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Abstract

Extended Dynamic Mode Decomposition (EDMD) [27] is an algorithm that ap-
proximates the action of the Koopman operator on an N -dimensional subspace of the
space of observables by sampling at M points in the state space. Assuming that the
samples are drawn either independently or ergodically from some measure µ, it was
shown in [11] that, in the limit as M → ∞, the EDMD operator KN,M converges to
KN , where KN is the L2(µ)-orthogonal projection of the action of the Koopman op-
erator on the finite-dimensional subspace of observables. We show that, as N → ∞,
the operator KN converges in the strong operator topology to the Koopman operator.
This in particular implies convergence of the predictions of future values of a given ob-
servable over any finite time horizon, a fact important for practical applications such
as forecasting, estimation and control. In addition, we show that accumulation points
of the spectra of KN correspond to the eigenvalues of the Koopman operator with the
associated eigenfunctions converging weakly to an eigenfunction of the Koopman op-
erator, provided that the weak limit of the eigenfunctions is nonzero. As a by-product,
we propose an analytic version of the EDMD algorithm which, under some assump-
tions, allows one to construct KN directly, without the use of sampling. Finally, under
additional assumptions, we analyze convergence of KN,N (i.e., M = N), proving con-
vergence, along a subsequence, to weak eigenfunctions (or eigendistributions) related
to the eigenmeasures of the Perron-Frobenius operator. No assumptions on the observ-
ables belonging to a finite-dimensional invariant subspace of the Koopman operator are
required throughout.

Keywords: Koopman operator, dynamic mode decomposition, convergence, spectrum

1 Introduction

Recently, there has been an expanding interest in utilizing the spectral expansion based
methodology that enabled progress in data-driven analysis of high-dimensional nonlinear
systems. The research was initiated in [17, 15], using composition (Koopman) operator

1Milan Korda and Igor Mezić are with the University of California, Santa Barbara,
milan.korda@engineering.ucsb.edu, mezic@engineering.ucsb.edu
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representation originally defined in [12]. The framework is being used for model reduction,
identification, prediction, data assimilation and control of deterministic (e.g., [4, 14, 20, 27,
3, 9, 13]) as well as stochastic dynamical systems (e.g., [25, 19, 28]). This has propelled the
theory to wide use on a diverse set of applications such as fluid dynamics [23, 10], power grid
dynamics [18], neurodynamics [2], energy efficiency [7], molecular dynamics [29] and data
fusion [27].

Numerical methods for approximation of the spectral properties of the Koopman operator
have been considered since the inception of the data-driven analysis of dissipative dynamical
systems [17, 15]. These belong to the class of Generalized Laplace Analysis (GLA) methods
[16]. An alternative line of algorithms, called the Dynamic Mode Decomposition (DMD)
algorithm [22, 20] have also been advanced, enabling concurrent data-driven determination of
approximate eigenvalues and eigenvectors of the underlying DMD operator. The examples of
DMD-type algorithms are 1) the companion-matrix method proposed by Rowley et al. [20],
2) the SVD-based DMD developed by Schmid [22], 3) the Exact DMD method introduced
by Tu et al. [26], 4) the Extended DMD [27]. The relationship between these methods and
the spectral operator properties of the Koopman operator was first noticed in [20], based
on the spectral expansion developed in [15]. However, rigorous results in this direction are
sparse. Williams et al. [27] provided a result the corollary of which is that the spectrum of
the EDMD approximation is contained in the spectrum of the Koopman operator provided
the observables belong to a finite-dimensional invariant subspace of the Koopman operator
and the data matrix is of the same rank. The work of Arbabi and Mezić [1] suggested that
an alternative assumption to the finite rank is that the number of sampling points M goes to
infinity even though the results of [1] still implicitly rely on a finite-dimensional assumption.

The work [11] showed that, assuming either independent identically distributed (iid) or
ergodic sampling from a measure µ, the EDMD operator on N observables constructed
using M samples, KN,M , converges as M → ∞ to KN , where KN is the L2(µ)-orthogonal
projection of the action of the Koopman operator on the finite-dimensional subspace of
observables. In this work, we show that KN converges to K in the strong operator topology.
As a result, predictions of a given observable obtained using KN or KN,M over any finite
prediction horizon converge in the L2(µ) norm (as N or N and M tend to infinity) to its
true values. In addition, we show that, as N → ∞, accumulation points of the spectra of
KN correspond to eigenvalues of the Koopman operator, and the associated eigenfunctions
converge weakly to an eigenfunction of the Koopman operator, provided that the weak limit
of the eigenfunctions is nonzero. The results hold in a very general setting with minimal
underlying assumptions. In particular, we do not not assume that the finite-dimensional
subspace of observables is invariant under the action of the Koopman operator or that the
dynamics is measure preserving.

As a by-product of our results, we propose an analytic version of the EDMD algorithm
which allows one to construct KN directly, without the need for sampling, under the as-
sumption that the transition mapping of the dynamical system is known analytically and
the N -dimensional subspace of observables is such that the integrals of the products of the
observables precomposed with the transition mapping can be evaluated in closed form. This
method is not immediately useful for large-scale data-driven applications that the EDMD
was originally designed for but it may prove useful in control applications (e.g., [13]), where
model is often known, or for numerical studies of Koopman operator approximations on

2



classical examples, eliminating the sampling error in both cases.

Finally, we analyze convergence of KN,N , i.e., the situation where the number of samples
M and the number of observables N are equal. Under the additional assumptions that the
sample points lie on the same trajectory and the mapping T is a homeomorphism, we prove
convergence along a subsequence to weak eigenfunctions (or eigendistributions in the sense
of [6]) of the Koopman operator, which also turn out to be eigenmeasures of the Perron-
Frobenius operator.

The paper is organized as follows: in Section 2 we introduce the setting of EDMD. In
Section 3 we show that EDMD is an orthogonal projection of the action of the Koopman
operator on a finite subspace of observables with respect to the empirical measure supported
on sample points drawn from a measure µ. In Section 4 we show that this projection
converges to the L2(µ)-projection of the action of the Koopman operator. In Section 5 we
analyze the convergence of the EDMD approximations as the dimension of the subspace N
goes to infinity, showing convergence in strong operator topology and convergence of the
eigenvalues along a subsequence plus weak convergence of the associated eigenfunctions.
In Section 6 we show convergence of finite-horizon predictions. Section 7 describes the
analytic construction of KN . Section 8 contains results for the case when M = N and
only convergence to weak eigenfunctions, along a subsequence, is proven. We conclude in
Section 9.

