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Abstract

Finding the conditions that foster synchronization in networked oscillatory systems is critical
to understanding a wide range of biological and mechanical systems. However, the conditions
proved in the literature for synchronization in nonlinear systems with linear coupling, such as has
been used to model neuronal networks, are in general not strict enough to accurately determine
the system behavior. We leverage contraction theory to derive new sufficient conditions for
cluster synchronization in terms of the network structure, for a network where the intrinsic
nonlinear dynamics of each node may differ. Our result requires that network connections
satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement
on network dynamics. For application to networks of nodes with neuronal spiking dynamics, we
show that our new sufficient condition is tighter than those found in previous analyses which
used nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster
synchronization will occur based on network configuration is a significant step toward facilitating
understanding and control of complex oscillatory systems.

1 Introduction

Synchronization has been observed and studied in diverse fields. Its presence has been character-
ized in symmetric networks of identical mechanical systems or identical biological systems, as well
as those with differing types of individual components and nonuniform coupling [33, 42]. The role
of synchronization has been studied in a multitude of both natural and engineered settings includ-
ing collective motion [36], power-grid networks [29], robotics [30], sensor networks [37], circadian
rhythms [46], bioluminescence in fireflies [38], pacemaker cells in the heart [28], neuronal ensembles
[10], and numerous others. In the human brain, synchronization at the neuronal or regional level
can be beneficial, allowing for production of a vast range of behaviors [17, 26], or detrimental, caus-
ing disorders such as Parkinson’s disease [21] and epilepsy [9]. Applications for control of neural
dynamics may involve regulating patterns of synchronized phenomena among nodes or subsystems
that have different intrinsic dynamics and are connected in an arbitrary network [1, 45]. Most gen-
erally, nodes can be agents in a multi-agent system, compartments in a compartmental system, or
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other units that interact with one another in a pairwise framework. Characterizing the emergence
and persistence of synchronization in a system with multiple heterogeneous nodes is the first step
towards effective control of desired behavior.

In realistic networks that feature heterogeneous nodes and nonuniform coupling structure, complex
patterns of synchronization emerge. Under certain conditions, it is possible to partition the network
into clusters of nodes that are synchronized within clusters but not across clusters. This is called
cluster synchronization [8, 40]. In the field of pattern formation, the formation of clusters has
been investigated extensively [7, 11]. The conditions for synchronized clusters can be approached
analytically by generalizing approaches from the literature on synchronization [25, 32, 43, 47]. Here,
we leverage contraction theory to provide new sufficient conditions for synchronization of clusters
in a network with heterogeneous oscillators.

Contraction theory is a powerful tool for understanding synchronization phenomena in networked
systems. The proper tool for characterizing contractivity for nonlinear systems is provided by
the logarithmic norms, or matrix measures [27, 16], of the Jacobian of the vector field, evaluated
at all possible states. This idea is a classical one, and can be traced back at least to work of
D.C. Lewis in the 1940s, [22, 18]. Dahlquist’s 1958 thesis under Hörmander used matrix measures
to show contractivity of differential equations, and more generally of differential inequalities, the
latter applied to the analysis of convergence of numerical schemes for solving differential equations
[12]. Several authors have independently rediscovered the basic ideas. For example, in the 1960s,
Demidovič [14, 15] established basic convergence results with respect to Euclidean norms, as did
Yoshizawa [48, 49]. In control theory, the field attracted much attention after the work of Lohmiller
and Slotine [24]. We refer the reader especially to the careful historical analysis given in [20]. Other
useful historical references are [31] and the survey [39]. An introductory tutorial to basic results in
contraction theory for nonlinear control systems is given in [4]. Results on synchronization using
contraction-based techniques are described, for example, in [35, 6, 23, 34, 44, 3].

The main contributions of the present paper are as follows. We extend contraction theory to a
setting where oscillators may have heterogeneous intrinsic dynamics and the network satisfies the
cluster-input-equivalence condition. Using this extension of contraction theory, we prove new suffi-
cient conditions for cluster synchronization in a network of heterogeneous oscillators. Furthermore,
we improve upon our earlier analysis of synchronization in networks of homogeneous Fitzhugh-
Nagumo (FN) oscillators [13], and show that the proposed result yields a tighter bound on the
algebraic connectivity of the associated undirected graph.

The paper proceeds as follows. In Section 2, we review relevant concepts and results from the
contraction theory literature. We present our main result, an extension of the existing theory to
a cluster synchronized setting, in Section 3. In Section 4, we demonstrate how we can use cluster
synchronization to reduce a large network of nodes with heterogeneous intrinsic dynamics into
a smaller network of their synchronized states. Finally, in Section 5, we consider a network of
FN oscillators and demonstrate how the contraction based approach provides improvement over
existing results on sufficient conditions for synchronization and cluster synchronization.

