4 of p0 to the domain Ω. To assemble
and solve the resulting system we use the FEM-toolbox AMDiS [81, 83] with domain
decomposition on 64 processors. As linear solver we have used a restarted GMRES
method with a restart cycle of 30, modified Gram-Schmidt orthogonalization, and a
block Jacobi preconditioner with ILU(0) local solver on each partition, as above for
the sFEM method.

4.6. Surface approximation and grids. Surfaces similar to a sphere S2 can
be triangulated by projecting a triangulation of the sphere to S, utilizing the coor-
dinate projection π. For the DEC method this triangulation must be well-centered,
in other words, the circumcenter of each surface triangle must be located within the
triangle. This property can be realized by triangles with internal angle less than 90◦.
An iterative procedure is applied to the projected sphere triangulation to fulfill this
requirement, by shifting points tangentially to the surface so that all triangles have
nearly equal internal angles and edge lengths. The algorithm is described in [58].

Other surfaces may be triangulated by cutting tetrahedra at the zero-level set of an
implicit surface description. This triangulation must be optimized by retriangulation,
e. g., by using [78, 79], and utilizing additionally the iterative procedure to get a well-
centered complex, as above. Recently, an algorithm for mesh optimization, based
on an edge collapsing strategy, was implemented in [73]. Even if sFEM would need

4A smooth extension to the domain Ω is implemented by successively extending fields to its
surroundings, utilizing (15), until the whole domain is covered, see also [74].
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sphere nonic surface
time tend 5 variable (∗)

τk ≡ τ 10−3 5 · 10−4

model K 1 1
ωn 103 200
ωt [103 − 105] 105

SPH N 190 —
Nθ 250 —
Nϕ 400 —
τ 2 · 10−4 —

sFEM h 0.013 0.035
DI ε 0.15 0.2

ζ 10−6 10−6

h 0.023 0.078
Ω [−1.5, 1.5]3 [−2, 3]× [−2, 2]2

Table 2
Simulation parameters for the two setups: relaxation on the sphere and nonic surface. (∗) the

end-time of the simulation is chosen so that the system is close to equilibrium, i. e., if the criterion
|F(tk+1)− F(tk)| < 10−14 · |F(tk+1)| is fulfilled.

less requirements on the surface mesh we use the same meshes as for DEC. We have
chosen a grid width h, i. e., the maximal edge length radius of all triangles, to be
approximately 1/6 of the defect core radius that is estimated experimentally.

For DI we use a 3D conformal tetrahedral mesh adaptively refined near the sur-
face. Therefore, the interfacial region, i. e., {x ∈ Ω : φ(x) ∈ [0.1, 0.9]}, contains
approximately 7 grid points in normal direction to the surface. This refinement guar-
antees good agreement with the sharp surface limit, see, e. g., [4, 3] for a justification
and quantitative study. The signed-distance function, the phase-field is based on, is
calculated from the triangulated surface by an algorithm utilizing a ray tracing princi-
ple. For every grid point in the 3D mesh the distance to the surface is calculated and
afterwards the correct sign is assigned. This algorithm is explained and implemented
in [73] and has an asymptotic complexity of ∼ O(|Ωh| · log |T |).

5. Computational results. We validate the proposed approaches on the unit
sphere. Due to lack of analytical description of minimizers p ∈ HDR(S; TS), we
compare the numerical results with each other. The DEC approach thereby serves
as reference. We also explore the stability of minimal energy defect configurations
on more complicated surfaces with non-constant curvature and demonstrate the tight
interplay of defect localization and geometric properties. Within these studies we
show the possibility of equilibrium states other than the trivial realization of the
Poincaré-Hopf theorem and thus the possibility to reduce the weak surface Frank-
Oseen energy by incorporating additional defects. To validate these results we again
compare the numerical results with each other. The penalty parameter ωn is chosen
such that the defect core radius is resolved, see Table 2. The section is concluded by
providing information on the numerical effort for each method.

5.1. Method comparison on sphere. We consider an initial condition p0 with
two sinks ( +1), a source ( +1) and a saddle point ( −1) on the unit sphere
S = S2. The numbers are the topological charges or the winding numbers indV (di) of
the defects di. They are defined as the algebraic sum of the number of revolution of p
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along a small counterclockwise oriented curve around the defect. The Poincaré-Hopf
theorem requires ∑

i

indV (di) = χ(S),(71)

which in the present case is satisfied as 1+1+1−1 = 2. The four defects are positioned
equidistant on the x-y-equatorial plane. To avoid metastable configurations we shift
one sink defect slightly closer to the saddle point defect.

p0 =
πTS p̂

0

‖πTS p̂0‖
, where

p̂0 =


[−x, 0,−z]T |y| ≥ cos π4
[0, y, z]

T
x ≥ cos π4

[0, sin (π (y − λ)) ,− sin (πz)]
T

x ≤ − cos π4[∣∣∣ y
cos π4

∣∣∣− 1, y
cos π4

, 0
]T

otherwise

(72)

with λ = 0.01 used in our simulations.
Since opposing topological charges attract each other we observe the motion of the

two sink defects to the saddle point defect and eventually the fusion of the saddle point
defect with the closer sink defect (see Figure 1). The time needed for the annihilation
of the two defects is denoted by tf and called fusion time. Finally, the remaining two
defects relax to a position with maximal distance. Due to the symmetry of the setup
the defect positions will remain in the equatorial plane.

