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TWO LIMIT CYCLES IN LIÉNARD PIECEWISE LINEAR

DIFFERENTIAL SYSTEMS

JAUME LLIBRE1, ENRIQUE PONCE2 AND CLÀUDIA VALLS3

Abstract. Some techniques for studying the existence of limit cycles for

smooth differential systems are extended to continuous piecewise–linear dif-
ferential systems. Rigorous new results are provided on the existence of two

limit cycles surrounding the equilibrium point at the origin for systems with

three zones separated by two parallel straight lines without symmetry.

1. Introduction and statement of the main results

One of the most interesting problems in the qualitative theory of planar poly-
nomial differential systems is the study of their limit cycles, known as the famous
second part of the 16–th Hilbert problem [13]. Due to the fact that this Hilbert prob-
lem becomes up to now intractable (see [16, 18]), Smale in [30] proposed to study
this problem restricting it to polynomial Liénard differential systems. In the case
of smooth Liénard systems there are many results on the non-existence, existence
and uniqueness of limit cycles, see for instance [1, 4, 6, 12, 17, 20, 25, 31, 33]. Going
beyond the smooth case a natural step is to allow non–smoothness while keeping
the continuity, as it has been done in some previous works [9, 14, 15, 21, 24].

While the majority of results for piecewise linear differential systems deal with
two zones separated by one straight line or three zones separated by two parallel
straight lines with symmetry and study the existence of at most one limit cycle,
in this paper we go beyond and focus the attention to non–symmetric systems.
Particular cases of such non-symmetric systems but assuming a certain symmetry
for the sign of their determinants and traces in the three regions and allowing only
one equilibrium point have been studied in [28, 3]. The quoted authors are able
to show the existence of two limit cycles surrounding the only equilibrium under
adequate hypotheses. Similar results have been recently obtained in [19] by con-
sidering perturbations of systems without sign-symmetric traces but under rather
non-generic hypotheses. In all the quoted cases, the location of the equilibrium is
out of the central zone for having two limit cycles.

Here, we do not assume any symmetry at all and give an extensive list of cases
were we prove the existence of two limit cycles surrounding the origin, a new result
in this field. In [26] exploiting the fact that there are situations where, by moving
only the parameter given by the trace of the central zone, it is possible to pass from
a system with two zones to a system with three zones, the authors were able to
prove the existence of at least two limit cycles surrounding the equilibrium at the
origin in some particular cases. The characterization of all possible cases with two
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limit cycles is far from being completely solved and this paper is the first rigorous
paper towards this goal exploiting all possibilities in which we are able to prove
the existence of at least two limit cycles surrounding the equilibrium at the origin.
This is the aim of this paper and the techniques used to achieve this goal are not
the same as the ones in [26].

More precisely, in this work we will study the limit cycles of the Liénard piecewise
linear differential systems

(1)
dx

dτ
= x′ = F (x)− y, dy

dτ
= y′ = g(x),

where

F (x) =





TL(x+ u)− TCu if x ≤ −u,
TCx if −u ≤ x ≤ v,
TR(x− v) + TCv if x ≥ v,

and

g(x) =





L(x+ u)− u if x ≤ −u,
x if −u ≤ x ≤ v,
R(x− v) + v if x ≥ v,

with the constants u and v being positive, so that the straight lines x = −u and
x = v split the phase plane in three regions. In the case that these systems are
symmetric with respect the origin of coordinates, i.e.

u = v, TL = TR, L = R.

the study of their limit cycles is done, see [2, 7, 9, 10, 23], and for a complete
analysis the book [24].

First, we classify the equilibria of system (1).

Proposition 1. The following statements hold for the Liénard piecewise linear
differential system (1).

(a) If L ≥ 0 and R ≥ 0, then the origin is the unique equilibrium.

(b) If L ≥ 0 and R < 0, then there are two equilibria, the origin and eR =
(x̄R, ȳR) = ((R− 1)v/R, (TCR− TR)v/R), which is a saddle.

(c) If L < 0 and R ≥ 0, then there are two equilibria: the origin and eL =
(x̄L, ȳL) = ((1− L)u/L, (TL − TCL)u/L), which is a saddle.

(d) If L < 0 and R < 0, then there are three equilibria: the origin, eL and eR,
being eL and eR saddles.

Proof. It follows easily by direct computations because when they exist belong to
the interior of each one of the three zones where the differential system is linear. �

We note that the equilibrium point eR exists if and only if R < 0, and when
R > 0 we say that eR is a virtual equilibrium. Similarly, the equilibrium point eL
exists if and only if L < 0, and when L > 0 we say that eL is a virtual equilibrium.
It follows from Proposition 1 that when the Liénard piecewise linear differential
system (1) has a dynamics of focus or node type in an external zone then the
corresponding focus or node is a virtual equilibrium point; however, when such
dynamics is of saddle type then the saddle is always a real equilibrium point.

We now introduce some notation. When T 2
L > 4L we can define wL > 0 such

that 4w2
L = T 2

L − 4L and we are dealing with a dynamics of node or saddle type.
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If we also introduce σL such that 2σL = TL then the eigenvalues are σL ± wL,
with eigenvectors (1, σL ∓ wL)T and L = σ2

L − w2
L. Thus, the corresponding (real

or virtual) equilibrium point has two linear invariant manifolds that intersect the
straight line x = −u in two points of coordinates (−u, P±L ). For the focus case, that
is T 2

L < 4L, we define σL as before but we take ωL > 0 such that 4ω2
L = 4L− T 2

L,
so that the eigenvalues are now σL ± iωL.

Similarly, when T 2
R > 4R we can define wR > 0 such that 4w2

R = T 2
R − 4R for

the node or saddle cases. If we take σR such that 2σR = TR then the eigenvalues
are σR ± wR, with eigenvectors (1, σR ∓ wR)T and R = σ2

R − w2
R. Thus, the

corresponding (real or virtual) equilibrium point has two linear invariant manifolds
that intersect the straight line x = v in two points of coordinates (v, P±R ). For the
focus case, that is T 2

R < 4R, we define σR as before but we take ωR > 0 such that
4ω2

R = 4R− T 2
R, so that the eigenvalues are now σR ± iωR.

We remark that the non-generic cases L = 0, R = 0, corresponding to bifur-
cations of equilibrium points at infinity, and the cases of improper node dynamics
T 2
L = 4L, T 2

R = 4R, will not be included in the subsequent analysis for the sake of
brevity. However, the followed approach could be extended to deal with these cases
without any special difficulty.

xevxemu

x

y

Figure 1. Phase-portrait corresponding to the case of reference
0 < v < u, TL < 0, TC = 0, and TR > 0. The outermost periodic
orbit of the annulus corresponds to the circle x2 + y2 = v2 and is
unstable from outside, as TR > 0.

If we focus our attention in the cases with TC = 0, it is clear that the origin
is a linear center, leading to a period annulus which is bounded by the vertical
line x = v, being its outermost periodic orbit the one of equation x2 + y2 = v2, see
Figure 1. Furthermore, apart from the origin, the possible real or virtual equilibrium
points are located at eL and eR, namely

(2) eL = (x̄L, ȳL) =

(
u

L
− u, TL

L
u

)
, eR = (x̄R, ȳR) =

(
v − v

R
,−TR

R
v

)
.



4 J. LLIBRE, E. PONCE AND C. VALLS

Taking this situation as a main reference for our subsequent analysis, we can state
the following results whose proof is given in Section 3.

Proposition 2. Consider the differential systems (1) with 0 < v < u, TL < 0 and
TC = 0. The following statements hold.

(a) If T 2
L > 4L and we take 2σL = TL and wL > 0 such that 4w2

L = T 2
L − 4L,

then the equilibrium point eL is an attractive virtual node when L > 0 and
a real saddle for L < 0.

(a.1) When L > 0, the invariant manifolds of the virtual node intersect the
line x = −u at the points (−u, P±L ) and such orbits enter the region

−u < x < v intersecting the line x = v at the points (v,Q±L ), where

(3) P±L =
u

σL ∓ wL
, Q±L = −

√
(P±L )2 + u2 − v2,

so that P−L < P+
L < 0 and Q−L < Q+

L < 0. A first integral for the orbits
above such invariant manifolds, when restricted to the region x ≤ −u,
is the function

(4) HN
L (x̃, ỹ) = log

√
(ỹ − σLx̃)2 − w2

Lx̃
2 +

σL
wL

arctanh

(
wLx̃

ỹ − σLx̃

)
,

where (x̃, ỹ) = (x− x̄L, y− ȳL) are relative coordinates to eL, as given
in (2).

