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Abstract. We consider low energy configurations for the Heitmann-Radin sticky discs
functional, in the limit of diverging number of discs. More precisely, we renormalize the
Heitmann-Radin potential by subtracting the minimal energy per particle, i.e., the so called
kissing number. For configurations whose energy scales like the perimeter, we prove a com-
pactness result which shows the emergence of polycrystalline structures: The empirical mea-
sure converges to a set of finite perimeter, while a microscopic variable, representing the
orientation of the underlying lattice, converges to a locally constant function.

Whenever the limit configuration is a single crystal, i.e., it has constant orientation,
we show that the Γ-limit is the anisotropic perimeter, corresponding to the Finsler metric
determined by the orientation of the single crystal.
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Introduction

Potentials that are attractive at long range and repulsive at very short range model many
relevant systems and phenomena; among them, crystallization has a prominent place. A
phenomenological potential with these features, particularly popular in Materials Science, is
the Lennard-Jones potential. Maybe the most basic potential mimicking attractive/repulsive
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interactions and leading to crystallization is the one proposed by Heitmann and Radin [14].
In their model, particles are identified with sticky discs which maximize the number of their
contact points without overlapping each other. More precisely, given N discs in the plane,
having diameter all equal to one and centered in x1, . . . , xN , the corresponding Heitmann-
Radin energy is given by

E(x1, . . . , xN ) :=
1

2

∑
i 6=j

V (|xj − xi|) ,

where V is the Heitmann-Radin potential defined by

V (r) :=

 +∞ if r < 1 ,
−1 if r = 1 ,
0 if r > 1 .

In this paper we are interested in compactness and convergence results for almost minimizers
of the energy E , in the limit as N →∞ . Before describing our approach we recall the main
results about the minimizers of the energy E for finite N and on their behavior as N →∞ .
In the seminal paper [14], Heitmann and Radin prove that, for every fixed N ∈ N , all the
minimizers of the energy E among the configurations X = {x1, . . . , xN} are subsets of an
equilateral triangular lattice. Their proof of this result relies on an ansatz on the exact value
of the minimal energy which was previously provided by Harborth [13]. Moreover, the authors
exhibit some explicit minimizers for all number N of particles; such minimizers are regular
hexagons with side s whenever N = Ns = 1 + 6 + . . . + 6s , whereas, for general Ns < N <
Ns+1 , they are obtained by nestling the remaining discs around the boundary of the regular
hexagon constructed for Ns . Clearly, the empirical measures associated to such minimizers
converge (suitably scaled) to a macroscopic hexagon, referred to as Wulff shape. However, the
minimizing configurations are in general non-unique; in [9], the authors characterize, through
an explicit formula, all the number of particles N for which the minimizer is (up to a rotation
and translation) unique.

In [4] it is proven that, for any sequence of minimizers, the empirical measures converge to
a Wulff shape. In [15], a refined analysis for minimizers of the energy E for N particles shows

that the scaling law for the fluctuation about the asymptotic Wulff shape is C N3/4 for some
C > 0 , whereas in [8] the optimal constant C is explicitly provided.

It is well known that the Wulff shape is the solution of the isoperimetric problem for a
suitable anisotropic perimeter. It is then clear the link between the Heitmann-Radin energy
and perimeter-like functionals. This link has been exploited in [4] where it is proven that,
for configurations of N particles lying on the triangular lattice and with prescribed energy
upper bound scaling like a perimeter, the energy functionals Γ-converge, as N → +∞ , to
the anisotropic perimeter of the macroscopic shape. Clearly, minimizing the Γ-limit with a
volume constraint one obtains the Wulff shape, and this gives back that the empirical measure
of minimizers converge to the Wulff shape. In [10], exploiting a discrete Gauss-Bonnet formula,
for finite N , the energy of any configuration is rewritten in terms of a suitable discrete notion
of perimeter of the graph generated by the N particles.

In this paper we consider the asymptotic behavior of the Heitmann-Radin energy, in the
perimeter-scaling regime, without assuming that the particles lie on a reference lattice. In
this respect, we prove that the Heitmann-Radin energy enforces crystallization not only for
minimizers, but also for low energy configurations. But while for minimizers the orientation of
the underlying lattice is constant, for almost minimizers global orientation can be disrupted,
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giving rise to polycrystalline structures. Moreover, we compute the Γ-limit of the energy
functionals whenever the limiting orientation is constant, i.e., in the case of a single crystal.

We now describe in more details our approach. Consider a configuration of N particles. We
recall that, for minimizers, the particles belong to a triangular lattice, and most of them (for
large N) have exactly six nearest neighbors. In this respect, the minimal energy per particle
is equal to −6 , namely the opposite of the kissing number. Removing this bulk contribution
from the energy, a surface term remains, which corresponds to the energy induced by the
particles that have less than six neighbors. At a first glance, these particles can be identified
as boundary particles.

In order to introduce an internal variable, representing the local orientation of the crystal
lattice, we observe that, at least for minimizers, most of the particles are vertices of some
equilateral triangle. To these triangles one can easily associate some orientation, for instance
through the angles between its edges and some reference straight line. Since triangular faces,
edges and other geometrical objects play a role in our analysis, it is convenient to deal with
the notion of discrete graph generated by the particles; in this respect, we will adopt the
terminology and tools introduced in [10].

To any configuration of particles, we associate an empirical measure and a piecewise con-
stant orientation, defined on the triangular faces of the graph. We prove that, in the perimeter-
scaling energy regime, the empirical measures (suitably scaled) converge - up to a subsequence
- to the characteristic function of some set Ω , representing the macroscopic (poly)crystal.
Moreover, the regime we deal with provides uniform bounds for the SBV norm of the func-
tion representing the microscopic orientation of the underlying lattice. In turn, we prove that
the orientation converges to some limit function θ ∈ SBV (Ω) , where θ =

∑
j∈J θjχωj with

J ⊆ N and {ωj}j being a Caccioppoli partition of Ω . Here each ωj represents a grain of the
polycrystal Ω , endowed with orientation θj .

In the second part of the paper, we address the problem of computing the limit energy
functional. We achieve this task in the case of a single crystal: If the orientation θ is constant,
then the Γ-limit is given by the anisotropic perimeter of Ω , where the anisotropy corresponds
to a Finsler metric whose Wulff shapes are hexagons with orientation determined by θ . This
result clearly agrees with that of [4], the novelty being that here we do not assume that
the particles belong to some reference lattice. The proof of the Γ-liminf inequality, without
assuming crystallization exploits the representation formulas, introduced in [10], that allow to
rewrite the Heitmann-Radin energy in terms of the discrete perimeter of the graph generated
by the particles.

For polycrystals, where the orientation θ is not constant, one expects some additional
surface contribution, induced by grain boundaries. The sharp grain boundary energy, and in
turn the Γ-limit in the general case, are not provided in this paper. Some upper and lower
bounds are given in Proposition 3.1. Such bounds, although non optimal, are enough to show
that, depending on the shape of the limit set Ω , both the single crystal and the polycrystal
structure could be energetically favorable.

