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Abstract

We present a theory for the three-dimensional evolution of tubes with expand-
able walls conveying fluid. Our theory can accommodate arbitrary deformations of
the tube, arbitrary elasticity of the walls, and both compressible and incompress-
ible flows inside the tube. We also present the theory of propagation of shock waves
in such tubes and derive the conservation laws and Rankine-Hugoniot conditions
in arbitrary spatial configuration of the tubes, and compute several examples of
particular solutions. The theory is derived from a variational treatment of Cosserat
rod theory extended to incorporate expandable walls and moving flow inside the
tube. The results presented here are useful for biological flows and industrial
applications involving high speed motion of gas in flexible tubes.

1 Introduction

Tubes with flexible walls conveying fluid are encountered frequently in nature and exhibit
complex behavior due to the interaction of fluid and elastic walls dynamics. The theory
for such tubes is indispensable in biomedical applications, such as arterial flows [1–5] and
lung flows [6–8]. Analytical studies for such flows are usually limited to cases when the
centerline of the tube is straight, which restricts the utility of the models for practical
applications. Of interest to this work is the mechanism of instability through the neck
formation and self-sustaining flow pulsations suggested by [9] and experimentally mea-
sured in [10]. While substantial progress in the analysis of the flow has been achieved
so far, it was difficult to describe analytically the general dynamics of 3D deforma-
tions of the tube involving e.g. the combination of shear, transversal deformation, and
extensions.

The numerical simulations of flow in channels with flexible walls, such as undertaken
in [11] for the case of a two-dimensional channel, yield a wealth of details of the velocity
profile for the fluid, but have to restrict the dimensionality of the motion. For more
informations about the application of collapsible tubes to biological flows, we refer the
reader to the reviews [12,13].
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On the other hand, studies involving non-trivial dynamics of the centerline have a
long history in the context of engineering applications also loosely called the “garden
hose instabilities”. One of the earliest works on the subject is [14]. Benjamin [15,
16] was perhaps the first to formulate a quantitative theory for the 2D dynamics of
initially straight tubes by considering a linked chain of tubes conveying fluids and using an
augmented Hamilton principle of critical action that takes into account the momentum
of the jet leaving the tube. A continuum equation for the linear disturbances was then
derived as the limit of the discrete system. This linearized equation for the initially
straight tubes was further studied by Gregory and Päıdoussis [17].

These initial developments formed the basis for further stability analysis for finite,
initially straight tubes [18–27], which showed a reasonable agreement with experimen-
tally observed onset of the instability [20,28–31]. Models treating nonlinear deflection of
the centerline were also considered in [24,32–34], and the compressible (acoustic) effects
in the flowing fluid in [35]. Alternatively, a more detailed 3D theory of motion for the
flow was developed in [36] and extended in [37]. That theory was based on a modifica-
tion of the Cosserat rod treatment for the description of elastic dynamics of the tube,
while keeping the cross-section of the tube constant and orthogonal to the centerline.
In particular, [37] analyzes several non-straight configurations, such as a tube deformed
from its straight state by gravity, both from the point of view of linear stability and
nonlinear behavior. Unfortunately, this Cosserat-based theory cannot easily incorporate
the effects of the cross-sectional changes in the dynamics, either prescribed (e.g. a tube
with variable cross-section in the initial state) or dynamically occurring.

Several authors have discussed the instability from the point of view of the follower
force approach, which treats the system as an elastic beam, ignoring the fluid motion,
with a force that is always tangent to the end of the tube, modeling the effect of the
jet leaving the nozzle [38]. However, once the length of the tube becomes large enough,
the validity of the follower force approach has been questioned, see [39] for a lively
and thorough discussion. For the history of the development of this problem in the
Soviet/Russian literature, we refer the reader to the monograph [40] (still only available
in Russian). The developments in Russian literature have often proceeded in parallel
with the English literature counterpart, see e.g. [41–50]. The theory of stability of
initially curved pipes have also been considered because its importance for practical
applications, such as pipelines. The equations of motion for the theory were derived using
the balance of elastic forces arising from the tube deformation and fluid forces acting on
the tube when the fluid is moving along a curved line in space. In the western literature,
we shall mention the earlier work [51], followed by subsequent studies [52–54] which
developed the theory suited for both extensible and inextensible tubes and discussed the
finite-element method realization of the problem. We shall also mention the works [55,56]
deriving a variational approach for the planar motions of initially circular tubes, although
the effect of curved fluid motion was still introduced as an extra force through the
Lagrange-d’Alembert principle. In the Soviet/Russian literature, [46] developed a rod-
based theory of oscillations and [49] considered an improved treatment of forces acting
on the tubes. Most of the work has been geared towards the understanding of the planar
cases with in-plane vibrations as the simplest and most practically relevant situations
(still, however, leading to quite complex formulas).
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Finally, it is worth discussing the shell theory approach to the dynamics of fluid-
filled pipes [57, 58]. These theories are usually derived for relatively small (but perhaps
nonlinear) deviations of an initially cylindrical shell from its equilibrium position. They
are capable of describing quite complex modes of oscillations along the circumference of
the tubes, but are too cumbersome to extend to tubes with moving centerline. We also
refer the reader to the classical treatise [20,24] on fluid-structure interactions, where the
developments of theory and experiment are discussed in great details.

In spite of considerable progress achieved so far, there is still much room for im-
provement in the theoretical understanding of the problem. In particular, we believe
that the derivation of the theory based on the balance of forces is not variational and
the approximations of certain terms tend to break down the intrinsic variational struc-
ture of the problem. In contrast, the theory of flexible tubes conveying fluid as developed
in [59,60] is truly variational and all the forces acting on the tube and the fluid, as well
as the boundary forces, are derived automatically from a variational principle issued
from Hamilton’s principle. More importantly, without a variational approach it is very
difficult (and perhaps impossible) to extend the previous theory to accurately take into
account the changes in the cross-sectional area of the tube, also called the collapsible
tube case.

In many previous works, the effects of cross-sectional changes have been considered
through the quasi-static approximation: if A(t, s) is the local cross-section area, and
u(t, s) is the local velocity of the fluid, with t being the time and s the coordinate
along the tube, then the quasi-static assumption states that uA = const, see the cor-
responding discussion in [61]. The use of the quasi-static approximation is due to the
fact that an accurate description of conservation law for a moving tube is difficult to
obtain in the traditional approach when the tube undergoes motion of rotations and
translations. Interestingly, most works on modelling flows in a tube with flexible walls
and a straight centerline with no rotation do not use this approximation and employ the
correct conservation law. The connection between models derived in the present paper
and that work, most often used in the context of hemodynamics [1, 4, 5, 13, 62, 63], see
also recent review [64], is further discussed in §4.2. This problem has been addressed
by the authors for general tube motion and prescribed cross-sectional area as a function
of tube’s deformations [59, 60], where a geometrically exact setting for dealing with a
variable cross-section was developed and studied, showing the important effects of the
cross-sectional changes on both linear and nonlinear dynamics, as well as boundary ef-
fects. In these works by the authors, the cross-sectional area was considered to be a
given function of the local deformation of the rod, in other words, the wall of the tube
did not have its own dynamics, which is a commonly used approximation in the field.
This theory has been further developed in [61], where it was shown that thanks to the
geometric approach and variational principle used, the linear stability of an arbitrary
helical tube reduces to the analysis of a constant matrix. In addition, the variational
derivation for that type of fluid-structure interaction allowed for the development of
variational numerical schemes [65].

In this paper, we considerably extend the previous results and construct a complete
theory of fluid-conveying tubes capable of incorporating the wall dynamics as well as
arbitrary deformations of the tube with general elastic and inertia properties, as long
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as the flow inside the tube can be approximated by a one-dimensional “plug flow”. Our
theory covers both compressible and incompressible flows and can describe effects like
propagation of shock waves in the tubes in arbitrary tube geometries, which is important
for industrial applications. Mathematically, our theory considers the left symmetry-
reduced dynamics of the elastic tube in the convective representation (i.e. in the frame
of reference of the tube), the fluid motion in the spatial (Eulerian) representation in the
tube’s frame of reference, the Euler-Lagrange equations of the wall motion, and either
the holonomic constraint expressing the incompressibility of the fluid, or the equation
for mass conservation for compressible flows.

2 Exact geometric theory for flexible tubes convey-

ing compressible fluid

In this section, we first quickly review the Lagrangian variational formulation for geo-
metrically exact rods without fluid motion. Then, we extend this variational formulation
to incorporate the motion of the compressible fluid inside the tube and the motion of the
wall. To achieve this goal we need to first identify the infinite dimensional configuration
manifold of the system as well as the convective and spatial variables, together with their
relation with the Lagrangian variables. Our model is then obtained by an application of
the Hamilton principle, reformulated in convective variables for the tube and in spatial
variables for the fluid. The rigorous justification of the variational approach will be given
later in Section 3. We shall then study the conditions the shock solutions must satisfy,
thereby extending the classical Rankine-Hugoniot to the case of shock waves moving
in a tube that can freely deform in the three dimensional space and with expandable
cross-section.

2.1 Background for geometrically exact rod theory

In this paragraph we briefly review the theory of geometrically exact rods following the
approach developed, on the Hamiltonian side, in [66] and subsequently in the Lagrangian
framework more appropriate to this article in [67,68]. A more comprehensive introduc-
tion is contained in [61] to which we refer the reader for the details. The geometrically
exact theory is based on the original work [69].

The configuration of the rod deforming in the ambient space R3 is defined by speci-
fying the position of its line of centroids by means of a map r(t, s) ∈ R3, and by giving
the orientation of the cross-section at that point. Here t is the time and s ∈ [0, L] is
a parameter along the strand that does not need to be arclength. The orientation of
the cross-section is given by a moving basis {ei(t, s) | i = 1, 2, 3} attached to the cross
section relative to a fixed frame {Ei | i = 1, 2, 3}. The moving basis is described by an
orthogonal transformation Λ(t, s) ∈ SO(3) such that ei(t, s) = Λ(t, s)Ei. We interpret
the maps Λ(t, s) and r(t, s) as a curve t 7→ (Λ(t), r(t)) ∈ G in the infinite dimensional
Lie group G = F([0, L], SO(3) × R3) of SO(3) × R3-valued smooth maps defined on
[0, L]. The Lie group G is the configuration manifold for the geometrically exact rod.
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Following Hamilton’s principle, given a Lagrangian function

L = L(Λ, Λ̇, r, ṙ) : TG→ R,

defined on the tangent bundle TG of the configuration Lie group G, the equations of
motion are the Euler-Lagrange equations obtained by the critical action principle

δ

∫ T

0

L(Λ, Λ̇, r, ṙ)dt = 0, (2.1)

for arbitrary variations δΛ and δr vanishing at t = 0, T . It turns out that the Lagrangian
of geometrically exact rods can be exclusively expressed in terms of the convective vari-
ables

γ = Λ−1ṙ , ω = Λ−1Λ̇ ,

Γ = Λ−1r′ , Ω = Λ−1Λ′ ,
(2.2)

see [66], where γ(t),ω(t) ∈ F([0, L],R3) are the linear and angular convective velocities
and Γ(t),Ω(t) ∈ F([0, L],R3) are the linear and angular convective strains. This gives
rise to a Lagrangian ` = `(ω,γ,Ω,Γ) : F([0, L],R3)4 → R written exclusively in terms
of convective variables. For the moment, we leave the Lagrangian function unspecified,
we will give its explicit expression later in §2.3 for the case of fluid-conveying tubes.