Notation

The spaces of real and complex numbers are denoted by R and C with Rn×k and Cn×k

denoting the corresponding real and complex n× k matrices; the real and complex column
vectors are denoted by Rn := Rn×1 and Cn := Cn×1. The complex conjugate of a ∈ C
is denoted by a. Given a matrix A ∈ Cn×k, A> denotes its transpose and AH denotes its
Hermitian transpose (i.e., A>i,j = Aj,i and AH

i,j = Aj,i). The Moore-Penrose pseudoinverse
of a matrix A is denoted by A†. The Frobenius norm of a matrix A is denoted by ‖A‖F =√∑

i,j |Ai,j|2. Given a vector c ∈ Cn, the symbol ‖c‖2 :=
√∑

i |ci|2 denotes its Euclidean
norm.

2 Extended Dynamic Mode Decomposition

We consider a discrete time dynamical system

x+ = T (x) (1)

with T : M → M, where M is a topological space1, and we assume that we are given
snapshots of data

X = [x1, . . . , xM ], Y = [y1, . . . , yM ] (2)

1We choose to work in the general setting of dynamical systems on arbitrary topological spaces which
encompasses dynamical systems on finite-dimensional manifolds (in which case one can regardM as a subset
of Rn), as well as infinite dimensional dynamical systems, arising, for example, from the study of partial
differential equations or dynamical systems with control inputs [13].
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satisfying yi = T (xi). We do not assume that the data points line on a single trajectory
of (1).

Given a vector space of observables F such that ψ :M→ C and ψ ◦T ∈ F for every ψ ∈ F ,
we define the Koopman K : F → F by

Kψ = ψ ◦ T,

where ◦ denotes the pointwise function composition. Given a set of linearly independent
basis functions ψi ∈ F , i = 1, . . . , N , and defining

FN := span{ψ1, . . . , ψN}, (3)

the EDMD constructs a finite-dimensional approximation KN,M : FN → FN of the Koopman
operator by solving the least-squares problem

min
A∈CN×N

‖Aψ(X)−ψ(Y )‖2
F = min

A∈CN×N

M∑
i=1

‖Aψ(xi)−ψ(yi)‖2
2, (4)

where
ψ(X) = [ψ(x1), . . . ,ψ(xM)], ψ(Y ) = [ψ(y1), . . . ,ψ(yM)]

and
ψ(x) = [ψ1(x), . . . , ψN(x)]>.

Denoting
AN,M = ψ(Y )ψ(X)†, (5)

a solution2 to (4), the finite-dimensional approximation of the Koopman operator

KN,M : FN → FN

is then defined by
KN,Mφ = cHφAN,Mψ (6)

for any φ = cHφψ, cφ ∈ CN (i.e., for any φ ∈ FN). The operator KN,M will be referred to as
the EDMD operator.

3 EDMD as L2 projection

To the best of our knowledge, the results of this section and Section 4 were first obtained
in [11, Section 3.4] and hinted at already in [27]. Here we rephrase these results in a form
more suitable for our purposes.

From here on we assume3 that F = L2(µ), where µ is a given positive measure onM. This
assumption in particular implies that the basis functions ψi in (3) belong to L2(µ) and hence

2In general, the solution to (4) may not be unique; however, the matrix AN,M = ψ(Y )ψ(X)†, where ·†
denotes the Moore-Penrose pseudoinverse, is always uniquely defined and AN,M is always a minimizer in (4).

3Since K : F → F , the assumption of F = L2(µ) implies that the composition relation φ ◦ T , φ ∈ L2(µ),
gives rise to a well-defined operator from L2(µ) to L2(µ). In particular this implies that ‖φ1◦T−φ2◦T‖L2(µ) =
0 whenever ‖φ1 − φ2‖L2(µ) = 0 and that

∫
M |φ ◦ T |

2 dµ <∞ for all φ ∈ L2(µ).
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FN is a closed (but not necessarily invariant) subspace of L2(µ). Note that the measure µ
is not required to be invariant for (1) and hence the Koopman operator K is not necessarily
unitary. In practical applications, the measure µ will typically be the uniform measure on
M or other measure from which samples can be drawn efficiently.

We recall that given an arbitrary positive measure ν on M, the space L2(ν) is the Hilbert
space of all measurable functions φ :M→ C satisfying

‖φ‖L2(ν) :=

√∫
M
|φ(x)|2 dν(x) <∞.

Assuming FN is a closed subspace of L2(ν), the L2(ν)-projection of a function φ ∈ L2(ν)
onto FN ⊂ L2(ν) is defined by

P ν
Nφ = arg min

f∈FN

‖f − φ‖L2(ν) = arg min
f∈FN

∫
M
|f − φ|2 dν = arg min

c∈CN

∫
M
|cHψ − φ|2 dν. (7)

Now, given the data points x1, . . . , xM from (2), we define the empirical measure µ̂M by

µ̂M =
1

M

M∑
i=1

δxi , (8)

where δxi is the Dirac measure at xi. In particular, the integral of a function φ with respect
to µ̂M is given by ∫

M
φ(x)dµ̂M(x) =

1

M

M∑
i=1

φ(xi).

We remark that the EDMD subspace FN defined in (3) is a closed subspace of both L2(µ̂M)
and L2(µ) and hence the projections P µ

N and P µ̂M
N are well defined.

Now we are ready to state the following characterization of KN,Mφ:

Theorem 1 Let µ̂M denote the empirical measure (8) associated to the sample points
x1, . . . , xM and assume that the N ×N matrix

Mµ̂M =
1

M

M∑
i=1

ψ(xi)ψ(xi)
H =

∫
M
ψψH dµ̂M (9)

is invertible. Then for any φ ∈ FN

KN,Mφ = P µ̂M
N Kφ = arg min

f∈FN

‖f −Kφ‖L2(µ̂M ), (10)

i.e.,
KN,M = P µ̂M

N K|FN
, (11)

where K|FN
: FN → F is the restriction of the Koopman operator to FN .