A natural question is whether our results can be extended to more general interaction
potentials, which are less rigid and take into account also elastic deformations. The crys-
tallization problem for general potentials, both for a finite and infinite number of particles,
is still an open research field which attracts much interest since decades [5]. For Lennard
Jones type potentials, in [16] it is proven that the asymptotic energy density of minimizers is
consistent with that of the regular triangular lattice. To our knowledge, our result is the first
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providing asymptotic (local) crystallization by compactness arguments for almost minimizers
of some explicit canonical, although very simple and rigid, interaction potential.

The techniques and results developed in this paper share many analogies with the so-called
tessellation problems. Among them we recall the classical honeycomb problem, which consists
in finding optimal clusters with minimal perimeter under volume constraints. Hexagonal
tessellation is known to be optimal in the flat torus, thanks to the celebrated work of Hales
[12]. A more quantitative analysis of this result is developed in [7] and, in the framework of
Γ-convergence, in [1].

In fact, our analysis also suggests new basic tessellation problems in Γ-convergence. A
prototypical example is briefly described and analyzed in the Appendix, while further gener-
alizations could deserve further investigations.

1. Description of the problem

In this section we introduce the notation we will use in the paper.

1.1. The energy functionals. For every ε > 0 let Vε : [0,+∞)→ [0,+∞] be the Heitmann-
Radin sticky disc potential [14] defined by

Vε(r) :=

 +∞ if r < ε ,
−1 if r = ε ,
0 if r > ε .

Given X := {x1, . . . , xN} a finite subset of R2 , the Heitmann-Radin energy of X is defined
by

Eε(X) :=
1

2

∑
i 6=j

Vε(|xj − xi|) .

Let M denote the class of Radon measures in R2 and let A be the class of empirical
measures defined by

A :=
{
µ ∈M : µ =

N∑
i=1

δxi , N ∈ N , xi 6= xj for i 6= j
}
.

Note that there is a one-to-one correspondence I from A to the class of finite subsets of
R2 . In view of this identification we can define the Heitmann-Radin energies on measures by
introducing the functionals Eε :M→ [0,∞] given by

(1.1) Eε(µ) =

{
Eε(I(µ)) if µ ∈ A ,
+∞ elsewhere.

1.2. Discrete graph representation. Let µ =
∑N

i=1 δxi ∈ A be such that Eε(µ) < +∞ and
set X = I(µ) . We say that xi and xj in X are linked by an edge, or bond, if their mutual
distance equals to ε and we write {xi, xj} for denoting such bond. We call Edε(X) the set of
the bonds of X and (X,Edε(X)) the bond graph of the configuration.

Since Eε(µ) < +∞ , simple geometric considerations easily imply that the bond graph is
a planar graph, i.e., for any two different edges {x, y} and {x′, y′} , the corresponding line
segments [x, y] and [x′, y′] do not cross.

It will be very useful to distinguish between “interior” and “boundary” edges. To this end
we first provide the notion of face as it is introduced in [10]. By a face f we mean any open
and bounded subset of R2 which is nonempty, does not contain any point x ∈ X , and whose
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Figure 1. Particle configuration and bond graph.

boundary is given by a cycle, i.e., ∂f = ∪ki=1[xi−1, xi] for some points x0, x1, .., xk = x0 ∈ X
with {xi−1, xi} ∈ Edε(X) . Notice that the points x0, .., xk−1 do not need to be pairwise dis-
tinct, as a face might contain “inner wire edges” (see the definition below). Note also that for
non-connected graphs, the definition above slightly differs from standard conventions because
ring-shaped regions bounded by two cycles are not faces. We denote by Fε(X) the set of faces
of the bond graph (X,Edε(X)) . Moreover, we define F∆

ε (X) as the set of faces f for which

k = 3 and F 6=∆
ε (X) := Fε(X) \ F∆

ε (X) .

Set v0(X) := ]X , v1(X) := ]Edε(X) , and v2(X) := ]Fε(X) , we define the Euler charac-
teristic of the graph (X,Edε(X)) as

(1.2) χ(X) :=

2∑
k=0

(−1)kvk(X) .

Then we define the following sets:

• Wire(X) is the set of edges that either do not lie on the boundary of any face or
lie on the boundary of precisely one face but not on the boundary of its closure;
• ∂ext(X) is the set of edges lying on the boundary of precisely one face and on the

boundary of its closure;
• ∂1

int(X) is the set of edges lying on a triangular face and on a non triangular face;
• ∂2

int(X) is the set of edges lying on two non triangular faces.

By [10, formula (3.7)], we have

(1.3) Eε(X) + 3]X = ]∂ext(X) + ]∂1
int(X) + 2]∂2

int(X)− 3]F 6=∆
ε (X) + 2]Wire(X) + 3χ(X) .

Note that

(1.4) Eε(X) + 3]X =
1

ε
Per
( ⋃
f∈Fε(X)

f
)

+
∑

f∈F 6=∆
ε (X)

(Per(f)

ε
− 3
)

+ 2]Wire(X) + 3χ(X) ,

where Per(A) denotes the De Giorgi’s perimeter of A for every measurable set A .

With a little abuse of notation, we will often write Edε(µ) , Fε(µ) , F∆
ε (µ) and F 6=∆

ε (µ) in

place of Edε(I(µ)) , Fε(I(µ)) , F∆
ε (I(µ)) and F 6=∆

ε (I(µ)) respectively.
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1.3. Grain orientations. Let µ ∈ A be such that Eε(µ) < +∞ . For every α ∈ R we define

P (α) := argmin
{∣∣∣α− kπ

3

∣∣∣ : k ∈ Z
}
∈ Z ,

with the convention that, if the argmin is not unique, then we choose the minimal one. Clearly

(1.5) P
(
α+ j

π

3

)
= P (α) + j for every j ∈ Z .

Let f ∈ F∆
ε (µ) and let w = eiαw be a unit vector parallel to one of the edges of f (with

arbitrary orientation). We set

(1.6) α(f) := αw − P (αw)
π

3
θ(f) := α(f) +

π

2
.

Since all the edges of an equilateral triangle are obtained by rotating one fixed edge by an
integer multiple of π

3 , in view of (1.5), the definitions of α(f) and θ(f) in (1.6) are well-
posed. Note also that θ(f) is the angle between e1 and one of the medians of f . Moreover,
by construction, α(f) ∈ (−π

6 ,
π
6 ] and hence θ(f) ∈ (π3 ,

2
3π] .

We set

(1.7) θε(µ) :=
∑

f∈F∆
ε (µ)

θ(f)χf .

