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1 Introduction

We consider the Boussinesq equations in the space time cylinder R2 × (−1, 0)

(1.1)







∂tv + (v · ∇)v = e1θ −∇p, ∇ · u = 0,

∂tθ + (v · ∇)θ = 0,

where v = (v1(x, t), v2(x, t)), (x, t) ∈ R
2 × (−∞, 0). This is an important equation

modelling the dynamics of the heat convection in the atmospheric science(see e.g. [10]).
Moreover, it has essentially same structure as the axisymmetric 3D Euler equations off
the axis([9]). Therefore, the study of the system (1.1) could provide us with information
useful to understand the Euler equations. In [2] the first author of this paper proved
the local well-posedness in standard Soblev space setting Hm(R2), m > 2, and also the
following Beale-Kato-Majda[1] type (non)blow-up criterion is deduced; for any m > 2

(1.2) lim sup
t→0−

(‖v(t)‖Hm+‖θ(t)‖Hm) < +∞ if and only if

∫ 0

−1

‖∇θ(t)‖L∞dt < +∞.

See also [11, 7] for the other forms of criterion, using different functional setting, while
a special type of scenario of singularity is excluded in [5]. We note the following scaling
property of the system (1.1); it is invariant under the transform

(v(x, t), θ(x, t)) 7→
(

λαv(λx, λα+1t), λ2α+1θ(λx, λα+1t)
)

∀(x, t) ∈ R
2 × R
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for all λ > 1, α > −1. This leads us to the following natural definition.

Definition 1.1. Let (v, θ) ∈ C([−1, 0);W 2,p(R2)), p > 2, be a local in time classical
solution of (1.1), which blows up at t = 0. We say it is of Type I with respect to v, if

sup
−1<t<0

(−t)‖∇v(t)‖L∞ < +∞,

while we say it is of Type I with respect to θ, if

sup
−1<t<0

(−t)2‖∇θ(t)‖L∞ < +∞.

The aim of the present paper is to exclude a possible Type I blow-up at time t = 0.
For the definition of Besov space Ḃ0

∞,∞(Rn), used in the theorem below, see Section 2.

Theorem 1.2. Let (v, θ) be a solution of (1.1) in R
2 × (−1, 0), which is regular in

[−1, 0). Furthermore, we assume that v(−1), θ(−1) ∈ W 2, p(R2) for p > 2, and at least
one of the following conditions,

(i)
lim sup

t→0−
(−t)‖∇v(t)‖L∞ < 2.

(ii)
0

∫

−1

(−t)‖∇θ(t)‖L∞dt < +∞.

(iii)
∫ 0

−1

‖ø(t)‖Ḃ0
∞,∞

dt+

∫ 0

−1

(−t)‖∇θ(t)‖Ḃ0
∞,∞

dt < +∞.

(iv)
∫ 0

−1

‖ø(t)‖Ḃ0
∞,∞

dt+ sup
−1<t<0

(−t)2‖∇θ(t)‖L∞ < +∞.

Then both v and θ belong to L∞(−1, 0;W 2, p(R2)).

Remark 1.3. (a) In [2] (see also [8]) it is proved that if a solution to the 3D Euler
equations on R

3 × [−1, 0) satisfies v(−1) ∈ W 2, p(R2) and

(1.3) lim sup
t→0−

(−t)‖∇v(t)‖L∞ < 1.

Then, v ∈ L∞(−1, 0;W 2, p(R2)). Note that the condition (i) is a relaxed version of (1.3).
It is also interesting to notice that in a recent paper[6] Elgindi and Jeong constructed
explicitly blowing up solution, which has linear growth at spatial infinity, and is defined
in a domain D ⊂ R

2 with a corner. The solution satisfies

lim
t→0−

{

(−t)‖∇v(t)‖L∞(D) + (−t)2‖∇θ(t)‖L∞(D)

}

< +∞,
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and the blow-up happens at every point in D.

(b) The main novelty in the conditions (ii) and (iii) is the extra factor (−t) in the

integral of the norms of |∇θ(t)|. This factor makes the integral
∫ 0

−1
(−t)‖∇θ(t)‖L∞dt

scaling invariant quantity, while the stronger integral
∫ 0

−1
‖∇θ(t)‖L∞dt is not. Similar

remark holds for
∫ 0

−1
‖∇θ(t)‖Xdt with X = BMO or Ḃ0

∞,∞.

(c) As far as the authors know it is still an open question if the regularity of the
system (1.1) is guaranteed only by the vorticity integral condition, say

(1.4)

∫ 0

−1

‖ω(t)‖L∞dt < +∞.