5



Proof: Since the matrix Mµ̂M is invertible, the least-squares problem (4) has a unique
solution given by

ai =
( M∑
j=1

ψ(xj)ψ(xj)
H
)−1

M∑
j=1

ψ(xj)ψi(yj),

where aHi ∈ C1×N is the ith row of AN,M . Therefore

AH
N,M =

( M∑
j=1

ψ(xj)ψ(xj)
H
)−1

M∑
j=1

ψ(xj)ψ(yj)
H.

On the other hand, analyzing the minimization problem on the right-hand side of (10), we
get for any φ = cHφψ

arg min
f∈FN

‖f −Kφ‖L2(µ̂M ) = arg min
c∈CN

1

M

M∑
i=1

(cHψ(xi)− cHφψ(yi))
2

with the unique minimizer (since the minimized functions is strictly convex in c)

c =
( M∑
j=1

ψ(xj)ψ(xj)
H
)−1

M∑
j=1

ψ(xj)ψ(yj)
Hcφ = AH

N,Mcφ.

Hence, arg minf∈FN
‖f − Kφ‖L2(µ̂M ) = cHψ = cHφAN,Mψ = KN,Mφ as desired, where we

used (6) in the last equality. �

Theorem 1 says that for any function φ ∈ FN , the EDMD operator KN,M computes the
L2(µ̂M)-orthogonal projection of Kφ on the subspace spanned by ψ1, . . . , ψN .

Remark 1 If the assumption that the matrix Mµ̂M is invertible does not hold, then the
solution to the projection problem on the right-hand side of (10) may not be unique4. The
action of the EDMD operator KN,M (which is defined uniquely by (5) and (6)) then selects
one solution to the projection problem. In concrete terms, we have

KN,Mφ ∈ Arg min
f∈FN

‖f −Kφ‖L2(µ̂M ),

where Arg minf∈FN
‖f−Kφ‖L2(µ̂M ) denotes the set of all minimizers of ‖f−Kφ‖L2(µ̂M ) among

f ∈ FN .

4 Convergence of KN,M as M →∞

The first step in understanding convergence of EDMD is to understand the convergence of
KN,M as the number of samples M tends to infinity. In this section we prove that

KN,M → KN ,
4To be more specific, if the matrix Mµ̂M

is not invertible, the solution to (10) may not be unique when
viewed as a member of L2(µ). When viewed as a member of L2(µ̂M ), the solution is unique (since it is a
projection onto a closed subspace of a Hilbert space). This is because in this case two functions from FN
belonging to distinct L2(µ) equivalence classes may fall into the same L2(µ̂M ) equivalence class.
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where
KN = P µ

NK|FN
, (12)

provided that the samples x1, . . . , xM are drawn independently from a given probability
distribution µ (e.g., uniform distribution for compact M or Gaussian for if M = Rn).

Assumption 1 (µ independence) The basis functions ψ1, . . . , ψN are such that

µ{x ∈M | cHψ(x) = 0} = 0

for all nonzero c ∈ CN .

This is a natural assumption ensuring that the measure µ is not supported on a zero level
set of a linear combination of the basis functions used. It is satisfied if µ is any measure
with the support equal to M in conjunction with the majority of most commonly used
basis functions such as polynomials, radial basis functions with unbounded support (e.g.,
Gaussian, thin plate splines) etc. This assumption in particular implies that the matrix
Mµ̂M defined in (9) is invertible with probability one for M ≥ N if xj’s are iid samples
from µ.

Lemma 1 If Assumption 1 holds, then for any φ ∈ F we have with probability one

lim
M→∞

‖P µ̂M
N φ− P µ

Nφ‖ = 0, (13)

where ‖ · ‖ is any norm on FN (which are all equivalent since FN is finite dimensional).

Proof: We have

P µ
Nφ = arg min

f∈FN

∫
M
|f − φ|2 dµ = ψH arg min

c∈CN

∫
M
|cHψ − φ|2 dµ

= ψH arg min
c∈CN

[
cHMµc− 2 Re{cHbµ,φ}

]
,

where

Mµ =

∫
M
ψψH dµ ∈ CN×N , bµ,φ =

∫
M
ψφ dµ ∈ CN

and we dropped the constant term in the last equality which does not influence the mini-
mizer. By Assumption 1, the matrix Mµ is invertible and hence Hermitian positive definite.
Therefore the unique minimizer is c = M−1

µ bµ,φ. Hence

P µ
Nφ = bHµ,φM

−1
µ ψ.

On the other hand, the same computation shows that

P µ̂M
N φ = bHµ̂M ,φM

−1
µ̂M
ψ

with

bµ̂M ,φ =

∫
M
ψφ dµ̂M =

1

M

M∑
i=1

ψ(xi)φ(xi)

7



and with the matrix Mµ̂M defined in (9) guaranteed to be Hermitian positive definite by
Assumption 1 with probability one for M ≥ N . The result then follows by the strong law
of large numbers which ensures that

lim
M→∞

(bHµ̂M ,φM
−1
µ̂M

) = bHµ,φM
−1
µ

with probability one since the matrix function A 7→ A−1 is continuous and the samples xi
are iid. �

Theorem 2 If Assumption 1 holds, then we have with probability one for all φ ∈ FN

lim
M→∞

‖KN,Mφ−KNφ‖ = 0, (14)

where ‖ · ‖ is any norm on FN . In particular

lim
M→∞

‖KN,M −KN‖ = 0, (15)

where ‖ · ‖ is any operator norm and

lim
M→∞

dist
(
σ(KN,M), σ(KN)

)
= 0, (16)

where σ(·) ⊂ C denotes the spectrum of an operator and dist(·, ·) the Hausdorff metric on
subsets of C.

Proof: For any fixed φ ∈ FN we have by Theorem 1

KN,Mφ = P µ̂M
N Kφ = P µ̂M

N (φ ◦ T ).