2 Contraction Theory: Review

In what follows, we review notations, definitions, and main results in contraction theory that will
be applied in later sections.
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Definition 1 (Logarithmic norm [39]). For any matrix A ∈ Rn×n and any given norm ‖ · ‖ on Rn,
the logarithmic norm (also called the matrix measure) of A induced by the norm ‖ · ‖ is defined by

µ[A] = lim
h→0+

sup
x 6=0∈Rn

1

h

(
‖(I + hA)x‖
‖x‖

− 1

)
, (1)

where I is the identity matrix of size n.

Notation 1. For any 1 ≤ p ≤ ∞ and any n×n positive definite matrix Q, let ‖ · ‖p denote the Lp

norm on Rn, and ‖ · ‖p,Q denote the Q−weighted Lp norm on Rn defined by ‖x‖p,Q := ‖Qx‖p. By
µp[A], we mean the logarithmic norm of A induced by ‖·‖p and by µp,Q[A], we mean the logarithmic
norm of A induced by ‖ · ‖p,Q. Note that µp,Q[A] = µp[QAQ

−1].

Remark 1. In Table 1, the algebraic expression of logarithmic norms induced by the Lp norm for
p = 1, 2, and ∞ are shown. For proofs, see for instance [16].

Table 1: Standard matrix measures for a real n× n matrix, A = [aij ].

vector norm, ‖ · ‖ induced matrix measure, M [A]

‖x‖1 =

n∑
i=1

|xi| µ1[A] = max
j

ajj +
∑
i 6=j

∣∣aij∣∣


‖x‖2 =

 n∑
i=1

|xi|2
 1

2

µ2[A] = max
λ∈spec 1

2
(A+AT )

λ

‖x‖∞ = max
1≤i≤n

|xi| µ∞[A] = max
i

aii +
∑
i 6=j

∣∣aij∣∣


Definition 2 (Contraction). Consider the following nonlinear dynamical system on V × [0,∞],
where V is a convex subset of Rn. Consider appropriate conditions on vector field G (e.g. G(x, t)
Lipschitz on x and continuous on (x, t)) which guarantee existence and uniqueness of solutions of

ẋ(t) = G(x(t), t). (2)

Equation (2) is contractive if there exist c < 0 and a norm ‖ · ‖ on Rn such that, for any two
solutions x and y of Equation (2), the following inequality holds for any t ≥ 0:

‖x(t)− y(t)‖ ≤ ect‖x(0)− y(0)‖. (3)

Proposition 1 (Theorem 1, [4]). Consider Equation (2) and assume that G is a continuously
differentiable function on its first variable. Let c := sup(x,t) µ[JG(x, t)], where µ is the logarithmic
norm induced by an arbitrary norm on Rn, and JG is the Jacobian of G. Then for any two solutions
x and y of Equation (2),

‖x(t)− y(t)‖ ≤ ect‖x(0)− y(0)‖.

In particular, when c < 0, Equation (2) satisfies Equation (3) and is contractive.

Throughout the paper, we denote the Jacobian of the vector field f(x, t) evaluated at (x, t) as
Jf (x, t), i.e., Jf (x, t) = ∂f

∂x (x, t).
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We consider a network of N nodes, with states {X1, . . . , XN} and intrinsic dynamics F i:

Ẋi(t) = F i
(
Xi(t), t

)
.

Here, Xi and F i have dimension n ≥ 1. For a fixed convex subset V ⊂ Rn, F i : V × [0,∞)→ Rn,
defined by F i = F i(z, t), is Lipschitz on z and continuous on (z, t). We also assume that the
nodes are diffusively connected through an undirected weighted graph G = (V, E) and describe the
dynamics of the network as follows:

Ẋi(t) = F i
(
Xi(t), t

)
+
∑
j∈N i

γijD
(
Xj(t)−Xi(t)

)
i = 1, . . . , N . (4)

The indices in N i represent the neighbors of node i. The diffusion matrix D is a nonzero diagonal
matrix of size n, D = diag (d1, . . . , dn), where di ≥ 0. The positive constants γij represent the edge
weights of G. The products of the elements in D and the edge weights γij represent the coupling
strengths between the nodes.

Let L = (Lij) be the Laplacian matrix of G:

Lij =


∑

k∈N i γ
ik i = j,

−γij i 6= j, j ∈ N i,
0 otherwise.

(5)

We denote the eigenvalues of L as 0 = λ(1) ≤ λ(2) ≤ · · · ≤ λ(N). The second smallest eigenvalue,
λ(2), is called the algebraic connectivity of the graph. This number helps to quantify “how con-
nected” the graph is. The number of the zero eigenvalues is equal to the number of connected
components of G.