1.4. Surface energy and Wulff shape. Let us introduce a Finsler norm ϕ whose unit ball
is a unitary hexagon in R2 . For every η ∈ R2 set

(1.8) ϕ(η) := min
{ 3∑
j=1

|λj | : η =
3∑
j=1

λjvj , λj ∈ R
}
,

where

(1.9) v1 = ei
π
6 , v2 = ei

π
2 , v3 = ei

5
6
π .

We define a one-parameter family of Finsler norms ϕθ , for θ ∈ (π3 ,
2
3π] by setting

(1.10) ϕθ(η) := min
{ 3∑
j=1

|λj | : η =
3∑
j=1

λjvj,θ, λj ∈ R
}
,

where vj,θ = ei(θ−
π
2

)vj for j = 1, 2, 3 . Note that ϕπ
2
≡ ϕ .

For every set G of finite perimeter, we set

Perϕθ(G) :=

∫
∂∗G

ϕθ(ν) dH 1 ,

where ν denotes the outer normal to ∂∗G and H 1 denotes the one dimensional Hausdorff
measure.

We denote by W the regular hexagon centered at the origin with area equal to one, defined
by

W :=
{
x ∈ R2 : |x · vi| ≤ 2−

1
2 3−

1
4 , i = 1, 2, 3

}
,

and set Wθ := eiθW for all θ ∈ R . These sets are referred to as Wulff shapes: it is well
known [11] that they are the solutions of the isoperimetric inequality corresponding to the
anisotropic perimeters ϕθ .
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1.5. Preliminaries on SBV functions. We refer to the book [3] for the definitions and
the main properties of BV and SBV functions, sets of finite perimeter, and Caccioppoli
partitions. Here we list few preliminaries and properties that will be useful in the following.
We begin by recalling some standard notation.

Let A ⊆ R2 be open. As customary, BV (A) (resp. SBV (A)) denotes the set of functions
of bounded variation (resp. special functions of bounded variation) defined on A and taking
values in R . Moreover, SBVloc(A) denotes the class of functions belonging to SBV (A′) for
all open bounded sets A′ ⊂⊂ A . Given any set D ⊂ R , the classes of functions BV (A;D) ,
SBV (A;D) and SBVloc(A;D) are defined in the obvious way.

We say that a set Ω ⊂ R2 has finite perimeter in A if χΩ ∈ BV (A) and we denote by
Per(Ω, A) the relative perimeter of Ω in A . It is well known that Per(Ω, A) = H 1(∂∗Ω∩A) ,
where ∂∗ denotes the reduced boundary. If A = R2 we simply say that Ω has finite perimeter
and we denote by Per(Ω) its perimeter. Finally, if Ω is a set of finite perimeter, a Caccioppoli
partition of Ω is a countable partition {ωj}j of Ω into sets of (positive Lebesgue measure and)
finite perimeter with

∑
j Per(ωj ,Ω) <∞ .

We recall that the distributional gradient Dg of a function g ∈ SBV (A) can be decomposed
as:

Dg = ∇gL2 A+ (g+ − g−)⊗ νgH1 Sg ,

where ∇g is the approximate gradient of g , Sg is the jump set of g , νg is a unit normal to
Sg and g± are the approximate trace values of g on Sg .

We recall a compactness result.

Theorem 1.1 (Compactness [2]). Let A be bounded and let {gh} ⊂ SBV (A) . Assume that
there exists p > 1 and C > 0 such that

(1.11)

∫
A
|∇gh|p dx+H1(Sgh) + ‖gh‖L∞(A) ≤ C for all h ∈ N .

Then, there exists g ∈ SBV (A) such that, up to a subsequence,

gh → g (strongly) in L1(A) ,

∇gh ⇀ ∇g (weakly) in L1(A;R2) ,

lim inf
h→∞

H1(Sgh ∩A
′) ≥ H1(Sg ∩A′) for every open set A′ ⊆ A .

(1.12)

In the following, we say that a sequence {gh} ⊂ SBV (A) weakly converges in SBV (A) to
a function g ∈ SBV (A) , and we write that gh ⇀ g in SBV (A) , if gh satisfy (1.11) for some
p > 1 and gh → g in L1(A) . The corollary below easily follows by Theorem 1.1.

Corollary 1.2. Let {gh} ⊂ SBV (R2) . Assume that there exists p > 1 and C > 0 such that

(1.13)

∫
R2

|∇gh|p dx+H1(Sgh) + ‖gh‖L∞(R2) ≤ C for all h ∈ N .

Then, there exists g ∈ SBV (R2) such that, up to a subsequence, (1.12) holds for every open
bounded set A ⊂ R2 .

We say that {gh} ⊂ SBVloc(R2) weakly converges in SBVloc(R2) to a function g ∈
SBVloc(R2) , and we write that gh ⇀ g in SBVloc(R2) , if gh ⇀ g in SBV (A) for every
open bounded set A .
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2. Γ-convergence analysis

In this section we study the asymptotic beaviour, as ε→ 0 , of the functionals Eε defined in
(1.1). More precisely, we consider the functionals Eε(µ) + 3µ(R2) and provide a compactness
and a Γ-convergence result.

2.1. Compactness.

Theorem 2.1. Let {µε} ⊂ M be such that Eε(µε)+3µε(R2) ≤ C
ε . Then, up to a subsequence,

(i) ε2
√

3
2 µε

∗
⇀ χΩ dx for some set Ω ⊂ R2 with χΩ ∈ BV (R2) ;

(ii) θε(µε) ⇀ θ in SBVloc(R2) , for some θ =
∑

j∈J θjχωj in SBV (R2) , where J ⊆ N ,

{ωj}j is a Caccioppoli partition of Ω , and {θj}j ⊂ (π3 ,
2
3π] .

Proof. The proof is divided into two steps.
Step 1. We first prove that (ii) holds true for some set Ω with finite perimeter. In view of

the energy bound and (1.4) we have

C ≥ ε(Eε(µε) + 3µε(R2)) ≥ Per
( ⋃
f∈Fε(µε)

f
)

+
1

4

∑
f∈F 6=∆

ε (µε)

Per(f)

≥ 1

4
Per
( ⋃
f∈F∆

ε (µε)

f
)

=
1

4
Per(Ωε),

where we have set Ωε :=
⋃
f∈F∆

ε (µε)
f . Then, the claim (ii) follows by the compactness

statement (a) of Theorem A.2.
Step 2. Now we prove (i) with Ω provided in Step 1. To this purpose, for every f ∈ F∆

ε (µε)
we denote by aj(f) (j = 1, 2, 3) the vertices of f , and we define

(2.1) µ̂ε :=
1

6

∑
f∈F∆

ε (µε)

3∑
j=1

δaj(f) , µ̃ε :=
∑

f∈F∆
ε (µε)

χf .

By the energy bound and (1.4),

C ≥ ε(Eε(µε) + 3µε(R2)) ≥ Per
( ⋃
f∈Fε(µε)

f
)

so that, by the isoperimetric inequality, we obtain

µ̃ε(R2) = |Ωε| ≤
∣∣∣ ⋃
f∈Fε(µε)

f
∣∣∣ ≤ C .