The above theorem with the condition (iv) says that if (1.4) holds, then any singularity,
which is of Type I with respect to θ is excluded.

At this moment we could not omit the vorticity integral in the condition (iv) above, but
if we modify Type I condition on ∇θ logaritmmically as well as imposing the smallness,
then this is possible as follows.

Theorem 1.4. Let (v, θ) be a solution of (1.1) in R
2 × (−1, 0) which is regular in

[−1, 0). Furthermore, we assume that v(−1), θ(−1) ∈ W 2, p0(R2) for some p0 > 2.
There exists ε > 0 depending only on p0, such that if

(1.5) lim sup
t→0−

(−t)2 log(−1/t)‖∇θ(t)‖L∞ ≤ ε,

then both v and θ belong to L∞(−1, 0;W 2, p0(R2)).

2 Proof of the Main Theorems

We introduce the space Ḃ0
∞,∞(Rn) below. Let ϕ ∈ S, where S is the the Schwartz

class of rapidly decreasing functions, and let ϕ̂ be its Fourier transform, defined by
ϕ̂(ξ) =

∫

Rn e
−2πix·ξϕ(x)dx. Then, we consider ϕ satisfying the following conditions

Supp ϕ̂ ⊂ {ξ ∈ R
n |

1

2
≤ |ξ| ≤ 2}, ϕ̂ ≥ c > 0 if

2

3
< |ξ| <

3

2
, and

∑

j∈Z

ϕ̂j(ξ) = 1,

where we defined ϕ̂j = ϕ̂(2−jξ). Construction of the sequence {ϕj}j∈Z is well-known(see
e.g. [4]). Then, we say f ∈ Ḃ0

∞,∞(Rn) if and only if supj∈Rn ‖ϕj ∗ f‖L∞ := ‖f‖Ḃ0
∞,∞

<

+∞. The basic properties of Ḃ0
∞,∞(Rn) useful for us are the followings.

(i) Embedding properties:

(2.1) L∞(Rn) →֒ BMO(Rn) →֒ Ḃ0
∞,∞(Rn),
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(ii) The logarithmic Sobolev inequality,

(2.2) ‖f‖L∞ ≤ c(1 + ‖f‖Ḃ0
∞,∞

log(e+ ‖f‖W s,p)), s > n/p.

where the constant c =: cls depends on s and p.

(iii) Boundedness on the Calderon-Zygmund operators, in particular applying to the
Bio-Savart formular one has

(2.3) ‖∇v‖Ḃ0
∞,∞

≤ c‖ω‖Ḃ0
∞,∞

,

where (v, ω) satisfies ∇ · v = 0,∇× v = ω.

Proof of Theorem1.2 :

Proof for (iii): Let q > 2. We apply the operator ∂i to the vorticity equation, multi-

plying the resultant equation by ∂iω|∇ω|q−1, and integrating it over R
2. Then, after

the integration by part and using the Hölder inequality, we are led to

d

dt
‖∇ω‖Lq ≤ ‖∇v‖L∞‖∇ω‖Lq + ‖∇2θ‖Lq

= ‖∇v‖L∞‖∇ω‖Lq + (−t)−1(−t)‖∇2θ‖Lq .(2.4)

Next, we apply the operator ∂i∂j to both sides of the θ equation, multiply both
sides the by ∂i∂jθ|∇

2θ|q−2, and sum over i, j = 1, 2, 3, and the integrate it over R
2.

This, applying the integration by part and the Hölder inequality, yields the following
inequality

(2.5)
d

dt
‖∇2θ‖Lq ≤ 2‖∇v‖L∞‖∇2θ‖Lq + ‖∇θ‖L∞‖∇2v‖Lq .

Multiplying both sides of (2.5) by (−t), we see that

d

dt
(−t)‖∇2θ‖Lq + ‖∇2θ‖Lq

≤ 2‖∇v‖L∞(−t)‖∇2θ‖Lq + (−t)‖∇θ‖L∞‖∇2v‖Lq

≤ 2‖∇v‖L∞(−t)‖∇2θ‖Lq + ccz(−t)‖∇θ‖L∞‖∇ω‖Lq(2.6)

Now define

Ψ(t) := ‖∇ω‖Lq + (−t)‖∇2θ‖Lq , t ∈ (−1, 0).