Using the notation of the Laplacian matrix, Equation (4) can be written in the following closed
form:

Ẋ(t) = F(X(t), t)− (L ⊗D)X(t), (6)

where X =
(
X1T , . . . , XNT

)T
, F =

(
F 1T , . . . , FN

T
)T

, and ⊗ represents the Kronecker product.

Definition 3 (Complete synchronization). Let

S1 :=
{
X1 = · · · = XN , Xi ∈ Rn

}
.

The dynamics given in Equation (4) synchronize completely if any solution of Equation (4) con-
verges to S1 in an appropriate norm. In other words, let X be a solution of Equation (4). Then
there exists a solution X̄ ∈ S1 such that, in an appropriate norm,

X(t)− X̄(t)→ 0 as t→∞.

S1 is called the synchronization manifold.

We will use synchronization and complete synchronization alternatively.
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Definition 4 (Cluster synchronization). For any 1 ≤ K ≤ N and any 1 ≤ c1, . . . , cK ≤ N such
that c1 + · · ·+ cK = N , let

SK :=
{
X1 = · · · = Xc1 , . . . , XN−cK+1 = · · · = XN , Xi ∈ Rn

}
.

The dynamics given in Equation (4) synchronize in clusters if there exists 1 ≤ K ≤ N such that
any solution of Equation (4) converges to SK in an appropriate norm.

SK is called the K−cluster synchronization manifold.

Note that, the 1-cluster synchronization manifold is same as the synchronization manifold (Defini-
tion 3).

In the following two propositions, we consider Equation (4) with homogeneous F i = F , and state
two sufficient conditions that guarantee that Equation (4) synchronizes.

Proposition 2 (Proposition 1, [5]). Consider Equation (4) with homogeneous F i = F . Assume
that there exists a norm on Rn such that

sup
(x,t)

µ[JF (x, t)] < 0. (7)

Then Equation (4) synchronizes.

In [35], Proposition 2 has been generalized1 to F i with heterogeneous elements. The work shows
that, under some conditions on the weights of the interconnected graph, if each node has contractive
dynamics, then Equation (4) synchronizes in clusters. In Section 5, we provide an example that
synchronizes in clusters and supports our theory derived in the next section but does not satisfy
the condition provided in [35].

Note that the sufficient condition provided in Proposition 2 depends only on the dynamics of each
isolated node, namely JF . The next proposition provides a sufficient condition for synchronization
weaker than Equation (7) that depends on JF , the diffusion matrix D, and the graph G. The
following results are based on weighted L2 norms but, for some special graphs, they have been
generalized to weighted Lp norms [5].

Proposition 3 (Theorem 4 (modified), [6]). Consider Equation (4) with homogeneous F i = F .
Assume that there exists a positive definite matrix P such that P 2D+DP 2 is also positive definite,
and let

c := sup
(x,t)∈V×[0,∞)

µ2,P

[
JF (x, t)− λ(2)D

]
.

Then for any solution X of Equation (4) that remains in V N , there exists a solution X̄ such that

‖X(t)− X̄(t)‖2,P ≤ ect‖X(0)− X̄(0)‖2,P .

Moreover, if c < 0, then Equation (4) synchronizes, i.e., for any pair i, j ∈ {1, . . . , N},

Xi(t)−Xj(t)→ 0 as t→∞.

In the following section, we present the main result of this work – we generalize Proposition 3 to
heterogeneous F i and provide sufficient conditions for cluster synchronization.

1The statement of Theorem 3 in [35] is correct; however, the proof needs revision to be complete.
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3 Main Result: Cluster Synchronization

In this section, we provide sufficient conditions on heterogeneous intrinsic dynamics F i, the graph
G, and the diffusion matrix D, that guarantee cluster synchronization of the network described in
Equation (4).

Assumption 1. In the network described by Equation (4), we assume that

1. There exist K ≤ N and c1, . . . , cK ≥ 2, such that c1 + · · ·+ cK = N , and

F i1 = · · · = F ic1 =: FC1 , . . . , F
iN−cK+1 = · · · = F iN =: FCK ,

where {i1, . . . , iN} is a permutation of {1, . . . , N}. Without loss of generality, we can assume:

F 1 = · · · = F c1 =: FC1 , . . . , F
N−cK+1 = · · · = FN =: FCK .

Let C1, . . . ,CK denote K clusters of nodes. The nodes in cluster C1 are defined by X1, . . . , Xc1

and they all have dynamics FC1, the nodes in cluster C2 are defined by Xc1+1, . . . , Xc1+c2 and
they all have dynamics FC2, etc. For ease of notation in our calculations, we let

X1
C1

= X1, . . . , Xc1
C1

= Xc1 ,

X1
C2

= Xc1+1, . . . , Xc2
C2

= Xc2 ,

...

X1
CK

= XN−cK+1, . . . , XcK
CK

= XN .