By definition of KNφ we have KNφ = P µ
N(φ ◦ T ) and therefore (14) holds from Lemma 1

with probability one. Since FN is finite dimensional, (14) holds with probability one for all
basis functions of FN and hence by linearity for all φ ∈ FN . Convergence in the operator
norm (15) and spectral convergence (16) follows from (14) since the operators KN,M and KN
are finite dimensional. �

Theorem 2 tells us that in order to understand the convergence of KN,M to K it is sufficient
to understand the convergence of KN to K. This convergence is analyzed in Section 5.

4.1 Ergodic sampling

The assumption that the samples x1, . . . , xM are drawn independently from the distribution µ
can be replaced by the assumption that (T,M, µ) is ergodic and the samples x1, . . . , xM are
the iterates of the the dynamical system starting from some initial condition x ∈ M, i.e.,
xi = T i(x). Provided that Assumption 1 holds, both Lemma 1 and Theorem 2 hold without
change; the statement “with probability one” is now interpreted with respect to drawing the
initial condition x from the distribution µ. The proofs follow exactly the same argument, only
the strong law of large numbers is replaced by the Birkhoff’s ergodic theorem in Lemma 1.
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5 Convergence of KN to K

In this section we investigate convergence of KN to K in the limit as N goes to infinity.
Since the operator KN is defined on FN rather than F , we extend the operator to all of F
by precomposing with P µ

N , i.e., we study the convergence of KNP µ
N = P µ

NKP
µ
N : F → F to

K : F → F as N → ∞. Note that as far as spectrum is concerned, precomposing with P µ
N

just adds a zero to the spectrum.

To simplify notation, in what follows we denote the L2(µ) norm of a function f by

‖f‖ := ‖f‖L2(µ) =

√∫
M
|f |2 dµ

and the usual L2(µ) inner product by

〈f, g〉 :=

∫
M
fg dµ.

5.1 Preliminaries

Before stating our results, we recall several concepts from functional analysis and operator
theory.

Definition 1 (Bounded operator) An operator A : F → F defined on a Hilbert space F
is bounded if

‖A‖ := sup
f∈F , ‖f‖=1

‖Af‖ <∞.

The quantity ‖A‖ is referred as the norm of A.

Definition 2 (Convergence in strong operator topology) A sequence of bounded op-
erators Ai : F → F defined on a Hilbert space F convergences strongly (or in the strong
operator topology) to an operator A : F → F if

lim
i→∞
‖Aig −Ag‖ (17)

for all g ∈ F .

Definition 3 (Weak convergence) A sequence of elements fi ∈ F of a Hilbert space F
converges weakly to f ∈ F , denoted fi

w−→ f , if

lim
i→∞
〈fi, g〉 = 〈f, g〉 (18)

for all g ∈ F .

9



We emphasize that Definition 2 pertains to convergence of operators defined on F whereas
Definition 3 pertains to convergence of elements of F . We also remark that strong conver-
gence of fi → f (i.e., ‖fi − f‖ → 0) implies weak convergence but not vice versa. Similarly,
convergence in the strong operator topology implies convergence in the weak operator topol-
ogy (i.e, Aig

w−→ Ag for all g) but does not imply convergence in the operator norm (i.e.,
‖Ai −A‖ → 0).

In our setting of F = L2(µ), the statements (17) and (18) translate to the requirements that,
respectively,

lim
i→∞

√∫
M
|Aig −Ag|2 dµ = 0 and lim

i→∞

∫
M
fig dµ =

∫
M
fg dµ

for all g ∈ L2(µ).

For the remainder of this work, we invoke the following assumption:

Assumption 2 The following conditions hold:

1. The Koopman operator K : F → F is bounded.

2. The observables ψ1, . . . , ψN defining FN are selected from a given orthonormal basis of
F , i.e., (ψi)

∞
i=1 is an orthonormal basis of F .

The first part of the assumption holds for instance when T is invertible, Lipschitz with
Lipschitz inverse and µ is the Lebesgue measure onM (or any measure absolutely continuous
w.r.t. the Lebesgue measure with bounded and strictly positive density). The second part
of the assumption is non-restrictive as any countable dense subset of F can be turned into
an orthonormal basis using the Gram-Schmidt process.

5.2 Convergence in strong operator topology

In this section we prove convergence in the strong operator topology (Definition 2) of KNP µ
N

to K. First, we need the following immediate lemma:

Lemma 2 If (ψi)
∞
i=1 form an orthonormal basis of F = L2(µ), then P µ

N converge strongly
to the identity operator I and in addition ‖I − PN‖ ≤ 1 for all N .

Proof: Let φ =
∑∞

i=1 ciψi with ‖φ‖ = 1. Then by Parseval’s identity
∑∞

i=1 |ci|2 = 1 and

‖P µ
Nφ− φ‖ =

∥∥∥∥∥
∞∑

i=N+1

ciψi

∥∥∥∥∥ =
∞∑

i=N+1

|ci|2 → 0

with
∑∞

i=N+1 |ci|2 ≤ 1 for all N . �

Now we are ready to prove strong convergence of P µ
NKP

µ
N to K.
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Theorem 3 If Assumption 2 holds, then the sequence of operators KNP µ
N = P µ

NKP
µ
N con-

verges strongly to K as N →∞, i.e.,

lim
N→∞

∫
M
|KNP µ

Nφ−Kφ|
2 dµ = 0

for all φ ∈ F .

Proof: Let φ ∈ F be given. Then, writing φ = P µ
Nφ+ (I − P µ

N)φ we have

‖P µ
NKP

µ
Nφ−Kφ‖ = ‖(P µ

N − I)KP µ
Nφ+K(P µ

N − I)φ‖ ≤ ‖(P µ
N − I)KP µ

Nφ‖+ ‖K‖‖(I − P µ
N)φ‖

≤ ‖(P µ
N − I)Kφ‖+ ‖(P µ

N − I)‖‖KP µ
Nφ−Kφ‖+ ‖K‖‖(I − P µ

N)φ‖ → 0

by Lemma 2 and by the fact that KP µ
Nφ→ Kφ since K is continuous by Assumption 2. �

5.3 Weak spectral convergence

Unfortunately, strong converge does not in general guarantee convergence of the spectra of
the operators. This is guaranteed only if the operators converge in the operator norm5. An
important exception to this is the case of FN being an invariant subspace, i.e., Kf ∈ FN for
all f ∈ FN in which case the spectra of KN and K|FN

coincide. Here, however, we do not
assume that FN is invariant and prove certain spectral convergence results in a weak sense.
In particular, we prove convergence of the eigenvalues of KN along a subsequence and weak
convergence of the associated eigenfunctions (see Definition 3), provided that the weak limit
of the eigenfunctions is nonzero.