These dynamics are consistently observed within all methods. To measure de-
viations in the proposed numerical methods we compare against the DEC solution.
Therefore, we introduce as quantitative measure a density like mean energy error εe
(normalized by the area A of the surface, AS2 = 4π) and as qualitative measure the
error in the defect fusion time εf,

εe :=
1

A tend

∫ tend

0

∣∣∣∣∣∣F
S(Ω)
ωn,(ωt)

(M)− FSωn
(DEC)

FSωn
(DEC)

∣∣∣∣∣∣dt ,(73)

εf :=

∣∣∣∣ tf (M)− tf (DEC)

tf (DEC)

∣∣∣∣ ,(74)

for a numerical method M. Within this framework we evaluate the proposed vector-
valued methods DEC and SPH, and the component-wise methods sFEM and DI, with
parameters from Table 2.

Figure 2 shows the obtained computed errors. The methods essentially show
matching solutions. The relative energy difference and difference in defect fusion time
is reduced for increasing penalty factor ωt, but is limited by the differences in the
compared methods, e. g., difference in the location of DOFs and the discretization
of the surface. The SPH method does not depend on a tangentiality penalization
as the DEC method. Thus, the error values result from a difference in the surface
representation and the truncation in the spherical harmonics expansion. Apart from
this, two qualitatively different behaviors for sFEM and DI can be observed. Where
the method sFEM shows nearly constant errors (at least for ωt > 2500), the method DI

shows a dependence on the penalty parameter. This effect arises from the interaction
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Fig. 1. (Colors online) Top: Sequence of director field configurations (glyphs) and defect
positions (color gradient on surface and large arrows) in the evolution of the four-defect test case,
at time t0, the four defect configuration, time t1, the defect annihilation, and time t2, the two-
defect configuration. Bottom: Energy evolution (left), defect positions in x-y-equatorial plane at t2
(middle) and defect trajectories of the four-defect test case (right). The angle ϕ ∈ [0, 2π) describes
the defect positions in the x-y-equatorial plane. Colors of the defects: source (dark blue), sinks
(cyan and green), saddle point (red).

Fig. 2. (Colors online) The errors in mean energy εe (left) and fusion time of defects εf (right)
for various tangentiality penalty parameters ωt. Three different methods are compared to DEC:
spherical harmonics (blue), parametric FEM (red), and diffuse interface (green).

of the penalty forcing and the geometric approximation of S by a smeared-out delta-
function, i. e., a non-constant penalty factor throughout the interface. Close to the
surface the director field p̃ is not guaranteed to be tangential to S for ωt too small.
Increasing the penalty factor finally leads to tangential fields in the surrounding of
the interface. This results in error values close to those of sFEM. A difference in these
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two methods is expected, due to the additional approximation of the surface and the
surface differential operators by the diffuse interface representation.

Within a reasonable tolerance all four methods show the same dynamic behavior
along quantitative and qualitative computed errors and converge to the same station-
ary solution with two defects, a source (+1) and a sink (+1), which are at maximal
distance from each other.

5.2. Higher order surfaces. To further validate the consistency of the methods
DEC, sFEM and DI, we extend the test-setup to a sequence of surfaces with non-
constant curvature, see Figure 3 for examples. All surfaces have χ(S) = 2, thus
allowing defect configurations as in the previous example.

Fig. 3. Nonic surfaces corresponding to three different stretching parameters C. Left: sur-
face with defect fusion-time > 0, Center: four-defect configuration gets stable, Right: four-defect
configuration is energetically equivalent to two-defect configuration.

The construction of the surfaces is based on a deformation of the unit sphere,
such that regions with positive and negative Gaussian curvature emerge. Our goal is
to study the influence of these regions on the defect location. Are defects attracted
by these regions? Is there a relation between the topological charge of the defect and
the Gaussian curvature?

The postulated parametrization of the unit sphere S2, xS2(θ, ϕ), given in Sec-
tion 4.3, is stretched in the z-direction by the displacement function fC,r with factors
r ∈ (0, 1) and C > 0,

fC,r(z) :=
1

4
Cz2

[
(z + 1)2(4− 3z) + r(z − 1)2(4 + 3z)

]
and compressed along the y-direction by a factor B ∈ [0, 1). This leads to the
parametrization

x(θ, ϕ) := xS2(θ, ϕ) + fC,r(cos θ) ex −B sin θ sinϕ ey .(75)

The surface can also be expressed implicitly by the zero-level set of the function

%(x, y, z) := (x− fC,r(z))2
+

1

(1−B)2
y2 + z2 − 1 .(76)

This gives a polynomial % of degree 10, which motivates the name nonic surfaces.
The asymmetry of the surfaces w.r.t. the x-z-plane prevents metastable defects con-
figurations. The necessary surface quantities can be derived directly from the level
set formulation by ν̃ = ∇%/‖∇%‖ and Bij = − [πTS∇ν̃j ]i.

To investigate the energy value FSωn
[p∗] of a stationary solution p∗ and the stabil-

ity of defect configurations we analyze the evolution of two different initial solutions



Orientational order on surfaces 23

p0
(4) and p0

(2). The first one, p0
(4), has four separated defects, while the second one,

p0
(2), has two.

Fig. 4. Equilibrium states for surface with C = 1.175, norm defects (color gradient) and
director (glyphs). Second row: back and front detail of configuration.

