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Abstract. We analyze the large-n behavior of soliton solutions of the integrable focusing nonlinear
Schrödinger equation with associated spectral data consisting of a single pair of conjugate poles
of order 2n. Starting from the zero background, we generate multiple-pole solitons by n-fold
application of Darboux transformations. The resulting functions are encoded in a Riemann-Hilbert
problem using the robust inverse-scattering transform method recently introduced by Bilman and
Miller. For moderate values of n we solve the Riemann-Hilbert problem exactly. With appropriate
scaling, the resulting plots of exact solutions reveal semiclassical-type behavior, including regions
with high-frequency modulated waves and quiescent regions. We compute the boundary of the
quiescent regions exactly and use the nonlinear steepest-descent method to prove the asymptotic
limit of the solitons is zero in these regions. Finally, we study the behavior of the solitons in a
scaled neighborhood of the central peak with amplitude proportional to n. We prove that in a
local scaling the solitons converge to functions satisfying the second member of the Painlevé-III
hierarchy in the sense of Sakka. This function is a generalization of a function recently identified
by Suleimanov in the context of geometric optics and by Bilman, Ling, and Miller in the context
of rogue wave solutions to the focusing nonlinear Schrödinger equation.

1. Introduction

The one-dimensional focusing cubic nonlinear Schrödinger equation

(1.1) iψt +
1

2
ψxx + |ψ|2ψ = 0, x, t ∈ R

is a standard model for the evolution of quasi-monochromatic waves in weakly nonlinear dispersive
media [5] with applications including fluid dynamics [36] and nonlinear optics [12]. Solutions of (1.1)
are well known to exhibit highly structured multiscale coherent wave patterns that may be viewed as
the focusing counterpart to dispersive shock waves occuring in systems with hyperbolic modulation
equations such as the defocusing nonlinear Schrödinger and Korteweg-de Vries equations [14]. A
standard mechanism for the generation of rapid oscillations of |ψ(x, t)| from smooth Cauchy data
is the dispersive regularization of a so-called gradient catastrophe [6]. These phenomena have
been extensively studied using the semiclassically scaled problem iεψt + ε

2ψxx + |ψ|2ψ = 0 with
ε-independent Cauchy data ψ0(x, 0). As ε → 0, the initial condition can be better approximated
by reflectionless initial data consisting of O(ε−1) solitons. These so-called semiclassical soliton
ensembles can be computed explicitly for moderately small values of ε, and studied asymptotically
via Riemann-Hilbert techniques in the limit ε→ 0 [17, 20]. Solutions asymptotically display rapid
oscillations of period O(ε) in fixed (ε-independent) regions of the space-time plane.

The nonlinear Schrödinger equation (1.1) is completely integrable [37], and each initial condi-
tion with sufficient smoothness and decay is associated to scattering data consisting of poles and
connection coefficients (encoding solitons) and a reflection coefficient (encoding radiation). The
scattering data for a semiclassical soliton ensemble consists of O(ε−1) simple poles (and associated
connection coefficients, but the reflection coefficient is zero). On the other hand, it has been known
since the original work of Zakharov and Shabat [37] that (1.1) has soliton solutions with spectral
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data consisting of higher-order poles. We refer to a reflectionless solution of (1.1) with scattering
data consisting of a pair of poles of order m as an mth-order pole soliton or, more generally, a
multiple-pole soliton. In light of the rich mathematical structure displayed by solutions with scat-
tering data consisting of a large number of simple poles, along with the fact that multiple-pole
solitons can be generated by the coalescence of simple poles, it is natural to study the asymptotic
behavior of mth-order pole solitons as m → ∞. We show that multiple-pole solitons provide an
alternate mechanism for generating behavior qualitatively similar to dispersive shock waves (see
Figures 1–6).

Previous studies of muliple-pole soliton solutions of (1.1) have primarily focused on algebraic as
opposed to asymptotic aspects [2, 16, 21, 30]. Olmedilla [23] and Schiebold [27] studied the long-time
asymptotic behavior (while keeping the pole order fixed). Solitons associated to higher-order poles
have also been studied for the modified Korteweg-de Vries equation [35], the sine-Gordon equation
[3, 25, 32], the Caudrey-Dodd-Gibbon-Sawada-Kotera equation [15], the Kadomtsev-Petviashvili I
equation [1, 33], the N -wave system [28], the complex short-pulse equation [19], and the coupled
Sasa-Satsuma system [18]. Vinh [34] has recently studied analogues of higher-order solitons for
nonintegrable generalized Korteweg-de Vries equations.