(8)

2. The cluster-input-equivalence condition defined in [8] holds. This implies that the following
edge weight sums are equal: for any two nodes Xi

Cr
, Xj

Cr
, (i, j) ∈ Cr,

ηCrCs :=
∑

k∈N i
Cs

γik =
∑

k∈N j
Cs

γjk, (9)

where N i
Cs

denotes the indices of the neighbors of node i which are in cluster Cs.

Lemma 1. Under Assumption 1, the K−cluster synchronization manifold, defined in Definition
4, is invariant.

Proof. This follows by the cluster-input-equivalence condition, Equation (9).

Next we provide sufficient conditions to show that SK is (globally) stable, i.e., any solution of
Equation (4) converges to SK .

Recall that the network graph is G = (V, E). Denote the subgraph for the nodes in Cr by GCr =
(VCr , ECr). Then

G =

 K⋃
r=1

GCr

⋃ Ḡ,
where Ḡ = (V, E \ ∪r ECr) is the graph describing connections among the clusters Cr.
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Let LCr denote the Laplacian matrix of GCr with eigenvalues 0 = λ
(1)
Cr
≤ λ

(2)
Cr
≤ . . . ≤ λ

(cr)
Cr

and L̄
denote the Laplacian matrix of Ḡ with eigenvalues 0 = λ̄(1) ≤ λ̄(2) ≤ . . . ≤ λ̄(N). In the special case
of K = 1, we set λ̄(2) = 0. Then L, the Laplacian matrix of G, can be written as follows:

L = LC + L̄, (10)

where LC is a block diagonal matrix with the form:

LC =


LC1

. . .

LCK

 . (11)

With these definitions, Equation (6) can be written as

Ẋ(t) = F(X(t), t)− (LC ⊗D)X(t)− (L̄ ⊗D)X(t). (12)

Theorem 1. Consider Equation (4), or equivalently Equation (12), with Assumption 1, and let

µ := max
r=1,...,K

sup
(x,t)∈V×[0,∞)

µ2,P

[
JFCr

(x, t)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
, (13)

where P ∈ Rn×n is a positive definite matrix chosen such that P 2D+DP 2 is positive semidefinite.
Then, for any solution X of Equation (4) that remains in V N , there exists X̄(t) such that

‖X(t)− X̄(t)‖2,P ≤ eµt‖X(0)− X̄(0)‖2,P , (14)

where P = IN ⊗ P 2 and ‖ · ‖2,P is a P-weighted L2 norm on RnN , defined by

‖x‖2,P :=

∥∥∥∥∥
(∥∥∥P 2x1

∥∥∥
2
, . . . ,

∥∥∥P 2xN
∥∥∥

2

)T∥∥∥∥∥
2

,

for any x =
(
x1T , . . . , xN

T
)T
∈ RnN . In particular, if µ < 0, then for any pair of nodes i, j ∈ Cr,

Xi
Cr

and Xj
Cr

satisfy

Xi
Cr(t)−X

j
Cr

(t)→ 0 as t→∞.

Remark 2. Theorem 1 provides a sufficient condition for cluster synchronization that depends

on the dynamics of each isolated cluster JFCr
, the diffusion matrix D, the structure λ

(2)
Cr

of each

subgraph GCr describing connections among the nodes in cluster Cr, and the structure λ̄(2) of the
subgraph Ḡ describing connections among the clusters. Proposition 3 is a special case of Theorem
1 when K = 1 and λ̄(2) = 0. One can still apply Proposition 3 to K > 1 clusters to show
cluster synchronization. However, Theorem 1 provides a weaker sufficient condition for cluster
synchronization.

In the proof of Theorem 1, we need the following key lemmas. We first state the Courant-Fischer
minimax Theorem, from [19].
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Lemma 2. Let L be a positive semidefinite matrix in Rl×l. Let λ(1) ≤ · · · ≤ λ(l) be l eigenvalues
with e1, · · · , el corresponding normalized orthogonal eigenvectors. For any v ∈ Rl, if vT ej = 0 for
1 ≤ j ≤ k − 1, then

vTLv ≥ λ(k)vT v.

Lemma 3. [5, Lemma 3] Suppose that P is a positive definite matrix and A is an arbitrary matrix.
If µ2,P [A] = µ, then P 2A+ATP 2 ≤ 2µP 2.

Proof of Theorem 1

Let w := X − X̄, where

X =
(
X1

C1

T
, . . . , Xc1

C1

T , . . . , X1
CK

T
, . . . , XcK

CK

T
)T

,

is a solution of (4) and

X̄ =
((

1c1 ⊗ x1

)T
, . . . ,

(
1cK ⊗ xK

)T)T
,

with xr := 1
cr

∑cr
i=1X

i
Cr

and 1cr ∈ Rcr is a vector of ones. Let w =
(
wT1 , . . . , w

T
K

)T
, where

wr :=
(

(X1
Cr
− xr)T , . . . , (Xcr

Cr
− xr)T

)T
∈ Rcrn, and define

Φ(w) :=
1

2
wTPw =

1

2

K∑
r=1

wTr

(
Icr ⊗ P 2

)
wr .