The equations of motion in convective description are obtained by writing the critical
action principle (2.1) in terms of the Lagrangian `. This is accomplished by computing
the constrained variations of ω,γ,Ω,Γ induced by the free variations δΛ, δr via the
definitions (2.2). We find

δω =
∂Σ

∂t
+ ω ×Σ, δγ =

∂ψ

∂t
+ γ ×Σ + ω ×Ψ (2.3)

δΩ =
∂Σ

∂s
+ Ω×Σ, δΓ =

∂ψ

∂s
+ Γ×Σ + Ω×Ψ, (2.4)

where Σ(t, s) = Λ(t, s)−1δΛ(t, s) ∈ R3 and Ψ(t, s) = Λ(t, s)−1δr(t, s) ∈ R3 are arbi-
trary functions vanishing at t = 0, T . Hamilton’s principle (2.1) induces the variational
principle

δ

∫ T

0

`(ω,γ,Ω,Γ)dt = 0, (2.5)

with respect to the constrained variations (2.3), (2.4), which in turn yields the reduced
Euler-Lagrange equations

(∂t + ω×)
δ`

δω
+ γ × δ`

δγ
+ (∂s + Ω×)

δ`

δΩ
+ Γ× δ`

δΓ
= 0

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

δ`

δΓ
= 0,

(2.6)

together with the boundary conditions

δ`

δΩ

∣∣∣∣
s=0,L

= 0
δ`

δΓ

∣∣∣∣
s=0,L

= 0. (2.7)
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If one of the extremity (say s = 0) of the rod is kept fixed, i.e., r(t, 0) = r0, Λ(t, 0) = Λ0

for all t, then only the boundary condition at s = L arises above.
From their definition (2.2), the convective variables verify the compatibility condi-

tions
∂tΩ = ω ×Ω + ∂sω and ∂tΓ + ω × Γ = ∂sγ + Ω× γ. (2.8)

Remark 2.1 (Lagrangian reduction by symmetry) The process of passing from
the Lagrangian (or material) representation in terms of (Λ, Λ̇, r, ṙ) with variational prin-
ciple (2.1) to the convective representation in terms of (ω,γ,Ω,Γ) with constrained
variational principle (2.5) can be understood via a Lagrangian reduction process by
symmetries. It has been carried out in [68] and is based on the affine Euler-Poincaré re-
duction theory of [70]. We shall review this approach later, in Section 3, before extending
it to fluid-conveying tubes.

Remark 2.2 (On the functional form of the Lagrangian) Note that in all our the-
oretical considerations we will keep the Lagrangian in the general form, as we are in-
terested in the symmetry-reduction approach to the fully three dimensional problem,
rather than in the derivation of the equations of motion in a particular reduced setting,
e.g., restricted to two dimensions, straight line, etc. We believe that such an approach
based on Lagrangian mechanics yields the simplest possible treatment of the elastic,
three-dimensional deformation of the tube. We shall present class of Lagrangian func-
tions in §2.3. In particular, we shall consider a particular class of quadratic elastic
energy, see (2.19) later, allowing for further substantial simplification for the motion
when constrained in two dimensions.

2.2 Definition of the configuration space

We now incorporate the motion of the fluid inside the tube and the motion of the wall of
the tube by extending the geometrically exact framework. Recall that the geometrically
exact rod (without fluid) consists of a left invariant system and, therefore, can be written
in terms of convective variables. On the other hand, the fluid is a right invariant sys-
tem, naturally written in terms of spatial variables. The coupling of these two systems
therefore yields the interesting concept of a system involving both convective and spatial
variables but whose left and right invariances are broken by the coupling constraint.

In addition to the rod variables (Λ, r) ∈ F([0, L], SO(3) × R3) considered above,
the configuration manifold for the fluid-conveying tube also contains the Lagrangian
description of the fluid. It is easier to start by defining the back-to-label map, which is an
embedding β : [0, L]→ R, assigning to a current fluid label particle s ∈ [0, L] located at
r(s) in the tube, its Lagrangian label s0 ∈ R. Its inverse ϕ := β−1 : β([0, L]) ⊂ R→ [0, L]
gives the current configuration of the fluid in the tube. A time dependent curve of such
maps thus describes the fluid motion in the tube, i.e.,

s = ϕ(t, s0), s ∈ [0, L].

We now include the motion of the wall of the tube, as a reaction to the fluid motion and
pressure. In order to incorporate this effect in the simplest possible case, let us consider
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the tube radius R(t, s) to be a free variable. In this case, the Lagrangian depends on R,
as well as on its time and space derivatives Ṙ and R′, respectively. If we assume that R
can lie on an interval IR, for example, IR = R+ (the set of positive numbers), then the
configuration manifold for the fluid-conveying tube is given by the infinite dimensional
manifold

Q := F
(
[0, L], SO(3)× R3 × IR

)
×
{
ϕ : ϕ−1[0, L]→ [0, L] | ϕ diffeomorphism

}
. (2.9)

Note that the domain of definition of the fluid motion s = ϕ(t, s0) is time dependent,
i.e., we have ϕ(t) : [a(t), b(t)] → [0, L], for ϕ(t, a(t)) = 0 and ϕ(t, b(t)) = L. The time
dependent interval [a(t), b(t)] contains the labels of all the fluid particles that are present
in the tube at time t.

2.3 Definition of the Lagrangian

Let us now turn our attention to the derivation of the Lagrangian of the fluid-conveying
geometrically exact tube. Although we present below a particular expression of the
Lagrangian in terms of the variables (ω,γ,Ω,Γ, R, Ṙ, S), all the equations of motion
will be valid for general Lagrangians.

Kinetic energy. The kinetic energy of the elastic rod is the function Krod given by

Krod =
1

2

∫ L

0

(
α|γ|2 + aṘ2 + I(R)ω · ω

)
|Γ|ds,

where α is the linear density of the tube and I(R) is the local moment of inertia of the
tube. The term 1

2
aṘ2 describes the kinetic energy of the radial motion of the tube.

We now derive the total kinetic energy of the fluid. In material representation, the
total velocity of the fluid particle with label s0 is given by

d

dt
r(t, ϕ(t, s0)) = ∂tr(t, ϕ(t, s0)) + ∂sr(t, ϕ(t, s0))∂tϕ(t, s0)

= ∂tr(t, ϕ(t, s0)) + ∂sr(t, ϕ(t, s0))u(t, ϕ(t, s0)),
(2.10)

where the Eulerian velocity is defined by

u(t, s) =
(
∂tϕ ◦ ϕ−1

)
(t, s), s ∈ [0, L]. (2.11)

Therefore, the total kinetic of the fluid reads

Kfluid =
1

2

∫ ϕ−1(L,t)

ϕ−1(0,t)

ξ0(s0)

∣∣∣∣ ddtr(t, ϕ(t, s0))

∣∣∣∣2 ds0,

where the function ξ0(s0) denotes the mass density of the fluid per unit length in the
material representation. It is related to the area Q0(s0) and the mass density of the fluid
per unit volume ρ0(s0) as ξ0 = ρ0Q0. Using (2.10) together with the change of variables
s = ϕ(t, s0), we can rewrite Kfluid as

Kfluid =
1

2

∫ L

0

(ξ0 ◦ ϕ−1)∂sϕ
−1 |γ + Γu|2 ds,
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where
ξ(t, s) =

[
(ξ0 ◦ ϕ−1)∂sϕ

−1
]

(t, s) (2.12)

is the mass density per unit length in the Eulerian description. Note that we have the
relation

ξ(t, s) = ρ(t, s)Q(t, s),

where ρ(t, s) is the mass density of the fluid per unit volume, in units Mass/Length3,
and Q(t, s) is the area of the tube’s cross section, in units Length2. It is important to
note that, while ξ, ξ0 are related as in (2.12), such a relation does not hold for ρ, ρ0

and Q, Q0, e.g., Q(s, t) 6= (Q0 ◦ϕ−1)∂sϕ
−1. That relationship between Q and Q0 is only

valid when the fluid inside the tube is incompressible, see [59,60].

Internal energy. We assume that the thermal energy of the gas in the Lagrangian is
described by the specific energy function e(ρ, S), with ρ being the mass density and S
being the specific entropy. Recall the thermodynamic identities

de = −p d

(
1

ρ

)
+ TdS ⇒ p(ρ, S) = ρ2 ∂e

∂ρ
(ρ, S) , T (ρ, S) =

∂e

∂S
(ρ, S) , (2.13)

where p(ρ, S) is the pressure and T (ρ, S) is the temperature. The total internal energy
of the fluid is thus

Eint =

∫ L

0

ξe(ρ, S)ds.

Mass conservation. We shall assume that the fluid fills the tube completely, and the
fluid velocity at each given cross-section is aligned with the axis of the tube. Since we
are assuming a one-dimensional approximation for the fluid motion inside the tube, the
mass density per unit length ξ(t, s) has to verify

ξ = (ξ0 ◦ ϕ−1)∂sϕ
−1. (2.14)

This equation has been already used earlier in (2.12), from which we deduce the conser-
vation law

∂tξ + ∂s(ξu) = 0. (2.15)

The physical meaning of Q can be understood through the fact that Qds is the
volume filled by the fluid in the tube for parameter interval [s, s + ds]. Since s is not
necessarily taken to be the arc length, we have Q = A|Γ|, where A is the area of the
cross section. In general Q is a given function of the tube’s variables, i.e.,

Q = Q(R,Ω,Γ). (2.16)

This expression must be invariant under any re-parameterization s → s̃(s). In order
to explain the origin of this equation, let us approximate the tube’s cross-section as an
ellipse with semi-axes a(t, s) and b(t, s) at given values of t and s. When the centerline
and the orientation of the cross-section of the tube deform, then the eccentricity of the
cross-section changes depending on the deformation, so b(t, s) = f(Ω,Γ)a(t, s), where
f(Ω,Γ) is a function known from experiments and a(t, s) is the unknown variable.
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For a tube with an initially round cross-section made out of uniform material, the
cross-sectional area will deform depending on the bending, i.e., Ω× χ, and shear, i.e.,
Γ × χ, where χ is the axis of the tube in reference configuration, usually taken to be
χ = E1. For such tubes we have f = 1 for Ω = 0 and Γ = χ.