Adding the last two inequalities (2.4) and (2.6), we are led to

Ψ′ ≤
(

2‖∇v(t)‖L∞ + (−t)−1 + ccz(−t)‖∇θ(t)‖L∞

)

Ψ.(2.7)
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By means of the logarithmic Sobolev embedding, we find

‖∇v(t)‖L∞ ≤ c
{

1 + ‖∇v(t)‖Ḃ0
∞,∞

log(e+ ‖∇2v(t)‖Lq)
}

≤ c
{

1 + ‖ω(t)‖Ḃ0
∞,∞

log(e+ ‖∇ω(t)‖Lq)
}

≤ c
{

1 + ‖ω(t)‖Ḃ0
∞,∞

log(e+Ψ(t))
}

.(2.8)

Similarly,

(2.9) ‖∇θ‖L∞ ≤ c
{

1 + ‖∇θ(t)‖Ḃ0
∞,∞

log(e+Ψ(t))
}

.

Inserting (2.8) and (2.9) into (2.7), it follows

Ψ′ ≤
{

c
[

1 + (‖ω(t)‖Ḃ0
∞,∞

+ (−t)‖∇θ(t)‖Ḃ0
∞,∞

) log(e+Ψ(t))
]

+ (−t)−1
}

Ψ(t).(2.10)

Setting y(t) = log(e +Ψ(t)), we infer from (2.10) the differential inequality

(2.11) y′ ≤ ca(t)y + c(−t)−1, a(t) = ‖ω(t)‖Ḃ0
∞,∞

+ (−t)‖∇θ(t)‖Ḃ0
∞,∞

which can be solved as

y(t) = log(e+Ψ(t))

≤ y(t0)e
c
∫ t
t0

a(s)ds
+ c

t
∫

t0

(−s)−1ec
∫ t
s
a(τ)dτds(2.12)

We now choose t0 so that e
c
∫ 0
t0

a(s)ds
< 2. Then, (2.12) implies

(2.13) log(e +Ψ(t)) ≤ c log(e+Ψ(t0)) + c log(−1/t) ∀t ∈ (t0, 0),

where c > 2 is another constant. From θ-equation we have immediately

(2.14)
∂

∂t
|∇θ|+ (v · ∇)|∇θ| ≤ |∇v||∇θ|.

Let t ∈ (−1, 0) be arbitrarily chosen but fixed. Let x0 ∈ R
2. By X(x0, t) we denote the

trajectory of the particle which is located at x0 at time t = t0, defined by the following
ODE

(2.15)
dX(x0, t)

dt
= v(X(x0, t), t) in [−1, 0), X(x0, t0) = x0.

The Lipschitz continuity of v(s) in R
2 for all s ∈ (−1, 0) ensures the existence and

uniqueness a solution to (2.15) in [−1, 0). Then, (2.14) can be written as

(2.16)
∂

∂t
|∇θ(X(x0, t), t)| ≤ |∇v(X(x0, t), t)||∇θ(X(x0, t), t)|,
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which can be integrated along the trajectories as

|∇θ(X(x0, t), t)| ≤ |∇θ(x0)| exp

(
∫ t

t0

|∇v(X(x0, s), s)|ds

)

.

Therefore, we estimate, using (2.13) as

‖∇θ(t)‖L∞ ≤ ‖∇θ(t0)‖L∞ exp

(
∫ t

t0

‖∇v‖L∞ds

)

≤‖∇θ(t0)‖L∞ exp

(

c

∫ t

t0

{

‖ω(s)‖Ḃ0
∞,∞

[log(e+Ψ(t0)) + log(−1/s)] + 1
}

ds

)

≤‖∇θ(t0)‖L∞ exp

(

c {log(e+Ψ(t0)) + log(−1/t)}

∫ t

t0

‖ω(s)‖Ḃ0
∞,∞

ds+ c(t− t0)

)

(2.17)

Choosing t0 ∈ (−1, 0) so that

c

∫ 0

t0

‖ω(s)‖Ḃ0
∞,∞

ds <
1

2
,

we deduce from (2.17) that

‖∇θ(t)‖L∞ ≤ ‖∇θ(t0)‖L∞(e+Ψ(t0))
cec(−t)−

1
2 ∀t ∈ (t0, 0).

Therefore,
∫ 0

−1
‖∇θ‖L∞dt < +∞. Applying the well-known blow-up criterion in [3], we

obtain the desired result.

Proof for (iv) : Under the hypothesis of (iv) (2.7) is replaced by

Ψ′ ≤
(

2‖∇v(t)‖L∞ + c(−t)−1
)

Ψ,(2.18)

and the remaing part of the proof is the same as in (iii).