Since Φ(w) =
1

2
‖Pw‖22, to prove (14), it suffices to show that

d

dt
Φ(w) ≤ 2µΦ(w).

Let

F(X, t) =
(
F TC1

(X1
C1
, t), . . . , F TC1

(Xc1
C1
, t), . . . , F TCK (X1

CK
, t), . . . , F TCK (XcK

CK
, t)
)T

,

and

F̄(X, t) =
((

1c1 ⊗ y1

)T
, . . . ,

(
1cK ⊗ yK

)T)T
where yr =

1

cr

cr∑
i=1

FCr(X
i
Cr , t).

Standard calculations show that the derivative of Φ is as follows:

dΦ

dt
(w) = wTP

(
F(X, t)− F̄(X, t)

)
− wTP(LC ⊗D)w − wTP(L̄ ⊗D)

= wTP
(
F(X, t)−F(X̄, t)

)
+ wTP

(
F(X̄, t)− F̄(X, t)

)
− wTP(LC ⊗D)w − wTP(L̄ ⊗D)w

= wTP
(
F(X, t)−F(X̄, t)

)
− wTP(LC ⊗D)w − wTP(L̄ ⊗D)w .

(15)
In the second equation, we added and subtracted wTPF(X̄, t), where F(X̄, t) is written as

F(X̄, t) =
((

1c1 ⊗ FC1(x1, t)
)T
, . . . ,

(
1cK ⊗ FCK (xK , t)

)T)T
.

8



The last equality holds because wTr (1cr ⊗ In) = 0 implies that

wTP
(
F(X̄, t)− F̄(X, t)

)
=

K∑
r=1

wTr

(
Icr ⊗ P 2

)(
1cr ⊗

(
F TCr(xr, t)− y

T
r

))

=
K∑
r=1

wTr

(
1cr ⊗ P 2

(
F TCr(xr, t)− y

T
r

))

=
K∑
r=1

wTr (1cr ⊗ In)P 2
(
F TCr(xr, t)− y

T
r

)
= 0.

Step 1. We show that

− wTP(LC ⊗D)w ≤ −
K∑
r=1

λ
(2)
Cr
wTr

(
Icr ⊗ P 2D

)
wr . (16)

Since P 2D + DP 2 is positive semidefinite, Cholesky decomposition yields an upper triangular
matrix M such that P 2D +DP 2 = 2MTM . For any r = 1, . . . ,K,

−wTr
(
Icr ⊗ P 2

)
(LCr ⊗D)wr = −wTr

(
LCr ⊗ P 2D

)
wr

= −1

2
wTr

(
LCr ⊗

(
P 2D +DP 2

))
wr

= −wTr
(
LCr ⊗

(
MTM

))
wr

= −wTr
(
Icr ⊗MT

) (
LCr ⊗ In

)
(Icr ⊗M)wr

≤ −λ(2)
Cr

(
(Icr ⊗M)wr

)T
(Icr ⊗M)wr

= −λ(2)
Cr
wTr

(
Icr ⊗MTM

)
wr

= −λ(2)
Cr
wTr

(
Icr ⊗ P 2D

)
wr .

Note that the inequality holds by Lemma 2. To apply Lemma 2, we need to show that(
(Icr ⊗M)wr

)T
(1cr ⊗ In) = 0.

By definition of wr, w
T
r 1ncr = 0 and hence(

(Icr ⊗M)wr
)T

(1cr ⊗ In) = wTr

(
Icr ⊗MT

)
(1cr ⊗ In) = wTr

(
1cr ⊗MT

)
=

cr∑
i=1

(Xi
Cr − xr)

TMT =

 cr∑
i=1

(Xi
Cr − xr)

T

MT = 0.

Both P and LC are block diagonal with blocks of same sizes, c1, . . . , cK , so we have:

−wTP(LC ⊗D)w = −
K∑
r=1

wTr

(
Icr ⊗ P 2

)
(LCr ⊗D)wr ≤ −

K∑
r=1

λ
(2)
Cr
wTr

(
Icr ⊗ P 2D

)
wr .
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Step 2. We show that

− wTP(L̄ ⊗D)w ≤ −
K∑
r=1

λ̄(2)wTr

(
Icr ⊗ P 2D

)
wr . (17)

The proof is analogous to the previous step.