For more complex tubes, made out of non-uniform synthetic materials, or commonly
encountered in biological applications like arterial flows, all the components of Ω and Γ
enter into the function f(Ω,Γ). Then, the area of the cross-section is given by

A(a,Ω,Γ) = πa2f(Ω,Γ) . (2.17)

The choice of A = A(Ω,Γ) was taken in [60,61,65]. Such choice prevents the independent
dynamics of the tube’s wall and states that the cross-sectional area only depends on the
deformation of the tube as an elastic rod. For the physical explanation of possible
particular expressions of A(Ω,Γ) we refer the reader to [61].

The simplest choice we will use for computations is f ≡ 1, so that the tube preserves
its circular cross-section under deformations. We then take a = R and define

Q(R,Γ) = A(R)|Γ| = πR2|Γ|. (2.18)

We shall derive all the equations for a general expression (2.17) and only use the circular-
tube approximation in the computations of the dynamics when the cross-sections at any
s is initially circular, the centerline remains straight, and there is no additional twist of
the tube. For this model, all cross-sections of the tube remain circular by symmetry.

Elastic energy. The potential energy due to elastic deformation is a function of Ω, Γ
and R. While the equations will be derived for an arbitrary potential energy, we shall
assume the simplest possible quadratic expression for the calculations, namely,

Erod =
1

2

∫ L

0

(
JΩ·Ω + λ(R)|Γ− χ|2 + 2F (R,R′, R′′)

)
|Γ|ds , (2.19)

where χ ∈ R3 is a fixed vector denoting the axis of the tube in the reference configuration,
J is a symmetric positive definite 3×3 matrix, which may depend on R, R′ and R′′, and
λ(R) is the stretching rigidity of the tube. The stretching term proportional to λ(R) can
take the more general form K(Γ−χ) ·(Γ−χ), where K is a 3×3 tensor. The part of this
expression for the elastic energy containing the first two terms in (2.19) is commonly used
for a Cosserat elastic rod, but more general functions of deformations Γ are possible.
A particular case is a quadratic function of Γ leading to a linear dependence between
stresses and strains. We have also introduced the elastic energy of wall F (R,R′, R′′)
which can be explicitly computed for simple elastic tubes. In general F depends on
higher derivatives, such as R′′, however, in this paper, we shall use the simplest possible
approximation for the elastic energy of the wall, corresponding to the long-wavelength
approximation in deformations of R′, leading to F being only dependent on R and R′.
The derivation of the equations in the case when F depends on higher derivatives of R is
straightforward, however, obtaining numerical solutions in this case becomes challenging.
We shall also note that our geometric approach is valid for an arbitrary dependence of
the elastic energy Erod(Ω,Γ, R) on deformations.
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Lagrangian. From all the expressions given above, we obtain the Lagrangian of the
fluid-conveying given by

L = L
(
Λ, Λ̇, r, ṙ, ϕ, ϕ̇, R, Ṙ

)
: TQ → R, L = Krod +Kfluid − Erod − Eint, (2.20)

and defined on the tangent bundle TQ of the configuration space Q, see (2.9). Note
that all the arguments of L are functions of s, so we don’t need to include the spatial
derivatives of (Λ, r, R) explicitly as variables in L. These spatial derivatives appear
explicitly in the expression of the integrand of the reduced Lagrangian (2.21) below.
Assuming there is a uniform external pressure pext acting on the tube, the Lagrangian
expressed in terms of the variables ω,γ,Ω,Γ, u, ξ, S reads

`(ω,γ,Ω,Γ, u, ξ, S,R, Ṙ)

=

∫ L

0

[(1

2
α|γ|2 +

1

2
I(R)ω ·ω +

1

2
aṘ2 − F (R,R′)− 1

2
JΩ·Ω

− 1

2
λ(R)|Γ− χ|2

)
|Γ|+ 1

2
ξ |γ + Γu|2 − ξe(ρ, S)− pextQ

]
ds

=:

∫ L

0

[
`0(ω,γ,Ω,Γ, u, ξ, R, Ṙ, R′)− ξe(ρ, S)− pextQ

]
ds ,

(2.21)

where ρ, in the term ξe(ρ, S) in the above formula, is defined in terms of the independent
variables ξ,Ω,Γ, R as

ρ :=
ξ

Q(Ω,Γ, R)
. (2.22)

For convenience in further calculations, we also define the function

f0 :=
1

2

(
α|γ|2 + I(R)ω ·ω + aṘ2 − 2F (R,R′)− JΩ·Ω− λ(R)|Γ− χ|2

)
. (2.23)

In Section 3 we shall show that ` arises from the Lagrangian L : TQ → R by a reduction
process by symmetry. We shall thus refer to ` as the symmetry-reduced Lagrangian. We
have also denoted `0 to be the part of the integrand of the Lagrangian related to just
the tube dynamics, without the incorporation of the internal energy. We shall perform
all the derivations for an arbitrary Lagrangian function `(ω,γ,Ω,Γ, u, ξ, S,R, Ṙ) and
shall study later particular solutions for the expression (2.21).

2.4 Variational principle and equations of motion

The equations of motion are obtained from the Hamilton principle applied to the La-
grangian (2.20), namely

δ

∫ T

0

L(Λ, Λ̇, r, ṙ, ϕ, ϕ̇, R, Ṙ)dt = 0, (2.24)

for arbitrary variations δΛ, δr, δϕ, δR vanishing at t = 0, T . In terms of the symmetry
reduced Lagrangian `, this variational principle becomes

δ

∫ T

0

`(ω,γ,Ω,Γ, u, ξ, S,R, Ṙ)dt = 0 , (2.25)

10



for variations (2.3), (2.4), and δu, δξ and δS computed as

δu = ∂tη + u∂sη − η∂su (2.26)

δξ = −∂s(ξη) (2.27)

δS = −η∂sS, (2.28)

where η = δϕ ◦ ϕ−1. Note that η(t, s) is an arbitrary function vanishing at t = 0, T . A
lengthy computation yields the system

D

Dt

δ`

δω
+ γ × δ`

δγ
+

D

Ds

δ`

δΩ
+ Γ× δ`

δΓ
= 0

D

Dt

δ`

δγ
+

D

Ds

δ`

δΓ
= 0

∂t
δ`

δu
+ u∂s

δ`

δu
+ 2

δ`

δu
∂su = ξ∂s

δ`

δξ
− δ`

δS
∂sS

∂t
δ`

δṘ
− δ`

δR
= 0

∂tΩ = Ω× ω + ∂sω, ∂tΓ + ω × Γ = ∂sγ + Ω× γ
∂tξ + ∂s(ξu) = 0, ∂tS + u∂sS = 0,

(2.29)

where the symbols δ`/δω, δ`/δΓ, ... denote the functional derivatives of ` relative to the
L2 pairing, and we introduced the notations

D

Dt
= ∂t + ω × and

D

Ds
= ∂s + Ω× .

Note that the first equation arises from the terms proportional to Σ in the variation of the
action functional and thus describes the conservation of angular momentum. The second
equation arises from the terms proportional to ψ and describes the conservation of linear
momentum. The third equation is obtained by collecting the terms proportional to η
and describes the conservation of fluid momentum. The fourth equation comes from
collecting the terms proportional to δR and describes the elastic deformation of the
walls due to the pressure. Finally, the last four equations arise from the four definitions
Ω = Λ−1Λ′, Γ = Λ−1r′, ξ = (ξ0 ◦ ϕ−1)∂sϕ

−1, and S = S0 ◦ ϕ−1.
For the choice

`(ω,γ,Ω,Γ, u, ξ, S,R, Ṙ) =

∫ L

0

[
`0(ω,γ,Ω,Γ, u, ξ, R, Ṙ, R′)− ξe(ρ, S)− pextQ

]
ds ,

the functional derivatives are computed as

δ`

δΩ
=
∂`0

∂Ω
+ (p− pext)

∂Q

∂Ω
δ`

δΓ
=
∂`0

∂Γ
+ (p− pext)

∂Q

∂Γ
δ`

δR
=
∂`0

∂R
− ∂s

∂`0

∂R′
+ ∂2

s

∂`0

∂R′′
+ (p− pext)

∂Q

∂R
δ`

δξ
=
∂`0

∂ξ
− e− ρ∂e

∂ρ
,

(2.30)
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where p(ρ, S) = ρ2 ∂e
∂ρ

(ρ, S) is the pressure and ∂`0/∂Ω, ∂`0/∂Γ, ... denote the ordi-
nary partial derivatives of `0, whose explicit form can be directly computed from the
expression of `0 in (2.21).

Theorem 2.3 For the Lagrangian ` in (2.21), the variational principle (2.25) with con-
strained variations (2.3), (2.4), (2.26), (2.27), (2.28) yields the equations of motion

D

Dt

∂`0
∂ω

+ γ × ∂`0
∂γ

+
D

Ds

(
∂`0
∂Ω

+ (p− pext)
∂Q

∂Ω

)
+ Γ×

(
∂`0
∂Γ

+ (p− pext)
∂Q

∂Γ

)
= 0

D

Dt

∂`0
∂γ

+
D

Ds

(
∂`0
∂Γ

+ (p− pext)
∂Q

∂Γ

)
= 0

∂t
∂`0
∂u

+ u∂s
∂`0
∂u

+ 2
∂`0
∂u

∂su = ξ∂s
∂`0
∂ξ
−Q∂sp

∂t
∂`0

∂Ṙ
− ∂2

s

∂`0
∂R′′

+ ∂s
∂`0
∂R′
− ∂`0
∂R
− (p− pext)

∂Q

∂R
= 0

∂tΩ = Ω× ω + ∂sω, ∂tΓ + ω × Γ = ∂sγ + Ω× γ
∂tξ + ∂s(ξu) = 0, ∂tS + u∂sS = 0

(2.31)

together with appropriate boundary conditions enforcing vanishing of the variations of
the boundary terms.

Proof. The system is obtained by replacing the expression of the functional derivatives
(2.30) in the system (2.29) and using the thermodynamics identities (2.13).

Equations (2.31) have to be solved as a system of nonlinear partial differential equa-
tions, since all equations are coupled. This can be seen, for example, from computing
the derivative

∂`0

∂u
= ρA|Γ|

(
γ + Γu

)
· Γ , (2.32)

which appears in the the balance of fluid momentum, i.e., the third equation in (2.31).