(a.2) When L < 0, the invariant manifolds of the real saddle intersect the
line x = −u at the points (−u, P±L ) and such orbits enter the region
−u < x < v (one forward and the other backwards in time) intersecting
the line x = v at the points (v,Q±L ), where

(5) P±L =
u

σL ∓ wL
, Q±L = ∓

√
(P±L )2 + u2 − v2,

so that P+
L < 0 < P−L and Q+

L < 0 < Q−L . A first integral for the
orbits between such invariant manifolds, when restricted to the region
x ≤ −u, is the function

(6) HS
L(x̃, ỹ) = log

√
w2
Lx̃

2 − (ỹ − σLx̃)2 +
σL
wL

arctanh

(
ỹ − σLx̃
wLx̃

)
,

where (x̃, ỹ) = (x− x̄L, y− ȳL) are relative coordinates to eL, as given
in (2).

(b) If T 2
L < 4L and we take 2σL = TL and ωL > 0 such that 4ω2

L = 4L − T 2
L,

then the equilibrium point eL is an attractive virtual focus. A first integral
for the orbits restricted to the region x ≤ −u, is the function

(7) HF
L (x̃, ỹ) = log

√
(ỹ − σLx̃)2 + ω2

Lx̃
2 − σL

ωL
arctan

(
ỹ − σLx̃
ωLx̃

)
,

where (x̃, ỹ) = (x − x̄L, y − ȳL) are relative coordinates to eL, as given in
(2).

A similar result holds for the dynamics associated to eR.

Proposition 3. Consider the differential systems (1) with 0 < v < u, TC = 0 and
TR > 0. The following statements hold.
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(a) If T 2
R > 4R and we take 2σR = TR and wR > 0 such that 4w2

R = T 2
R − 4R,

then the equilibrium point eR is a repulsive virtual node when R > 0 and a
real saddle for R < 0.

(a.1) When R > 0, the invariant manifolds of the virtual node intersect
the line x = v at the points (v, P±R ) and such orbits enter the region
−u < x < v backwards in time intersecting the line x = −u at the
points (−u,Q±R), where

(8) P±R = − v

σR ∓ wR
, Q±R = −

√
(P±R )2 + v2 − u2,

so that P+
R < P−R < 0 and Q+

R < Q−R < 0, where it is assumed

(P−R )2 ≥ u2 − v2. A first integral for the orbits above such invariant
manifolds, when restricted to the region x ≤ v, is the function

(9) HN
R (x̃, ỹ) = log

√
(ỹ − σRx̃)2 − w2

Rx̃
2 +

σR
wR

arctanh

(
wRx̃

ỹ − σRx̃

)
,

where (x̃, ỹ) = (x− x̄R, y− ȳR) are relative coordinates to eR, as given
in (2).

(a.2) When R < 0, the invariant manifolds of the real saddle intersect the
line x = v at the points (v, P±R ) and such orbits enter the region −u <
x < v (one forward and the other backwards in time) intersecting the
line x = −u at the points (−u,Q±R), where

(10) P±R = − v

σR ∓ wR
, Q±R = ±

√
(P±R )2 + u2 − v2,

so that P−R < 0 < P+
R and Q−R < 0 < Q+

R. A first integral for the
orbits between such invariant manifolds, when restricted to the region
x ≤ v, is the function

(11) HS
R(x̃, ỹ) = log

√
w2
Rx̃

2 − (ỹ − σRx̃)2 +
σR
wR

arctanh

(
ỹ − σRx̃
wRx̃

)
,

where (x̃, ỹ) = (x− x̄R, y− ȳR) are relative coordinates to eR, as given
in (2).

(b) If T 2
R < 4R and we take 2σR = TR and ωR > 0 such that 4ω2

R = 4R − T 2
R,

then the equilibrium point eR is an repulsive virtual focus. A first integral
for the orbits restricted to the region x ≤ −u, is the function

(12) HF
R (x̃, ỹ) = log

√
(ỹ − σRx̃)2 + ω2

Rx̃
2 − σR

ωR
arctan

(
ỹ − σRx̃
ωRx̃

)
,

where (x̃, ỹ) = (x − x̄R, y − ȳR) are relative coordinates to eR, as given in
(2).

In what follows F, N and S denote a virtual focus, a virtual node and a real
saddle, and the notation FN denotes that on the left hand zone we have a virtual
focus and on the right hand zone we have a virtual node. Similarly for any other
combinations of two letters from {F,N, S}.

Our main result is the following.

Theorem 4. For the differential systems (1) with 0 < v < u, TR > 0, TL < 0,
fulfilling one of the following sets of conditions,
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(FF) L,R > 0, TR < 2
√
R, |TL| < 2

√
L and

(13)
TL√
L

+
TR√
R
< 0,

see Figure 2;
(NF) L,R > 0, TR < 2

√
R, and |TL| > 2

√
L, see Figure 3;

(NN) L,R > 0, TR > 2
√
R, |TL| > 2

√
L, and Q+

L > P−R , see Figure 4;

(SF) L < 0, R > 0, TR < 2
√
R and

(14) HF
R (v − x̄R, Q+

L − ȳR) < HF
R (v − x̄R, Q−L − ȳR),

where Q±L are as in (5) and HF
R as in (12), see Figure 5;

(FS) L > 0, R < 0, |TL| < 2
√
L and

(15) HF
L (−u− x̄L, Q+

R − ȳL) < HF
L (−u− x̄L, Q−R − ȳL),

where Q±R are as in (10) and HF
L as in (7), see Figure 6;

(SN) L < 0, R > 0, TR > 2
√
R, Q+

L > P−R and

(16) HN
R (v − x̄R, Q+

L − ȳR) < HN
R (v − x̄R, Q−L − ȳR),

where Q±L are as in (5) and HN
R as in (9), see Figure 7;

(NS) L > 0, R < 0, |TL| > 2
√
L and

(17) HN
L (−u− x̄L, Q+

R − ȳL) < HN
L (−u− x̄L, Q−R − ȳL),

where Q±R are as in (10) and HN
L as in (4), see Figure 8, and condition

(17) is automatically fulfilled if P+
L > Q−R;

(SS) L < 0, R < 0, Q+
L > P−R and

(18) HS
R(v − x̄R, Q+

L − ȳR) > HS
R(v − x̄R, Q−L − ȳR),

where Q±L are as in (5), P±R as in (10) and HS
R as in (11), see Figure 9,

and condition (18) is automatically fulfilled if P+
R < Q−L ;

the following statements hold.

(a) If TC = 0 then the origin is surrounded by a bounded period annulus whose
most external periodic orbit, which is tangent to the straight line x = v, in
its outerpart is unstable. There exists also a stable limit cycle intersecting
the three zones surrounding such period annulus.

(b) There exists ε > 0 such that if −ε < TC < 0 the origin is surrounded by at
least two limit cycles, the smaller is unstable and the bigger is stable.

The proof of Theorem 4 is given in section 4 where we have separated in different
subsections its proof, for each one of the different conditions given in the theorem.

Different Poincaré discs, coming from the compactification of the phase portrait,
illustrating the eight condition sets where Theorem 4 applies are drawn in Figures
2-9. We have choosen 1 = v < u = 2 in all the cases, being TL, TR, L and R as
given in Table 1.

After reversing the time and/or a change of variables that interchanges the left
and the right zones (when needed), we can write similar results to the ones given in
Theorem 4 for different hypotheses, as for instance, when 0 < u < v or when TL > 0
and TR < 0 or both. Their precise statements and proofs are direct consequences
of the one of Theorem 4 and they will not be provided.
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Figure 2. Poincaré disc corresponding to the FF case when TC =
0 and the hypotheses of Theorem 4 (FF) are satisfied, so that the
periodic orbit at infinity is repulsive. Any nearby orbit allows to
build a positively invariant compact set. Note that the vertical
lines x = −u and x = v appear as arcs of circles connecting the
north and south poles due to the compactification.

Table 1. Numerical values chosen for drawing the Poincaré discs.