By the proof of Step 1 it follows that, up to a subsequence, µ̃ε → χΩ in L1(R2) .

We now show that ε2
√

3
2 µ̂ε− µ̃ε

∗
⇀ 0 . Let ψ ∈ C0

c (R2) , and let ψf be the average of ψ on the
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triangle f ∈ F∆
ε (µε) . Then,

(2.2)

∣∣∣∣∣〈ε2

√
3

2
µ̂ε − µ̃ε, ψ〉

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

f∈F∆
ε (µε)

〈ε2

√
3

2
µ̂ε − µ̃ε, ψ f〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

f∈F∆
ε (µε)

〈ε2

√
3

2
µ̂ε − µ̃ε, (ψ − ψf ) f〉

∣∣∣∣∣∣
≤

∑
f∈F∆

ε (µε)

∣∣∣∣∣〈ε2

√
3

2
µ̂ε − µ̃ε, (ψ − ψf ) f〉

∣∣∣∣∣
≤ 2|µ̃ε|(R2) rε(ψ) ≤ Crε(ψ)→ 0 ,

where rε(ψ) is the modulus of continuity of ψ .
Now we prove that ε2|µε − µ̂ε|(R2)→ 0 . We first notice that

]Yε ≤ 2ε(Eε(µε) + 3µε(R2)) ,

where Yε := {x ∈ supp µε : x lies on at most five bonds} . As a consequence, by using the
energy bound, we get

(2.3) ε2|µε − µ̂ε|(R2) = ε2(µε − µ̂ε)(R2) ≤ ε2](supp µε \ supp µ̂ε) = ε2]Yε ≤ Cε→ 0 .

By combining (2.2) and (2.3) we obtain (i). �

2.2. Γ-convergence.

Theorem 2.2. The following Γ-convergence result holds true.

(i) (Γ-liminf inequality) Let {µε} ⊂ M satisfy (i) and (ii) of Theorem 2.1 with θ = θ̄χΩ

for some θ̄ ∈ (π3 ,
2
3π] . Then

(2.4) lim inf
ε→0

ε(Eε(µε) + 3µε(R2)) ≥ Perϕθ̄(Ω) .

(ii) (Γ-limsup inequality) For every set Ω ⊂ R2 of finite perimeter and for every θ̄ ∈
(π3 ,

2
3π] , there exists a sequence {µε} ⊂ M satisfying (i) and (ii) of Theorem 2.1

with θ = θ̄χΩ such that

(2.5) lim sup
ε→0

ε(Eε(µε) + 3µε(R2)) ≤ Perϕθ̄(Ω) .

Proof. Proof of (i). We can assume without loss of generality that there exists C < ∞ such
that

(2.6) sup
ε>0

ε(Eε(µε) + 3µε(R2)) ≤ C .

Notation 1. For every ε > 0 set

(2.7) Gε :=
⋃

f∈Fε(µε)

f and Ωε :=
⋃

f∈F∆
ε (µε)

f .

Let δ ∈ (0, 1
4) ; we classify the faces in F 6=∆

ε (µε) into two subclasses S 6=∆
ε,δ and L 6=∆

ε,δ defined

by

(2.8) S 6=∆
ε,δ :=

{
f ∈ F 6=∆

ε (µε) : Per(f) <
ε

δ

}
and L6=∆

ε,δ :=
{
f ∈ F 6=∆

ε (µε) : Per(f) ≥ ε

δ

}
.
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Set moreover

Σε,δ :=
⋃

f∈S 6=∆
ε,δ

f , Λε,δ :=
⋃

f∈L6=∆
ε,δ

f , and Oε,δ := Ωε ∪ Σε,δ.(2.9)

By construction Gε = Ωε ∪Σε,δ ∪Λε,δ = Oε,δ ∪Λε,δ , where the unions are all disjoint, so that

(2.10) Per(Oε,δ) ≤ Per(Gε) +
∑

f∈L6=∆
ε,δ

Per(f) .

Claim 1: ε(Eε(µε) + 3µε(R2)) ≥ Per(Oε,δ) +
∑

f∈S 6=∆
ε,δ

(Per(f)− 3ε) + r(δ) , where r(δ)→ 0 as

δ → 0 .
Indeed, by (2.6) and (1.4), we have

(2.11) C ≥
∑

f∈L6=∆
ε,δ

(Per(f)− 3ε) ≥ ε
(1

δ
− 3
)
]L6=∆

ε,δ .

Therefore, by (1.4), (2.10) and (2.11), it follows that

(2.12)

ε(Eε(µε) + 3µε(R2)) ≥ Per(Gε) +
∑

f∈F 6=∆
ε (µε)

(Per(f)− 3ε)

≥ Per(Oε,δ) +
∑

f∈S 6=∆
ε,δ

(Per(f)− 3ε)− 3ε]L6=∆
ε,δ

≥ Per(Oε,δ) +
∑

f∈S 6=∆
ε,δ

(Per(f)− 3ε)− 3Cδ

1− 3δ
,

which proves the claim with r(δ) := − 3Cδ
1−3δ .

Notation 2. Let η ∈ (0, π6 ) ; we set

Ωη−
ε :=

⋃
f∈F∆

ε (µε)

|θ(f)−θ̄|<η

f and Ωη+
ε :=

⋃
f∈F∆

ε (µε)

|θ(f)−θ̄|≥η

f .

Let

Iηε,δ := {f ∈ S 6=∆
ε,δ : H 1(∂f ∩ ∂Ωη+

ε ) ≥ ε} , Ω̃η+
ε := Ωη+

ε ∪
⋃

f∈Iηε,δ

f .

For every connected component γ of (the closure of) Ω̃η+
ε we set

(2.13)
∂η+
ε,δ (γ) := {{x, y} ∈ Edε(µε) : [x, y] ⊂ ∂γ ∩ ∂Oε,δ} ,

6 ∂η+
ε,δ (γ) := {{x, y} ∈ Edε(µε) : [x, y] ⊂ ∂γ \ ∂Oε,δ} .

We call ζ1, . . . , ζKη
ε,δ

the connected components of Ω̃η+
ε such that

(2.14) ]∂η+
ε,δ (ζk) ≥ ] 6 ∂η+

ε,δ (ζk) ,

and we set

Ôηε,δ := Oε,δ \
Kη
ε,δ⋃

k=1

ζk .
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Finally, ξ1, . . . , ξJηε,δ
denote the connected components of Ω̃η+

ε such that

(2.15) 1 ≤ ]∂η+
ε,δ (ξj) < ] 6 ∂η+

ε,δ (ξj) .

Note that, by construction, the sets ∂η+
ε,δ (ξj) and 6 ∂η+

ε,δ (ξj) do not change if in (2.13) we replace

Oε,δ by Ôηε,δ .

