Abstract
The Riemann–Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding \(3\times 3\) matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ablowitz, M.J., Fokas, A.S.: Complex Analysis: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)
Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrodinger Systems. Cambridge University Press, Cambridge (2004)
Beals, R., Coifman, R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37, 39–90 (1984)
Beals, R., Deift, P.A., Tomei, C.: Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, vol. 28. American Mathematical Society, Providence (1988)
Boutet de Monvel, A., Shepelsky, D.: A Riemann–Hilbert approach for the Degasperis–Procesi equation. Nonlinearity 26, 2081–2107 (2013)
Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)
Boutet de Monvel, A., Lenells, J., Shepelsky, D.: Long-time asymptotics for the Degasperis–Procesi equation on the half-line. arXiv preprint arXiv:1508.04097 (2015)
Busch, Th, Anglin, J.R.: Dark–bright solitons in inhomogeneous Bose–Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001)
Cheng, P.J., Venakides, S., Zhou, X.: Long-time asymptotics for the pure radiation solution of the sine-Gordon equation. Commun. Partial Differ. Equ. 24, 1195–1262 (1999)
Deift, P.A., Park, J.: Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Not. 24, 5505–5624 (2011)
Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Ann. Math. 137, 295–368 (1993)
Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. In: Fokas, A.S., Zakharov, V.E. (eds.) Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics, pp. 181–204. Springer, Berlin (1993)
Fokas, A.S.: A unified approach to boundary value problems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM (2008)
Fokas, A.S., Its, A.R., Sung, L.Y.: The nonlinear Schrödinger equation on the half-line. Nonlinearity 18, 1771 (2005)
Geng, X.G., Liu, H., Zhu, J.Y.: Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line. Stud. Appl. Math. 135, 310–346 (2015)
Grunert, K., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent. Math. Phys. Anal. Geom. 12, 287–324 (2009)
Its, A.R.: Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations. Sov. Math. Dokl. 24, 452–456 (1981)
Kitaev, A.V., Vartanian, A.H.: Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector. Inverse Probl. 13, 1311–1339 (1997)
Kitaev, A.V., Vartanian, A.H.: Asymptotics of solutions to the modified nonlinear Schrödinger equation: solution on a nonvanishing continuous background. SIAM J. Math. Anal. 30, 787–832 (1999)
Kitaev, A.V., Vartanian, A.H.: Higher order asymptotics of the modified nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 25, 1043–1098 (2000)
Liu, H., Geng, X.G.: Initial-boundary problems for the vector modified Korteweg–de Vries equation via Fokas unified transform method. J. Math. Anal. Appl. 440, 578–596 (2016)
Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchies. Proc. A 473, 20170232–20170233 (2017)
Ma, W.X., Zhou, R.G.: Adjoint symmetry constraints of multicomponent AKNS equations. Chin. Ann. Math. Ser. B 23, 373–384 (2002a)
Ma, W.X., Zhou, R.G.: Adjoint symmetry constraints leading to binary nonlinearization. J. Nonlinear Math. Phys. 9, 106–126 (2002b)
Manakov, S.V.: On the theory of two-dimensional stationary self focussing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974a)
Manakov, S.V.: Nonlinear Fraunhofer diffraction. Sov. Phys. JETP 38, 693–696 (1974b)
Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)
Wu, L.H., Geng, X.G., He, G.L.: Algebro-geometric solutions to the Manakov hierarchy. Appl. Anal. 95, 769–800 (2016)
Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)
Zhou, X.: \(L^2\)-Sobolev space bijectivity of the scattering and inverse scattering transforms. Commun. Pure Appl. Math. 51, 697–731 (1998)
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant No. 11331008).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Anthony Bloch.
Rights and permissions
About this article
Cite this article
Geng, X., Liu, H. The Nonlinear Steepest Descent Method to Long-Time Asymptotics of the Coupled Nonlinear Schrödinger Equation. J Nonlinear Sci 28, 739–763 (2018). https://doi.org/10.1007/s00332-017-9426-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-017-9426-x