With the fluid momentum defined as

m :=
1

ρQ

δ`0

δu
= Γ · (γ + uΓ)

the third equation in (2.31) can be simply written as

∂tm+ ∂s

(
mu− ∂`0

∂ξ

)
= −1

ρ
∂sp , . (2.33)

which is strongly reminiscent of the 1D gas dynamics. Also, in (2.33) we have

∂`0

∂ξ
=

1

2
|γ + Γu|2 (2.34)

with the physical meaning of total velocity of the fluid particle, squared.

For Q(R,Γ) = A(R)|Γ|, the equations (2.31) can be further simplified since

∂Q

∂Γ
= A(R)

Γ

|Γ|
= Q

Γ

|Γ|2
and Γ× ∂Q

∂Γ
= 0 .

Notice also that for A(R) = πR2, we have dA/dR = 2πR, the circumference of a circle.
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Remark 2.4 (On further equation simplification) We would like to emphasize that
any simplification of the model must be done at the level of the Lagrangian `, for exam-
ple, by using quadratic elastic energy of certain type, simplified expressions for moments
of inertia, etc. However, once the Lagrangian ` is chosen, the equations (2.31) and their
corresponding reductions for two dimensions are completely determined. No further
approximations at the level of the equations are possible without losing the exact La-
grangian structure of the system. Such approximations are almost certain to introduce
additional, uncontrolled energy and momentum sources and sinks, and we will avoid us-
ing them in this paper. We are in the process of developing a variational integrator for
this problem, however, we expect that such a development will be quite intricate. Sym-
plectic and multisymplectic variational integrators for a geometrically exact rod without
fluid motion have been only derived recently, see [71] and [72], and the fluid motion
presents the substantial difficulty of introducing right-invariant terms in the problem.
Multisymplectic discretization for tube conveying incompressible fluid has been consid-
ered in [65].

2.5 Conservation laws for gas motion and Rankine-Hugoniot
conditions

Since we are concerned with the flow of compressible fluids, it is natural to ask about
the existence of shock waves and the conditions the shock solutions must satisfy at the
discontinuity. In the one-dimensional motion of a compressible fluid, the constraints on
jumps of quantities across the shock are known as the Rankine-Hugoniot conditions. Let
us for shortness denote by [a] the jump of the quantity a across the shock, and c the
velocity of the shock. The classical Rankine-Hugoniot conditions for the one-dimensional
motion of a compressible fluid gives the continuity of the corresponding quantities as

c[ρ] = [ρu] (mass) , (2.35)

c[ρu] = [ρu2 + p] (momentum) , (2.36)

c[E] =

[(
1

2
ρu2 + ρe+ p

)
u

]
, E =

1

2
ρu2 + ρe (energy) , (2.37)

see, e.g., [73], where we have defined E to be the total energy density of the gas. It is use-
ful and, in our opinion, rather non-trivial, to derive the corresponding conditions for the
gas moving in a tube that can freely deform in the three dimensional space and with ex-
pandable cross-section. As far as we know, no such conditions have been derived before,
and the derivation of these equations shows the full prowess of the geometric methods.
The main difficulty comes in the derivation of the analogue of the energy equation (2.37),
as the analogues of equations (2.35) and (2.36) are rather straightforward.

The mass conservation (2.15) is already written in a conservation law form. We
rewrite the balance of fluid momentum in the following form

∂t
(
ξΓ · (γ + uΓ)

)
+ ∂s

(
uξΓ · (γ + uΓ) + pQ

)
− ξ(γ + uΓ)·(∂sγ + u∂sΓ) = p∂sQ. (2.38)

Note that we cannot use (2.33) to compute the Rankine-Hugoniot conditions, even
though the form of the equations is similar. This is due to physical requirement that the
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conservation laws across the shock must include the conservation of mass, fluid momen-
tum and energy. While many other conservation laws are formally possible, only these
three conservation laws make physical sense, see [73].

The derivation of the corresponding energy equation is rather tedious and we will
only sketch it, presenting the final solution. We define the total energy E, including the
thermal and mechanical terms, and the energy density E as

E =

∫ L

0

Eds , E := ξe+ Ṙ
∂`0

∂Ṙ
+ ω · ∂`0

∂ω
+ γ · ∂`0

∂γ
+ u

∂`0

∂u
− `0 . (2.39)

Then, performing appropriate substitution for time derivatives of the terms in (2.39)
using equations of motion (2.31), we obtain the conservation laws for the energy density
E as

∂tE + ∂sJ = 0

for the energy flux J given by

J := ω · ∂`0

∂Ω
+ γ · ∂`0

∂Γ
+ Ṙ

∂`0

∂R′
+ u2∂`0

∂u
− ξu∂`0

∂ξ
+ pγ · ∂Q

∂Γ
+

(
p

ρ
+ e

)
ξu. (2.40)

Notice an interesting symmetry between time derivatives and spatial derivatives in the
expression for the energy flux J in (2.40). Taking only the jumps at the discontinuous
terms, we arrive to the following conservation laws for the shock wave moving with
velocity c:

c[ρQ] = [ρQu] (2.41)

c [ξΓ · (γ + uΓ)] = [ξuΓ · (γ + uΓ) +Qp] (2.42)

c

[
ξ

(
e+

1

2
|γ + Γu|2

)]
=

[
1

2
ξu |γ + Γu|2 +

pξ

ρ|Γ|2
Γ · (γ + Γu) + ξue

]
. (2.43)

We can further simplify these equations by noticing that at the jump, the continuity of
the tube is preserved (or even C1) so γ, Γ and Q are continuous. Therefore, remembering
that ξ = ρQ, Rankine-Hugoniot conditions above simplify to

c[ρ] = [ρu] (2.44)

c [ρ] Γ · γ + c [ρu] |Γ|2 = [ρu] Γ · γ +
[
ρu2
]
|Γ|2 + [p] (2.45)

c

[
ρ

(
e+

1

2
|γ + Γu|2

)]
=

[
1

2
ρu |γ + Γu|2 +

p

|Γ|2
Γ · (γ + Γu) + ρue

]
. (2.46)

For comparison with the classic Rankine-Hugoniot condition we set the tube to be
circular, so R′ = 0 and Ṙ = 0, and not moving and straight, so γ = 0, ω = 0, Ω = 0
Γ = E1, hence and Q = A0. Then, the mass conservation law (2.44) reduces to (2.35),
(2.45) reduces to (2.36) and (2.46) to (2.37). We note that the extensions of the Rankine-
Hugoniot conditions we have derived here are valid for all configurations of the tube in
our framework, and they account for motion of the fluid, tube’s motion in space and its
deformations, and also the expansion/contraction of tube’s cross-section coming from
the dynamics of the tube’s radius R(t, s).
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2.6 On the Rankine-Hugoniot conditions for traveling waves

Later in this paper, we will study the nonlinear traveling waves, which are solutions that
depend on s and t through the combination x = s− ct, where c is a constant determined
by the dynamics. When Λ(t, s) = Λ(s− ct) and r(t, s) = r(s− ct), then by definition we
have ω = −cΩ and γ = −c(Γ − E1). Equation (2.44) is unchanged, while (2.45) and
(2.46) simplify to give[

ρ(u− c)2|Γ|2 + ρ(u− c)cΓ · E1 + p
]

= 0[
ρe(u− c) +

1

2
ρ(u− c)

(
c2 + 2(u− c)cΓ · E1 + (u− c)2|Γ|2

)
+

p

|Γ|2
(
|Γ|2(u− c) + cΓ · E1

) ]
= 0.

(2.47)

Taking Γ = E1 recovers the standard Rankine-Hugoniot conditions for momentum and
energy balance across the shock (2.36) and (2.37).

For a perfect gas, we have p = R
Cv
ρe = (γ − 1)ρe, where γ = Cp/Cv, therefore the

pressure can be eliminated from equations (2.47) leading to[
ρ(u− c)2|Γ|2 + ρ(u− c)cΓ · E1 + (γ − 1)ρe

]
= 0[

ρe(u− c) +
1

2
ρ(u− c)

(
c2 + 2(u− c)cΓ · E1 + (u− c)2|Γ|2

)
+ (γ − 1)

ρe

|Γ|2
(
|Γ|2(u− c) + cΓ · E1

) ]
= 0.

(2.48)

We shall use equations (2.47) later in §4.3 for computations of shock waves in the fluid
part for traveling waves.

2.7 Incompressible fluids

The incompressibility of the fluid motion is imposed by requiring that the mass density
per unit volume is a constant number:

ρ(t, s) = ρ0

Given the expression (2.16) of the area in terms of the tube’s variables, the relation (2.22)
still holds with ρ = ρ0. It thus induces a holonomic constraint in the configuration space
Q, namely

Q(Ω,Γ, R) =
ξ

ρ0

. (2.49)

Recall that ξ = (ξ0 ◦ ϕ−1)∂sϕ
−1, so (2.49) can be written as

Q(Ω,Γ, R) = (Q0 ◦ ϕ−1)∂sϕ
−1,

whereQ0 = ξ0/ρ0. This is the form of the holonomic constraint that is imposed in [59,60],
leading to the Lagrange multiplier µ. In [59,60] it was however assumed that the shape
of the cross-section, and hence the variable Q, is uniquely determined by the variables Ω
and Γ, corresponding to R being constant in our framework. Note that this holonomic
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constraint implies that Q, similarly with ξ = ρ0Q is advected by the fluid motion,
namely, it verifies

∂tQ+ ∂s(Qu) = 0,

which is not true in the compressible case. With a Lagrangian of the form

`(ω,γ,Ω,Γ, u, R, Ṙ) =

∫ L

0

`0(ω,γ,Ω,Γ, u, R, Ṙ, R′) ds ,

the variational principle

δ

∫ T

0

[
`(ω,γ,Ω,Γ, u, R, Ṙ) +

∫ L

0

µ
(
Q(Ω,Γ, R)− (Q0 ◦ ϕ−1)∂sϕ

−1
)

ds

]
dt = 0

with respect to variations (2.3), (2.4), δϕ, and δR, yields the system

D

Dt

∂`0

∂ω
+ γ × ∂`0

∂γ
+

D

Ds

(
∂`0

∂Ω
+ µ

∂Q

∂Ω

)
+ Γ×

(
∂`0

∂Γ
+ µ

∂Q

∂Γ

)
= 0

D

Dt

∂`0

∂γ
+

D

Ds

(
∂`0

∂Γ
+ µ

∂Q

∂Γ

)
= 0

∂t
∂`0

∂u
+ u∂s

∂`0

∂u
+ 2

∂`0

∂u
∂su = −Q∂sµ

∂t
∂`0

∂Ṙ
− ∂2

s

∂`0

∂R′′
+ ∂s

∂`0

∂R′
− ∂`0

∂R
− µ∂Q

∂R
= 0

∂tΩ = ω ×Ω + ∂sω, ∂tΓ + ω × Γ = ∂sγ + Ω× γ
∂tQ+ ∂s(Qu) = 0 .