Figure 2. The connected components ζk are contoured in pink , whereas ξj
is marked in green.

Claim 2: Per(Oε,δ) ≥ Per(Ôηε,δ) .

Indeed, in view of (2.14),

Per(Oε,δ) = Per(Ôηε,δ) +

Kη
ε,δ∑

k=1

(Per(ζk)− 2ε] 6 ∂η+
ε,δ (ζk)) ≥ Per(Ôηε,δ) .(2.16)

Notation 3. Set

Bη−
ε,δ := {{x, y} ∈ Edε(µε) : [x, y] ⊂ ∂Ωη−

ε ∩ ∂Ô
η
ε,δ} ,

Bη+
ε,δ :=

Jηε,δ⋃
j=1

∂η+
ε,δ (ξj) ,

Bη,n
ε,δ := {{x, y} ∈ Edε(µε) : [x, y] ⊂ ∂Ôηε,δ} \ (Bη−

ε,δ ∪B
η+
ε,δ ) .

By construction the set of bonds {x, y} with [x, y] ⊂ ∂Ôηε,δ is given by the pairwise disjoint

union of the bonds in the sets Bη−
ε,δ , Bη+

ε,δ , and Bη,n
ε,δ so that

Per(Ôε,δ) := ε]Bη−
ε,δ + ε]Bη+

ε,δ + ε]Bη,n
ε,δ .(2.17)

Claim 3: Per(Ôηε,δ) +
∑

f∈S 6=∆
ε,δ

(Per(f) − 3ε) ≥ (1 + r(η))Perϕθ̄(Ô
η
ε,δ) , where r(η) → 0 as

η → 0 .
We preliminarily notice that for every bond {x, y} ∈ Bη−

ε,δ ,

(2.18) ϕθ̄([x, y]) ≤ 1

1 + r(η)
,
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for some r(η)→ 0 as η → 0 .
Now we prove that

(2.19)

Jηε,δ∑
j=1

∑
f∈S 6=∆

ε,δ

f⊂ξj

(Per(f)− 3ε) ≥
Jηε,δ∑
j=1

ε

4
]∂η+
ε,δ (ξj) =

ε

4
]Bη+

ε,δ .

Indeed, let f ∈ S 6=∆
ε,δ with f ⊂ ξj for some j = 1, . . . , Jηε,δ . Then

Per(f)− 3ε− ε

4
]{{x, y} ∈6 ∂η+

ε,δ (ξj) : [x, y] ∈ ∂f} ≥ 3

4
Per(f)− 3ε ≥ 0 .

It follows that

Per(f)− 3ε ≥ ε

4
]{{x, y} ∈6 ∂η+

ε,δ (ξj) : [x, y] ∈ ∂f} ,

which summing over f ∈ S 6=∆
ε,δ with f ⊂ ξj , implies that

∑
f∈S 6=∆

ε,δ

f⊂ξj

Per(f)− 3ε ≥ ε

4

∑
f∈S 6=∆

ε,δ

f⊂ξj

]{{x, y} ∈6 ∂η+
ε,δ (ξj) : [x, y] ∈ ∂f} =

ε

4
] 6 ∂η+

ε,δ (ξj) ,(2.20)

where the equality is a consequence of the fact that if {x, y} ∈6 ∂η+
ε,δ (ξj) and f ⊂ Ωη+

ε , then

{x, y} is not a bond of f . By (2.20) and (2.15), and finally summing over j , we deduce (2.19).
Now, we consider bonds {x, y} ∈ Bη,n

ε,δ , and we notice that [x, y] ∈ ∂f for some (unique)

f ⊂ Ôηε,δ \
⋃Jηε,δ
j=1 ξj with f ∈ S 6=∆

ε,δ . We prove that

(2.21)
∑

f∈S 6=∆
ε,δ

f⊂Ôηε,δ\
⋃Jηε,δ
j=1 ξj

(Per(f)− 3ε) ≥ ε

4
]Bη,n

ε,δ .

Indeed, let f ∈ S 6=∆
ε,δ with f ⊂ Ôηε,δ \

⋃Jηε,δ
j=1 ξj and let {x1, y1} , . . . , {xL, yL} ∈ Bη,n

ε,δ be such

that ∪Ll=1[xl, yl] = ∂f ∩ ∂Ôηε,δ . Then, since Per(f) ≥ 4ε , we have

(2.22) Per(f)− 3ε− ε

4
L =

3

4
Per(f) +

1

4
(Per(f)− εL)− 3ε ≥ 0 ,

which summing over f implies (2.21).
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By (2.17), (2.18), (2.21), and (2.19), we can thus conclude

Per(Ôηε,δ) +
∑

f∈S 6=∆
ε,δ

(Per(f)− 3ε) ≥ ε]Bη−
ε,δ + ε]Bη+

ε,δ +

Jηε,δ∑
j=1

∑
f∈S 6=∆

ε,δ

f⊂ξj

(Per(f)− 3ε)

+ ε]Bη,n
ε,δ +

∑
f∈S 6=∆

ε,δ

f⊂Ôηε,δ\
⋃Jηε,δ
j=1 ξj

(Per(f)− 3ε)

≥ (1 + r(η))
∑

{x,y}∈Bη−ε,δ

ϕθ̄([x, y]) +
5

4
ε]Bη+

ε,δ +
5

4
ε]Bη,n

ε,δ

≥ (1 + r(η))
∑

{x,y}∈Bη−ε,δ

ϕθ̄([x, y]) +
∑

{x,y}∈Bη+
ε,δ∪B

η,n
ε,δ

ϕθ̄([x, y])

≥ (1 + r(η))Perϕθ̄(Ô
η
ε,δ) ,

where the third inequality is a consequence of the fact that 5
4 ≥

2√
3

= maxv∈S1 ϕθ̄(v) , being

S1 the unitary sphere in R2 .

Claim 4: lim
ε→0
‖χÔτε,δ − χΩ‖L1(R2) = 0 . By (2.6) and (1.4), we get

(2.23) C ≥
∑

f∈S 6=∆
ε,δ

(Per(f)− 3ε) ≥ ε]S 6=∆
ε,δ .

Moreover, by the very definition of S 6=∆
ε,δ in (2.8) and by the isoperimetric inequality, we have

(2.24) |f | ≤ ε2

4πδ2
for every f ∈ S 6=∆

ε,δ .

Furthermore, by assumption

lim
ε→0
|Ωη+
ε | = 0 ,

which, combined together with (2.23) and (2.24), yields

|Ωε∆Ô
η
ε,δ| ≤

∑
f∈S 6=∆

ε,δ

|f |+ |Ωη+
ε | ≤

C ε2

4πδ2
+ |Ωη+

ε | → 0 ,

whence the claim immediately follows.

