Skip to main content
Log in

The Nonlinear Steepest Descent Method to Long-Time Asymptotics of the Coupled Nonlinear Schrödinger Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The Riemann–Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding \(3\times 3\) matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ablowitz, M.J., Fokas, A.S.: Complex Analysis: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrodinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Beals, R., Coifman, R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37, 39–90 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Beals, R., Deift, P.A., Tomei, C.: Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, vol. 28. American Mathematical Society, Providence (1988)

    Book  MATH  Google Scholar 

  • Boutet de Monvel, A., Shepelsky, D.: A Riemann–Hilbert approach for the Degasperis–Procesi equation. Nonlinearity 26, 2081–2107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Boutet de Monvel, A., Lenells, J., Shepelsky, D.: Long-time asymptotics for the Degasperis–Procesi equation on the half-line. arXiv preprint arXiv:1508.04097 (2015)

  • Busch, Th, Anglin, J.R.: Dark–bright solitons in inhomogeneous Bose–Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001)

    Article  Google Scholar 

  • Cheng, P.J., Venakides, S., Zhou, X.: Long-time asymptotics for the pure radiation solution of the sine-Gordon equation. Commun. Partial Differ. Equ. 24, 1195–1262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Deift, P.A., Park, J.: Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Not. 24, 5505–5624 (2011)

    MathSciNet  MATH  Google Scholar 

  • Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. In: Fokas, A.S., Zakharov, V.E. (eds.) Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics, pp. 181–204. Springer, Berlin (1993)

    Chapter  Google Scholar 

  • Fokas, A.S.: A unified approach to boundary value problems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM (2008)

  • Fokas, A.S., Its, A.R., Sung, L.Y.: The nonlinear Schrödinger equation on the half-line. Nonlinearity 18, 1771 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Liu, H., Zhu, J.Y.: Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line. Stud. Appl. Math. 135, 310–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Grunert, K., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent. Math. Phys. Anal. Geom. 12, 287–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Its, A.R.: Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations. Sov. Math. Dokl. 24, 452–456 (1981)

    MATH  Google Scholar 

  • Kitaev, A.V., Vartanian, A.H.: Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector. Inverse Probl. 13, 1311–1339 (1997)

    Article  MATH  Google Scholar 

  • Kitaev, A.V., Vartanian, A.H.: Asymptotics of solutions to the modified nonlinear Schrödinger equation: solution on a nonvanishing continuous background. SIAM J. Math. Anal. 30, 787–832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kitaev, A.V., Vartanian, A.H.: Higher order asymptotics of the modified nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 25, 1043–1098 (2000)

    Article  MATH  Google Scholar 

  • Liu, H., Geng, X.G.: Initial-boundary problems for the vector modified Korteweg–de Vries equation via Fokas unified transform method. J. Math. Anal. Appl. 440, 578–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchies. Proc. A 473, 20170232–20170233 (2017)

    MathSciNet  Google Scholar 

  • Ma, W.X., Zhou, R.G.: Adjoint symmetry constraints of multicomponent AKNS equations. Chin. Ann. Math. Ser. B 23, 373–384 (2002a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Zhou, R.G.: Adjoint symmetry constraints leading to binary nonlinearization. J. Nonlinear Math. Phys. 9, 106–126 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  • Manakov, S.V.: On the theory of two-dimensional stationary self focussing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974a)

    MathSciNet  Google Scholar 

  • Manakov, S.V.: Nonlinear Fraunhofer diffraction. Sov. Phys. JETP 38, 693–696 (1974b)

    MathSciNet  Google Scholar 

  • Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  • Wu, L.H., Geng, X.G., He, G.L.: Algebro-geometric solutions to the Manakov hierarchy. Appl. Anal. 95, 769–800 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, X.: \(L^2\)-Sobolev space bijectivity of the scattering and inverse scattering transforms. Commun. Pure Appl. Math. 51, 697–731 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11331008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Liu.

Additional information

Communicated by Anthony Bloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Liu, H. The Nonlinear Steepest Descent Method to Long-Time Asymptotics of the Coupled Nonlinear Schrödinger Equation. J Nonlinear Sci 28, 739–763 (2018). https://doi.org/10.1007/s00332-017-9426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9426-x

Keywords

Mathematics Subject Classification