Figure Case TL L TR R
2 FF −2 1.49 0.2 0.05
3 NF −2 0.75 0.2 0.05
4 NN −2 0.51 0.4 0.03
5 SF −2 −1.25 0.3 1.0225
6 FS −2 1.49 0.1 −0.06
7 SN −2 −1.25 0.3 0.0125
8 NS −0.6 0.05 0.1 −0.06
9 SS −1 −1.25 0.16 −0.0561

Note that in Theorem 4 the case (FN) is not considered, since under the assumed
hypotheses it is not possible to build a positively invariant compact set containing
the period annulus in its interior. In fact, Theorem 4 relies in the fact that when
such a compact set exists we must also conclude the existence of a stable limit cycle
surrounding the period annulus that appears for TC = 0, that is not possible in the
(FN) case, see below Remark 14.

Let us define the set

SRVF = R2 \ {(x, y) ∈ R2 : xg(x) < 0}.
Note that xg(x) < 0 only in two situations, which can arise separately or not,
namely when there are real equilibria of saddle type. Thus, if L < 0 then xg(x) < 0
for x < x̄L = −u(1 − 1/L) < −u, while if R < 0 then xg(x) < 0 for x > x̄R =
v(1 − 1/R) > v. Therefore, SRVF is indeed the whole plane when L > 0, R > 0.
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PLp

QLp
PLm

Figure 3. Poincaré disc corresponding to the NF case when TC =
0. No additional hypotheses are required to get a compact positive
invariant set containing the period annulus. We indicate only the
values of ordinates, so that P−L and P+

L are the ordinates of the
intersection points for the invariant manifolds of the saddle eL with
the straight line x = −u, and Q−L (not shown) and Q+

L are their
intersections with x = v.

Clearly, the two limit cycles predicted in Theorem 4 are located within such a set,
which excludes any possible real saddle. Precisely, another important remark for
system (1) is its character of being a rotated vector field whithin SRVF with respect
to the parameter TC , see [32, 33]. Effectively, the determinant

∣∣∣∣∣∣

F (x)− y g(x)
∂

∂TC
(F (x)− y)

∂

∂TC
g(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

F (x)− y g(x)
∂

∂TC
F (x) 0

∣∣∣∣∣∣
= −g(x)

∂

∂TC
F (x)

does not change its sign in SRVF, since the expression

g(x)
∂

∂TC
F (x) =





−ug(x) if x ≤ −u,
xg(x) if −u ≤ x ≤ v,
vg(x) if x ≥ v,

is non-negative there. Rotated vector fields have the non-intersection property, that
is, closed trajectories of the system for two different values of the distinguished pa-
rameter TC cannot intersect. As a consequence, we can assure that the unstable
limit cycle growths in size as long as (−TC) increases, while simultaneously the sta-
ble limit cycle shrinks, so that both limit cycles approach one another. In fact, they
may collapse for a certain value T ∗C < 0 in a semi-stable limit cycle, to disappear
for bigger values of (−TC). Our last result indicates that this is indeed the case.

Theorem 5. For the differential systems (1) with 0 < v < u, TR > 0, TL < 0,
fulfilling any of the sets of conditions of Theorem 4, there exists a value T ∗C < 0
such that there are no limit cycles for TC < T ∗C .
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PLp

QLp

PLm
PRp

PRm

Figure 4. Poincaré disc corresponding to the NN case when TC =
0 and the hypotheses of Theorem 4 (NN) are satisfied. We indicate
only the values of ordinates, so that P−L and P+

L are the ordinates
of the intersection points for the invariant manifolds of the virtual
node eL with the straight line x = −u, and Q−L (not shown) and

Q+
L are their intersections with x = v. Similarly, P−R and P+

R are
the ordinates of the intersection points for the invariant manifolds
of the virtual node eR with the straight line x = v.

PLp

QLp

PLm

QLm

EqL

Figure 5. Poincaré disc corresponding to the SF case when TC =
0 and the hypotheses of Theorem 4 (SF) are satisfied.

The proof of Theorem 5 is given in Section 5. The computation for each case
of the greatest lower bound for the value T ∗C predicted in Theorem 5, which will
correspond with a saddle-node bifurcation of periodic orbits, is beyond the scope
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QRp

QRm

PRp

PRm

EqR

Figure 6. Poincaré disc corresponding to the FS case when TC =
0 and the hypotheses of Theorem 4 (FS) are satisfied.

PLp

QLp

PLm

PRp

QLm

PRm

EqL

Figure 7. Poincaré disc corresponding to the SN case when TC =
0 and the hypotheses of Theorem 4 (SN) are satisfied.

of this paper. Such global bifurcations are rather difficult to obtain by analytical
techniques and typically one must resort to numerical methods.

The remaining sections are organized as follows. First, we include in Section 2
some auxiliary results to be later needed. In Section 3, we compute the distinguished
points and the first integrals that appear in the statements of Theorem 4, which is
proved in Section 4. To finish, Section 5 is devoted to the proof of Theorem 5.

2. Preliminary results

We will need the following result whose proof is given in [5].
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PLp

QRm

PLm

PRp
QRp

PRm

EqR

Figure 8. Poincaré disc corresponding to the NS case when TC =
0 and the hypotheses of Theorem 4 (NS) are satisfied. If P+

L > Q−R
then the existence of a compact positive invariant set including the
period annulus is guaranteed.

PLp

QLp

PLm

PRp

QLm

PRm

EqR

EqL

Figure 9. Poincaré disc corresponding to the SS case when TC =
0 and the hypotheses of Theorem 4 (SS) are satisfied. If P+

R < Q−L
then the existence of a compact positive invariant set including the
period annulus is guaranteed.

Proposition 6. Let x(t) be a periodic solution of period T of the planar differential
system ẋ = f(x), and let

I =

∫ T

0

divergence (f(x))|x=x(t) dt.
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If I > 0 then x(t) is an unstable hyperbolic limit cycle, and if I < 0 then x(t) is a
stable hyperbolic limit cycle.

The instability of the outermost periodic orbit for the bounded center that ap-
pears for TC = 0 under the hypothesis of the reference case, and the bifurcation of
a unstable limit cycle from it when TC < 0, are shown next.

Proposition 7. Consider the differential systems (1) and assume 0 < v < u,
TC = 0 and TR > 0. Then the origin is surrounded by a bounded period annulus
whose most external periodic orbit, which is tangent to the line x = v, is in its
outerpart unstable.

Proof. Since TC = 0 and v < u, we have a circular period annulus tangent to the
line x = v and totally contained in the band −u < −v ≤ x ≤ v. The most external
periodic orbit, which is tangent to the line x = v passes through the point (v, 0).
Recalling that the dynamics in the right hand zone x > v is given by

(19) ẋ = TR(x− v)− y, ẏ = R(x− v) + v,

we conclude that

ẍ|(x,y)=(v,0) = [TR(TR(x− v)− y)− (R(x− v) + v)](x,y)=(v,0) = −v < 0,

so that we can define a local return map with respect to the straight line x = v.
More precisely, if we take an orbit starting at the point (v, y0) with y0 < 0 and
small in absolute value, then is it assured that such an orbit enters the half-plane
x > v and returns to the straight line x = v at a point (v, y1) with y1 > 0. In fact,
we have the expansion

y1 = −y0 +
2TR
3v

y20 +O(y30),

see for instance Proposition 8 in [11]. Consequently, as TR > 0 we get y1 > |y0|
and the proof is complete.

�

Proposition 8. Consider differential systems (1) and assume 0 < v < u, TR > 0,
and TL < 0. Taking TC as a bifurcation parameter, for TC = 0 the system undergoes
a focus-center-limit cycle bifurcation, so that there exists ε > 0 sufficiently small
such that for −ε < TC < 0 an unstable limit cycle bifurcates from the period
annulus.

Proof. In view of Proposition 7 when TC = 0 the most external periodic orbit,
which is tangent to the line x = v is in its outerpart unstable.

Now if we perturb system (1) with TC = 0 by taking TC < 0 and sufficiently
small, then in the central zone the origin becomes a stable focus, but since the
external periodic orbit was unstable, by Bendixson–Poincaré theorem (recall that
in the central zone the differential system is linear), there is a periodic solution γ(t)
crossing the straight line x = v. It remains to show that there is an unstable limit
cycle. Note that the Poincaré map defined in a segment with endpoints (v, 0) and
(v + δ, 0) for some δ > 0 is analytic (because it is the composition of two analytic
maps) . Assume that γ(t) is not a limit cycle, i.e. γ(t) is not isolated in the set of
all periodic solutions of system (1). Then by the analyticity of the Poincaré map it
is the identity, in contradiction with the fact that the external periodic solution of
the period annulus passing through the point (v, 0) is unstable. So all the periodic
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solutions crossing the straight line x = v are isolated in the set of all periodic
solutions of system (1). This completes the proof. �

For a quantitative characterization of the focus-center-limit cycle bifurcation
of Proposition 8, which can appear in the more general setting of discontinuous
systems without sliding dynamics, see [29].