Conclusion: (2.4) holds true. By Claims 1-3, we have

ε(Eε(µε) + 3µε(R2)) ≥ (1 + r(η))Perϕθ̄(Ô
η
ε,δ) + r(δ) ,

which, by Claim 4, in view of the lower semicontinuity of the anisotropic perimeter with
respect to the strong convergence in L1(R2) , implies

lim inf
ε→0

ε(Eε(µε) + 3µε(R2)) ≥ (1 + r(η))Perϕθ̄(Ω) + r(δ) .

Then (2.4) by sending η → 0 and δ → 0 .
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Proof of (ii). The Γ-limsup inequality can be easily obtained as a consequence of (A.2)
and (1.4). For the reader’s convenience, we briefly sketch the proof. By standard density
arguments in Γ-convergence we can assume that Ω has a finite number M of connected

components with polyhedral boundary. Let X θ̄
ε be the periodic lattice generated by εei(θ̄−

π
2

)

and by εei(θ̄−
π
6

) . We denote by Fε(X
θ̄
ε ) the set of equilateral triangles with vertices in X θ̄

ε

and side-length equal to ε . Set

Xε := {x ∈ f : f ∈ Fε(X θ̄
ε ), f ⊂ Ω}, µε :=

∑
x∈Xε

δx, Ωε :=
⋃

f∈Fε(X θ̄
ε ): f⊂Ω

f .

Since Fε(Xε) = F∆
ε (Xε) , by (1.4), we immediately have

ε(Eε(µε) + 3µε(R2)) = Per(Ωε) + 3εM.

Moreover one can trivially check that Per(Ωε) → Perϕθ̄(Ω) as ε → 0 , thus concluding the
proof of (ii). �

Finally, in this last part of the section we briefly consider the case of additional confining
forcing terms. Let

Fgε (µ) := Eε(µ) + 3µ(R2) +

√
3

2ε

∫
R2

g dµ ,

where g ∈ C0(R2) with g(x)→ +∞ as |x| → +∞ .

Corollary 2.3. Let {µε} ⊂ M be such that Fgε (µε) ≤ C
ε . Then, up to a subsequence,

(1) (Compactness for µε) ε
2
√

3
2 µε

∗
⇀ χΩ dx for some set Ω ⊂ R2 with χΩ ∈ SBV (R2) .

Moreover, ε2
√

3
2 µε(R

2)→ |Ω| .
(2) (Compactness for θε) θε(µε) ⇀ θ in SBV (R2) , for some θ =

∑
j∈J θjχωj , where

J ⊆ N , {ωj}j is a Caccioppoli partition of Ω , and {θj}j ⊂ (π3 ,
2
3π] .

(3) (Γ-liminf inequality) If θ = θ̄χΩ for some θ̄ ∈ (π3 ,
2
3π] , then

(2.25) lim inf
ε→0

εFgε (µε) ≥ Perϕθ̄(Ω) +

∫
Ω
g dx .

(4) (Γ-limsup inequality) For every set Ω ⊂ R2 of finite perimeter and for every θ̄ ∈
(π3 ,

2
3π] , there exists a sequence {µε} ⊂ M satisfying (1) and (2) with θ = θ̄χΩ

such that

(2.26) lim sup
ε→0

εFgε (µε) ≤ Perϕθ̄(Ω) +

∫
Ω
g dx .

Proof. We briefly sketch the proof, the details are left to the reader. Items (1) and (2) are an
easy consequence of Theorem 2.1 and of the fact that, in view of the coercivity assumption
g(x) → +∞ as |x| → +∞ , there is no loss of mass at infinity. Items (3) and (4) are
consequences of Theorem 2.2, once noticed that the functionals Fgε (µ) are nothing but the

functionals Eε(µ) + 3µ(R2) plus the continuous perturbation
√

3
2ε

∫
R2 g dx . �

3. Asymptotic behaviour of energy minimizers

In this section, we present some variational problems for which the asymptotic behaviour
of minimizers can be easily studied using Theorems 2.1 and 2.2.
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3.1. Energy bounds for polycrystals.

Proposition 3.1. The following lower and upper bounds hold true.

(i) (Lower bound) For all {µε} ⊂ M satisfying (i) and (ii) of Theorem 2.1, we have

(3.1) lim inf
ε→0

ε(Eε(µε) + 3µε(R2)) ≥H 1(∂∗Ω) +
1

2
H 1(∪j∂∗ωj \ ∂∗Ω) .

(ii) (Upper bound) For every set Ω ⊂ R2 of finite perimeter and for every θ ∈ SBV (Ω; (π3 ,
2
3π])

there exists a sequence {µε} ⊂ M satisfying (i) and (ii) of Theorem 2.1 such that

(3.2) lim sup
ε→0

ε(Eε(µε) + 3µε(R2)) ≤
∑
j

Perϕθj (ωj) .

Proof. We start by proving (i). Let δ ∈ (0, 1
4) and let Oε,δ and Ωε be defined as in (2.9)

and (2.7). By Claim 1 in the proof of Theorem 2.2 and by using that Per(f) ≥ 4ε for every

f ∈ F 6=∆
ε (µε) , we have

ε(Eε(µε) + 3µε(R2)) ≥ Per(Oε,δ) +
1

4
H 1(∂Ωε \ ∂Oε,δ) + r(δ) ,

where r(δ) → 0 as δ → 0 . By arguing as in Claim 4 in the proof of Theorem 2.2 one can
easily show that

(3.3) ‖χOε,δ − χΩ‖L1 → 0 as ε→ 0 .

Let µ̄ε be the Radon measure defined by

µ̄ε(A) := Per(Oε,δ, A) +
1

4
H 1((∂Ωε \ ∂Oε,δ) ∩A) for every open set A ⊂ R2 .

By (3.3) and by the lower semicontinuity of the relative perimeter, we have

(3.4) lim inf
ε→0

µ̄ε(Br(x)) ≥ Per(∂∗Ω, Br(x)) for every x ∈ ∂∗Ω and for every r > 0 .

Let now x ∈ (∂∗ωj ∩ ∂∗ωk) \ ∂∗Ω for some j, k ∈ N with j 6= k and let r > 0 . By (A.1) we
have

(3.5) lim inf
ε→0

µ̄ε(Br(x)) ≥ 1

4
Per(∂∗ωj , Br(x)) +

1

4
Per(∂∗ωk, Br(x)) .

By (3.4) and (3.5) together with standard blow up arguments (3.1) follows.
Finally, we briefly sketch the proof of (ii). Again by standard density arguments in Γ-

convergence, we can assume that the ωj ’s are in a finite number M , have pairwise disjoint

closures and have polyhedral boundaries. Then, denoting by µjε the measure constructed in

(ii) of Theorem 2.2 for Ω = ωj , it is easy to check that µε :=
∑

j µ
j
ε satisfies (3.2). �

3.2. Single crystals versus polycrystals.

Corollary 3.2. Let θ̄ ∈ (π3 ,
2
3π] , and let Ω be a subset of R2 with finite perimeter such that

ν(x) ∈ {vk,θ̄}k=1,2,3 for H 1-a.e. x ∈ ∂∗Ω , where vk,θ̄ = ei(θ̄−
π
2

)vk , with vk defined in (1.9).