Proof for (ii): Applying curl to the velocity equation in (1.1), we obtain

(2.19) ∂tω + v · ∇ω = −∂2θ in R
2 × [−1, 0),

where ω = ∂1v2 − ∂2v1.
Using the particle trajectories(with X(x0,−1) = x0) as the above, we have from

(2.19)

(2.20)
d

dt
|ω(X(x0, t), t)| ≤ |∂2θ(X(x0, t), t)| in [−1, 0),

which implies that

(2.21) ‖ω(s)‖L∞ ≤ ‖ω(−1)‖L∞ +

∫ s

−1

‖∂2θ(τ)‖L∞dτ.
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Integrating both sides of (2.21) over [−1, t), t ∈ (−1, 0) with respect to s, and applying
integration by parts, we get

∫ t

−1

‖ω(s)‖L∞ds ≤ (1 + t)‖ω(−1)‖L∞ +

∫ t

−1

∫ s

−1

‖∂2θ(τ)‖L∞dτds

= (1 + t)‖ω(−1)‖L∞ +

∫ t

−1

{

d

ds
(s)

∫ s

−1

‖∂2θ(τ)‖L∞dτ

}

ds

= (1 + t)‖ω(−1)‖L∞ +

∫ t

−1

(−s)‖∂2θ(s)‖L∞ds+ t

∫ t

−1

‖∂2θ(s)‖L∞ds

≤ ‖ω(−1)‖L∞ +

∫ t

−1

(−s)‖∂2θ(s)‖L∞ds.

Therefore,

t
∫

−1

‖ω(s)‖L∞ds+

t
∫

−1

(−s)‖∇θ(s)‖L∞ds

≤ ‖ω(−1)‖L∞ + 2

0
∫

−1

(−s)‖∇θ(s)‖L∞ds < +∞.(2.22)

Therefore, from the embedding (2.1) the condition (iii) is satisfied.

Proof for (i) : By hypothesis (i) there exists t0 ∈ (−1, 0) and δ > 0 such that

sup
t0<t<0

(−t)‖∇v(t)‖L∞ ≤ 2− δ.

Multiplying (2.14) by −τ , we have

∂

∂τ
((−τ)|∇θ|) + |∇θ|+ (v · ∇)(−τ |∇θ|) ≤ (−τ)|∇v||∇θ| ≤ (2− δ)|∇θ|,

which after integration over (t0, s) along the trajectory gives

(−s)|∇θ(X(x0, s), s)| ≤ (−t0)|∇θ(x0, t0)|+ (1− δ)

∫ s

t0

‖∇θ(τ)‖L∞dτ.

Let t ∈ (t0, 0). Then, for all s ∈ (t0, t) we have

(−s)‖∇θ(s)‖L∞ ≤ (−t0)‖∇θ(t0)‖L∞ + (1− δ)

∫ s

t0

‖∇θ(τ)‖L∞dτ.

Integrating the both sides of the above over (t0, t), and integrating by part, we get
∫ t

t0

(−s)‖∇θ(s)‖L∞ds ≤ (−t0)(t− t0)‖∇θ(t0)‖L∞ + (1− δ)

∫ s

t0

‖∇θ(τ)‖L∞dτ

≤ (−t0)
2‖∇θ(t0)‖L∞ + (1− δ)

{

(s‖∇θ(s)‖L∞ − t0‖∇θ(t0)‖L∞)−

∫ s

t0

τ‖∇θ(τ)‖L∞dτ

}

≤ (−t0)
2‖∇θ(t0)‖L∞ + (1− δ)(−t0)‖∇θ(t0)‖L∞ + (1− δ)

∫ t

t0

(−τ)‖∇θ(τ)‖L∞dτ.
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which implies

δ

∫ t

t0

(−s)‖∇θ(s)‖L∞ds ≤ (−t0)
2‖∇θ(t0)‖L∞ + (1− δ)(−t0)‖∇θ(t0)‖L∞ ,

Passing t → 0−, we obtain finally

δ

∫ 0

t0

(−s)‖∇θ(s)‖L∞ds ≤ (−t0)
2‖∇θ(t0)‖L∞ + (1− δ)(−t0)‖∇θ(t0)‖L∞ < +∞

and the condition (ii) is satisfied.

Proof of Theorem1.4 : From (1.5), we find t0 ∈ (−e−2, 0) such that

(2.23) ‖∇θ(s)‖L∞ ≤
ε

(−s)2 log(−1/s)
∀ s ∈ [t0, 0).