3. Notable points and first integrals for TC = 0

Here we computing notable points and first integrals under hypotheses 0 < v < u,
TR > 0, TL < 0, for the case of reference TC = 0. This amounts to show propositions
2 and 3.

Proof of Proposition 2. When TC = 0, if we are in a node or saddle case, then the
coordinates of the virtual or real equilibrium eL turn out to be

eL =

(
u

σ2
L − w2

L

− u, 2σL
σ2
L − w2

L

u

)
,

so that to find the intersection points of its invariant manifolds with the straight
line x = −u we must solve for α the linear system of equations

(
u

σ2
L−w2

L
− u

2σL
σ2
L−w2

L
u

)
+ α

(
1

σL ∓ wL

)
=

(
−u
P±L

)
.

We immediately obtain α = −u/(σ2
L − w2

L), and so

(20) P±L =
2σL

σ2
L − w2

L

u− σL ∓ wL
σ2
L − w2

L

u =
σL ± wL
σ2
L − w2

L

u =
u

σL ∓ wL
.

Note that for TL < 0, the node case implies σL < −wL < 0 so that P−L < P+
L < 0,

while in the saddle case we have −wL < σL < 0 and therefore P+
L < 0 < P−L .

In computing the first integral for non-focus cases, we translate the left system to
put eL at the origin so that, after eliminating time, the system becomes equivalent
to the homogeneous differential equation

dy

dx
=

(σ2
L − w2

L)x

2σLx− y
,

which after the substitution y = sx becomes

ds

dx
=

(s− σL)2 − w2
L

(2σL − s)x
.

Separating variables, we can write the decomposition

(σL − wL)ds

2wL(s− σL − wL)
− (σL + wL)ds

2wL(s− σL + wL)
=
dx

x
.

Before making the integration, we note that in the node case we need to work,
regarding the point eL once assumed to be in the origin, in the region with x < 0
and

s =
y

x
< σL − wL < σL + wL < 0,

what leads to

(σL − wL)

2wL
log[−(s− σL − wL)]− (σL + wL)

2wL
log[−(s− σL + wL)] = log[−x] + C.
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We write

σL
2wL

log
s− σL − wL
s− σL + wL

− 1

2
log[(s− σL − wL)(s− σL + wL)]− log[−x] = C,

and so a relevant first integral for the node case is

σL
2wL

log
y − σLx− wLx
y − σLx+ wLx

− 1

2
log[(y − σLx)2 − w2

Lx
2],

or equivalently

− σL
2wL

log
y − σLx+ wLx

y − σLx− wLx
− 1

2
log[(y − σLx)2 − w2

Lx
2].

We choose as first integral the more compact expression

HN
L (x, y) = log

√
(y − σLx)2 − w2

Lx
2 +

σL
wL

arctanh

(
wLx

y − σLx

)
.

In the saddle case we need to work, assuming the point eL to be at the origin,
in the region with x > 0 and

σL − wL < s =
y

x
< σL + wL,

what leads to

(σL − wL)

2wL
log[−(s− σL − wL)]− (σL + wL)

2wL
log(s− σL + wL) = log(x) + C.

We write

σL
2wL

log
wL + σL − s
wL − σL + s

− 1

2
log[(wL + σL − s)(wL − σL + s)]− log(x) = C,

and then a relevant first integral for the saddle case is

− σL
2wL

log
wLx− σLx+ y

wLx+ σLx− y
− 1

2
log[w2

Lx
2 − (y − σLx)2],

and we take

HS
L(x, y) = log

√
w2
Lx

2 − (y − σLx)2 +
σL
wL

arctanh

(
y − σLx
wLx

)
.

In computing the first integral for the focus case, we note first that now

eL =

(
u

σ2
L + ω2

L

− u, 2σL
σ2
L + ω2

L

u

)
,

so that translating coordinates to put eL at the origin and eliminating time, the
system becomes equivalent to the homogeneous differential equation

dy

dx
=

(σ2
L + ω2

L)x

2σLx− y
.

After the substitution y = sx, it becomes

ds

dx
=

(s− σL)2 + ω2
L

(2σL − s)x
,

which can be decomposed into

σL − s
(s− σL)2 + ω2

L

ds+
σL

(s− σL)2 + ω2
L

ds =
dx

x
.
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Taking into account that we are interested in the left part with respect to the focus,
we assume x < 0 to integrate the above expression, so that we write

−1

2
log[(s− σL)2 + ω2

L] +
σL
ωL

arctan

(
s− σL
ωL

)
= log[−x] + C,

leading to the first integral

HF
L (x, y) = log

√
(y − σLx)2 + ω2

Lx
2 − σL

ωL
arctan

(
y − σLx
ωLx

)
.

�

Proof of Proposition 3. The procedure is totally analogous. For TC = 0, in the
node or saddle cases, the coordinates of the virtual or real equilibrium eR turn out
to be

eR =

(
v − v

σ2
R − w2

R

,− 2σR
σ2
R − w2

R

v

)
,

so that to compute P±R we must solve for α the linear system of equations
(
v − v

σ2
R−w2

R

− 2σR
σ2
R−w2

R
v

)
+ α

(
1

σR ∓ wR

)
=

(
v
P±R

)
.

We immediately obtain α = v/(σ2
R − w2

R), and so

(21) P±R = − 2σR
σ2
R − w2

R

v +
σR ∓ wR
σ2
R − w2

R

v = −σR ± wR
σ2
R − w2

R

u = − v

σR ∓ wR
.

Note that under the assumption TR > 0, the node case implies 0 < wR < σR so
that P+

R < P−R < 0, while in the saddle case we have 0 < σR < wR and therefore

P−R < 0 < P+
R .

For the node and saddle cases, we make a translation of the right system to put
eR at the origin, to get the homogeneous differential equation

dy

dx
=

(σ2
R − w2

R)x

2σRx− y
,

which after the substitution y = sx becomes

ds

dx
=

(s− σR)2 − w2
R

(2σR − s)x
.

Separating variables, we now have

(σR − wR)ds

2wR(s− σR − wR)
− (σR + wR)ds

2wR(s− σR + wR)
=
dx

x
.

We note that in the node case we need to work, regarding the point eR once assumed
to be in the origin, in the region with x > 0 and

0 < σR − wR < σR + wR < s =
y

x
,

what leads to

(σR − wR)

2wR
log(s− σR − wR)− (σR + wR)

2wR
log(s− σR + wR) = log(x) + C.

We write

−1

2
log[(s− σR + wR)(s− σR − wR)]− σR

2wR
log

s− σR + wR
s− σR − wR

− log(x) = C,
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and so a relevant first integral for the node case is

HN
R (x, y) = log

√
(y − σRx)2 − w2

Rx
2 +

σR
wR

arctanh

(
wRx

y − σRx

)
.

In the saddle case we need to work, assuming the point eR to be at the origin,
in the region with x < 0 and

σR − wR < s =
y

x
< σR + wR,

what leads to

(σR − wR)

2wR
log[−(s− σR − wR)]− (σR + wR)

2wR
log[(s− σR + wR)] = log[−x] + C.

We write

σR
2wR

log
wR + σR − s
wR − σR + s

− 1

2
log[(wR − σR + s)(wR + σR − s)]− log[−x] = C,

and then a relevant first integral for the saddle case is

HS
R(x, y) = log

√
w2
Rx

2 − (y − σRx)2 +
σR
wR

arctanh

(
y − σRx
wRx

)
.

In computing the first integral for the focus case, we note first that now

eR =

(
v − v

σ2
R + ω2

R

,− 2σL
σ2
R + ω2

R

v

)
,

so that translating coordinates to put eR at the origin and eliminating time, the
system becomes equivalent to the homogeneous differential equation

dy

dx
=

(σ2
R + ω2

R)x

2σRx− y
.

After the substitution y = sx, it becomes

ds

dx
=

(s− σR)2 + ω2
R

(2σR − s)x
,

which can be decomposed into

σR − s
(s− σR)2 + ω2

R

ds+
σR

(s− σR)2 + ω2
R

ds =
dx

x
.