At first, we consider the projected unit vector ex, which can be represented by
the surface gradient of the x-coordinate, i. e.,

p0
(4) := πTS ex = gradx = (dx)] .(77)

On an edge e = [v1, v2] ∈ E , where the face T1 � e is right of e and T2 � e is left of
e, so that ?e = [c(T1), c(e)] + [c(e), c(T2)] is the dual edge, we can approximate the
1-form dx, utilizing integration by parts on e, by

α0
(4)(e) =

(
vx2 − vx1 ,−

|e|
|?e|

([c(T2)]
x − [c(T1)]

x
)

)
.(78)

To enforce a two-defect solution in equilibrium for the second case, we project
a slightly rotated unit vector ey to the surface. The rotation by an angle γ in the
normal plane of the R3-vector [−1, 0, 1]T is thereby represented by the rotation matrix
Rγ . This defines

p0
(2) := πTSRγ ey .(79)

Our choice of γ is 0.05. In the context of DEC, the evaluation of a vector field q ∈ TS
with the dual edge vector e? on edge e at the intersection e∩ ?e = c(e) is ambiguous.
To overcome this, we define in a canonical way a dual 1-chain, utilizing the definition
of a dual edge ?e = ?e|T1 + ?e|T2 . This leads to

q(c(e)) · e? := q(c(e)) · (e?|T1 + e?|T2) = q(c(e)) · (c(T2)− c(T1)) ,
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where the face T1 � e is right of the edge e and T2 � e is located left. Thus we get
the initial discrete PD-1-form

α0
(2)(e) =

(
p0

(2)(c(e)) · e,−
|e|
|?e|

p0
(2)(c(e)) · e?

)
.(80)

The normalized versions of p0
(i) and α0

(i) can easily be constructed by point-wise or

edge-wise normalization, respectively, using the definition of the norm in (36) for the
discrete PD-1-forms.

Within this setup we evaluate the energy for stationary solutions p∗ and the
number of defects for both initial solutions p0

(4/2) for a sequence of values C ∈ [0, 1.5].

The parameter r = 0.95 remains fixed while B is related to C by B = 7/20C.
An example of the two different initial fields relaxed to equilibrium is shown in

Figure 4 for a specific nonic surface. We find +1 defects at extrema of the Gaussian
curvature, while a −1 defect may appear at the saddle point. This dependency is in
agreement with results for the similar problem of flow on curved surfaces [68, 59].

For shapes with C ∈ [0.5, 0.635] we observe that both initial solutions converge
to a two-defect configuration. In Figure 5 (right) we plot the fusion time for defect
annihilation for initial condition p0

(4). Notice the steep increase in this time for C ↗
0.635. For C & 0.635 a four-defect configuration becomes stable. It poses a local
energetic minimum. Further increasing the parameter C, continuously amplifies the
Gaussian curvature on the bulges and saddle. As shown in Figure 5 (left), this leads
to a decreasing energy cost for the four-defect stationary solution, while costs for the
two-defect solution increase monotonically until the energies are equal at C ≈ 1.175.
For C & 1.175 the four-defect solution becomes energetically favorable. This behavior
is stable against variations in the penalty parameter ωn, which is chosen, such that
the defect core radius is resolved, see Table 2.

Fig. 5. Energy FSωn
for stationary solutions with four and two defects for nonic shapes with

C ∈ [0, 1.5] (left) and defect fusion time for the four-defect initial solution (right).

These experiments emphasize the impact of curvature on the energetic cost of a
defect configuration and prove the key role of domain geometry in enabling non-trivial
realizations of the Poincaré-Hopf theorem. Figure 6 shows snapshots of the evolution
on the most deformed surface with C = 1.5 and noise used as initial condition. Which
stationary shape is selected strongly depends on the initial condition. We here only
show the one converging to the four-defect configuration.

The relaxation shows four periods with distinct behavior. Starting from a random
initial configuration the noise smoothes out to a state with emerging localized defects
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t1 = 0.1 t2 = 1.0 t3 = 5.7 t4 = 7.2

Fig. 6. Snapshots of the time evolution and the final stationary solutions with four defects on
the nonic shapes with C = 1.5. First row: top view. Second row: back view with a single defect,
evolution from a sink shape (at t = 1) over vortex shape (at t = 5.7) to the final source shape (at
t = 7.2).

Fig. 7. (Colors online) Development of the energy parts in the relaxation starting from random
initial state. The four parts plotted with lines and symbols sum up to the full energy FSωn

. Highlighted
are five time steps that mark changing events. From t = 0.1 to t = 3.6 the defects move to their
final position. In the time period t = 1.0 to t = 5.7 the back defect rotates by 90 degree, from a sink
to a vortex defect. From time t = 5.7 to t = 7.2 the back defect rotates further by 90 degree, from a
vortex defect to a source defect.

at time around t = 0.1. Until time t = 1 these defects reach their final normalization
shape, in other words, the penalization term in the energy reduces up to this time
and stays constant from this time on, as can be seen in Figure 7. The defects move at
first slowly and then very fast to their final position around the high curvature areas
and the saddle point. This happens until time t = 3.6. When the back defect reaches
its final position it starts to rotate the vector field up to 90 degrees. Thus, a sink
defect evolves to a vortex defect at around time t = 5.7. This process continues and
rotates the vector field around this back defect further by 90 degrees until a source
defect shape is reached at around time t = 7.2.

Beside these exploratory results, shown in Figure 5 we also use this parameter
study to verify the quality of the numerical methods sFEM and DI. In Figure 8 we
plot the relative errors introduced in (73) for the mean energy and fusion time. As
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numerical parameters we have chosen values listed in Table 2 in the column nonic
surface.

Fig. 8. (Colors online) Relative errors w.r.t. DEC solution of mean energy (left) and fusion
time (right) for nonic shapes C ∈ [0, 2] and the numerically methods parametric FEM (red dashed)
and diffuse interface (green solid).