−wTP(L̄ ⊗D)w = −wT
(
IN ⊗ P 2

)
(L̄ ⊗D)w

= −wT
(
L̄ ⊗ P 2D

)
w

= −1

2
wT
(
L̄ ⊗

(
P 2D +DP 2

))
w

= −wT
(
L̄ ⊗MTM

)
w

= −wT
(
IN ⊗MT

) (
L̄ ⊗ In

)
(IN ⊗M)w

≤ −λ̄(2)wT
(
IN ⊗MT

)
(IN ⊗M)w

= −λ̄(2)wT
(
IN ⊗MTM

)
w

= −λ̄(2)wT
(
IN ⊗ P 2D

)
w

= −
K∑
r=1

λ̄(2)wTr

(
Icr ⊗ P 2D

)
wr .

Step 3. We show that

wTP(F(X, t)−F(X̄, t)) =

K∑
r=1

cr∑
i=1

∫ 1

0
(Xi

Cr−xr)
TP 2JFCr

(
xr + τ(Xi

Cr − xr)
)

(Xi
Cr−xr) dτ. (18)

Note that wTP(F(X, t)−F(X̄, t)) =
∑K

r=1w
T
r

(
Icr ⊗ P 2

)
F̃r(XCr) , where

F̃r(XCr) =
(
F TCr(X

1
Cr , t)− F

T
Cr(xr, t), . . . , F

T
Cr(X

cr
Cr
, t)− F TCr(xr, t)

)T
.

By the Mean Value Theorem for integrals, for any r = 1, . . . ,K,

wTr

(
Icr ⊗ P 2

)
F̃r(XCr) =

cr∑
i=1

(Xi
Cr − xr)

TP 2
(
FCr(X

i
Cr , t)− FCr(xr, t)

)
=

cr∑
i=1

∫ 1

0
(Xi

Cr − xr)
TP 2JFCr

(
xr + τ(Xi

Cr − xr)
)

(Xi
Cr − xr) dτ.

Adding over r, r = 1, . . . ,K, we obtain Equation (18).

Note that the sum of the left hand side of Equations (16)-(18), is equal to dΦ
dt . Combining Steps

1-3, we have shown that

dΦ

dt
≤

K∑
r=1

φr,
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where for any r = 1, . . . ,K,

φr := wTr

(
Icr ⊗ P 2

)
F̃r(XCr)− wTr

(
Icr ⊗ P 2

)(
Icr ⊗ λ

(2)
Cr
D
)
wr − wTr

(
Icr ⊗ P 2

)(
Icr ⊗ λ̄(2)D

)
wr

=

cr∑
i=1

∫ 1

0
(Xi

Cr − xr)
TP 2

[
JFCr

(
xr + τ(Xi

Cr − xr)
)
− λ(2)

Cr
D − λ̄(2)D

]
(Xi

Cr − xr) dτ

≤
cr∑
r=1

2µ

2

∫ 1

0
dτ (Xi

Cr − xr)
TP 2(Xi

Cr − xr)

=
2µ

2
wTr

(
Icr ⊗ P 2

)
wr .

(19)
The inequality holds by applying Lemma 3 to Equation (13): we obtain, for any r = 1, . . . ,K, and
any (x, t) ∈ V × [0,∞),

P 2

[
JFCr

(x, t)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
+

[
JTFCr

(x, t)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
P 2 ≤ 2µP 2.

Summing both sides of Equation (19) over r, for r = 1, . . . ,K, we obtain the desired result,
dΦ
dt (w) ≤ 2µΦ(w).

4 Network Reduction

We now outline a procedure for reducing a cluster synchronized network to a smaller network of
synchronized states, commonly referred to as the quotient network. Quotient networks have been
applied to find reductions of cluster synchronized networks with slight parameter mismatches in the
F i [41]. In a cluster synchronized network, oscillators in the same cluster will have homogeneous
dynamics after the initial transients. The longer-term dynamics of the network can thus be reduced
to those of a network where each node corresponds to a cluster. This reduction loses no information
about the long-term dynamics and can be implemented to simplify analysis.

Lemma 4. Under Assumption 1, the dynamics of Equation (4) on SK can be described as follows.

ẊCr(t) = FCr

(
XCr(t), t

)
+

∑
Cs∈NCr

ηCrCsD
(
XCs(t)−XCr(t)

)
r = 1, . . . ,K, (20)

where NCr denotes the set of all the clusters that are connected to Cr, as in Assumption 1.

Proof. This follows by the cluster-input-equivalence condition, Equation (9).

The simplified dynamics in Equation (20) represent a powerful tool for facilitating analysis of the
dynamics of cluster synchronized systems.