Taking into account that we are here interested in the right part with respect to
the focus, we assume x > 0 to integrate the above expression, so that we write

−1

2
log[(s− σR)2 + ω2

R] +
σR
ωR

arctan

(
s− σR
ωR

)
= log(x) + C,

leading to the first integral

HF
R (x, y) = log

√
(y − σRx)2 + ω2

Rx
2 − σR

ωR
arctan

(
y − σRx
ωRx

)
.

�
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4. Proof of Theorem 4

We first note that in view of Proposition 7 when TC = 0 we have a circular period
annulus tangent to the line x = v, totally contained in the band −u < −v ≤ x ≤ v
and the outermost periodic orbit of the annulus is unstable. Furthermore, in view
of Proposition 8 if we perturb this situation by taking TC < 0 and sufficiently small,
then there is a bifurcation of an unstable limit cycle from the period annulus.

In order to complete the proof of Theorem 4 we will show that in each of its eight
assumptions there exists a positively invariant set Ω homeomorphic to a closed disc
containing the period annulus surrounding the origin. The following proposition
ensures that this is enough to complete the proof of Theorem 4.

Proposition 9. Consider the Liénard piecewise linear differential system (1) with
TC = 0. Assume that in each of the eight statements of Theorem 4 there exists
a positively invariant compact set Ω homeomorphic to a closed disc containing the
period annulus surrounding the origin. Then there is a stable limit cycle γ(t) sur-
rounding the mentioned period annulus.

Proof. Under the assumptions of Proposition 9 and from Proposition 7, it follows by
the Bendixson–Poincaré Theorem that there is a periodic solution γ(t) surrounding
the mentioned period annulus. It remains to show that there is a stable limit cycle.
Again, the Poincaré map defined on a segment with endpoints (v, 0) and a point
outside the region limited by γ(t) but close to γ(t) is analytic (because it is the
composition of two or three analytic maps). The rest of the proof follows in a
similar way to the last part of the proof of Proposition 8. Doing that we obtain
that all the periodic solutions surrounding the period annulus are isolated in the
set of all periodic solutions of system (1). Hence these periodic solutions are limit
cycles. Due to the positive invariance of the set Ω minus the period annulus, at
least one of these possible periodic solutions is a stable limit cycle. �
Proposition 10. Assume that in each of the eight statements of Theorem 4 we
are under the assumptions of Proposition 9. For ε > 0 sufficiently small and
−ε < TC < 0, there exists at least two limit cycles of the Liénard piecewise linear
differential systems (1), the smallest is unstable and the biggest is stable.

Proof. We perturb system (1) with TC = 0 by taking TC < 0 and sufficiently small.
Then the stable limit cycle given in Proposition 9 remains, and by Proposition 8
one unstable limit cycle appears near the region previously occupied by the period
annulus. Thus this perturbed system has at least two limit cycles. This concludes
the proof. �

In view of Propositions 9 and 10 in order to prove Theorem 4 it only remains
to show that under each of the eight statements of Theorem 4 the existence of the
compact set Ω defined in Proposition 9 when TC = 0.

Proof of statement (FF) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

(22) R,L > 0, TR < 2
√
R, |TL| < 2

√
L,

TL√
4L− T 2

L

+
TR√

4R− T 2
R

< 0,

where the last inequality is easily deduced from condition (13), by using the monotony

of the function h(x) = x/
√

4− x2 for x ∈ (−2, 2). Note that under these assump-
tions system (1) has two virtual foci. We study the planar differential systems
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(1) in the Poincaré disc, see Figure 2 and the Apendix B for the definition of the
Poincaré disc. Since the differential system has no singular points at infinity, the
set of points at infinity becomes a closed orbit, that is, we have a periodic orbit at
infinity. We will show that under the assumptions of statement (FF) this periodic
orbit is unstable.

To do so, we will use Proposition 6. First, we make the change of variables

x =
cos θ

r
, y =

sin θ

r
, θ ∈ S1, r > 0.

either in the right and the left zones. On the right zone, if we denote by (xR, yR) the
old variables and by (rR, θ) the new ones, where θ ∈ [−π/2, π/2] and vrR ≤ cos θ,
we get that

ṙR = −(xRẋR + yRẏR)r3R

= −rR
{
TR cos2 θ + (R− 1) cos θ sin θ − rRv [TR cos θ + (R− 1) sin θ]

}
,

θ̇ = r2R(ẏRxR − yRẋR)

= R cos2 θ + sin2 θ − TR cos θ sin θ − rRv [(R− 1) cos θ − TR sin θ] ,

while on the left zone, if we denote by (xL, yL) the old variables and by (rL, θ) the
new ones, where θ ∈ [π/2, 3π/2] and −urL ≤ cos θ, we get that

ṙL = −(xLẋL + yLẏL)r3L

= −rL
{
TL cos2 θ + (L− 1) cos θ sin θ + rLu [TL cos θ + (L− 1) sin θ]

}
,

θ̇ = r2L(ẏLxL − yLẋL)

= L cos2 θ + sin2 θ − TL cos θ sin θ + rLu [(L− 1) cos θ − TL sin θ] .

We have the system
(23)

r′R =
ṙR

θ̇
=
−rR

{
TR cos2 θ + (R− 1) cos θ sin θ − rRv [TR cos θ + (R− 1) sin θ]

}

R cos2 θ + sin2 θ − TR cos θ sin θ − rRv [(R− 1) cos θ − TR sin θ]

for θ ∈ [−π/2, π/2], and
(24)

r′L =
ṙL

θ̇
=
−rL

{
TL cos2 θ + (L− 1) cos θ sin θ + rLu [TL cos θ + (L− 1) sin θ]

}

L cos2 θ + sin2 θ − TL cos θ sin θ + rLu [(L− 1) cos θ − TL sin θ]

for θ ∈ [π/2, 3π/2]. In this case, the divergence of systems (23) and (24) on the
periodic orbit (which is rR = 0 with θ ∈ [−π/2, π/2] in the right zone and rL = 0
with θ ∈ [π/2, 3π/2] in the left zone) is, using the divergence formula in polar
coordinates, respectively

divergenceR|rR=0 =
1

rR

∂(rRr
′
R)

∂rR
|rR=0 = −2

P(R, TR)

Q(R, TR)
,

and

divergenceL|rL=0 =
1

rL

∂(rLr
′
L)

∂rL
|rL=0 = −2

P(L, TL)

Q(L, TL)
,

where

P(A,B) = B cos2 θ + (A− 1) cos θ sin θ,

Q(A,B) = 1 + (A− 1) cos2 θ −B cos θ sin θ.
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In view of Proposition 6 we must compute

IRL =

∫ 3π/2

π/2

divergenceL|rL=0 dθ +

∫ π/2

−π/2
divergenceR|rR=0 dθ.

For the calculations we can take advantage that

d

dθ

[
1 + (A− 1) cos2 θ −B cos θ sin θ

]
= −2(A− 1) cos θ sin θ − 2B cos2 θ +B,

so that, for instance, for the right part,

−2

∫ π
2

−π2

B cos2 θ + (A− 1) cos θ sin θ

1 + (A− 1) cos2 θ −B cos θ sin θ
dθ

reduces to

−
∫ π

2

−π2

B

1 + (A− 1) cos2 θ −B cos θ sin θ
dθ,

since ∫ π
2

−π2

−2
[
B cos2 θ + (A− 1) cos θ sin θ

]
+B

1 + (A− 1) cos2 θ −B cos θ sin θ
dθ

gives [
log
(
1 + (A− 1) cos2 θ −B cos θ sin θ

)]π
2

−π2
= 0.

Similar reduction can be achieved for the left part. Doing these integrals, we get
that

IRL = −2π

(
TR√

4R− T 2
R

+
TL√

4L− T 2
L

)
.

By assumptions, see (22), IRL > 0 and it follows from Proposition 6 that the
periodic orbit at infinity is unstable.

Taking an orbit starting at a point (0,M) with M > 0 sufficiently big, the
instability of the periodic orbit at infinity assures that after a turn the orbit will
pass through a point (0,m) with 0 < m < M , as in Figure 2. Then, by joining these
two points with a segment we have a positively invariant compact set Ω containing
the period annulus. This concludes the proof of statement (FF) of Theorem 4. �

Note that we could also study the (FF) case by computing the local expansion
of Poincaré map at infinity, by resorting to Proposition 6 of [22] in order to cope
with piecewise defined vector fields. If this alternative approach is used, then the
hypotheses assure that the derivative of such Poincaré map at r = 0 is greater than
one and the same conclusion follows.