As shown in Figure 8 (left) we observe the same behavior with both methods,
across the full range of shapes C ∈ [0, 1.5], within reasonable error bounds. The more
approximative DI yields significant stronger deviations from the DEC results, up to
two orders of magnitude in the mean energy error. Furthermore, we notice increasing
errors with amplified curvature. The critical point Ccrit = 0.635 of emergence of a
new stable defect configuration is qualitatively reproduced by both methods. DEC and
sFEM yield identical results for Ccrit, up to the probing grid spacing of δC = 2.5 ·10−3.
DI produces a critical value of 0.7125, which corresponds to a relative error of 0.122
w.r.t. the DEC result. As a result the dynamics evaluated by DI close to this critical
event exhibit distinct deviations leading to substantial relative errors for the fusion
time as shown in Figure 8 (right).

We do not compare the dynamic evolution if started from noise, as identical initial
conditions cannot be specified. However, also sFEM and DI produce evolutions which
are qualitatively the same as in Figure 6. Again, whether a two-defect or four-defect
configuration is reached strongly depends on the initial condition.

5.3. Performance comparison. We summarize pros and cons of the considered
numerical methods, with respect to complexity, accuracy, generality and numerical
performance.

As a first quality measure, we consider the applicability of the methods to various
geometric surfaces. Here SPH is the most restrictive as it can only be applied to spher-
ical surfaces, since eigenfunctions and eigenvalues of the Laplace-deRham operator are
utilized. DEC and sFEM can be applied to all surfaces, where a suitable surface mesh
is available. DEC requires well-centered simplicial surface elements, whereas the re-
quirements for sFEM are less restrictive. However, a non-regular shape of the triangles
may increase the condition number of the resulting linear system [61, 28]. Thus, the
quality of the surface triangulation matters for both approaches. DI uses an implicit
description of the surface and thus does not rely on an approximate surface mesh.
The 3D domain Ω can be adaptively triangulated using regular shaped tetrahedra
and thus allows to conserve good mesh quality easily. Efficient methods to calculate
a signed-distance function dS from an implicit description of S or from a triangulated
surface are necessary and available for tetrahedral meshes, see [17, 74].

The computational costs for all the methods vary a lot. Denoting by |V| the
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DEC sFEM DI

]DOFs 2 · |E| ≈ 6 · |V| 3 · |V| � 3 · |V|
NNZ/row 12 20 37

Table 3
Number of degrees of freedom ]DOFs and number of non-zeros per row of the matrix for the

three methods that assemble a linear system.

number of vertices of a surface triangulation and by |E| the number of edges. For SPH

the main computational expenses are related to the forward and backward transform,
which can be classified as O(N2 logN+ |V|) with band-width N , typically N ∼

√
|V|.

The other methods have to assemble and invert a linear system in each time step
iteration. The number of degrees of freedom (DOFs) and the corresponding average
number of non-zero entries (NNZ) per row in the linear system are summarized in
Table 3. The total number of non-zeros in the system is approximately the same for
DEC and sFEM, whereas DI produces a much larger and denser system.

The structure of the linear systems is also different. Where the sFEM and DI

method produce symmetric matrices for symmetric differential operators, the DEC

approach results in a non-symmetric matrix, since not all triangles in the discretization
are equilateral. This restricts the choice of linear solvers and often results in an
additional performance overhead.

DI allows to use classical finite element software. The additional cost, resulting
from the treatment in 3D can be reduced by adaptive refinement in a narrow band
around the surface. This establishes this approach as an easy to use tool also in the
context of surface vector field calculations. A further extension of the analyzed models
toward evolving surfaces can also most easily be adopted to DI methods by evolving
the implicit function or the phase-field variable.

6. Conclusion and Outlook. We presented a brief derivation of the weak sur-
face Frank-Oseen energy as a thin film limit of the well known 3D Frank-Oseen dis-
tortion energy. By penalizing the unity of the vector field the limit can be established
for surfaces with χ(S) 6= 0. We highlight the importance of intrinsic and extrinsic
energy contributions. Dynamic equations for surface bound polar order are obtained
by an L2-gradient flow approach, leading to a vector-valued surface PDE.

The energy and the dynamic equations have been adapted to suit several numer-
ical methods. The least approximating methods base on a direct discretization of the
vector-valued state space of the energy functional. For spherical surfaces this is SPH

and for arbitrary surfaces DEC. Extending the variational space to arbitrary vector
fields allowed us to split the vector-valued problem into a set of coupled scalar-valued
problems for each component. Established solution procedures for such problems, as
sFEM and DI, are adapted to this situation. Numerical experiments on the canonical
unit sphere and surfaces with non-constant curvature established the consistency of
all introduced methods.

The experiments further showed the tight interplay of topology, geometry, and
dynamics. In all experiments the defect localization is related to the Gaussian curva-
ture of the surface, +1 defects are found at extrema of the Gaussian curvature, while
−1 defects are located at saddle points. We have further demonstrated the general
possibility to reduce the overall energy by introducing additional defects and thus
establishing non-trivial realizations of the Poincaré-Hopf theorem as energy minima.
The proposed methods allow to further investigate this interplay. Here the effect of
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ωn as well as the impact of intrinsic and extrinsic contributions should be analyzed.
The introduced models and methods should also be complemented by more rig-

orous theoretical works on the convergence of the thin film limit. In analogy to
scalar-valued problems an extension to evolving surfaces seems feasible. Beyond the
mentioned fundamental issues, the model and methods are ready to be applied in
the field of passive and active soft matter and surface bound, non-equilibrium physics
comprising orientational order. Examples are passive [82, 47, 39] and active [51] liquid
crystals and polar fluids [2, 16, 42] in thin shells, which are proposed models for a cell
cortex [64].