Let εn → 0 and {µεn} ⊂ A be such that

(3.6) inf
ε2
√

3
2
λε
∗
⇀χΩ

lim inf
ε→0

ε(Eε(λε) + 3λε(R2)) = lim
n→∞

εn(Eεn(µεn) + 3µεn(R2)) .

Then, up to a subsequence, θεn(µεn) ⇀ θ̄χΩ in SBVloc(R2) , where θεn(µεn) is defined
according with (1.7).
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Ω

Figure 3. Single crystal.

Proof. By (2.5) it easily follows that εn(Eεn(µεn) + 3µεn(R2)) ≤ C . By Theorem 2.1, we
have that, up to a subsequence, θεn(µεn) ⇀ θ in SBVloc(R2) for some θ ∈ SBV (Ω) with
θ =

∑
j∈J θjχωj , where J ⊆ N , {ωj}j is a Caccioppoli partition of Ω , and {θj}j ⊂ (π3 ,

2
3π] .

By (3.1),(3.6) and (2.5) we have

Perϕθ̄(Ω) +
1

2
H 1(∪j∂∗ωj \ ∂∗Ω) = H 1(∂∗Ω) +

1

2
H 1(∪j∂∗ωj \ ∂∗Ω)

≤ lim inf
n→∞

εn(Eεn(µεn) + 3µεn(R2)) = inf
ε2
√

3
2
λε
∗
⇀χΩ

lim inf
ε→0

ε(Eε(λε) + 3λε(R2)) ≤ Perϕθ̄(Ω) .

We deduce that 1
2H 1({∪j∂∗ωj \ ∂∗Ω}) = 0 , and hence θ = θ̂χΩ for some θ̂ ∈ (π3 ,

2
3π] . By

(2.4) and (2.5) we deduce that

Perϕθ̄(Ω) ≤ Perϕθ̂(Ω) ≤ lim inf
n→∞

εn(Eεn(µεn) + 3µεn(R2))

= inf
ε2
√

3
2
λε
∗
⇀χΩ

lim inf
ε→0

ε(Eε(λε) + 3λε(R2))≤ Perϕθ̄(Ω) .

We conclude that Perϕθ̄(Ω) = Perϕθ̂(Ω) , which implies θ̂ = θ̄ . �

Remark 3.3. Using the minimality property of the measures µεn , one can prove that the
compactness of the sequence {µεn} stated in Corollary 3.2 in fact holds true in SBV (R2) .

Corollary 3.4. Let ϑ1 , ϑ2 ∈ (π3 ,
2
3π] with ϑ1 6= ϑ2 and, given τ ∈ R2 , set

(3.7) Ωτ := Wϑ1 ∪ (Wϑ2 + τ) , m(τ) := |Wϑ1 ∩ (Wϑ2 + τ)| .

Then, there exists m̄ = m̄(ϑ1, ϑ2) such that, whenever m(τ) ≤ m̄ the following holds:
Let εn → 0 and {µεn} ⊂ A be such that

inf
ε2
√

3
2
λε
∗
⇀χΩτ

lim inf
ε→0

ε(Eε(λε) + 3λε(R2)) = lim
n→∞

εn(Eεn(µεn) + 3µεn(R2)) .

Then, up to a subsequence, θεn(µεn) ⇀ θ in SBVloc(R2) , for some θ =
∑

j∈J θjχωj in

SBV (R2) , where J ⊆ N , {ωj}j is a Caccioppoli partition of Ωτ , and {θj}j ⊂ (π3 ,
2
3π] .

Moreover, the function θ is not constant, i.e., ]J ≥ 2 .
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Figure 4. polycrystal.

Proof. Notice that we can always write Ωτ = ω1 ∪ ω2 , with ω1 and ω2 open disjoint set such
that S := ∂ω1 ∩ ∂ω2 is a segment and ∂ωj \ S ⊂ Wϑj for j = 1, 2 . Moreover, there exists a

modulus of continuity l(m)→ 0 as m→ 0 such that H 1(S) ≤ l(m) with m = m(τ) defined
in (3.7).

By (3.2) there exists a sequence {λ̄ε} such that

(3.8) lim
n→∞

εn(Eεn(µεn) + 3µεn(R2)) = inf
ε2
√

3
2
λε
∗
⇀χΩτ

lim inf
ε→0

ε(Eε(λε) + 3λε(R2))

≤ lim sup
ε→0

ε(Eε(λ̄ε) + 3 λ̄ε(R2)) ≤
2∑
j=1

Perϕϑj (ωj) ≤
2∑
j=1

Per(Wϑj ) + c l(m) .

for some c < ∞ . In particular, by (2.1), θεn(µεn) ⇀ θ in SBVloc(R2) for some θ ∈ SBV (Ω)
with θ =

∑
j∈J θjχωj , where J ⊆ N , {ωj}j is a Caccioppoli partition of Ω , and {θj}j ⊂

(π3 ,
2
3π] . It remains to prove that, for m(τ) small enough, θ is not constant. If θ = θ̄χΩτ for

some θ̄ ∈ (π3 ,
2
3π] , then, by (2.4), we have

(3.9) lim
n→∞

εn(Eεn(µεn) + 3µεn(R2)) ≥ Perϕθ̄(Ωτ )

≥
2∑
j=1

(1 + p(θ̄ − θj))H 1(∂Ωτ ∩ ∂Wθj ) ≥
2∑
j=1

(1 + p(θ̄ − θj))Per(∂Wθj )− r(m) ,

for some moduli of continuity p , r : [0,+∞) → R which are continuous, vanishing at zero
and strictly positive elsewhere. Clearly (3.8) and (3.9) are not compatible for m smaller than
some m̄ depending only on ϑ1 and ϑ2 . �

Appendix A. Optimal tessellations of the plane

It is well known that the plane can be tessellated by regular polygons; more precisely, by
equilateral triangles, squares and hexagons.

Fix one of such regular polygons p and assume that the edges of p have length equal to
one. Let I = (Θ1,Θ2] be a given interval, representing the family of orientations of p , and

satisfying suitable properties listed below. Set Θav := 1
2(Θ1 + Θ2) , and pθ := ei(θ−Θav)p for

all θ ∈ Ī . The required properties of I are that 0 /∈ I , H 1(∂(pΘ1 + τ) ∩ ∂pΘ2) = 1 for some
τ ∈ R2 , H 1(∂(pα1 + τ) ∩ ∂pα2) = 0 for every α1 , α2 ∈ I and for every τ ∈ R2 .



18 L. DE LUCA, M. NOVAGA, AND M. PONSIGLIONE

For instance, we can choose I = (π3 ,
2
3π] if p is the equilateral triangle or the regular hexagon

and I = (π4 ,
3
4π] if p is the square.