Lemma 11. The Liénard piecewise linear differential system (1) with 0 < v <
u, TC = 0, TR > 0 and TL < 0 cannot have an orbit γ starting at (x, y) =

(v,
√
u2 − v2) and arriving after a turn at a point (v, y) with 0 < y <

√
u2 − v2, as

in Figure 10.

Proof. If such an orbit exists, then we could close the orbit with a segment on the
line x = v, building a positively invariant compact set Ω. Thus, from Proposition 9
we should have a stable limit cycle γ1(t) contained in Ω and surrounding the period
annulus. Now from Proposition 8 we know that a second unstable limit cycle
γ2(t) appears for TC < 0 sufficiently small, and γ1(t) persists due to its stability.
Note that γ1(t) and γ2(t) are contained in the half-space x > −u. But this is a
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xevxemu

x

y

Figure 10. The orbit γ starting at (x, y) = (v,
√
u2 − v2) and

arriving after surrounding the period annulus at a point (v, y) with

0 < y <
√
u2 − v2, is not possible under hypotheses 0 < v < u,

TL < 0, TC = 0, and TR > 0.

contradiction since a piecewise linear differential system with two zones separated
by a straight line has at most one limit cycle (see [8, 21]). �

Proof of statement (NF) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

(25) L,R > 0, TR > 2
√
R, |TL| > 2

√
L.

Note that under these assumptions system (1) has one virtual focus on the right
hand zone, and a virtual node on the left hand zone. We shall describe the compact
set Ω in the Poincaré disc, see Figure 3.

The point eL is a virtual attractor node whose invariant straight lines Γ± with
director vectors the eigenvectors of the linear part at eL intersect the line x = −u
at the points (−u, P−L ) and (−u, P+

L ) with P−L < P+
L < 0, see Proposition 2(a.1)

and Figure 3.

Since P+
L < 0 the orbit γ(t) through (−u, P+

L ) crosses the band −u < x < v

and enters the right hand zone at the point (v,Q+
L), see (3). Since ẋR|x=v = −y

and ẏR|y=0 = R(x− v) + v > 0, the orbit γ(t) exits the right hand zone. We note

that γ cannot intersect the segment s1 on the line x = v with 0 ≤ y ≤
√
u2 − v2,

otherwise we have an orbit satisfying the assumptions of Lemma 11, and this is
not possible. So the orbit γ(t) crosses again the central zone as in Figure 3, and
since at infinite the straight line Γ+ has a saddle (see Figure 3 and use the Poincaré
compactification of Appendix A), the orbit γ(t) enters again the central zone. Using
this orbit and an appropriate segment s2 on the straight line x = −u, we obtain
the compact set Ω homeomorphic to a closed disc surrounding the period annulus
and positively invariant. This concludes the proof of statement (NF) of Theorem
4. �
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Proof of statement (NN) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

L,R > 0, TR > 2
√
R, |TL| > 2

√
L, Q+

L > P−R .

Note that under these assumptions system (1) has two virtual nodes. We shall
describe the compact set Ω in the Poincaré disc, see Figure 4. The point eR is
a virtual unstable node whose invariant straight lines with director vectors the
eigenvectors of the linear part of eR intersect the line x = v on the points (v, P−R )

and (v, P+
R ). From Proposition 3(a.1) we have P+

R < P−R < 0. Moreover the point
eL is a virtual attractor node whose invariant straight lines with director vectors
the eigenvectors of the linear part of eL intersect the line x = −u on the points
(−u, P−L ) and (−u, P+

L ). From Proposition 2(a.1) we have P−L < P+
L < 0. Now we

compute the radius of the piece of circular orbit on the central zone passing through
the point (−u, P+

L ). Doing so we compute the point where this orbit intersects the

line x = v and we get the point (v,Q+
L), see (3). By assumptions we have that

Q+
L > P−R . Moreover using (31) and (32), at infinity we have two singular points

at the endpoints of the invariant straight lines through (−u, P+
L ) and (v, P−R ) being

saddles. Hence we can compute the compact set Ω by following the orbit through
the point (v,Q+

L), as in the previous case, or by using the segment joining the points

(v, P−R ) and (v,Q+
L), see Figure 4. This completes the proof of statement (NN) of

Theorem 4. �

Proof of statement (SF) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

L < 0, R > 0, TR < 2
√
R, HF

R (v − x̄R, Q+
L − ȳR) < HF

R (v − x̄R, Q−L − ȳR).

Note that under these assumptions system (1) has one saddle on the left hand zone
and a virtual focus on the right hand zone. We shall describe the compact set Ω in
the Poincaré disc, see Figure 5. The point eL is a saddle whose invariant manifolds
intersect the line x = −u at the points (−u, P−L ) and (−u, P+

L ). By Proposition

2(a.2) we have P+
L < 0 < P−L . Furthermore the point eR is a virtual unstable focus.

Now we compute the radius of the circular orbit on the central zone passing through
the point (−u, P+

L ). Doing so we compute the point where this orbit intersects the

line x = v and we get the point (v,Q+
L), see (5). Now we compute the radius of

circular orbit in the central zone passing through the point (−u, P−L ) and then we
compute the point where this orbit intersects the line x = v in backward time and
we get the point (v,Q−L ), see (5).

Recall that the focus dynamics in the right hand zone has the first integral
HF
R (x, y) defined in (12). It is easy to conclude, by using the points on the vertical

isocline ỹ = TRx̃ = 2σRx̃ and that HF
R (x, y) increases with the x-value of the

intersection point of the orbit with such isocline, that assumption (14) assures that
the orbit through (v,Q+

L) arrives at the line x = v below the point (v,Q−L ). Then,
we can obtain a positively invariant compact set Ω by joining this arrival point
with the point (v,Q−L ), see Figure 5. This completes the proof of statement (SF)
of Theorem4. �

Proof of statement (FS) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

L > 0, R < 0, |TL| < 2
√
L, HF

L (−u− x̄L, Q+
R − ȳL) < HF

L (−u− x̄L, Q−R − ȳL).
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Note that under these assumptions system (1) has one saddle on the right hand zone
and a virtual focus on the left hand zone. We shall describe the compact set Ω in
the Poincaré disc, see Figure 6. The point eR is a saddle whose invariant manifolds
intersect the line x = v at the points (v, P−R ) and (v, P+,R). By Proposition 3(a.2)

we have P−R < 0 < P+
R . Furthermore the point eL is a virtual unstable focus. Now

we compute the radius of the circular orbit on the central zone passing through the
point (−u, P+

L ). Doing so we compute the point where this circular orbit intersects

the line x = v and we get the point (v,Q+
L). Now we compute the radius of the

circular orbit in the central zone passing through the point (−u, P−L ) and then we
compute the point where this circular orbit intersects the line x = v in backward
time and we get the point (v,Q−L ).

The focus dynamics in the left hand zone has the first integral HF
L (x, y) defined

in (7). By using the points on the vertical isocline ỹ = TLx̃ = 2σLx̃ and that
HF
R (x, y) increases with the absolute |x|-value of the intersection point of the orbit

with such isocline, assumption (14) assures that the orbit through (−u,Q+
R) arrives

at the line x = −u above the point (−u,Q−R). Then, we can obtain a positively

invariant compact set Ω by joining this arrival point with the point (−u,Q−R), see
Figure 6. This completes the proof of the statement (FS) of Theorem 4. �

Proof of statement (SN) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

L < 0, R > 0, TR > 2
√
R, Q+

L > P−R , H
N
R (v−x̄R, Q+

L−ȳR) < HN
R (v−x̄R, Q−L−ȳR).

Note that under these assumptions system (1) has one saddle on the left hand
zone and a virtual node on the right hand zone. To describe the compact set Ω in
the Poincaré disc, the arguments and the figure are essentially the same as in the
statement (SF) and thus we do not provide them here, see Figure 7. �

Proof of statement (NS) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

L > 0, R < 0, |TL| > 2
√
L, HN

L (−u− x̄L, Q+
R − ȳL) < HN

L (−u− x̄L, Q−R − ȳL).