Although the polar model, described by the Frank-Oseen energy and the intro-
duced dynamic equations, already shows a variety of interesting effects, a nematic
model will have additional features. Therefore, the Q-tensor Landau-de Gennes mod-
els should be focused on. With similar ideas of incorporating a tangentiality penal-
ization a weak Q-tensor model on a surface could be derived and analyzed.

Acknowledgements This work is partially supported by the German Research
Foundation through grant Vo889/18. We further acknowledge computing resources
provided at JSC under grant HR06.

Appendix A. Thin film limit of penalized Frank-Oseen energy.
Considering a thin shell Ωδ = S× [−δ/2, δ/2] around the surface S with thickness

δ, the local coordinates θ and ϕ of the surface immersion x and an additional coor-
dinate ξ, which acts along the surface normal ν, lead to a thin shell parametrization
x̃ : Uδ → R3 for the parameter domain Uδ := U × [−δ/2, δ/2], with x̃ defined by

x̃(θ, ϕ, ξ) = x(θ, ϕ) + ξν(θ, ϕ) .(81)

The thickness δ is sufficiently small to guarantee the injectivity of the pushforward,
see [54].

For a better readability, we denote indices which mark all three components
{θ, ϕ, ξ} by capital letters. The indices for the surface components {θ, ϕ} are denoted
by small letters. The metric tensor g̃ of the thin shell is given by its components
g̃IJ = ∂I x̃ · ∂J x̃, i. e.,

g̃ij = gij − 2ξBij +O(ξ2)ij = gij +O(ξ)ij , g̃ξξ = 1 and g̃iξ = g̃ξi = 0 .(82)

The pure formal indices on O extend the asymptotic polynomial behavior to tensor
context and preserve summation conventions. Hence, for the Christoffel symbols
Γ̃KIJ = 1

2 g̃
KL (∂I g̃JL + ∂J g̃IL − ∂Lg̃IJ), we obtain

Γ̃kij = Γkij +O(ξ)kij , Γ̃ξij = Bij +O(ξ)ij , Γ̃kiξ = Γ̃kξi = −Bik +O(ξ)ki ,

Γ̃Kξξ = Γ̃ξIξ = Γ̃ξξI = 0 .
(83)

We can approximate the square root of the determinant |g̃| on S by
√
|g̃| =

√
g̃ξξ|g|+

O(ξ) = (1 +O(ξ))
√
|g|. Therefore, the volume element becomes

dV =
√
|g̃|dξ ∧ dθ ∧ dϕ = (1 +O(ξ)) dξ ∧ dS .(84)

The 3-tensor, with the same qualities as the volume element, is the Levi-Civita tensor

ẼIJK = dV (∂I x̃, ∂J x̃, ∂K x̃) =
√
|g̃|εIJK =

√
|g|εIJK +O(ξ)IJK ,(85)
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with the common Levi-Civita symbols εIJK ∈ {−1, 0, 1}. With the Levi-Civita tensor
E on the surface, defined by Eij = dS (∂ix, ∂jx) =

√
|g|εij , and the fact, that all

non-vanishing components of the Levi-Civita tensor Ẽ in the thin shell have exactly
one ξ-index, we obtain

Ẽξij = −Ẽiξj = Ẽijξ = Eij +O(ξ)ij .(86)

For a better distinction, we use a semicolon in the thin shell and a straight line
on the surface to mark the components of the covariant derivative, i. e., for the vector
fields p̃ ∈ C1 (Ωδ,TΩδ) and p ∈ C1 (S,TS), we write

p̃I;J = ∂J p̃I + Γ̃IJK p̃K and(87)

pi|j = ∂jp
i + Γijkp

k .(88)

The contravariant derivatives are given by p̃I;J = g̃JK p̃I;K and pi|j = gjkpi|k. Hence-

forward, we assume that p̃ ∈ TΩδ is an extension of p, i. e., p̃
∣∣
S = p ∈ TS, and p̃

is parallel and length-preserving in direction of ν, i. e., p̃I;ξ = 0 as a consequence5.
Therefore, the Taylor approximation on the surface of the contravariant tangential
components becomes

p̃i = pi + ξ∂ξp̃
i
∣∣
S +O(ξ2)i = pi + ξ

(
p̃i;ξ − Γ̃iξK p̃K

∣∣
S

)
+O(ξ2)i

= pi + ξBkipk +O(ξ2)i .
(89)

It holds p̃ξ = 0, because p̃ξ
∣∣
S = 0 and ∂ξp̃

ξ = p̃ξ;ξ − Γ̃ξξK p̃K = 0, but nonetheless, we
get non-vanishing covariant tangential derivatives

p̃ξ;j = Γ̃ξjK p̃K = Bjkpk +O(ξ)j .(90)

All remaining covariant derivatives can be approximated by

p̃i;j = ∂j p̃
i + Γ̃ijK p̃K = ∂jp

i + Γijkpk +O(ξ)ij = pi|j +O(ξ)ij .(91)

The divergence of a vector field is the trace of its covariant derivative reads

∇ · p̃ = p̃I;I = p̃i;i = pi|i +O(ξ) = div p +O(ξ) .(92)

The covariant curl of a vector field can be obtained by a double contraction of
the Levi-Civita tensor and the contravariant derivative, i. e.,

[∇× p̃]I = −ẼIJK p̃J;K .(93)