Let ϕ anf ϕθ be defined as in (1.8) and (1.10), with the vectors vi in (1.9) replaced by the
normals νk to ∂p , i.e., the unitary vectors orthogonal to the edges of p .

For every ε > 0 set
Fε := {εpθ + τ : θ ∈ I, τ ∈ R2} .

Notice that for all f ∈ Fε there exists a unique θ = θ(f) such that f = εpθ up to a (still
unique) translation.

Lemma A.1. Let {νk} be the set of the normals to ∂p . There exists a modulus of continuity
r(η) with the following property. Let ϕη : S1 → R be defined by

ϕη(v) :=

{
1 if maxk |v · νk| ≥ 1− η ;

ϕ(v) otherwise.

Let {Ωε} be a sequence of sets of finite perimeter such that χΩε → χΩ in SBVloc(R2) for some
set Ω of finite perimeter. Then

lim inf
ε→0

∫
∂∗Ωε

ϕη(ν) dH 1 ≥ (1 + r(η))Perϕ(Ω) .

Proof. There exists c(η) > 0 with c(η) → 1 as η → 0 such that |ϕη(v) − ϕ(v)| ≤ c(η) for
all v ∈ S1 . Therefore the lemma is an easy consequence of the lower semicontinuity of the
ϕ-perimeter Perϕ . �

In what follows, for every ε > 0 , we denote by Φε the set of family of faces Hε ⊂ Fε whose
interiors are pairwise disjoint. Moreover, we set

Oε :=
{

Ω ⊂ R2 : Ω =
⋃
f∈Hε

f, for some Hε ∈ Φε

}
.

Now we prove a Γ-convergence result.

Theorem A.2. The following Γ-convergence result holds true.

(a) (Compactness) Let Hε ∈ Φε and set

Ωε :=
⋃
f∈Hε

f , θε :=
∑
f∈Hε

θ(f)χf .

Assume that Per(Ωε) ≤ C . Then, up to a subsequence, χΩε ⇀ χΩ in SBVloc(R2)
for some set Ω of finite perimeter. Moreover, θε ⇀ θ in SBVloc(R2) , for some
θ =

∑
j∈J θjχωj in SBV (Ω) , where J ⊆ N , {ωj}j is a Caccioppoli partition of Ω ,

and {θj}j ⊂ I .
(b) (Γ-liminf inequality) Let Hε , Ωε , θε , Ω , and θ be as in (a), and let A be a an open

set. Then

(A.1) lim inf
ε→0

Per(Ωε, A) ≥
∑
j∈J

Perϕθj (ωj , A) .

(c) (Γ-limsup inequality) For every set Ω ⊂ R2 of finite perimeter and for every θ ∈
SBV (Ω) , there exists a sequence {Hε} satisfying the claim in (a) such that

(A.2) lim sup
ε→0

Per(Ωε) ≤
∑
j∈J

Perϕθj (ωj) .
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Proof. Proof of (a). By the very definition of θ(f) , we have that ‖θε‖L∞ ≤ Θ2 . Moreover,
by the uniform bound on Per(Ωε) , we obtain that H 1(Sθε) ≤ C . It follows that ‖θε‖BV ≤ C
for some constant C <∞ independent of ε . Then the claim follows from Corollary 1.2.

Proof of (b). For every ϑ ∈ I let Hε(ϑ) := {f ∈ Hε : θ(f) = ϑ} , and set Ωε(ϑ) :=∑
f∈Hε(ϑ) χf . Notice that if ϑ1 6= ϑ2 , then

Per(Ωε(ϑ1) ∪ Ωε(ϑ2), A) = Per(Ωε(ϑ1), A) + Per(Ωε(ϑ2), A),

for every open bounded set A ⊂ R2 . It follows that there exists an at most countable set of
indices J and a set {ϑn}n∈J ⊂ I such that Ωε(ϑn) 6= ∅ for every n ∈ J and

Per(Ωε, A) =
∑
n∈J

Per(Ωε(ϑn), A) for every open bounded set A ⊂ R2 .

Let M ∈ N and consider ϑ1 . . . , ϑM ∈ J . Let η > 0 be such that

|ϑi − ϑj | > η for all 1 ≤ i < j ≤M .

Moreover, for every 1 ≤ i ≤M set Iηε,i := {ϑ ∈ I : |ϑ− ϑi| < η
2} , and

Ωη
ε,i :=

⋃
ϑ∈Iηε,i

Ωε(ϑ) .

Then, χ
Ωi,ηε
→ χΩηi

in L1
loc(R2) , with

Ωη
i :=

⋃
j∈J : |ϑj−ϑi|≤ η2

ωj .

Trivially, for every i = 1, . . . ,M we have that Ωη
i → ωi in L1

loc(R2) as η → 0 and |θi−ϑi| ≤ η
2 .

By Lemma A.1 we deduce that for every open bounded set A it holds

lim inf
ε→0

Per(Ωε, A) ≥
M∑
i=1

lim inf
ε→0

Per(Ωη
ε,i, A) ≥ (1 + r(η))

M∑
i=1

Perϕθi (Ω
η
i , A) .

Letting first η → 0 and then M → +∞ we deduce the Γ-liminf inequality (b).

Proof of (c). Since partitions with polyhedral boundary are dense (see [6]), by standard
density arguments in Γ-convergence we can assume that ωi are polygons. In this case, the
construction of a recovery sequence satisfying (A.1) follows by arguing as in the proof of
(3.2). �

For ε > 0 we can define the following functional

Perε(Ω) =

{
Per(Ω) if Ω ∈ Oε ,
+∞ otherwise.

We state the following corollary which is a direct consequence of Theorem A.2.

Corollary A.3. The functionals Perε Γ-converge, with respect to the convergence in L1
loc(R2)

of characteristic functions, to the functional Per0 defined by

Per0(Ω) := min
{∑
j∈J

Perϕθj (ωj) :
∑
j∈J

θjχωj ∈ SBV (Ω) ,

{ωj}j is a Caccioppoli partition of Ω , {θj}j ⊂ I
}
,
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for all sets Ω with finite perimeter.

Clearly we have the following inequality, valid for all sets Ω with finite perimeter:

(A.3) Per0(Ω) ≤ min
θ∈I

Perϕθ(Ω) .

The considerations in Subsection 3.2 can be easily extended to the functionals Perε and
Per0 . In particular, there exist sets Ω such that the inequality in (A.3) is strict and, on the
other hand,

min
Ω: |Ω|=m

Per0(Ω) =
√
mPer(Wϕ) ,

where Wϕ is the Wulff shape which solves the isoperimetric problem corresponding to the
anisotropy ϕ , among sets with unit area. Moreover, letting Ωε be minimizers of

min
Ω: |Ω|=m

Perε(Ω) ,

it follows that, up to rotations and translations, Ωε converge to
√
mWϕ in the L1-topology.
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