(2.50)

A direct comparison with the compressible system (2.31) shows that the Lagrange mul-
tiplier µ plays the role of the pressure, in complete analogy with pressure definition for
incompressible fluid mechanics. When R is assumed to be constant, this model recovers
the one derived in [59,60].

3 Geometric approach to the variational principle

In this section, we justify the variational principle used earlier by showing that it is
obtained from a reduction by symmetry of the classical Hamilton principle of Lagrangian
mechanics. We first consider an abstract setting that involves both a left and a right
symmetry of the Lagrangian, which correspond to the elastic and fluid components of
the system, written on the infinite dimensional configuration space Q. This general
setting rigorously explains the link between the symmetries of the problem, the form
of the variational principle and the choice of the variables. We shall apply this setting
to the tube conveying fluid, both in the compressible and incompressible cases. We
shall then apply this setting to the tube conveying fluid, both in the compressible and
incompressible cases, thereby justifying the approach developed in Section 2.
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Lagrangian and symmetries. Consider two Lie groups G and H, with Lie algebras
g and h. We assume that G acts on the left on a manifold P and that H acts on the
right on a manifold N . We shall denote these actions as

Φ : G× P → P, (g, p) 7→ Φg(p), Φg ◦ Φh = Φgh

Ψ : H ×N → N, (h, n) 7→ Ψh(n), Ψg ◦Ψh = Ψhg.
(3.1)

Given the Lie algebra elements ζ ∈ g and u ∈ h, we consider the associated infinitesimal
generators ζP and uN , which are the vector fields on P , resp., N defined by

ζP (p) :=
d

dε

∣∣∣∣
ε=0

Φexp(εζ)(p), resp., uN(n) :=
d

dε

∣∣∣∣
ε=0

Ψexp(εu)(n), (3.2)

where exp denotes the exponential map of the Lie groups. Any action of a Lie group G
on a manifold P , induces an action of G on the cotangent bundle, or phase space, T ∗P
of P . This cotangent lifted action preserves the canonical symplectic form on T ∗P .

As we shall see below, the equations of motion naturally involve the expression of
the momentum maps associated to the cotangent lifted actions of G and H on T ∗P
and T ∗N . These momentum maps, sometimes referred to as simply the cotangent lift
momentum maps, are given by

JL : T ∗P → g∗, 〈JL(αp), ζ〉 = 〈αp, ζP (p)〉
JR : T ∗N → h∗, 〈JR(αn), u〉 = 〈αn, uN(n)〉 ,

(3.3)

where g∗, h∗ are the dual spaces to g, h, and where αp ∈ T ∗pP , αn ∈ T ∗nN , with T ∗P ,
T ∗N the cotangent bundles of P and N . In (3.3), the pairing on the left hand side of
the equality is between the Lie algebra and its dual, while the pairing on the right hand
side of the equality is between the tangent space and the cotangent space at a given
point of the manifold. Note that αp ∈ T ∗pP (resp., αn ∈ T ∗nN), being the element of
the cotangent bundle, contains the information of both the vectors from the cotangent
spaces and the base points p (resp., n) themselves. Therefore, the momentum map JL
(resp., JR) is a function of a vector from the cotangent space and the base point. For
instance, if the manifold P is a vector space, we have T ∗P = P × P ∗ and an element in
the cotangent bundle is a couple αp = (p, α). We refer the reader to, e.g., [74] for the
definition of momentum maps and their properties.

In general, given the configuration manifold Q of a mechanical systems and its La-
grangian L : TQ→ R, the Hamilton principle reads

δ

∫ T

0

L
(
q(t), q̇(t)

)
dt = 0, (3.4)

for arbitrary variations δq(t) of the curve q(t) with fixed endpoints. In (3.4), and in
the whole paper, we use the local notation (q, q̇) for the arguments of the Lagrangian,
however, our treatment is intrinsic and valid on arbitrary configuration manifolds Q.

We now suppose that the configuration manifold is Q = G × H and consider the
Lagrangian function L : T (G×H)→ R. The Hamilton principle reads

δ

∫ T

0

L
(
g(t), ġ(t), h(t), ḣ(t)

)
dt = 0, (3.5)
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for arbitrary variations δg(t) and δh(t) vanishing at t = 0, T .
Let us suppose that L depends parametrically on some reference values p0 ∈ P , n0 ∈

N and assume that L is invariant under the action of the subgroup Gp0×Hn0 ⊂ G×H,
where Gp0 = {g ∈ G | Φg(p0) = p0} and Hn0 = {h ∈ H | Ψh(n0) = n0} are the isotropy
subgroups of p0 and n0, with respect to the actions given in (3.1). This invariance is
written as

L
(
ḡg, ḡġ, hh̄, ḣh̄

)
= L
(
g, ġ, h, ḣ

)
, for all (ḡ, h̄) ∈ Gp0×Hn0 , (3.6)

where we note that Gp0 acts on the right on G and Hn0 acts on the left on H.

Lagrangian reduction. We now use the symmetry (3.6) to rewrite the equations
of motion on the reduced space by following the process of Lagrangian reduction by a
subgroup of the Lie group configuration space, see [75], [70], and [76] for linear, affine,
and general actions, respectively, and various applications. We shall follow the setting
of [76]. From the invariance (3.6), L induces a reduced Lagrangian ` on the quotient
manifold (

T (G×H)
)
/(Gp0×Hn0)

consisting of the tangent bundle of the configuration space, divided by the symmetry
group. We identify this quotient with the manifold g×h×O, whereO is the (G×H)-orbit
of (p0, n0) ∈ P ×N , as follows(

T (G×H)
)
/(Gp0×Hn0) −→ g× h×O

[g, ġ, h, ḣ] 7−→
(
g−1ġ, ḣh−1,Φg−1(p0),Ψh−1(n0)

)
,

(3.7)

where [g, ġ, h, ḣ] denotes the equivalence class of (g, ġ, h, ḣ) in the quotient manifold(
T (G×H)

)
/(Gp0×Hn0). Consistently with this identification, the reduced curves asso-

ciated to
(
g(t), h(t)

)
∈ G×H are

Left-invariant : ζ(t) = g(t)−1ġ(t) ∈ g p(t) = Φg(t)−1(p0) ∈ P ,
Right-invariant : u(t) = ḣ(t)h(t)−1 ∈ h n(t) = Ψh(t)−1(n0) ∈ N.

(3.8)

The Hamilton principle (3.4) induces the following variational principle for the reduced
Lagrangian ` : g× h×O → R

δ

∫ T

0

`
(
ζ(t), u(t), p(t), n(t)

)
dt = 0, (3.9)

for variations δζ(t), δu(t), δp(t), δn(t) given by

δζ = σ̇ + [ζ, σ] δp = −σP (p)

δu = v̇ − [u, v] δn = −vN(n),
(3.10)

where σ(t) ∈ g and v(t) ∈ h are arbitrary curves vanishing at t = 0, T . The expressions
(3.10) are obtained by computing the variations of the curves ζ(t) = g(t)−1ġ(t), u(t) =
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ḣ(t)h(t)−1, p(t) = Φg(t)−1(p0), n(t) = Ψh(t)−1(n0) induced by the variations δg(t), δh(t)
of the curves g(t) and h(t), where we defined σ := g−1δg ∈ g and v := δhh−1 ∈ h.

By applying the variational principle (3.9)-(3.10), we get the system of equations
d

dt

δ`

δζ
− ad∗ζ

δ`

δζ
+ JL

(
δ`

δp

)
= 0

d

dt

δ`

δu
+ ad∗u

δ`

δu
+ JR

(
δ`

δn

)
= 0,

(3.11)

see [76] for details. The partial derivatives δ`
δζ
∈ g∗ and δ`

δp
∈ T ∗pP are defined as〈

δ`

δζ
, δζ

〉
=

d

dε

∣∣∣∣
ε=0

`
(
ζ + εδζ, u, p, n

)
and

〈
δ`

δp
, δp

〉
=

d

dε

∣∣∣∣
ε=0

`
(
ζ, u, p(ε), n

)
,

where p(ε) ∈ P is a curve with p(0) = p and d
dε

∣∣
ε=0

p(ε) = δp ∈ TpP .
The coadjoint operator ad∗ζ : g∗ → g∗ in the first equation in (3.11) is defined by〈

ad∗ζ µ, σ
〉

= 〈µ, [ζ, σ]〉, for µ ∈ g∗, ζ, σ ∈ g, where [ζ, σ] is the Lie bracket on g. Similar

definitions hold for δ`
δu
∈ h∗, δ`

δn
∈ T ∗nN , and ad∗u : h∗ → h∗.

The system (3.11) is accompanied with the equations for the curves p(t) and n(t),
which follow from their definition in (3.8), namely

ṗ+ ζP (p) = 0, ṅ+ uN(n) = 0, (3.12)

where ζP and uN are the infinitesimal generators defined in (3.2).

The considerations of this paragraph are summarized in the following theorem, which
is a special instance of a result in [76], see also [70], [75].

Theorem 3.1 Consider a Lagrangian L : T (G×H)→ R with the invariance described
in (3.6) and define the associated reduced Lagrangian ` : g × h × O → R. Consider a
curve (g(t), h(t)) ∈ G × H and define (ζ(t), u(t), p(t), n(t)) ∈ g × h × O as earlier. In
particular, equations (3.12) hold. Then the following are equivalent.

(i) The curve (g(t), h(t)) is critical for the Hamilton principle associated to L;

(ii) The curve (g(t), h(t)) is a solution of the Euler-Lagrange equations associated to
L;

(ii) The curve (ζ(t), u(t), p(t), n(t)) is critical for the reduced Hamilton principle (3.9)–
(3.10) associated to `;

(iv) The curve (ζ(t), u(t), p(t), n(t)) is a solution of the reduced Euler-Lagrange equa-
tions (3.11).
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Application to the expandable tube conveying compressible flows. In this
application, g(t) is given by the tube variables (Λ(t), r(t)), and h(t) is given by the flow
variable ϕ(t). In addition to Λ(t), r(t), and ϕ(t), the geometrically exact expandable tube
also involves the variable R(t) but this variable is not involved in the reduction process.
We shall briefly mention the inclusion of such variables later. Also, in this application,
the configuration space associated to ϕ(t) is not a Lie group however for simplicity we
restrict the discussion in this paragraph to the case of a Lie group and leave the more
general case as an exercise for the reader as the resulting formulas are similar. The Lie
algebra element ζ, resp., u in the general setting corresponds to the convective velocities
(ω,γ), resp., the Eulerian velocity u in the application. The abstract expressions ζ =
g−1ġ and u = ḣh−1 for the convective and Eulerian velocities recover the expressions
(2.11) and the first two expressions in (2.2).