With (86), the ξ-component of the curl can be approximated by

[∇× p̃]ξ = −Ejkg̃kLp̃j;L +O(ξ) = −Ejkgklpj |l +O(ξ) = rot p +O(ξ)(94)

and the covariant tangential components by

[∇× p̃]i = −
(
Ẽijξp̃

j;ξ + Ẽiξj p̃
ξ;j
)

= Eij g̃
jK p̃ξ;K +O(ξ)i

= EijBj lpl +O(ξ)i = −[∗(Bp)[]i +O(ξ)i ,
(95)

5The constraints on p̃ need to be physically interpreted and discussed. Other assumptions or
boundary conditions on the outer shell surface finally lead to different models.
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where we use, that for a every q ∈ TS

∗q[ = iq(dS) =
√
|g|
(
−qθdϕ+ qϕdθ

)
= −Eq(96)

is valid on S, see [1]. The Hodge star operator is length-preserving and the metric g̃
induces the common norm in the thin shell, therefore it holds

‖∇ × p̃‖2Ωδ =
∥∥∥− ∗ (Bp)[

∥∥∥2

S
+ g̃ξξ (rot p)

2
+O(ξ) = ‖Bp‖2S + (rot p)

2
+O(ξ) .

Finally, with ‖p̃‖2Ωδ = ‖p‖2S+O(ξ), (84), (92), (94), and (95), we can approximate
the penalized Frank-Oseen energy (3) in the thin shell Ωδ by

Fωn
[p̃,Ωδ]

=

∫
S

∫ δ/2

−δ/2

K

2

(
(div p)

2
+ (rot p)

2
+ ‖Bp‖2S

)
+
ωn
4

(
‖p‖2S − 1

)2

+O(ξ) dξ ∧ dS

= δ
(
FSωn

[p] +O(δ)
)

for p̃ ∈ HDR(Ωδ; TΩδ) and p ∈ HDR(S; TS).

Appendix B. Integral Theorems. The exterior derivative d is the L2-
adjoint of (− ∗ d∗). This allows to obtain some frequently used integral identities for
the tangential vector field p = α] : S → TS on a closed surface S and also for its R3

extension p̂ : S → R3, with p = πTS p̂. We get

−
∫
S
〈grad f, p̂〉 dS = −

∫
S
〈grad f,p〉 dS = −

∫
S
〈df,α〉 dS

=

∫
S
f ∗ d ∗αdS =

∫
S
f div p dS

=

∫
S
f div(πTS p̂) dS =

∫
S
f div p̂−H (p̂ · ν) dS

and

−
∫
S
〈rot f, p̂〉 dS = −

∫
S
〈rot f,p〉 dS = −

∫
S
〈∗df,α〉 dS

=

∫
S
〈df, ∗α〉 dS = −

∫
S
f ∗ d ∗ ∗αdS =

∫
S
f rot p dS

=

∫
S
f rot(πTS p̂) dS =

∫
S
f rot p̂ dS .

Note that ∗ ∗ α = −α and the inner product is invariant with respect to ∗, [, and ],
applied to both arguments of the product simultaneously, see [1]. Hence, we obtain
for the Laplace-DeRham operator∫

S

〈
∆dRp, q̂

〉
dS =

∫
S

〈
∆dRp,q

〉
dS = −

∫
S
〈grad div p,q〉+ 〈rot rot p,q〉 dS

=

∫
S

(div p)(div q) + (rot p)(rot q) dS

=

∫
S

div(πTS p̂) div(πTS q̂) + rot(πTS p̂) rot(πTS q̂)

=

∫
S

(div p̂−H (p̂ · ν))(div q̂−H (q̂ · ν)) + (rot p̂)(rot q̂) .
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Appendix C. Convergence study of the Laplace-deRham approxima-
tion. To justify the approximation ∆dRp ≈ ∆̂dRp̂ + ωtν (ν · p̂) we set up a test
case consisting of a vector-valued Helmholtz equation on an ellipsoidal surface SE
(major axis: 1.0, 0.5, and 1.5)

−∆dRp + p = −∆dRps + ps =: f on SE(97)

with given analytical solution ps = [−2y, 0.5x, 0]
T ∈ C(SE ,TSE). We solve

−∆̂dRp̂ + p̂ + ωtν (ν · p̂) = f on SE(98)

using sFEM on a conforming triangulation SEh of SE with piecewise linear Lagrange
elements Vh(SEh ) = {vh ∈ C0(SEh ) : vh|T ∈ P1, ∀T ∈ T } as trial and test space for
all components p̂i. This leads to a sequence of linear discrete equations

(99)

∫
SEh
∇S · p̂Diψ +∇S · (p̂× ν)∇S · (eiψ × ν) dS

+

∫
SEh

p̂iψ dS + ωt

∫
SEh

νi (ν · p̂)ψ dS =

∫
SEh

fiψ dS.

To assemble and solve the resulting system we use the FEM-toolbox AMDiS [81, 83].

Figure 9 shows the L2-error εL2(p) =
(∫
SE
∑
i=1(p̂i − ps,i)

2 dS
)1/2

vs ωt and
linear convergence, which is only limited by the mesh quality.

Fig. 9. L2-error for ∆̂dR approximation (solid lines) for two well centered triangulations of
SE with 25k and 100k vertices. The black dashed line indicates linear rate of convergence. The
dash doted line shows the result for a component wise approximation of ∆dR in (100).