The recently introduced robust inverse-scattering transform [8] (see §2.1 for more details) pro-
vides the tools necessary to analyze the large-order behavior of multiple-pole solitons. Bilman,
Ling, and Miller [7] used the robust inverse-scattering transform to study the large-order asymp-
totic behavior of multiple-pole soliton solutions of

(1.2) iψt +
1

2
ψxx + (|ψ|2 − 1)ψ = 0, x, t ∈ R

with non-decaying initial conditions (i.e. the nonlinear Schrödinger equation expressed in a rotating
frame). Here we adapt the robust inverse-scattering transform to analyze multiple-pole soliton
solutions of (1.1) generated by repeated Darboux transformations. Specifically, we fix a Darboux

transformation that takes a given solution ψ0(x, t) to (1.1) and generates a new solution ψ̃0(x, t)
with the same Beals-Coifman scattering data except for the addition of double poles at points ξ
and ξ∗. If the Beals-Coifman scattering data for ψ0(x, t) already has poles of order m at ξ and ξ∗,

then the Beals-Coifman scattering data for ψ̃0(x, t) will have poles of order m+ 2 at these points.

We start with the trivial initial condition ψ[0](x, t) ≡ 0 and repeatedly apply the same Darboux

transformation n times to obtain a solution ψ[2n](x, t) with order 2n poles at ξ and ξ∗.
As one might expect, the global behavior (the far field) is markedly different for the multiple-pole

soliton solutions of (1.1) studied here and the multiple-pole soliton solutions of (1.2) studied in [7].
Nevertheless, the multiple-pole soliton solutions of (1.1) and (1.2) both have a peak of amplitude
proportional to the pole order m. In [7], it was shown for (1.2) that the local behavior in a scaled
neighborhood of this peak (the near field) is given by a certain Painlevé function. We show that
for (1.1) the near-field behavior is described by a new family of Painlevé solutions that agree with
the Painlevé function in [7] for special parameter values. We now summarize our results.

1.1. Far-field results. Fix a pole location ξ ∈ C+, a vector of connection coefficients c ≡ (c1, c2) ∈
(C∗)2, and a non-negative integer n. Define D0 ⊂ C to be a circular disk centered at the origin

containing ξ in its interior. Let M[n](λ;x, t; c) ≡M[n](λ;x, t) be the unique solution of the following
Riemann-Hilbert problem (for uniqueness see the argument in, for example, [8, Theorem 2.4]).

Riemann-Hilbert Problem 1. Let (x, t) ∈ R2 be arbitrary parameters, and let n ∈ Z≥0. Find

the unique 2× 2 matrix-valued function M[n](λ;x, t) with the following properties:

Analyticity: M[n](λ;x, t) is analytic for λ ∈ C \ ∂D0, and it takes continuous boundary
values from the interior and exterior of ∂D0.
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Jump condition: The boundary values on the jump contour ∂D0 (oriented clockwise) are
related as

(1.3) M
[n]
+ (λ;x, t) = M

[n]
− (λ;x, t)e−i(λx+λ2t)σ3S

(
λ− ξ
λ− ξ∗

)nσ3
S−1ei(λx+λ2t)σ3 , λ ∈ ∂D0,

where

(1.4) S :=
1

|c|

(
c1 −c∗2
c2 c∗1

)
.

Normalization: M[n](λ;x, t)→ I as λ→∞.

The 2nth-order pole solitons we study are defined by

(1.5) ψ[2n](x, t; c) ≡ ψ[2n](x, t) := 2i lim
λ→∞

λ[M[n](λ;x, t; c)]12

(see Remark 1 in §2.3 for the explanation of why the pole order is necessarily even). Introduce the
scaled space and time variables χ and τ by

(1.6) χ :=
x

n
, τ :=

t

n
.

As illustrated in Figures 1 and 4, as n→∞ the χτ -plane is partitioned into well-defined regions in
which the leading-order behavior of ψ[2n](nχ, nτ) is different. Figure 1 illustrates this convergence
for ξ = i and c = (1, 1).