In this application, the manifold P contains two variables, the convective angular
and linear deformation gradients Ω and Γ on which a group element (Λ, r) acts affinely
on the left as

(Ω,Γ) 7→ Ad(Λ,r)(Ω,Γ) + (Λ, r)∂s(Λ, r)−1, (3.13)

where Ad(Λ,r) denotes the adjoint action of SE(3). We refer to [70] for more details
regarding affine actions of the type (3.13) and their applications in the context of La-
grangian reduction by symmetry. The manifold N contains two variables, the mass
density per unit length ξ and the specific entropy S, on which ϕ acts linearly on the
right as

ξ 7→ (ξ ◦ ϕ)∂sϕ and S 7→ S ◦ ϕ. (3.14)

The actions (3.13) and (3.14) correspond to the actions (3.1) in the general setting
explained above. The reference value p0 is given by the initial values for the mass
density and specific entropy, i.e., p0 = (ξ0, S0). The reference value n0 is chosen as
n0 = (Ω0,Γ0) = (0,0).

To complete the variational considerations of the tube with expandable wall con-
veying compressible fluid, we need to remember that there are additional non-reduced
variables a(t) ∈ K, in some configuration manifold K, e.g., a = R, which we did not
consider in this abstract treatment, as we were focusing on the symmetry reduction only.
These variables will satisfy the Euler-Lagrange equations in the abstract form

∂

∂t

δ`

δȧ
− δ`

δa
= 0 . (3.15)

For our considerations in this paper, we set a(t, s) = R(t, s), a scalar function. Theorem
3.1 easily extends to this case, the unreduced and reduced space being given by T (G×
H ×K) and g× h×O × TK, respectively.

With these choices, the variational principle (3.9)–(3.10) recovers the variational
principle (2.25)–(2.28). From Theorem 3.1, it follows that the variational principle
(2.25)–(2.28) is a symmetry reduced version of the classical Hamilton principle (2.24)
on the configuration manifold Q of the mechanical system. This rigorously justifies
from first principles the variational principle (2.25)–(2.28) used to derive our model of
geometrically exact expandable tube conveying gas.
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We shall remark that a more complex shape model may require the variable a to
be e.g., a two-dimensional function, for example, describing the major semi-axes of an
ellipse as a cross-section, or be a multi-variable function describing shape functions of
increasing complexity. The abstract equation (3.15) will still be valid, although it will
need to be re-written in an explicit form for further analysis.

Incompressibility of the fluid as a holonomic constraint. Still in the abstract
setting described above, we consider a certain quantity of interest ρ ∈ V which depends
on the variables p and n, i.e., we assume

ρ = F (p, n),

for a given function F : P ×N → V , where V is a vector space. In our application, ρ is
the mass density per unit volume and the function F is given by the relation (2.22).

We assume that the quantity ρ is constrained to be a constant in time, i.e.,

F
(
p(t), n(t)

)
= ρ0 = constant,

for all t. In our example this corresponds to the incompressibility constraint in §2.7.
This defines a holonomic constraint which, from the relations on the right hand side of
(3.8), corresponds to the subset

C :=
{

(g, h) | G×H | F
(
Φg−1(p0),Ψh−1(n0)

)
= ρ0

}
⊂ G×H

of the configuration manifold Q = G×H. We assume that C is a submanifold of Q.
The associated equations of evolutions are obtained by a standard Lagrange multi-

plier approach, namely, we replace (3.5) by the variational principle

δ

∫ T

0

[
L
(
g(t), ġ(t), h(t), ḣ(t)

)
+
〈
µ(t), F

(
Φg(t)−1(p0),Ψh(t)−1(n0)

)
− ρ0

〉]
dt = 0, (3.16)

for variations δg(t) and δh(t), vanishing at t = 0, T , and variations δµ(t). The La-
grangian multiplier µ is an element of the dual vector space V ∗.

Assuming the same invariance as before for the Lagrangian, i.e. (3.6), and observing
that the constraint also has the same symmetry, we obtain that (3.16) induces the
following variational principle for the reduced Lagrangian ` : g× h×O → R:

δ

∫ T

0

[
`
(
ζ(t), u(t), p(t), n(t)

)
+
〈
µ(t), F (p(t), n(t))− ρ0

〉]
dt = 0, (3.17)

for variations δζ(t), δu(t), δp(t), δn(t) given by (3.10) and variations δµ(t). It results in
the system 

d

dt

δ`

δζ
− ad∗ζ

δ`

δζ
+ JL

(
δ`

δp
+

[
∂F

∂p

]∗
µ

)
= 0

d

dt

δ`

δu
+ ad∗u

δ`

δu
+ JR

(
δ`

δn
+

[
∂F

∂n

]∗
µ

)
= 0

F (p, n) = ρ0.

(3.18)
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One can immediately deduce the extension of Theorem 3.1 to the case in which a holo-
nomic constraint is imposed, together with the equation (3.15) for the non-reduced
variables a. This setting justifies the variational approach used in §2.7 to derive the
system (2.50).

Hamiltonian structure for the expandable tube conveying compressible flows.
We shall now quickly describe the Hamiltonian side corresponding to the Lagrangian
variational formulation described above. We first describe the abstract setting and
employ the general process of Poisson reduction symmetry, see [74], to derive the Hamil-
tonian structure of the geometrically exact expandable tube conveying gas in terms of
a noncanonical Poisson bracket.

By assuming that the Lagrangian L : T (G×H)→ R is hyperregular, we can define
its associated Hamiltonian H : T ∗(G ×H) → R by the usual Legendre transform. The
Euler-Lagrange equations for L are equivalent to the Hamilton equations for H. These
equations are Hamiltonian with respect to the canonical Poisson bracket on T ∗(G×H).

The Hamiltonian H verifies the same invariance with L and thus induces a reduced
Hamiltonian, denoted h, on the quotient manifold

(
T ∗(G×H)

)
/(Gp0×Hn0). In a similar

way with (3.7), we identify this quotient manifold with the manifold g∗ × h∗ ×O as(
T ∗(G×H)

)
/(Gp0×Hn0) −→ g∗ × h∗ ×O

[g, α, h, β] 7−→
(
g−1α, βh−1,Φg−1(p0),Ψh−1(n0)

)
.

(3.19)

From (3.19) we deduce that, on the Hamiltonian side, the reduced curves associated to
(g(t), α(t), h(t), β(t)) ∈ T ∗(G×H) are

µ(t) = g(t)−1α(t) ∈ g∗ p(t) = Φg(t)−1(p0) ∈ P
ν(t) = β(t)h(t)−1 ∈ h∗ n(t) = Ψh(t)−1(n0) ∈ N.

(3.20)

In terms of the reduced Hamiltonian h(µ, ν, p, n), the system of equations (3.11)–(3.12)
can be written in Poisson bracket form as

ḟ = {f, h}L + {f, h}R,

for the noncanonical Poisson brackets { , }L and { , }R given by

{f, h}L = −
〈
µ,

[
δf

δµ
,
δh

δµ

]〉
+

〈
δf

δµ
, JL

(
δh

δp

)〉
−
〈
δh

δµ
, JL

(
δf

δp

)〉
{f, h}R = +

〈
ν,

[
δf

δν
,
δh

δν

]〉
+

〈
δf

δν
, JR

(
δh

δn

)〉
−
〈
δh

δν
, JR

(
δf

δn

)〉
.

(3.21)

We refer to [76] for the derivation of this type of Poisson bracket by reduction by sym-
metry of the canonical Poisson bracket on T ∗(G×H).

In terms of the reduced Lagrangian `(ζ, u, p, n) defined on g × h × O, the reduced
Hamiltonian on g∗ × h∗ ×O is obtained from the reduced Legendre transform

h(µ, ν, p, n) := 〈µ, ζ〉+ 〈ν, u〉 − `(ζ, u, p, n),
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for µ = δ`
δζ

and ν = δ`
δu

.

In presence of additional non-reduced variables a, as in (3.15), the Poisson bracket
(3.21) is augmented by a canonical Poisson bracket {f, g}can in the variables (a, pa),
with pa = δ`

δȧ
. In this case the reduced Hamiltonian and Poisson bracket are defined on

g∗ × h∗ ×O × T ∗K, where K is the configuration manifold of the variable a.

For the geometrically exact expandable tube conveying gas, µ = (π,µ) corresponds
to the angular and linear momentum of the tube dynamics, ν is the fluid momentum,
p = (Ω,Γ), and n = (ξ, S). The Hamiltonian is defined as

h(π,µ,Ω,Γ, ν, ξ, S) =

∫ L

0

(
π · ω + µ · γ + νu

)
ds− `(ω,γ,Ω,Γ, u, ξ, S)

and we have the relations

π =
δ`

δω
, µ =

δ`

δγ
, ν =

δ`

δu

ω =
δh

δπ
, γ =

δh

δµ
, u =

δh

δν
.

(3.22)

The formula (3.21) yields the Poisson brackets

{f, g}L =−
∫ L

0

π ·
(
δf

δπ
× δg

δπ

)
ds−

∫ L

0

µ ·
(
δf

δµ
× δg

δπ
− δg

δµ
× δf

δπ

)
ds

−
∫ L

0

Ω ·
(
δf

δΩ
× δg

δπ
− δg

δΩ
× δf

δπ

)
ds+

∫ L

0

(
δf

δΩ
· ∂s

δg

δπ
− δg

δΩ
· ∂s

δf

δπ

)
ds

−
∫ L

0

Ω ·
(
δf

δΓ
× δg

δµ
− δg

δΓ
× δf

δµ

)
ds

−
∫ L

0

Γ ·
(
δf

δΓ
× δg

δπ
− δg

δΓ
× δf

δπ

)
ds+

∫ L

0

(
δf

δΓ
· ∂s

δg

δµ
− δg

δΓ
· ∂s

δf

δµ

)
ds,

{f, g}R =

∫ L

0

ν

(
∂g

∂ν
∂s
∂f

∂ν
− ∂f

∂ν
∂s
∂g

∂ν

)
ds+

∫ L

0

ξ

(
∂g

∂ν
∂s
∂f

∂ξ
− ∂f

∂ν
∂s
∂g

∂ξ

)
ds

+

∫ L

0

S∂s

(
∂f

∂S

∂g

∂ν
− ∂f

∂ν

∂g

∂S

)
ds.

(3.23)

This Poisson bracket can be also directly derived by using the relations (3.22) in equa-
tions (2.29) and computing the time derivative of an arbitrary function f depending on
the variables π, µ, ν, Ω, Γ, S and ξ. The variable R, which is not symmetry-reduced,
can be easily included, leading to an additional canonical Poisson bracket in the variable
R and its corresponding momentum pR = δ`

δṘ
.