Theorem 4 If Assumption 2 holds and λN is a sequence of eigenvalues of KN with the
associated normalized eigenfunctions φN ∈ FN , ‖φN‖ = 1, then there exists a subsequence
(λNi

, φNi
) such that

lim
i→∞

λNi
= λ, φNi

w−→ φ,

where λ ∈ C and φ ∈ F are such that Kφ = λφ. In particular if ‖φ‖ 6= 0, then λ is an
eigenvalue of K with eigenfunction φ.

Proof: First, observe that sinceKNφN = λNφN with φN ∈ FN , we also also have P µ
NKP

µ
NφN =

λNφN . Hence |λN | ≤ ‖P µ
NKP

µ
N‖ ≤ ‖K‖ <∞ by Assumption 2 and the fact that ‖P µ

N‖ ≤ 1.
Therefore the sequence λN is bounded. Since φN is normalized and hence bounded, by
weak sequential compactness of the unit ball of a Hilbert space (which follows from the
Banach-Alaoglu theorem [21, Theorems 3.15] and Eberlein-Šmulian theorem [5]), there ex-
ists a subsequence (λNi

, φNi
) such that λNi

→ λ and φNi

w−→ φ.

It remains to prove that (λ, φ) is an eigenvalue-eigenfunction pair of K. For ease of notation,
set λi = λNi

and φi = φNi
. Denote K̂i = KNi

P µ
Ni

= P µ
Ni
KP µ

Ni
and observe that K̂iφi = λiφi

for all i. Then we have

Kφ = K̂i(φ− φi) + (K − K̂i)φ+ K̂iφi.
5A sequence of operators Ai converges in the operator norm to an operator A if limi→∞ ‖Ai −A‖ = 0.
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Taking the inner product with an arbitrary f ∈ F and using the fact that K̂iφi = λiφi, we
get

〈Kφ, f〉 = 〈K̂i(φ− φi), f〉+ 〈(K − K̂i)φ, f〉+ 〈λiφi, f〉.
Now, the second term on the right hand side 〈(K−K̂i)φ, f〉 → 0 since K̂i converges strongly
to K by Theorem 3. The last term 〈λiφi, f〉 → 〈λφ, f〉 since λi → λ and φi

w−→ φ. It remains
to show that the first term converges to zero. We have

〈K̂i(φ− φi), f〉 = 〈P µ
Ni
KP µ

Ni
(φ− φi), f〉 = 〈K(P µ

Ni
φ− φi), P µ

Ni
f〉,

where we used the fact that P µ
Ni

is self-adjoint and φi ∈ FNi
and hence P µ

Ni
φi = φi. Denote

hi := K(P µ
Ni
φ − φi). We will show that hi

w−→ 0. Indeed, denoting K? the adjoint of K, we
have

〈K(P µ
Ni
φ− φi), f〉 = 〈(P µ

Ni
φ− φ+ φ− φi),K?f〉 = 〈P µ

Ni
φ− φ, K?f〉+ 〈φ− φi, K?f〉 → 0,

since P µ
Ni

converges strongly to the identity (Lemma 2) and φi
w−→ φ. Finally, we show that

〈hi, P µ
Ni
f〉 → 0. We have

〈hi, P µ
Ni
f〉 = 〈hi, P µ

Ni
f − f〉+ 〈hi, f〉.

The second term goes to zero since hi
w−→ 0. For the first term we have

〈hi, P µ
Ni
f − f〉 ≤ ‖hi‖‖P µ

Ni
f − f‖ → 0

since P µ
Ni

converges strongly to the identity operator (Lemma 2) and hi is bounded since K
is bounded by Assumption 2, ‖P µ

Ni
‖ ≤ 1 and ‖φi‖ ≤ 1. Therefore we conclude that

〈Kφ, f〉 = lim
i→∞
〈λiφi, f〉 = 〈λφ, f〉

for all f ∈ F . Therefore Kφ = λφ. �

Example As an example demonstrating that the assumption that the weak limit of φN is
nonzero is important, consider M = [0, 1], T (x) = x and µ the Lebesgue measure on [0, 1].
In this setting, the Koopman operator K : L2(µ) → L2(µ) is the identity operator with the
spectrum being the singleton σ(K) = {1}. However, given any λ ∈ C and the sequence of
functions φN =

√
2 sin(2πNx), we have

KφN − λφN = φN − λφN = (1− λ)
√

2 sin(2πNx)
w−→ 0

with ‖φN‖2 =
∫ 1

0
2 sin2(2πNx) dx = 1. Therefore if φN were the eigenfunctions of KN with

eigenvalues λN → λ 6= 1, then the sequence λN would converge to a spurious eigenvalue λ.
Fortunately, in this case, we have σ(KN) = {1} and hence no spurious eigenvalues exist;
however, in general, we cannot rue out this possibility, at least not as far as the statement
of Theorem 4 goes. See Figure 1 for illustration.

This example, with the highly oscillatory functions φN , may motivate practical considerations
in detecting spurious eigenvalues, e.g., using Sobolev type (pseudo) norms

∫
M ‖∇φN‖

2 dµ or
other metrics of oscillatoriness. See, e.g., [8] for the use of Sobolev norms in the context of
Koopman data analysis and forecasting.

As an immediate corollary of Theorem 4, we get:

12
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Figure 1: Graph of the functions φN(x) =
√

2 sin(2πNx) for N = 1 and N = 10. These
functions satisfy ‖φN‖L2 = 1 and φN

w−→ 0 as N →∞. If such φN happen to be eigenfunctions
of KN with eigenvalues λN , then the accumulation points of the sequence (λN)∞N=1 need not
be eigenvalues of the Koopman operator.