Figure 1. Plots of |ψ[2n](x, t; (1, 1))| for −5n ≤ t ≤ 5n and −5n ≤ x ≤ 5n (i.e.

−5 ≤ τ ≤ 5 and −5 ≤ χ ≤ 5), where ψ[2n](x, t; (1, 1)) is a multiple-pole soliton
solution of the nonlinear Schrödinger equation (1.1). In each plot c1 = c2 = 1 and
ξ = i. Left: n = 2, Center: n = 4. Right: n = 8.

Figures 2 and 3 show time slices of |ψ[2n](nχ, nτ)| at τ = 3
8 and τ = 5, respectively. Although

it is beyond the scope of this paper, these plots suggest there are at least three different nonzero
leading-order behaviors.
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Figure 2. Plots of |ψ[2n](x, 3
8n; (1, 1))| for t = 3

8n and −3n ≤ x ≤ 3n (i.e. τ = 3
8

and −3 ≤ χ ≤ 3), where ψ[2n](x, t; (1, 1)) is a multiple-pole soliton solution of the
nonlinear Schrödinger equation (1.1). In each plot c1 = c2 = 1 and ξ = i. Left:
n = 4. Center: n = 8. Right: n = 12.
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Figure 3. Plots of |ψ[2n](x, 5n; (1, 1))| for t = 5n and −6n ≤ x ≤ 6n (i.e. τ = 5

and −6 ≤ χ ≤ 6), where ψ[2n](x, t; (1, 1)) is a multiple-pole soliton solution of the
nonlinear Schrödinger equation (1.1). In each plot c1 = c2 = 1 and ξ = i. Left:
n = 2. Center: n = 4. Right: n = 8.

In Figure 4 we illustrate the effect of changing c by plotting ψ[2n](nχ, nτ) with c = (1, 5). Much
of the far-field structure remains the same. The solution appears to still be converging to zero
at all (χ, τ) points at which the solution converged to zero with c = (1, 1) (this is made precise
in Theorem 1). Furthermore, if |τ | is sufficiently large, then the oscillatory structure appears
unchanged. However, there are noticable qualitative differences for χ and τ near the origin.

Figure 4. Plots of |ψ[2n](x, t; (1, 5))| for −5n ≤ t ≤ 5n and −5n ≤ x ≤ 5n (i.e.

−5 ≤ τ ≤ 5 and −5 ≤ χ ≤ 5), where ψ[2n](x, t; (1, 5)) is a multiple-pole soliton
solution of the nonlinear Schrödinger equation (1.1). In each plot c1 = 1, c2 = 5,
and ξ = i. Left: n = 2. Center: n = 4. Right: n = 8.
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These differences are further illustrated in Figure 5, which shows a time slice at τ = 3
8 for

c = (1, 5). We partially quantify these differences by studying the dependence on c in the near-
field limit in Theorem 2.
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Figure 5. Plots of |ψ[2n](x, 3
8n; (1, 5))| for t = 3

8n and −15
4 n ≤ x ≤

15
4 n (i.e. τ = 3

8

and −15
4 ≤ χ ≤

15
4 ), where ψ[2n](x, t; (1, 5)) is a multiple-pole soliton solution of the

nonlinear Schrödinger equation (1.1). In each plot c1 = 1, c2 = 5, and ξ = i. Left:
n = 4. Center: n = 8. Right: n = 12.

Our first result is Theorem 1, showing there is a specific region in the χτ -plane in which
ψ[2n](nχ, nτ) decays exponentially fast to zero as n → ∞. This region depends on ξ but is in-
dependent of c. We provide an explicit (though transcendental) characterization of the boundary
of the zero region.

We state our results for ξ = i, which is sufficient for general ξ by symmetry properties of (1.1)
since there is only one conjugate pair of poles in the scattering data. Formulas for general ξ are
provided in §3. The boundary curve consists of two different types of points. First, consider the
locus of points (χ, τ) ∈ R2 satisfying

(1.7) 16τ4 + (8χ2 − 72χ+ 108)τ2 + (χ4 − 2χ3) = 0.