Note that under these assumptions system (1) has one saddle on the right hand
zone and a virtual node on the left hand zone. To describe the compact set Ω in
the Poincaré disc, the arguments and the figure are essentially the same as in the
statement (FS) and thus we do not provide them, see Figure 8. Note however that
if P+

L > Q−R holds, then the orbit through Q+
R arrives for sure to the line x = −u

above Q−R and so condition (16) is automatically fulfilled. �

Proof of statement (SS) of Theorem 4. We recall that 0 < v < u, TR > 0, TL < 0
and

L < 0, R < 0, Q+
L > P−R , H

S
R(v − x̄R, Q+

L − ȳR) > HS
R(v − x̄R, Q−L − ȳR).

Note that here the saddle dynamics on the right zone has the first integral given
in (11), which when evaluated at the points on the vertical isocline ỹ = TRx̃ = 2σRx̃
becomes

(26) HS
R(x̃, 2σRx̃) = log

√
w2
Rx̃

2 − σ2
Rx̃

2 +
σR
wR

arctanh

(
σR
wR

)
,

and so it increases when |x̃| = |x− x̄R| = x̄R − x increases. Then, the first integral
decreases when the positive x-value of the intersection point of the orbit with such
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isocline increases, and to assure that the orbit through Q+
L arrives at the line x = v

below Q−L we need a reversed inequality (compared with the SF and SN cases).
The proof follows exactly the same lines as the proofs of statements (SF) or (SN)

and thus we do not repeat them. Note however that if P+
R < Q−L holds, then the

orbit through Q+
L arrives for sure to the line x = v below Q−L and so condition (18)

is automatically fulfilled. �

5. Proof of Theorem 5

To show Theorem 5, we first recall a necessary condition for existence of limit
cycles which is obtained from applying the Filippov’s transformations, see [32, 33].
Working in the set of x-values corresponding to SRVF, we define the function

G(x) =

∫ x

0

g(s) ds,

positive for x 6= 0, since we exclude the possible regions with xg(x) < 0. Thus,
the function G is only defined for x ≥ x̄L if L < 0 and for x ≤ x̄R if R < 0. Let
xL(z) < 0 < xR(z) be the two solution branches of the equation G(x) = z > 0,
where we also take xL(0) = xR(0) = 0, and the domains of such functions could be
different when real saddles appear. If we define the functions

F{L,R}(z) = F (x{L,R}(z)),

it turns out that the differential equation

dy

dz
= FR(z)− y

reproduces for z ≥ 0 the orbits of system (1) for x ≥ 0, while the differential
equation

dy

dz
= FL(z)− y

reproduces also for z ≥ 0 the orbits of system (1) for x ≤ 0. This technique allows
to ‘fold’ the phase plane and to apply comparison principles, so that for instance
we can write the following result, which is a direct consequence of Theorem 5.4 of
[32].

Proposition 12. For the differential systems (1) with 0 < v < u, TR > 0, TL < 0,
L 6= 0, R 6= 0, a necessary condition for the existence of periodic orbits is the
existence of a value z∗ > 0 such that FL(z∗) = FR(z∗).

In what follows, we will see that, in all the cases of Theorem 4, when (−TC) is
big enough there are no intersections between the graphs of FL and FR, so that
Theorem 5 is a direct consequence of Proposition 12.

We start by computing

G(x) =





1
2

[
L(x+ u)2 − 2u(x+ u) + u2

]
, if x ≤ −u,

1
2x

2, if −u < x < v,
1
2

[
R(x− v)2 + 2v(x− v) + v2

]
, if x ≥ v,
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where we must add the restrictions x+ u > u/L or x− v < −v/R, whenever L < 0
or R < 0, respectively, or both if L < 0 and R < 0. Accordingly, we get

xL(z) =




−
√

2z, if 2z ≤ u2,
−u− 1

L

(√
u2 + L(2z − u2)− u

)
, if 2z > u2,

where we must add the restriction 2z ≤ u2(1− 1/L) when L < 0, and

xR(z) =





√
2z, if 2z ≤ v2,

v +
1

R

(√
v2 +R(2z − v2)− v

)
, if 2z > v2,

where we must add the restriction 2z ≤ v2(1− 1/R) when R < 0. After composing
these functions with the function F , we obtain

(27) FL(z) =




−TC

√
2z, if 2z ≤ u2,

−TL
L

(√
u2 + L(2z − u2)− u

)
− TCu, if 2z > u2,

and

(28) FR(z) =




TC
√

2z, if 2z ≤ v2,
TR
R

(√
v2 +R(2z − v2)− v

)
+ TCv, if 2z > v2,

where the graph of FL should be restricted to 2z ≤ u2(1 − 1/L) when L < 0 and
the graph of FR to 2z ≤ v2(1− 1/R) when R < 0.

Assume first that we are in one of the cases with L > 0 and R > 0, that is, we
are in cases (FF), (NF) or (NN), under the corresponding hypotheses of Theorem
4. We claim that by choosing (−TC) big enough we have FL(z) > FR(z) for all
z > 0, so that from Proposition 12 we cannot have limit cycles and therefore the
conclusion of this theorem holds.

zetastar

z

y

Figure 11. The graphs of the functions FL(z) (in red) and FR(z)
(in blue) for TC = 0 under the hypotheses of (FF) case. Note that
FL(z) = 0 for 0 < 2z < u2 and FR(z) = 0 for 0 < 2z < v2.

To show the claim, note first that for TC = 0 the two graphs coincide for all
0 ≤ 2z ≤ v2, since v2 < u2 and then both functions vanish; this fact corresponds
to the existence of the period annulus of statement (a) of Theorem 4. In any of
these three cases of Theorem 4, we do know that there exists a stable limit cycle
surrounding the period annulus, so that a straightforward extension of Proposition
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12 implies the existence of a value z∗ with 2z∗ > u2 where FL(z∗) = FR(z∗). The
situation is depicted in Figure 11 for the (FF) case of Table 1, where the fact that
FL(z) < FR(z) for v2 < 2z < 2z∗ tells us that orbits near the period annulus after
a complete turn go far away from the annulus, agreeing with Proposition 7. It is
precisely the intersection at z∗ leading to FL(z) > FR(z) for z > z∗ what allows the
existence of a closed orbit (the stable limit cycle surrounding the period annulus)
that does return at the same point of the initial condition taken on the negative
part of y-axis. Furthermore, the hypotheses of cases (FF) and (NF) imply that the
condition

(29)
TL√
L

+
TR√
R
< 0

is fulfilled. On the other hand, we have

(30) lim
z→∞

FR(z)

FL(z)

∣∣∣∣
TC=0

= lim
z→∞

TR
R

(√
v2 +R(2z − v2)− v

)

−TL
L

(√
u2 + L(2z − u2)− u

) =
TR/
√
R

−TL/
√
L
,

so that condition (29) assures that the above limit is less than 1 and so FL(z) >
FR(z) for all z sufficiently big. Thus, since two parabolic branches have at most
two intersections, we deduce that FL(z) > FR(z) for all z > z∗ and therefore there
is only one intersection in cases (FF) and (NF), as in Figure 11. This allows to
define the positive quantity

H = max
z≥0

[FR(z)− FL(z)] = max
0≤z≤z∗

[FR(z)− FL(z)] > 0.

If starting from the situation of Figure 11, we allow TC < 0 we see that for
small values of z the functions do not vanish any longer while the right parts of the
graphs just undergo translations (recall (27)-(28)). Thus, for 2z ≥ u2 the graph of
FL(z) goes up an amount equal to (−TCu), while for 2z ≥ v2 the graph of FR(z)
goes down an amount equal to TCv. Note that FL(z) > FR(z) for all 0 < 2z ≤ v2,
what indicates that the origin is now a stable focus, see the left panel of Figure 12.
In the figure, we observe two transversal intersections between the two graphs that
correspond for sure to the two limit cycles predicted in statement (b) of Theorem
4 when TC is small enough, but it should be remarked that we cannot identify
in general the number of intersections with the number of limit cycles: the only
valid assertion is, from Proposition 12, that without intersections there are no limit
cycles. If we increase more the value of (−TC), namely by taking (−TC)(u+v) > H,
we get a situation without intersections between the graphs of FL(z) and FR(z),
see the right panel of Figure 12. So, the above claim is proved and the theorem is
completed for the cases (FF) and (NF).