The inequality (2.20), following the argument of the proof for (ii), and combined with
(2.23) yields

‖ω(t)‖L∞ ≤ ‖ω(t0)‖L∞ +

t
∫

t0

‖∇θ(s)‖L∞ds

≤ ‖ω(t0)‖L∞ + ε

t
∫

t0

1

(−s)2 log(−1/s)
ds

≤ ‖ω(t0)‖L∞ + 2ε

t
∫

t0

log(−1/s)− 1

((−s) log(−1/s))2
ds

= ‖ω(t0)‖L∞ +
2ε

(−t) log(−1/t)
−

2ε

(−t0) log(−1/t0)

≤ ‖ω(t0)‖L∞ +
2ε

(−t) log(−1/t)
,(2.24)

where we used the fact that log(−1/s) ≤ 2 log(−1/s) − 2 for all s ∈ (−e−2, 0) in the
third inequality. We now define ε > 0 as follows

(2.25) ε :=
1

4max{cls, ccz}
.

Then from (2.7) combined with (2.8) together with (2.23) and (2.24) we find

y′ ≤ cls‖ω‖∞y + (−t)−1 + ccz(−t)‖∇θ(t)‖L∞

≤
( 2εcls
(−t) log(−1/t)

+ cls‖ω(t0)‖L∞

)

y + (−t)−1 + εccz(−t)−1 log(−1/t)

≤
( 1

2(−t) log(−1/t)
+ cls‖ω(t0)‖L∞

)

y +
5

4
(−t)−1 in (t0, 0),(2.26)
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where

y(t) = log(e+Ψ(t)), Ψ(t) := ‖∇ω(t)‖Lp0+(−t)‖∇2θ(t)‖Lp0 , t ∈ (−1, 0).

Integrating (2.26), we obtain

y(t) ≤ y(t0)e

t∫

t0

a(s)ds

+
5

4

t
∫

t0

(−s)−1e

t∫

s
a(τ)dτ

ds,(2.27)

where we set

a(t) =
1

2(−t) log(−1/t)
+ cls‖ω(t0)‖L∞ .

Applying integration by parts, we infer

t
∫

t0

(−s)−1e

t∫

s
a(τ)dτ

ds

=

t
∫

t0

d

ds
log(−1/s)e

t∫

s
a(τ)dτ

ds

= log(−1/t)− log(−1/t0)e

t∫

t0

a(τ)dτ

+

t
∫

t0

log(−1/s)a(s)e

t∫

s
a(τ)dτ

ds

≤ log(−1/t) +
1

2

t
∫

t0

(−s)−1e

t∫

s
a(τ)dτ

ds+ cls‖ω(t0)‖L∞

t
∫

t0

log(−1/s)e

t∫

s
a(τ)dτ

ds.

Absorbing the second term on the right hand side into the left, one has

t
∫

t0

(−s)−1e

t∫

s
a(τ)dτ

ds

≤ 2 log(−1/t) + 2cls‖ω(t0)‖L∞

t
∫

t0

log(−1/s)e

t∫

s
a(τ)dτ

ds.

Calculating

e

t∫

s
a(τ)dτ

= ecls‖ω(t0)‖L∞e
1
2

t∫

s

1
(−τ) log(−1/τ)

dτ

≤ ecls‖ω(t0)‖L∞ {log(−1/t)}
1
2(2.28)

9



for all s ∈ [t0, 0), we obtain from the above inequality

t
∫

t0

(−s)−1e

t∫

s
a(τ)dτ

ds

≤ 2 log(−1/t) + 2cls‖ω(t0)‖L∞ecls‖ω(t0)‖L∞{log(−1/t)}
1
2

0
∫

−1

log(−1/s)ds

≤ 2 log(−1/t) + c{log(−1/t)}
1
2 ,

where c = const is independent on t. Estimating the second term in (2.27) by the
estimate we have just obtained and the first term by (2.28) for s = t0, we arrive at

y(t) ≤
5

2
log(−1/t) + c{log(−1/t)}

1
2 ∀ t ∈ [t0, 0),

for some constant independent of t. Accordingly, there exists t1 ∈ (t0, 0) such that

(2.29) y(t) ≤ 3 log(−1/t) ∀ t ∈ [t1, 0),

By the aid of the logarithmic Sobolev embedding inequality, and observing (2.24)
together with (2.29) and (2.25), we see that for all t ∈ [t1, 0)

‖∇v(t)‖L∞ ≤ cls‖ω(t)‖L∞y(t) + cls ≤ 3cls‖ω(t0)‖L∞ log(−1/t) + 6εcls(−t)−1 + cls

≤ 3cls‖ω(t0)‖L∞ log(−1/t) +
3

2
(−t)−1 + cls.(2.30)

Thus,

(2.31) lim sup
t→0−

(−t)‖∇v(t)‖L∞ ≤
3

2
< 2.

Applying Theorem 1.2 (i), we get the assertion of the theorem.
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