Part of this locus is a smooth arc with endpoints
(

9
4 ,±

3
√

3
8

)
and containing the point (2, 0). Call

this arc L1. This arc appears to separate the zero region from a region in which the leading-order
behavior of ψ[2n](nχ, nτ) is specified by a model Riemann-Hilbert problem with a single band
(suggesting non-oscillatory behavior).

Next, given ξ ∈ C, define the phase function

(1.8) ϕ(λ;χ, τ) := i(λχ+ λ2τ) + log

(
λ− ξ∗

λ− ξ

)
.

The critical points of ϕ(λ;χ, τ) are those values of λ satisfying

(1.9) 2τλ3 + χλ2 + 2τλ+ (χ− 2) = 0.

For τ = 0 and χ > 2, define

(1.10) λ+(χ, 0) :=

(
2− χ
χ

)1/2

so that =(λ+(χ, 0)) > 0. Note that if τ = 0, then λ+(χ, 0) satisfies (1.9). For τ ≥ 0, let λ+(χ, τ) be
the solution of (1.9) that is the analytic continuation in τ of (1.10). We restrict this definition to
(χ, τ) values that can be reached by a vertical path in the χτ -plane starting at (χ, 0) along which
no two solutions of (1.9) coincide. Then, the condition

(1.11) <(ϕ(λ+(χ, τ), χ, τ)) = 0

defines a simple unbounded curve in the first quadrant of the χτ -plane with one endpoint at(
9
4 ,

3
√

3
8

)
. Denote this curve by L+

2 and define L−2 := {(χ, τ) : (χ,−τ) ∈ L+
2 }. The curves L+

2



6 DENIZ BILMAN AND ROBERT BUCKINGHAM

and L−2 appear to separate the zero region from regions in which the leading-order behavior of

ψ[2n](nχ, nτ) is specified by a model Riemann-Hilbert problem with two bands (suggesting oscil-
latory behavior). Let Z+ denote the unbounded region in the χτ -plane containing the ray χ > 2
and bounded by L1 ∪L+

2 ∪L
−
2 . Also define Z− := {(χ, τ) : (−χ,−τ) ∈ Z+}. Define the zero region

Z := Z+ ∪ Z−.

Theorem 1. If (χ, τ) ∈ Z,

(1.12) ψ[2n](nχ, nτ ; c) = O(e−dn)

holds for some constant d > 0.

Theorem 1 holds for general ξ ∈ C+ with Z defined as in §3. The boundary curve is independent
of both c and n, although it does depend on ξ (see §3 for the ξ-dependent formulas). Figure 6
illustrates the boundary curve for two choices of ξ.

Figure 6. The boundary of the zero region for two choices of ξ. Left: Plot
of |ψ[2n](nχ, nτ ; (1, 5))| with c1 = 1, c2 = 5, and ξ = i. Right: Plot of

|ψ[2n](nχ, nτ ; (1, 1))| with c1 = 1, c2 = 1, and ξ = 1
2 + 2i. In both plots n = 4,

−5 ≤ χ ≤ 5, −5 ≤ τ ≤ 5, and ψ[2n](x, t; c) is a multiple-pole soliton solution of the
nonlinear Schrödinger equation (1.1).

1.2. Near-field results. From plots such as Figure 7, it is evident that the qualitative behavior
of ψ[2n](x, t; c) near (x, t) = (0, 0) is distinctly different from elsewhere in the space-time plane and
is dominated by a single peak (with shape dependent on c) with amplitude of O(n) for n large.
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Figure 7. Plots of |ψ[2](x, t; c)| illustrating the behavior near (x, t) = (0, 0), where

ψ[2](x, t; c) is a 2nd-order pole soliton solution of the nonlinear Schrödinger equation
(1.1). Left: c = (1, 1). Right: c = (1, 5).

We study the behavior in this region by defining the rescaled variables

(1.13) X := nx, T := n2t.