Corollary 1 If Assumption 2 holds and λN,M is a sequence of eigenvalues of KN,M with the
associated normalized eigenfunctions φN,M ∈ FN , ‖φN,M‖ = 1, then there exists a subse-
quence (λNi,Mj

, φNi,Mj
) such that with probability one

lim
i→∞

lim
j→∞

λNi,Mj
= λ, lim

i→∞
lim
j→∞
〈φNi,Mj

, f〉 = 〈φ, f〉,

for all f ∈ F , where λ ∈ C and φ ∈ F are such that Kφ = λφ. In particular if ‖φ‖ 6= 0,
then λ is an eigenvalue of K with eigenfunction φ.

Proof: First notice that since KN,M → KN in the operator norm (Theorem 2) and ‖KN‖ ≤
‖K‖ <∞, the sequence λN,M is bounded. Since φN,M are normalized and hence bounded, we
can extract a subsequence (λN,Mj

, φN,Mj
) such that limj→∞ λN,Mj

= λN ∈ C and limj→∞ φN,Mj
=

φN ∈ FN (strong convergence as FN is finite dimensional). Then

KNφN = (KN −KN,Mj
)φN +KN,Mj

(φN − φN,Mj
) +KN,Mj

φN,Mj
.

Since KN,Mj
converges strongly to KN with probability one (Theorem 2) and since φN,Mj

converges strongly to φN , the first two terms go to zero with probability one as j tends to
infinity. The last term is equal to λN,Mj

φN,Mj
and hence necessarily KφN = λNφN , ‖φN‖ = 1,

with probability one. The result then follows from Theorem 4. �

6 Implications for finite-horizon predictions

One of the main roles of an approximation to the Koopman operator is to provide a prediction
of the evolution of a given observable. Whereas obtaining accurate predictions over an
infinite-time horizon cannot be expected in general from the EDMD approximation of the
Koopman operator, a prediction over any finite horizon is asymptotically, as N →∞, exact
when the prediction error is measured in the L2(µ) norm:

13



Theorem 5 Let f ∈ Fn be a given (vector) observable6 and let Assumption 2 hold. Then
for any Ω ∈ N we have

lim
N→∞

sup
i∈{1,...,Ω}

‖(KN)iP µ
Nf −K

if‖ = 0. (19)

In particular, if f ∈ FnN0
for some N0 ∈ N, then

lim
N→∞

sup
i∈{1,...,Ω}

‖(KN)if −Kif‖ = 0. (20)

Proof: We proceed by induction. Let f ∈ F . For Ω = 1, the result is exactly Theorem 3. Let
the result hold form some Ω ∈ N. It is sufficient to prove that ‖(KN)Ω+1P µ

Nf −KΩ+1f‖ → 0
as N →∞. We have

‖(KN)Ω+1P µ
Nf −K

Ω+1f‖ = ‖KN(KN)ΩP µ
Nf −KK

Ωf‖ = ‖KNgN −Kg‖
≤ ‖KNg −Kg‖+ ‖KN(gN − g)‖ ≤ ‖KNg −Kg‖+ ‖K‖‖gN − g‖.

where gN = (KN)ΩP µ
Nf and g = KΩf ; in the last inequality we used the fact that ‖KN‖ ≤

‖K‖. The term ‖KNg − Kg‖ tends to zero by Theorem 3, whereas the term ‖gN − g‖ → 0
by the induction hypothesis. This proves (19) for a scalar observable f ∈ F . The general
result with a vector valued observable f ∈ Fn follows by applying the the same reasoning to
each component of f . The result (20) follows from (19) since if f ∈ FnN0

for some N0 ∈ N,
then P µ

Nf = f for N ≥ N0. �

To be more specific on practical use of KN for prediction, assume that f ∈ FnN0
for some

N0 ∈ N. Then for all N ≥ N0 there exists a matrix CN ∈ Rn×N such that f = CNψN , where
ψN = [ψ1, . . . , ψN ]> are the observables used in EDMD. Assume that an initial state x0 is
given and the values of the observables ψN(x0) are known and we wish to predict the value
of the observable f at a state xi = T i(x0), i.e., i steps ahead in the future. Using KN , this
prediction is given by CNA

i
NψN(x0), where

AN = lim
M→∞

AN,M

with AN,M defined7 in (5). Theorem 5 then says that

lim
N→∞

∫
M
‖CNAiNψN − f ◦ T i‖2

2 dµ = 0 ∀ i ∈ N. (21)

A typical application of Theorem 5 is the prediction of the future state x of the dynamical
system (1) with a finite-dimensional state-space M ⊂ Rn. In this case, one simply sets
f(x) = x. A crucial feature of the predictor obtained in this way is its linearity in the “lifted
state” z = ψN(x), allowing linear tools to address a nonlinear problem. This concept was
succesfully applied to model predictive control in [13] and to state estimation in [24].

6We choose to state the theorem for vector observables as this is the form of prediction typically encoun-
tered in practice. For a vector observable f ∈ Fn, the norm ‖f‖ is defined by

∑n
i=1 ‖fi‖L2(µ), where fi ∈ F

is the ith component of f .
7In Section 7, we show how the matrix AN can be constructed analytically.
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Remark 2 If AN,M is used instead of AN in Theorem 5 and Equation (21), then the same
convergence results hold with a double limit, first taking the number of samples M to infinity
and then the number of basis functions N . In particular, we get

lim
N→∞

lim
M→∞

∫
M
‖CNAiN,MψN − f ◦ T i‖2

2 dµ = 0 ∀ i ∈ N. (22)

7 Analytic EDMD

The results of the previous sections suggests a variation of the EDMD algorithm provided
that the mapping T is known in closed form and provided that the basis functions ψi are such
that the integrals of

∫
M ψiψj dµ and

∫
M(ψi ◦ T )ψj dµ can be computed analytically. This is

the case in particular if T and ψi’s are simple functions such as multivariate polynomials or
trigonometric functions and µ is the uniform distribution over a simple domain M such as
a box or a ball, or, e.g., a Gaussian distribution over Rn.

Provided that such analytical evaluation is possible, one can circumvent the sampling step
of EDMD and construct directly KN rather than KN,M . Indeed, define

AN = MT,µM
−1
µ , (23)

where

Mµ =

∫
M
ψψH dµ, MT,µ =

∫
M

(ψ ◦ T )ψH dµ.