In the (NN) case we cannot guarantee condition (29) so that there could have in
principle two intersections when TC = 0, a situation leading to FR(z)− FL(z) > 0
(and not bounded) for z sufficiently big. Anyway, we do not have to consider all
possibles values of z > 0, since the stable limit cycle (and any other possible periodic
orbit) must be surrounded by the orbit with initial condition (v,Q+

L), see Figure
4. Such an orbit defines a maximal value of xM , so that the corresponding value
zM with xR(zM ) = xM bounds the interval where we must look for intersections
of the graphs. Note that this bound is valid for all TC > 0 thanks to a property of
rotated vector fields, which implies in our case that the stable limit cycle shrinks
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when (−TC) increases. Thus, if we now define the positive quantity

H = max
0≤z≤zM

[FR(z)− FL(z)] > 0,

we can follow the same reasoning as before to conclude that for (−TC) big enough
there are no intersections for z < zM and therefore no periodic orbits in the (NN)
case.

z

y

z

y

Figure 12. The graphs of the functions FL(z) (in red) and FR(z)
(in blue) for TC < 0 and small in absolute value (left) and for
(−TC)(u+ v) > H (right) in the case (FF) of Table 1.

To show the cases where saddles zones are involved, we can follow a similar rea-
soning. The only difference is that at least one of the graphs is finite. Excepting in
the (SS) case, we have now parabolic branches with different concavity. Again, as
from Theorem 4 there is a stable limit cycle for TC = 0, we deduce the existence
of at least one transversal intersection point z∗, and we can define the maximum
value H for the difference FR(z)− FL(z) (this time on the common maximal defi-
nition interval for the two functions) and assure the existence of a value of TC < 0
from which there are no intersections. We illustrate these cases by showing some
instances of them in Figure 13. The proof is completed.

z

y

z

y

z

y

Figure 13. The graphs of the functions FL(z) (in red) and FR(z)
(in blue) for the cases (SN), (FS) and (SS) of Table 1 when TC = 0.

Before ending the work, we write a couple of remarks.

Remark 13. For all the cases of Theorem 4, we can obtain a condition on TC < 0
that implies no intersections for the graphs of FR(z) and FR(z) when 0 < 2z < u2.
To do this, it suffices to consider the range v2 < 2z < u2, since for TC < 0 we know
that FL(z) > FR(z) when 0 < 2z ≤ v2. Thus, we impose that

−TC
√

2z >
TR
R

(√
v2 +R(2z − v2)− v

)
+ TCv,
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which is equivalent to

−TC(
√

2z + v) >
TR
R

(√
v2 +R(2z − v2)− v

)
=

TR(2z − v2)√
v2 +R(2z − v2) + v

.

Since
TR√
R

√
2z − v2 =

TR(2z − v2)√
R(2z − v2)

>
TR(2z − v2)√

v2 +R(2z − v2) + v
,

it suffices to get

−TC(
√

2z + v) >
TR√
R

√
2z − v2,

which is true for −TC > TR/
√
R. In short, the condition

TC +
TR√
R
< 0

assures that there is no limit cycle totally contained in the half-plane x ≥ −u. So,
the unstable limit cycle that bifurcates at TC = 0, if it still exists, lives in the three
zones.

Remark 14. As mentioned before, Theorem 4 does not includes the (FN) case. The
reasons that make this case different can now be clarified. Under the corresponding
hypotheses 0 < v < u, TR > 0, TC = 0, TL < 0, L,R > 0, |TL| < 2/

√
L and

TR > 2/
√
R, condition (29) is violated, since

TL√
L

+
TR√
R
> −2 + 2 = 0.

This together with (30) implies that FR(z) > FL(z) not only for all z with v2 <
2z ≤ u2 (where FL(z) = 0) but also for z sufficiently big (and possibly for all z
with 2z > v2). In this case, if we allow TC < 0 then we have always at least one
intersection for the graphs of FR(z) and FL(z). In fact, by integrating backwards
in time the upper invariant manifold of the virtual node, it can be easily shown the
existence of one unstable limit cycle for all values of TC < 0.

Appendix A: Poincaré compactification

In this section we summarize the Poincaré compactification that we shall use
for describing the global phase portraits of our systems. For more details on the
Poincaré compactification see chapter 5 of [5].

Let S2 be the set of points {(s1, s2, s3) ∈ R3 : s21 + s22 + s23 = 1}. We will call this
sphere the Poincaré sphere. Given a polynomial vector field

X = (ẋ1, ẋ2) = (P (x1, x2), Q(x1, x2))

in R2, it can be extended analytically to the Poincaré sphere by projecting each
point (x1, x2) ∈ R2 identified with the point (x1, x2, 1) ∈ R3 onto the Poincaré
sphere using the straight line through (x1, x2, 1) and the origin of R3. In this way we
obtain two copies of X: one on the northern hemisphere {(s1, s2, s3) ∈ S2 : s3 > 0},
and another on the southern hemisphere {(s1, s2, s3) ∈ S2 : s3 < 0}. The equator
S1 = {(s1, s2, s3) ∈ S2 : s3 = 0} corresponds to the infinity of R2. The local charts
that we use for doing the calculations on the Poincaré sphere are

Ui = {(s1, s2, s3) ∈ S2 : si > 0}, Vi = {(s1, s2, s3) ∈ S2 : si < 0},



28 J. LLIBRE, E. PONCE AND C. VALLS

with the corresponding local maps

φi(s1, s2, s3) : Ui → R2, ψi(s1, s2, s3) : Vi → R2,

such that φi(s1, s2, s3) = −ψi(s1, s2, s3) =

(
sm
si
,
sn
si

)
for m < n and m,n 6= i, for

i = 1, 2, 3. The expression for the corresponding vector field on S2 in the local chart
U1 is given by

(31) u̇ = vd
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
;

the expression for U2 is

(32) u̇ = vd
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
, v̇ = −vd+1Q

(
u

v
,

1

v

)
;

and the expression for U3 is just

u̇ = P (u, v), v̇ = Q(u, v),

where d is the degree of the vector field X. The expressions for the charts Vi are the
same than for the charts Ui multiplied by (−1)d−1, for i = 1, 2, 3. Hence, to study
the vector field X, it is enough to study its Poincaré compactification restricted
to the northern hemisphere plus S1, which we will call the Poincaré disc and we
will denote it by D. To draw the phase portraits, we will consider the so-called
gnomonic projection of the Poincaré disc on R2 by

π(s1, s2, s3) =
1

s3 + 1
(s1, s2) =

1

1 +
√

1 + x21 + x22
(x1, x2),

where

(s1, s2, s3) =
1√

1 + x21 + x22
(x1, x2, 1),

see Section 2.9.1 of [24] for more details.

Finite singular points of X are the singular points of its compactification which
are in S2 \ S1, and they can be studied using U3. Infinite singular points of X are
the singular points of the corresponding vector field on the Poincaré disc lying on
S1. Since (s1, s2, 0) ∈ S1 is an infinite singular point if and only if −(s1, s2, 0) ∈ S1
is also an infinite singular point, and the local phase portrait of one is that of the
other multiplied by (−1)d−1, to study the infinite singular points it suffices only to
look at U1|v=0 and at the origin of U2.

The next theorem (see [27]) gives a characterization of two topologically equiv-
alent vector fields in the Poincaré disc. We recall that the separatrix skeleton of
a differential system on the Poincaré disc D consists of all the separatrices of this
differential system. See section 1.9 of [5] for the definition of separatrix. We also
say that two differential systems on the Poincaré disc D are topologically equivalent
if there exists a homeomorphism from D to D that maps the orbits of one system
to the orbits of the other system preserving the orientation.

Theorem 15 (Markus–Neumann-Peixoto Theorem). Assume that (D, φ1) and (D, φ2)
are two continuous flows with only isolated singular points. Then these flows are
topologically equivalent if and only if their completed separatrix skeletons are topo-
logically equivalent.
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This theorem implies that once the separatrices of a vector field in the Poincaré
disc are determined, the global phase portrait of that vector field is obtained up to
topological equivalence.
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[21] J. Llibre, M. Ordóñez and E. Ponce, On the existence and uniqueness of limit cycles in a
planar piecewise linear systems without symmetry, Nonlinear Analysis Series B: Real World

Applications 14 (2013), 2002–2012.

[22] J. Llibre and E. Ponce, Bifurcation of a periodic orbit from infinity in planar piecewise
linear vector fields, Nonlinear Analysis 36 (1999), 623–653.

[23] J. Llibre and J. Sotomayor, Phase portraits of planar control systems, Nonlinear Analysis,

Methods & Applications 27 (1996), 1177–1197.
[24] J. Llibre and A. Teruel, Introduction to the qualitative theory of differential systems,
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