Our main result is that, in the large-n limit, the function 1
nψ

[2n](Xn ,
T
n2 ; c) is well-approximated

by a function Ψ(X,T ; c) ≡ Ψ(X,T ) that satisfies Painlevé-III hierarchy equations in the sense of
Sakka [26]. The functions Ψ(X,T ; (1, 1)) and Ψ(X,T ; (1,−1)) (with ξ = i) were first identified
recently in two different but related contexts, self-focusing in nonlinear geometric optics [29] and
rogue waves [7]. The work [7], which is more closely related to the current study, analyzes solutions
of the focusing nonlinear Schrödinger equation (1.2) generated from repeated Darboux transfor-
mations applied to the constant solution ψ(x, t) ≡ 1. The resulting solutions, referred to in [7]
as fundamental rogue waves, can be viewed as higher-order analogues of the Peregrine breather.
The spectral data encoding the fundamental rogue waves includes a conjugate pair of singularities
of fractional order (as opposed to a pair of poles of integer order in our situation). The far-field
behavior is completely different behavior for the two problems (compare, say, Figure 1 above with
Figure 2 in [7]), and it is only in an appropriate scaling near the origin that the functions Ψ(X,T )
emerge. This situation in which the local behavior of more than one solution is described by the
same Painlevé transcendent or other special function is a hallmark of integrable wave equations.

Some of the main results concerning these functions in [7] are as follows:

(a′) Fundamental rogue-wave solutions of (1.2) near the origin are, after appropriate scaling,
well approximated by certain functions Ψ(X,T ; (1,±1)) that are solutions of (1.1).

(b′) For fixed T , the functions Ψ(X,T ; (1,±1)) satisfy the second member of Sakka’s Painlevé-
III hierarchy [26] with certain parameters. These functions satisfy Ψ(0, 0; (1,±1)) = ±4,
Ψ(−X,T ; (1,±1)) = Ψ(X,T ; (1,±1)), and Ψ(X,−T ; (1,±1)) = Ψ(X,T ; (1,±1))∗.

(c′) For T = 0, the functions Ψ(X, 0; (1,±1)) generate certain solutions of the Painlevé-III
equation.

In this work we prove analogues of (a′)–(c′) for the higher-order pole soliton solutions of (1.1).
We start with a more general Darboux transformation than in [7, 8], allowing both general ξ ∈ C+

and general c ∈ (C∗)2. The choice of ξ can effectively be scaled out and does not introduce new
phenomena, so we will fix ξ = i. However, changing c amounts to changing the boundary condi-
tions of Ψ(X,T ; c), leading to a new family of distinguished Painlevé solutions. We emphasize that
Ψ(X,T ; c) depends only on the ratio c1/c2, so in effect it is a one-(complex)-parameter family of
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solutions (see the discussion at the end of §2.2). We illustrate the convergence of 1
nψ

[2n](Xn , 0; c) to

Ψ(X, 0; c) for c = (1, 1) and c = (1, 5) in Figures 8 and 9, respectively. The plots of 1
nψ

[2n](Xn , 0; c)
(n = 2, 4, 8) were generated by solving the associated Riemann-Hilbert problem recast as a linear
system (see Appendix A). The functions Ψ(X, 0; c) were computed using the methodology intro-
duced in [31] and RHPackage [24] (see Appendix B). Note that the even X-symmetry enjoyed by
Ψ(X, 0; (1,±1)) is broken for general c.
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Figure 8. Left: Scaled multiple-pole soliton solutions 1
nψ

[2n](Xn , 0; (1, 1)) of the
nonlinear Schrödinger equation (1.1) for T = 0 and −10 ≤ X ≤ 10 (i.e. t = 0 and
−10

n ≤ x ≤ 10
n ) for n = 2 (red and dashed), n = 4 (black and dotted), and n = 8

(blue and solid) with c = (1, 1). Right: The limiting function Ψ(X, 0; (1, 1)) with
c = (1, 1).
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Figure 9. Left: Scaled multiple-pole soliton solutions 1
nψ

[2n](Xn , 0; (1, 5)) of the
nonlinear Schrödinger equation (1.1) for T = 0 and −5 ≤ X ≤ 40 (i.e. t = 0 and
− 5
n ≤ x ≤ 40

n ) for n = 2 (red and dashed), n = 4 (black and dotted), and n = 8
(blue and solid) with c = (1, 5). Right: The limiting function Ψ(X, 0; (1, 5)) with
c = (1, 5).

We now state our near-field results.

Theorem 2. Fix c ≡ (c1, c2) ∈ (C∗)2 and set ξ = i. Then the following hold.