Then the operator from FN to FN defined by cHψ 7→ cHANψ is exactly KN = P µ
NK|FN

.

Theorem 6 If the matrix Mµ is invertible, then for any φ = cHφψ ∈ FN we have

cHφANψ = KNφ.

Proof: Given φ = cHφψ we get

KNφ = P µ
NKφ = ψH arg min

c∈CN

∫
M

[cHψ−cHφ (ψ◦T )]2 dµ = ψH arg min
c∈CN

[
cHMµc−2 Re{cHMH

T,µcφ}
]

with the unique minimizer c = M−1
µ MH

T,µcφ (since Mµ is invertible, therefore Hermitian
positive definite, and hence the minimized function is strictly convex). Therefore as desired

KNφ = cHψ = cHφMT,µM
−1
µ ψ = cHφANψ.

�

Example In order to demonstrate the use of Analytic DMD, we compare the spectra of
KN and KN,M for various values of M . The system considered is the logistic map

x+ = 2x2 − 1, x ∈ [−1, 1].
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The measure µ is taken to be the uniform distribution on [−1, 1], which is not invariant and
hence the dynamics is not measure preserving. The finite-dimensional subspace FN is the
space of all polynomials of degree no more than eight. For numerical stability we chose a
basis of this subspace to be the Laguerre polynomials scaled such that they are orthonormal
with respect to the uniform measure on [−1, 1]. Spectra of KN and KN,M for M = 102,
M = 103 and M = 105 are depicted in Figure 2. We observe that a relatively large number
of samples M is required to obtain an accurate approximation of the spectrum of KN . This
example demonstrates that a special care must be taken in practice when drawing conclusions
about spectral quantities based on a computation with a small number of samples. On the
other hand, Figure 3 suggests that, at least on this example, predictions generated by KN,M
are less affected by sampling. Indeed, even for M = 100 the prediction accuracy of KN,M is
comparable to that of KN and for M = 1000 the two predictions almost coincide.
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Figure 2: Comparison of the spectra of KN (blue circles) computed using Analytic DMD
and the spectra of KN,M for different values of M (red crosses).
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8 Convergence of KN,N
In this section we investigate what happens when we simultaneously increase the number of
basis functions N and the number of samples M . We treat the special case of M = N for
which interesting conclusions can be drawn. Set therefore M = N and denote λN = λN,N
any eigenvalue of KN,N and φN = φN,N ∈ FN , ‖φN‖C(M) = 1, the associated eigenfunction,
where ‖φ‖C(M) = supx∈M |φ(x)|; such normalization is possible if the basis functions ψi are
continuous and M compact, which we assume in this section. First notice that, assuming
Mµ̂N invertible, for N = M the system of equations

ψ(Y ) = Aψ(X)

with the unknown A ∈ RN×N has a solution and hence the minimum in the least squares
problem (4) is zero. In other words, for any f ∈ FN , the EDMD operator KN,N applied to f
matches the value of the Koopman operator applied to f on the samples points x1, . . . , xN :

(Kf)(xi) = (KN,Nf)(xi)

for all f ∈ FN . This relation is in particular satisfied for the eigenfunctions φN of KN,N ,
obtaining

(φN ◦ T )(xi) = λNφN(xi).

Multiplying by an arbitrary h ∈ F and integrating with respect to the empirical measure
supported on the sample points (8), we get∫

M
h · (φN ◦ T ) dµ̂N = λN

∫
M
hφN dµ̂N . (24)

Define the linear functional LN : C(M)→ C by

LN(h) =

∫
M
hφN dµ̂N ,

and

(KLN)(h) =

∫
M
h · (φN ◦ T ) dµ̂N .

With this notation, the relationship (24) becomes

KLN = λNLN

Since ‖φN‖C(M) = 1, we have ‖LN‖ = suph∈C(M)
|LN (h)|
‖h‖C(M)

≤ 1 and ‖KLN‖ ≤ 1. There-

fore, assuming separability8 of C(M), by the Banach-Alaoglu theorem (e.g., [21, Theorems
3.15, 3.17]) there exists a subsequence, along which these functionals converge in the weak?

topology9 to some functionals L ∈ C(M)? and KL ∈ C(M)? satisfying

KL = λL,

8A sufficient condition for C(M) to be separable is M compact and metrizable.
9A sequence of functionals Li ∈ C(M)? converges in the weak? topology if limi→∞ Li(f) = L(f) for all

f ∈ C(M).
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where λ is an accumulation point of λN . Furthermore by the Riesz representation theorem
the bounded linear functionals L and KL can be represented by complex-valued measures ν
and Kν on M satisfying

Kν = λν.

We remark that KL and Kν are here merely symbols for the weak? limit of KLN and its
representation as a measure; in particular the functional KL is not necessarily of the form
(KL)(h) =

∫
M h · (ρ ◦ T ) dµ for some function ρ.

In order to get more understanding of Kν (and hence KL), we need to impose additional
assumptions on the structure of the problem. In particular we assume that the mapping
T :M→M is a homeomorphism and that the points x1, . . . , xN lie on a single trajectory,
i.e., xi+1 = T (xi). With this assumption, Equation (24) reads

1

N

N∑
i=1

h(xi)φN(xi+1) = λN
1

N

N∑
i=1

h(xi)φN(xi), (25)

where we set xN+1 := T (xN). The left-hand side of (25) is

1

N

N∑
i=1

h(xi)φN(xi+1) =
1

N

N∑
i=1

h(T−1xi)φN(xi) +
1

N
(h(xN)φN(xN+1)− h(T−1x1)φN(x1))

=

∫
M
h ◦ T−1 dνN +

1

N
(h(xN)φN(xN+1)− h(T−1x1)φN(x1)), (26)

where νN is the measure φNdµ̂N . Setting ξN := h(xN)φN(xN+1) − h(T−1x1)φN(x1), the
relation (25) becomes ∫

M
h ◦ T−1 dνN +

1

N
ξN = λN

∫
M
h dνN .