5 Application to networks of heterogeneous FitzHugh-Nagumo
neuronal oscillators

In this section, we apply Theorem 1 to a network of N FitzHugh-Nagumo (FN) neuronal oscillators
with graph G.
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Let (yi, zi)T ∈ R2 be the state of oscillator i and Ii be the external input to oscillator i, for
i = 1, . . . , N . yi and zi represent the membrane potential and the recovery variable, repectively,
and Ii the input current. The FN dynamics are

ẏi = f i(yi)− zi + Ii + γ
∑
j∈N i

γij(yj − yi),

żi = εi(yi − bizi),
(21)

where f i is a cubic function, f i(y) = y− y3

3 −a
i, γ, ai, bi > 0, 0 < εi � 1, and N i denotes the set of

all the neighbors of node i in the network. Using the notation of Theorem 1, n = 2, Xi = (yi, zi)T ,

F i(Xi, t) =
(
f i(yi)− zi + Ii, εi(yi − bizi)

)T
, D = diag (γ, 0) is the diffusion matrix, and the γij are

the edge weights on the graph G.

Assume that there exist K ≥ 1 clusters C1, . . . ,CK of FN oscillators such that ai = aCr , b
i = bCr ,

εi = εCr , and Ii = ICr for all FN oscillators i ∈ Cr and all clusters r = 1, . . . ,K.

In what follows we show that, for K = 1 cluster, if γλ(2) > 1, then Equation (21) synchronizes.

More generally, if K > 1, and for all r = 1, . . . ,K, εCr = ε, and γλ
(2)
Cr

+γλ̄(2) > 1, then Equation (21)
converges to its K−cluster synchronization manifold.

Proposition 4. Consider Equation (21), with Assumption 1. For all r = 1, . . . ,K, let

γ >
1 + αr

λ
(2)
Cr

+ λ̄(2)
,

where αr =
(εCrp−1/p)

2

4bCr εCr
and p = maxr

1√
εCr

. Then for any pair of FN oscillators {(yi, zi)T , (yj , zj)T }
such that (i, j) ∈ Cr,

yi(t)− yj(t)→ 0, zi(t)− zj(t)→ 0, as t→∞.

Proof. To apply Theorem 1, we find a positive definite matrix P such that P 2D+DP 2 is positive
semidefinite and

µ := max
r

sup
(y,z)T∈R2

µ2,P

[
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
< 0.

Let P = diag (1, p) so that P 2D +DP 2 = diag (2γ, 0), which is positive semidefinite. Then

µ2,P

[
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

]
= µ2

[
P

(
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

)
P−1

]

= λmax

( 1− y2 − γλ(2)
Cr
− γλ̄(2) εCrp

2 − 1
2p

εCrp
2 − 1

2p −bCrεCr

) . (22)

To see this recall that µ2,P [A] = µ2[PAP−1], and, by Remark 1, µ2[A] = λmax

[
A+AT

2

]
, where

λmax[B] denotes the largest eigenvalue of B. Note that the matrix shown in the second line, call
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it B, is the symmetric part of P

(
JFCr

(y, z)−
(
λ

(2)
Cr

+ λ̄(2)
)
D

)
P−1. Standard calculations show

that if γ > 1+αr

λ
(2)
Cr

+λ̄(2)
≥ 1

λ
(2)
Cr

+λ̄(2)
then the trace and the determinant of B satisfy

Tr = 1− y2 − γλ(2)
Cr
− γλ̄(2) − bCrεCr < 0, Det = −bCrεCr

(
1− y2 − γλ(2)

Cr
− γλ̄(2) + αr

)
> 0.

Therefore, λmax[B] < 0 and Theorem 1 yields the desired result.

Remark 3. In Proposition 4:

1. If we assume that, for all r = 1, . . . ,K, εCr = ε, then αr = 0 and we obtain a smaller lower
bound for γ, namely

γ >
1

λ
(2)
Ci

+ λ̄(2)
.

2. Non-diagonal P does not give a smaller lower bound for γ.

3. Theorem 1 can be used to derive an analogous condition for a network of FN oscillators with
time varying parameters.

Remark 4. In the previous work [13], we showed that for K = 1, if γ ≥ 1+ε+β2/3

λ(2)
, where β is

the ultimate bound for the y variable, then Equation (21) synchronizes. By Proposition 4 we have
found a smaller lower bound for γ, γ > 1

λ(2)
, that guarantees synchronization.

5.1 Examples

Example 1. In this example, we consider a network of 17 FN oscillators (shown in the left panel of
Figure 1), wherein each oscillator has the dynamics associated with one of three different clusters:
(i) C1 is a cluster of six oscillators (represented by orange circles) with a = 0.1, b = 0.1, ε = 0.08 and
I = 0.9; (ii) C2 is a cluster of seven oscillators (represented by green squares) with a = 0.5, b = 0.7,
ε = 0.08 and I = 3.0; and (iii) C3 is a cluster of four oscillators (represented by blue triangles)
with a = 0.9, b = 0.3, ε = 0.08 and I = 0.1. For this network, the second smallest eigenvalue of

the Laplacian of each corresponding subgraph can be computed as λ
(2)
C1

= 1.83, λ
(2)
C2

= λ
(2)
C3

= 2.00

and λ̄(2) = 13.10. Then from Proposition 4, we can conclude that the clusters will synchronize
whenever γ > 0.067, since the cluster-input-equivalence condition (9) holds true. As shown in
Figure 1, the network indeed displays fast convergence to cluster synchronization with γ = 0.120.