As a complementary result and to emphasize the delicate nature of the coupling
between curvature and spatial derivatives, we also show in Figure 9 the L2-error of a
component wise approximation of ∆dR

∆dRp ≈
3∑
i=i

∇S · ∇S p̂iei + ωtν (ν · p̂) .(100)

As clearly visible in Figure 9, this approximation fails for any values of ωt to reproduce
the ∆dR behavior on SE .

Appendix D. DEC: Notations and Details.
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Fig. 10. Left: This simple example mesh leads to sT1,e = +1, sT2,e = −1, sv1,e = −1 and
sv2,e = +1. Right: the vertex v (green) and its Voronoi cell ?v (semi-transparent green); the edge
e (blue) and its Voronoi edge ?e (blue); the face T (semi-transparent red) and its Voronoi vertex
(red).

D.1. Notations. We often use the strict order relation � and ≺ on simplices,
where � is proverbial the “contains” relation, i. e., e � v means: the edge e contains
the vertex v. Correspondingly is ≺ the “part of” relation, i. e., v ≺ T means: the
vertex v is part of the face T . Hence, we can use this notation also for sums, like∑
T�e, i. e., the sum over all faces T containing edge e, or

∑
v≺e, i. e., the sum over

all vertices v being part of edge e. Sometimes we need to determine this relation for
edges more precisely with respect to the orientation. Therefore, a sign function is
introduced,

sT,e :=


+1 if e ≺ T and T is on left side of e

−1 if e ≺ T and T is on right side of e

0 e ⊀ f ,

(101)

sv,e :=


+1 if v ≺ e and e points to v

−1 if v ≺ e and e points away from v

0 v ⊀ e ,

(102)

to describe such relations between faces and edges, or vertices and edges, respectively.
Figure 10 gives a schematic picture.

The property of primal mesh to be well-centered ensures the existence of a Voronoi
mesh (dual mesh), which is also an orientable manifold-like simplicial complex, but
not well-centered.

The basis of the Voronoi mesh are not simplices, but chains of them. To identify
these basic chains, we apply the (geometrical) star operator ? on the primal simplices,
i. e., ?v is the Voronoi cell corresponding to the vertex v and inherits its orientation
from the orientation of the polytope |K|. ?v is, from a geometric point of view, the
convex hull of circumcenters c(T ) of all triangles T � v. The Voronoi edge ?e of an
edge e is a connection of the right face T2 � e with the left face T1 � e over the
midpoint c(e). The Voronoi vertex ?T of a face T is simply its circumcenter c(T ) (see
Figure 10). For greater details and a more mathematical discussion see, e. g., [37, 80].

The boundary operator ∂ maps simplices (or chains of them) to the chain of
simplices that describes its boundary, with respect to its orientation (see [37]), e. g.,
∂(?v) = −

∑
e�v sv,e(?e) (formal sum for chains) and ∂e =

∑
v≺e sv,ev.
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The expression |·| measures the volume of a simplex, i. e., |T | the area of the
face T , |e| the length of the edge e and the 0-dimensional volume |v| is set to be 1.
Therefore, the volume is also defined for chains and the dual mesh, since the integral
is a linear functional.

D.2. Laplace operators. With the Stokes theorem and the discrete Hodge op-
erator defined in [37] we can develop a DEC discretized Rot-Rot-Laplace for a discrete
1-form α ∈ Λ1

h(K) by

∆RR
h α(e) := (∗d ∗ dα) (e) = − |e|

|?e|
(d ∗ dα) (?e)

= − |e|
|?e|

(∗dα) (∂ ? e) = − |e|
|?e|

∑
T�e

sT,e (∗dα) (?T )

= − |e|
|?e|

∑
T�e

sT,e
|T |

(dα) (T ) = − |e|
|?e|

∑
T�e

sT,e
|T |

α(∂T )

= − |e|
|?e|

∑
T�e

sT,e
|T |

∑
ẽ≺T

sT,ẽα(ẽ)

(103)

and a DEC discretized Grad-Div-Laplace by

∆GD
h α(e) := (d ∗ d ∗ α) (e) = (∗d ∗ α) (∂e)

=
∑
v≺e

sv,e (∗d ∗ α) (v) =
∑
v≺e

sv,e
|?v|

(d ∗ α) (?v)

=
∑
v≺e

sv,e
|?v|

(∗α) (∂ ? v) = −
∑
v≺e

sv,e
|?v|

∑
ẽ�v

sv,ẽ (∗α) (?ẽ)

= −
∑
v≺e

sv,e
|?v|

∑
ẽ�v

sv,ẽ
|?ẽ|
|ẽ|

α(ẽ) .

(104)

Hence, we obtain the DEC discretized Laplace-deRham operator by

∆dR
h α(e) = −∆RR

h α(e)−∆GD
h α(e) .

D.3. Conflate linear operators and its hodge dual to a PD-(1,1)-Tensor.
For a linear operator M : T∗S → T∗S point wise defined as a mixed co- and con-
travariant (1,1)-tensor with components Mi

j , we discretize the 1-form Mα on an edge
e ∈ E by definition (27) and approximate the operator on the projected midpoint of
the edge, i. e.,

(Mα)h (e) =

∫
π(e)

Mi
jαj dx

i ≈ [M(e)]ik g
kj

∫
π(e)

αjdx
i ,(105)

with M(e) := M|π(c(e)). With respect to an orthogonal basis {∂ix, ∂jx} with metric
tensor g = gi(dx

i)2, we obtain for the 1-form α = αidx
i the Hodge dual

∗α = [∗α]1dx
1 + [∗α]2dx

2 = −
√
g1

g2
α2dx

1 +

√
g2

g1
α1dx

2 .(106)