Since h is bounded onM (h is continuous andM compact) and ‖φN‖C(M) = 1, the term ξN
is bounded; in addition h ◦ T−1 is continuous since T is a homeomorphism by assumption.
Therefore, taking a limit on both sides, along a subsequence such that νNi

→ ν weakly10,
µ̂Ni
→ µ weakly and λNi

→ λ, we obtain∫
M
h ◦ T−1 dν = λ

∫
M
h dν (27)

for all h ∈ C(M).

8.1 Weak eigenfunctions / eigendistributions

To understand relation (27), note that a completely analogous computation to (26) shows
that the measure µ is invariant11 and therefore the L2(µ)-adjointK? of the Koopman operator

10A sequence of Borel measures µi converges weakly to a measure µ if limi→∞
∫
f dµi =

∫
f dµ for all

continuous bounded functions f . This convergence is also referred to as narrow convergence and it coincides
with convergence in the weak? topology if the underlying space is compact (which is the case in our setting).

11A measure µ on M is invariant if µ(T−1(A)) = µ(A) for all Borel sets A ⊂ M or equivalently if∫
M f ◦ T dµ =

∫
M f dµ for all continuous bounded functions f .
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(viewed as an operator from L2(µ) to L2(µ)) is given by

K?f = f ◦ T−1.

To see this, write

〈Kf, g〉 =

∫
M

(f ◦ T )g dµ =

∫
M

(f ◦ T )(g ◦ T−1 ◦ T ) dµ =

∫
M
f · (g ◦ T−1) dµ = 〈f,K?g〉,

which means the operator g 7→ g ◦ T−1 is indeed the L2(µ)-adjoint of K. The relation (27)
then becomes ∫

M
K?h dν = λ

∫
M
h dν (28)

or
L(K?h) = λL(h). (29)

Functionals of the form (29) were called “generalized eigenfunctions” by Gelfand and Shilov [6];
here we prefer to call them “weak eigenfunctions” or “eigendistributions” in order to avoid
confusion with generalized eigenfunctions viewed as an extension of the notion of generalized
eigenvectors from linear algebra. The measure ν in (28) is then called “eigenmeasure”. Here,
again, we emphasize the requirement that the limiting functional L (or the measure ν) be
nonzero in order for these objects to be called eigenfunctionals / eigenmeasures.

8.2 Eigenmeasures of Perron-Frobenius

We also observe an interesting connection to eigenmeasures of the Perron-Frobenius operator.
To see this, set h := g ◦T in (27) to obtain

∫
M g dν = λ

∫
M g ◦T dν or, provided that λ 6= 0,∫

M
g ◦ T dν =

1

λ

∫
M
g dν. (30)

In other words, if non-zero, the measure ν is the eigenmeasure of the Perron-Frobenius
operator with eiegnvalue 1/λ. Here, the Perron-Frobenius operator P : M(M) → M(M),
where M(M) is the space of all complex-valued measures on M, is defined for every η ∈
M(M) and every Borel set A by

(Pη)(A) = η(T−1(A)).

The results of Section 8 are summarized in the following theorem:

Theorem 7 Suppose that M is a compact metric space, T is a homeomorphism, K :
L2(µ)→ L2(µ) is bounded, the observables ψ1, . . . , ψN are continuous and the sample points
x1, . . . , xN satisfy xi+1 = T (xi) for all i ∈ {1, . . . , N − 1}. Let λN be a bounded sequence of
eigenvalues of KN,N , let φN , ‖φN‖C(M) = 1, be the associated normalized eigenfunctions and
denote νN = φNdµ̂N . Then there exists a subsequence (Ni)

∞
i=1 such that νNi

and µ̂Ni
converge

weakly to complex-valued measures ν ∈ M(M), µ ∈ M(M) and limi→∞ λNi
= λ ∈ C such

that ∫
M
h ◦ T−1 dν = λ

∫
M
h dν ∀h ∈ C(M).

19



In addition, the measure µ is invariant under the action of T and∫
M
K?h dν = λ

∫
M
h dν ∀h ∈ C(M),

where K? is the L2(µ) adjoint of K, i.e., if nonzero, ν is a weak eigenfunction (or eigendis-
tribution) of the Koopman operator. Furthermore, if λ 6= 0, then∫

M
h ◦ T dν =

1

λ

∫
M
h dν ∀h ∈ C(M),

i.e., if nonzero, ν is an eigenmeaure of the Perron-Frobenius operator with eigenvalue 1/λ.

9 Conclusions

This paper analyzes the convergence of the EDMD operator KN,M , where M is the number
of samples and N the number of observables used in EDMD. It was proven in [11] that
as M → ∞, the operator KN,M converges to KN , the orthogonal projection of the action
of the Koopman operator on the span of the observables used in EDMD. We analyzed the
convergence of KN as N → ∞, obtaining convergence in strong operator topology to the
Koopman operator and weak convergence of the associated eigenfunctions along a subse-
quence together with the associated eigenvalues. In particular, any accumulation point of
the spectra of KN corresponding to a non-zero weak accumulation point of the eigenfunctions
lies in the point spectrum of the Koopman operator K. In addition we proved convergence of
finite-horizon predictions obtained using KN in the L2 norm, a result important for practical
applications such as forecasting, estimation and control. Finally we analyzed convergence of
KN,N (i.e., the situation where the number of samples and the number of basis functions is
equal) under the assumptions that the sample points lie on the same trajectory. In this case
one obtains convergence, along a subsequence, to a weak eigenfunction (or eigendistribution)
of the Koopman operator, provided the weak limit is nonzero. This eigendistribution turns
out to be also an eigenmeasure of the Perron-Frobenius operator. As a by-product of these
results, we proposed an algorithm that, under some assumptions, allows one to construct
KN directly, without the need for sampling, thereby eliminating the sampling error.

Future work should focus on non-asymptotic analysis, e.g., on selecting the subspace FN
such that ‖KN − K|FN

‖ is minimized and at the same time such that FN is rich enough in
the sense of containing observables of practical interest (e.g., the state observable). This line
of research was already investigated in the context of stochastic systems in [28], providing
an interesting and actionable method for selecting FN .
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[13] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control. arXiv preprint arXiv:1611.03537, 2016.

21



[14] A. Mauroy and J. Goncalves. Koopman-based lifting techniques for nonlinear systems
identification. arXiv preprint arXiv:1709.02003, 2017.
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