However, when we introduce heterogeneity within the third cluster C3, e.g., by changing parameter
values to a = 0.8, b = 0.9 and the external input to I = 0.7 for two of the four oscillators (these are
now represented by magenta pentagons in Figure 2), the blue cluster breaks into two clusters, each
with two oscillators. As a result, the orange cluster no longer satisfies the cluster-input-equivalence
condition (9) unless it too breaks into two clusters of three oscillators each (shown in light and dark
orange in Figure 2). By Proposition 4 the condition for cluster synchronization is again γ > 0.067;
however, now there are five clusters as illustrated in Figure 2 for γ = 0.120.
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Figure 1: Cluster synchronization in a network of 17 heterogeneous FN oscillators.

Figure 2: Emergence of new clusters, for a total of five, in the same network (as in Figure 1) of 17
FN oscillators as a result of modifying the dynamics of the two oscillators shown in magenta.

Example 2. To illustrate the critical role of the cluster-input-equivalence condition (9) in cluster
synchronization, we consider a slightly perturbed version of the network shown in Figure 1 by
removing some connections between clusters. Removal of connections between the clusters leads
to a lower connectivity of the subgraph Ḡ; for the network connections in Figure 3, λ̄(2) = 6.81.
Although everything else remain same as the original network considered in the previous example,
this perturbation leads to a violation of the cluster-input-equivalence condition. As a result, the
network fails to achieve cluster synchronization even when γ = 0.120 > 0.116 satisfies the sufficient
condition (Fig 3).

Example 3. In this example we consider a large network with 200 FN oscillators (refer to the
left panel of Figure 4 for a representation of this network) obtained through interconnection of
a complete graph (of size 100) with a star graph (of size 100). By connecting each node in the
complete graph with a unique node in the star graph and edge of weight 0.25, we ensure that
the cluster-input-equivalence condition holds true. The FN oscillators (C1) in the complete graph
(represented by magenta squares) have a = 0.9, b = 0.5, and they are excited with an external
current I = 2.0. On the other hand, the FN oscillators (C2) in the star graph (represented by green
triangles) have a = 0.7, b = 0.8, and they are excited with an external current I = 0.3. Also, we

14



Figure 3: Collapse of cluster synchronization in a network of 17 heterogeneous FN oscillators.
γ = 0.120 as in Figures 1 and 2, but the cluster-input-equivalence condition is no longer satisfied.

let ε = 0.08 for each of these 200 oscillators. For this network λ
(2)
C1

= 100, λ
(2)
C2

= 0.04 and λ̄(2) = 0.

By choosing a diffusion constant γ = 0.02 such that γ > 1/
(
λ

(2)
C1

+ λ̄(2)
)

but γ < 1/
(
λ

(2)
C2

+ λ̄(2)
)

we do not obey the sufficient condition. However, numerical simulation (Figure 4) shows that the

magenta cluster (C1) synchronizes nevertheless as suggested by the fact that γ > 1/
(
λ

(2)
C1

+ λ̄(2)
)

is
satisfied.

Figure 4: Synchronization of only one of two clusters in a large network of heterogeneous FN
oscillators when the coupling strength takes an intermediate value. There are 100 oscillators in one
cluster connected through a star graph (green) and 100 oscillators in a second cluster connected
through a complete graph (magenta). The network on the left illustrates the connections between
clusters (in gray) in the case of 5 oscillators in each cluster.

6 Conclusion

In this paper, we consider the patterns of synchronization that emerge in networks where individual
nodes may have different intrinsic nonlinear dynamics. By adopting an approach based on contrac-
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tion theory [2], our work proposes a sufficient condition for cluster synchronization, and provides
its characterization in terms of the within-cluster network structure and the across-cluster network
structure. We also explore a necessary condition for cluster synchronization, namely the cluster-
input-equivalence condition, and demonstrate that its violation can lead to collapse of cluster
synchronization (Figure 3). Another key contribution of this work is an improvement on previous
sufficient conditions for cluster synchronization [13] in networks of oscillators with heterogeneous
intrinsic dynamics. We also noticed through numerical simulation that heterogeneity within a
particular cluster can cause desynchronization in another cluster (Figure 2). Building upon this
observation, our future work will attempt to develop a framework for designing time-varying inputs
that will lead to fission and subsequent fusion of clusters.
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