4 Particular solutions for inextensible unshearable

tubes, and comparison with previous works

In this section we shall specify our model to the case of an inextensible and unshearable
expandable tube. We then focus on straight expandable tubes with no rotational motion
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and compare our model with previous works. This is the case that has been studied
extensively in the literature, mostly in the context of blood flow involving incompressible
fluid, as we show later. We also show that these simplified models arise from a variational
principle, which can then be used to derive the incompressible models by the Lagrange
multiplier approach.

4.1 Equations of motion for inextensible and unshearable tubes

The dynamics of an inextensible and unshearable, but expandable, tube conveying com-
pressible fluid is obtained by imposing the constraint Γ(t, s) = χ, for all t, s. If we
denote by z the Lagrange multiplier associated to this constraint and add the term∫ T

0

∫ L
0

z · (Γ − χ)ds dt to the action functional in our variational principle (2.25), the
first two equations in (2.31) will change to
D

Dt

∂`0

∂ω
+γ× ∂`0

∂γ
+

D

Ds

(
∂`0

∂Ω
+ (p− pext)

∂Q

∂Ω

)
+Γ×

(
∂`0

∂Γ
+ (p− pext)

∂Q

∂Γ
+ z

)
= 0

D

Dt

∂`0

∂γ
+

D

Ds

(
∂`0

∂Γ
+ (p− pext)

∂Q

∂Γ
+ z

)
= 0.

The physical meaning of z is the reaction force enforcing the inextensibility constraint.
Particular simple solutions of this system can be obtained by assuming the axis of the

tube being straight and no rotational motion. In that case, the inextensibility constraint
leads to z = zχ, the direction along the axis. For such particular solutions, the angular
momentum equation is satisfied identically, and the linear momentum equation reduces
to a one dimensional equation for the reaction force z. Therefore, we only need to
compute the fluid momentum equation and the Euler-Lagrange equations for R. From
the third and fourth equations in (2.31), we get

∂t
(
ξu
)

+ ∂s
(
ξu2 + pA

)
= p∂sA

aR̈− ∂s
∂F

∂R′
+
∂F

∂R
= 2πR (p− pext) ,

(4.1)

together with the conservation of mass and entropy

∂tξ + ∂s(ξu) = 0, ∂tS + u∂sS = 0, (4.2)

and where we assumed A(R) = πR2 and that I, λ, and J do not depend on R. This
gives a system of four equations for the four variables u, R, S, and ξ, where we recall
that ρ = ξ/A and p = ρ2 ∂e

∂ρ
. Using mass conservation and ρ = ξ/A, the fluid momentum

equation can be rewritten as

∂tu+ u∂su = −1

ρ
∂sp, (4.3)

which has formally the same form with that of 1D compressible fluids. Note that the
equation governing the evolution of ρ is different from the corresponding 1D compressible
fluid case.
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Note that the system of equation we obtained in (4.1)–(4.2) has been directly de-
duced by making the assumption of a straight tube in the equations (2.31). We shall
show below, that the resulting system is itself a Lagrangian system arising from Hamil-
ton’s principle. Indeed, an alternative way to think about the case of inextensible and
unshearable, but expandable, straight tube is to consider a Lagrangian ` that depends
only on R and u for incompressible flows, and additionally on the thermodynamic vari-
ables for compressible flows. We shall consider these two cases separately for clarity of
comparison with the previous literature. In that case, s = x1 takes the meaning of the
Euclidian coordinate along the axis, with all deformation variables related to the tube
being trivial, i.e., γ = 0, Γ = χ, ω = 0 and Ω = 0.

One may question about the physicality of the assumption s = x1. Indeed, under
stretching of the tube along the axis, the material point situated at a given point s will
move along the axis as well which lead to the dependence r(t, s). Thus, the dynamics
moves material points in the direction of the axis χ = E1. If one were to insist to
consider the evolution of the dynamics for a given value of the coordinate x1, it would
lead to the spatial representation of the elastic model of the tube. Physically, this would
give the description of the tube’s motion in fixed spatial coordinates, similar to Eulerian
description of fluid’s motion. Unlike the fluid case, however, describing elastic motion
in Eulerian framework is known to be notoriously difficult from both mathematical and
physical considerations [77].

However, if one assumes both inextensibility of the tube and no elastic deformations
of the tube’s axis, then the description of elastic motion of the walls in our method, i.e.,
the convective elastic frame coincides with the spatial frame. All previous works on the
subject have implicitly made this assumption. Thus, we will spend some time investigat-
ing the inextensible and unshearable tube case, both in order to connect with previous
works, and also to make analytic progress for the case of traveling wave solutions.

Lagrangian variational formulation for compressible fluids in expandable
straight tubes. We consider the Lagrangian given by

`(u, ξ, S,R, Ṙ) =

∫ L

0

[
1

2
ξu2 +

1

2
aṘ2 − ξe

(
ξ

A(R)
, S

)
− F (R,R′)

]
ds. (4.4)

The variational principle is written as

δ

∫ T

0

`(u, ξ, S,R, Ṙ)dt = 0, (4.5)

for variations δu = ∂tη+u∂sη−η∂su, δξ = −∂s(ξη), δS = −η∂sS, where η(t, s) vanishes
at t = 0, T and for variations δR vanishing at t = 0, T . This variational principle is
obtained, exactly as earlier, by rewriting the classical Hamilton principle

δ

∫ T

0

L(ϕ, ϕ̇, R, Ṙ)dt = 0

in terms of the Eulerian variables u = ϕ̇ ◦ ϕ−1, ξ = (ξ0 ◦ ϕ−1)∂sϕ
−1, S = S0 ◦ ϕ−1 and

computing the variations δu, δξ, δS, induced by δϕ. By applying (4.5) and collecting
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terms proportional to η and δR we get the system (4.1). Equations in (4.2) are deduced
from the relations ξ = (ξ0 ◦ ϕ−1)∂sϕ

−1 and S = S0 ◦ ϕ−1.
By taking the Legendre transform (u, ξ, S,R, Ṙ) 7→ (ν, ξ, S,R, pR), with ν = δ`

δu
and

pR = δ`
δṘ

we immediately obtain that the system (4.1)–(4.2) is Hamiltonian with respect
to the Poisson bracket

{f, g}R + {f, g}can

where the term is given in (3.23) and the second term is the canonical Poisson bracket
in R and pR.

Incompressible fluids in expandable straight tubes. In the incompressible case,
we shall only treat the case when thermodynamic effects may be neglected. In general,
thermodynamic effects for the incompressible fluid may be considered by using the La-
grangian (4.4) with an additional incompressibility conditions. Such considerations may
be important later for the cases when we would want to introduce friction and thermal
effects. However, for most applications, such as engineering and blood flows, thermody-
namic effects are negligible. We will thus consider ρ = ρ0 = const and the Lagrangian
in the form

`(u, ξ, R, Ṙ) =

∫ L

0

[
1

2
ξu2 +

1

2
aṘ2 − F (R,R′)

]
ds . (4.6)

The incompressibility constraint is included via the Lagrange multiplier µ in a similar
way with §2.7, thus yielding the variational principle

δ

∫ T

0

[
`(u, ξ, R, Ṙ) +

∫ L

0

µ
(
A(R)− (A0 ◦ ϕ−1)∂sϕ

−1
)

ds

]
dt = 0 , (4.7)

with variations δϕ and δR vanishing at t = 0, T and variations δµ, where u = ϕ̇ ◦ ϕ−1

and ξ = (ξ0 ◦ ϕ−1)∂sϕ
−1. In applying (4.7), the terms proportional to η, δR, and

δµ give, respectively, the fluid momentum conservation, the equation for the radius,
and the incompressibility condition which we differentiate once with respect to time for
convenience. We get the system

∂t(ρ0Au) + ∂s(ρ0Au
2) = −A∂sµ

aR̈− ∂s
∂F

∂R′
+
∂F

∂R
= 2πR(µ− pext)

∂tA+ ∂s(Au) = 0 ,

(4.8)

where we recall that ξ = ρ0A, A(R) = πR2, and ρ0 = const.

4.2 Comparison with previous works

Motion of a compressible fluid in a nonuniform tube with rigid walls. For a
prescribed cross-section A(s), the compressible system (4.1)–(4.2) reduces to

∂t(ρAu) + ∂s(ρAu
2) = −A∂sp

∂t(ρA) + ∂s(ρAu) = 0

∂tS + u∂sS = 0,

(4.9)
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since the second equation in (4.1) can be discarded for rigid walls. The first two equations
can be written in the form

∂tρ+ u∂sρ+ ρ∂su+ ρu
∂sA

A
= 0

∂tu+ u∂su+ 1
ρ∂sp = 0

(4.10)

which are exactly the equations (8.1) and (8.2) of [73] describing the motion of gas in a
tube with prescribed cross-section. Moreover, we can notice that since p = p(ρ, S), we
have

∂tp+ u∂sp =
∂p

∂ρ
(∂tρ+ u∂sρ) +

∂p

∂S
(∂tS + u∂sS) .

Thus, the third equation of (4.9) is equivalent to

∂tp+ u∂sp = c2 (∂tρ+ u∂sρ) , (4.11)

which is exactly equation (8.3) of [73].

Fluid motion in straight tubes with deformable walls. We are not aware of any
work of compressible fluid inside a tube with stretchable walls, as described in (4.1)–
(4.2). We thus study the connection of its incompressible version, i.e., system (4.8),
with the established models for fluid motion inside a tube with stretchable walls [1], see
also [4, 5, 13,62,63], further summarized in review [64],

ρ0(∂tu+ u∂su) = −∂sp− τ(u,A)

∂tA+ ∂s(Au) = 0

p− pext = Φ(A)− T∂ssA,
(4.12)

where ρ0 is a constant, pext is the external pressure, the function Φ(A) is called the
tube law and is such that Φ(A0) = 0 with A0 the reference cross-section, and T∂ssA
is a longitudinal stretching. The first two equations of this system coincide with the
fluid momentum and incompressibility condition of the system (4.8). The term τ(u,A)
describes the friction in the tube and is neglected in our model. Examples of Φ(A)
encountered in the literature are Φ(A) = β

(√
A−
√
A0

)
/
√
A0 or Φ(A) = β

(
(A/A0)β1 −

1
)
. In our case, the last equation in (4.12) is recovered from the second equation in (4.8)

by a particular choice of F (R,R′). Indeed, with

F (R,R′) = A(R)pext +
T

2

(
∂s(A(R))

)2
+ f(A(R)), (4.13)

where the function f(A) is such that ∂f
∂A

= Φ(A), our equation (with a = 0) gives

2πRp = 2πRpext +
∂F

∂R
− ∂s

∂F

∂R′
= 2πRpext + 2πR

∂f

∂A
− (2π)2RT ((R′)2 +RR′′)

= 2πRpext + 2πR
∂f

∂A
− 2πRT∂ss(πR

2) = 2πR (pext + Φ(A)− T∂ssA) ,

which coincides with the last equation in (4.12).
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Propagation of pressure disturbances in the tube. The question of pressure pulse
propagation through arteries is an important problem that has received considerable
attention in the literature. The easiest way to derive this equation is to start with a
system of mass and momentum conservation laws for the fluid in the following form [64]

∂tA+ ∂s(Au) = 0

∂tu+ u∂su+
1

ρ0

∂sp = 0 , ρ0 = const.
(4.14)

This system arises from the first and last equation of our system (4.8) taking µ = p.
Following [64], one would take A = A(p), assuming a given function of compliance of
the wall with respect to internal pressure. This assumption leads to a closed system of
equations for pressure and velocity

A′(p)∂tp+ ∂s (A(p)u) = 0

∂tu+ u∂su+
1

ρ0

∂sp = 0 , ρ0 = const.
(4.15)

A wave equation for the velocities can be obtained in the limit of small deviations from
the equilibrium values, see (50) in [64].