Hence, we can replace the 1-forms beneath the integrals by[
α1dx

1 α2dx
1

α1dx
2 α2dx

2

]
=

 α1dx
1 −

√
g2
g1

[∗α]1dx
1√

g1
g2

[∗α]2dx
2 α2dx

2

 .(107)
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Now, we use the basis {e, e?} defined in Section 4.2 on the polytope |K| and the
resulting metric (34), i. e., g1 = |e|2 and g2 = | ? e|2. This leads to an approximation
of (Mα)h ∈ Λ1

h(K) as a linear combination of αh, (∗α)h ∈ Λ1
h(K), or rather, evaluated

on an edge e ∈ E

(Mα)h (e) ≈ 1

|e|2
Me,e(e)αh(e)− 1

|e|| ? e|
Me,e?(∗α)h(e)(108)

and, in general, for v,w ∈ Span{e, e?} is Mv,w(e) = v ·M(e) · w = vi [M(e)]ij w
j

the evaluation of the complete covariant tensor M(e) in direction v and w. Note, if
M ∈ TS ×TS is formulated in Euclidean R3 coordinates, so that M(e) ∈ R3×3, there
is no distinction between co- and contravariant components of M(e). Furthermore,

if we use the approximation (∗Mα)h (e) ≈ − |e||?e| (Mα)h (?e), we get with respect to

(105) and (107)

(∗Mα)h (e) ≈ − 1

|e|| ? e|
Me?,eαh(e) +

1

| ? e|2
Me?,e?(∗α)h(e) .(109)

Finally, we can summarize (108) and (109) with the PD-1-form α ∈ Λ1
h(K;T∗E) on

every edge e ∈ E to

M ·α :=

[
1
|e|2Me,e − 1

|e||?e|Me,e?

− 1
|e||?e|Me?,e

1
|?e|2Me?,e?

]
·α ≈

[
(Mα)h
(∗Mα)h

]
,(110)

where the evaluation argument e is omitted for a better readability.
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List of symbols.

Derivatives

div surface divergence
grad surface gradient
rot surface curl
∆S surface Laplace-Beltrami operator
∆dR surface Laplace-deRham operator

Discrete-Exterior Calculus

e edge, e ∈ E
?e dual edge of e (voronoi edge)
E set of edges, with number |E|
e edge vector along edge e
e? dual edge vector along dual chain ?e
T face, T ∈ T
T set of faces, with number |T |
∗ hodge star operator
[ lowering indices
] rising indices
α 1-form, α ∈ Λ1(S)
αh discrete 1-form, αh ∈ Λ1

h(K)
α Primal-Dual 1-form, α = (αh, ∗αh)
K simplicial complex
v vertex, v ∈ V
?v dual vertex (voronoi cell)
V set of vertices, with number |V|
d exterior derivative

Geometry

Γkij Christoffel symbols of second kind
θ co-latitude coordinate, θ ∈ [0, π]
ϕ azimuthal coordinate, ϕ ∈ [0, 2π)
ξ coordinate in normal direction of the

surface
κ Gaussian curvature

H mean curvature H = div ν
Ω domain, Ω ⊂ R3

EIJK Levi-Civita symbols
g Riemannian metric tensor
|g| determinant of g
π coordinate projection π : Ωδ → S
πTS surface projection πTS : TR3 → TS
B shape operator B = − gradν
S surface, i.e., compact closed oriented

Riemannian 2-dim. manifold
χ(S) characteristic of the surface S
SE ellipsoidal surface
ν outer surface normal
S2 unit 2-sphere
TS tangent bundle of surface S
T∗S cotangent bundle of surface S

Modeling

K uniform Frank constant
ωn penalty constant for normality
ωt penalty constant for tangentiality
FSωn

weak surface Frank-Oseen energy
εf error in the defect fusion time
εe (normalized) mean energy error
tk discrete time
τk time step width in th k-th time step

Phase-Field

φ phase-field variable
δS surface delta-function
W double-well, W (φ) ' δS
ζ double-well regularization
ε interface thickness of phase-field
dS(x) signed-distance function
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[9] R. Backofen, M. Gräf, D. Potts, S. Praetorius, A. Voigt, and T. Witkowski, A Contin-
uous Approach to Discrete Ordering on S2, Multiscale Model. Sim., 9 (2011), pp. 314–334.

[10] G. E. Backus, Potentials for tangent tensor fields on spheroids, Arch. Rational Mech. Anal.,
22 (1966), pp. 210–252.

[11] J. M. Ball, Mathematics and liquid crystals, arXiv Preprint, (2016). 1612.03792.
[12] J. M. Ball and D. A. Zarnescu, Orientability and energy minimization in liquid crystal

models, Arch. Rational Mech. Anal., 202 (2011), pp. 493–535.
[13] R. G. Barrera, G. A. Estevez, and J. Giraldo, Vector spherical harmonics and their

application to magnetostatics, Eur. J. Phys., 6 (1985), p. 287.
[14] M. Bertalmio, L. T. Cheng, S. Osher, and G. Sapiro, Variational problems and partial

differential equations on implicit surfaces, J. Comput. Phys., 174 (2001), pp. 759–780.
[15] R. L. Blumberg Selinger, A. Konya, A. Travesset, and J. V. Selinger, Monte Carlo

studies of the XY model on two-dimensional curved surfaces, J. Phys. Chem. B, 115 (2011),
pp. 13989–13993.
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[74] C. Stöcker, Level set methods for higher order evolution laws, PhD thesis, Technische Uni-
versität Dresden, Germany, 2008.
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