In our system (4.8) treating the incompressible case, the pressure-like term µ comes as
the Lagrange multiplier for incompressibility. Nevertheless, our system (4.8) does recover
(4.15). Indeed, suppose that in the second equation of (4.8) the elastic function F is only
dependent on R and not on its derivatives, and that the inertia terms proportional to
R̈-equation are neglected (a = 0). Then, the second equation in (4.8) yields an algebraic
relation µ = µ(R), or, alternatively, A = A(µ). The rest of the derivation follows by the
substitution of A = A(µ) into the first and third equation of (4.8).

Models involving wall inertia. More complex models which involve terms with time
derivatives of R in the equation for the radius have the form [2,3]:

∂tG+ ∂s

(
α
G2

A

)
+
A

ρ
∂sp+K

G

A
= 0

α
∂2R

∂t2
− γ1

∂R

∂t
− a∂

2R

∂s2
− c ∂

3R

∂s2∂t
+ bR = p− pext

∂tA+ ∂sG = 0,

(4.16)

where G is the flux through the cross-section of the tube and α, a, c, K are constant
coefficients. In our approximation of inviscid plug flow, G = Au, equations (4.16) have
a dimensionless coefficient of order 1 in front of the term ∂s(Au) since the averaging
is done based on the Poiseuille flow profile rather than inviscid plug flow treated in
our paper. Keeping that in mind, the third equation of continuity coincides with ours,
apart from that dimensionless coefficient. The first equation of (4.16) coincides with the
first equation of our system (4.8), apart from the last term proportional to K. That
term comes from the fluid friction and is not present in our theory. Note however, that
the existence of such a term for describing friction can be introduced in the variational
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network as well [60], although we postpone this discussion for further studies. The
term proportional to γ in the second equation of (4.16) comes from the dissipative
motion of the tube’s wall and is not present in our variational model, although it could
be introduced using the Lagrange-d’Alembert principle to incorporate external forces.
Although this dissipation term is important for arterial flow applications, we shall not
consider it as our primary focus is the tube in air where the dissipation of the motion
of tube’s wall can be neglected. A complete variational formulation including all these
effects as irreversible processes can be developed by combining the approach in this paper
with that of [78,79]. The terms proportional to the coefficients a can be incorporated in
our theory by a particular choice of F (R,R′). The term proportional to the coefficient c
describes viscoelastic effects essential for arteries flow and is not present in our theory.
We shall note that more complex equations for the radius R, for example, involving
terms proportional to ∂4R/∂s4 can be naturally incorporated into our system if the
elastic energy of wall deformation is allowed to depend on R′′, i.e., F = F (R,R′, R′′).
Finally, we note that the more general system (2.50) provides a rigorous treatment of
the longitudinal deformations of the rod.

4.3 Traveling wave solutions and numerical simulations

Let us now study the solutions representing nonlinear traveling waves, i.e. solutions
of (4.1)–(4.2) of the form f(t, s) = f(s − ct) where c is the speed of the wave to be
determined. In what follows, we denote the derivative with respect to the argument
x = s − ct by primes. Conservation of entropy (4.2) gives S ′ = 0 or S = S0 away from
the shock, so the dynamics is isentropic. Therefore, we will denote p = p(ρ) for a given
S = S0.

The ξ-equation of (4.2) leads to the integrated conservation of mass written as

πR2ρ(u− c) = πR2
±ρ±(u± − c) , (4.17)

where ρ±, u±, R± are the values at x = ±∞.
The first equation in (4.1) can be combined with the conservation of mass to provide

an integral of motion away from the shock :

u
(1

2
u− c

)
+ h(ρ, S±) = u±

(1

2
u± − c

)
+ h(ρ±, S±) , (4.18)

where h(ρ, S) = p/ρ+ e is the enthalpy. For given R and c, equations (4.17) and (4.18)
give two algebraic equations for the two unknowns u and ρ, denoted u = u(R; c) and
ρ = ρ(R; c). The second equation in (4.1) reduces to

− ac2R′′ +
d

dx

∂F

∂R′
− ∂F

∂R
+ 2πR (p(ρ, S±)− pext) = 0 , (4.19)

with R′(x)→ 0 when x→ ±∞.

Numerical solutions. To illustrate our method, we take an undisturbed tube which
is made out of 1mm soft rubber wall with inner radius R− = 5 cm, wall thickness
h = 1 mm, Young modulus E = 5 MPa, and Poisson ratio σ = 0.5, giving shear modulus

29



G = 1.66 MPa through E = 2G(1 + σ). The density of the rubber is ρs = 1522 kg/m3

and the gas in its initial state x→ −∞ is at rest (u− = 0), and at atmospheric pressure
with room temperature, corresponding to the density ρ = 1.225 kg/m3. We assume that
the gas is perfect with adiabatic coefficient γ = Cp/Cv = 1.4 and equation of state
p = (γ− 1)ρe, with the external pressure p− = pext = 1 atm. We use the simplest elastic
energy 2F (R,R′) = β1R

′2 + β2(R−R−)2 [2] with:

β1 = 2πKGhR− , β2 =
2π

R−

Eh

1− σ2
, a = 2πR−ρsh, (4.20)

with K the Timoshenko coefficient, β1 ' 1.14 · 105 N/m, β2 ' 8.37 · 105 N/m3, a '
0.4782 kg/m. We are looking for a solution R = R(x) having a shock satisfying the
Rankine-Hugoniot conditions.

We are looking for a solution that is smooth for x > 0 and x < 0, tends to steady state
R = R− as R→ −∞ and also tends to a fixed state R = R+ as x→ +∞. Additionally,
the solution R(x) and R′(x) is continuous at the shock, whereas the variable u(x),
ρ(x), and S(x) have a jump at the shock satisfying Rankine-Hugoniot conditions. For
a chosen value of R = Rs at the shock, such solution will only exist for particular
value of c, also yielding the limiting value R = R+ that is dependent on the choice
of Rs. As is shown in [73], the jump of entropy across the shock is always positive,
S+ − S− > 0. On Figure 4.1, we present a solution computed at c ' 447 m/s, with the
limiting pressure behind the shock wave being p+ ' 1.826 atm. The solution is presented
in the dimensionless coordinates x/R− and (y, z)/R−.

We shall also note that physically, one expects monotonic solution in R(x). From
(4.19), such solutions only exist for c < c∗

√
β1/a ' 488 m/s.

It is clear that the tube plays an important role in the propagation of the shock,
particularly on shock speed. In order to investigate this effect further, we study the
dependence of the shock’s speed on the effective strength of the shock which we define
as z = (p+−p−)/p−. For experimental realization of the flow inside the tube, p− and p+

which are pressures at the end of the tube, are variable parameters, and the strength of
the shock itself at the tube is computed subject to setting these parameters. This is in
contrast to the classic 1D shocks where specifying the pressures immediately before and
after the shock determine the result for the whole system. We plot the Mach number
M = c−u−

cs−
defined as the ratio of shock’s speed to the sound speed cs

2
− = γ p−

ρ−
in front

x → −∞ of the shock. The results are summarized on Figure 4.2, plotted with a solid
line. On the same Figure, we also plot the Mach number computed from the classical

formula M =
(

1 + 1+γ
2γ
z
)1/2

from [73]. Note the discrepancy between the Mach numbers

for the classic shock and our case which is purely due to the effect of the tube.

5 Conclusions

In this paper, we have derived the general equations of motion for a tube with com-
pliant walls conveying an inviscid fluid which may be compressible or incompressible.
The system is capable to incorporate arbitrary three-dimensional deformations, treat
discontinuities in the fluid flow such as shock waves, and incorporate arbitrary elasticity
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Figure 4.1: A shock propagating along a tube. Propagating shock is shown in red,
moving in the direction of positive x with velocity c, i.e. s = x− ct. The position of the
shock is chosen to be at x = 0. The pressure is increasing towards larger x, reaching the
limiting value 1.965 atm. The speed of the shock is computed to be c ∼ 447 m/s. The
centerline of the tube is shown with a solid black line, and the undisturbed position of
the cross-section of the tube are shown by solid circles.

properties of the compliant walls. In the model presented here, the cross-section of the
tube is assumed circular, as it is described by a single function R(t, s). More generally,
one can extend this model to include an elliptical cross-section of the tube, parameter-
ized by e.g. its semi-axes a(t, s) and b(t, s), or even more complex shapes with several
parameters characterizing it. We shall note that such an extension is mathematically
doable in our model, although the resulting equations become quite cumbersome. It is
interesting to investigate, however, if these equations lead to an analytical description
of the instability, and even local collapse when the cross-sectional area of the tube tends
to 0 at a particular value of s and t. Such a finite-time singularity, if it exists, would be
an interesting feature of the problem.

Another interesting development of the model would be the inclusion of friction
using a lubrication approach, as developed in [80,81]. It would then be natural to merge
this friction term with the recently developed variational approach to continuum systems
with irreversible processes [78,79]. This approach should be able to incorporate both the
inertial and the frictional terms in the fluid, the tube, and the wall motion consistently
in a single model. These and other interesting questions will be addressed in future
work.
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Figure 4.2: Mach number of the shock as a function of shock’s strength z = ∆p/p (solid
line). We also present the formula for the Mach number from [73] (dashed line).
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[66] J. C. Simó, J. E. Marsden, and P. S. Krishnaprasad. The Hamiltonian structure of nonlinear
elasticity: The material and convective representations of solids, rods, and plates. Arch. Rat.
Mech. Anal., 104:125–183, 1988.

[67] D. D. Holm and V. Putkaradze. Nonlocal orientation-dependent dynamics of charged strands and
ribbons. C. R. Acad. Sci. Paris, Sér. I: Mathématique, 347:1093–1098, 2009.
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