(a) There is an n-independent function Ψ(X,T ; c) such that, as n→∞,

(1.14)
1

n
ψ[2n]

(
X

n
,
T

n2
; c

)
= Ψ(X,T ; c) +O

(
1

n

)
uniformly for compact subsets of the XT -plane. The function Ψ(X,T ; c) is a solution of
(1.1) in the variables X and T , i.e.

(1.15) iΨT +
1

2
ΨXX + |Ψ|2Ψ = 0, X, T ∈ R.
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(b) For fixed T ∈ R, the function Ψ(X,T ; c) satisfies the fourth-order ordinary differential
equation

XΨΨXXX + 3ΨΨXX −XΨXΨXX − 2(ΨX)2 + 4Ψ3Ψ∗ + 2XΨ2Ψ∗ΨX + 2XΨ3Ψ∗X

+iT (ΨΨXXXX −ΨXΨXXX + 6Ψ2ΨXΨ∗X + 6Ψ2Ψ∗ΨXX) = 0,
(1.16)

which is the second member of Sakka’s Painlevé-III hierarchy [26] with certain parameters.
Also, Ψ(X,T ; c) satisfies the initial conditions

(1.17) Ψ(0, 0; c) = 8
c1c
∗
2

|c|2
, ΨX(0, 0; c) = 32

c1c
∗
2

|c|4
(c2c

∗
2 − c1c

∗
1),

as well as the symmetries

(1.18) Ψ(−X,T ; c∗σ1) = Ψ(X,T ; c)

and

(1.19) Ψ(X,−T ; c)∗ = Ψ(X,T ; c) if c ∈ R2.

In particular, if c ∈ R2 then Ψ(X, 0; c) is real-valued.
(c) If c ∈ R2, then

(1.20) u(s; c) :=
2s2Ψ(−1

8s
2, 0; c)

(s2Ψ(−1
8s

2, 0; c))s

satisfies the standard Painlevé-III equation

(1.21) uss =
1

u
(us)

2 − 1

s
us +

4Θ0u
2 + 4(1−Θ∞)

s
+ 4u3 − 4

u

with parameters Θ∞ = Θ0 = 0. The odd function u(s; c) satisfies

(1.22) us(0; c) = 1, usss(0; c) =
3

|c|2
(c2

2 − c2
1).

1.3. Outline and notation. In §2 we define the Darboux transformation that generates ψ[2n](x, t)

from ψ[2n−2](x, t) and use the robust inverse-scattering transform recently introduced by Bilman

and Miller [8] to derive Riemann-Hilbert Problem 1 encoding ψ[2n](x, t). In §3 we analyze this
Riemann-Hilbert problem in the far-field scaling (1.6) and prove Theorem 1 concerning the zero
region. In §4 we consider the near-field scaling (1.13) and prove Theorem 2 showing the local
behavior near the origin is described by the solution Ψ(X,T ) of Sakka’s Painlevé-III hierarchy.
In Appendix A we show how the basic Riemann-Hilbert problem can be reformulated as a linear
system, a fact used to plot ψ[2n](x, t) in Figures 1–9. In Appendix B we describe how RHPackage

is used to compute Ψ(X,T ) for Figures 8 and 9.

Notation. We define

(1.23) I :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

With the exception of the identity matrix and the Pauli matrices, we denote 2×2 matrices by bold
upper-case letters and 2-vectors by bold lower-case letters. If M is a matrix, the jk-entry of M
is denoted by [M]jk. The complex conjugate of a number a is denoted a∗, while the conjugate-

transpose of a vector v is denoted v†. By C∗ we mean C\{0}, while by C+ we mean {z ∈ C :
=(z) > 0}. The boundary of a domain D ⊂ C is denoted ∂D. When we write f(x; s) we mean that
f is a function of x with parametric dependence on s, and we may suppress the explicit dependence
on parameters for brevity.
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2. The Darboux transformation and initial Riemann-Hilbert problem

2.1. Summary of the robust inverse scattering transform. We begin with a brief overview
of the robust inverse-scattering transform introduced recently in [8] and how it differs from the
standard inverse-scattering transform. The basis for any inverse-scattering trasform for (1.1) is the
Lax pair [37]

∂u

∂x
(λ;x, t) =

[
−iλ ψ(x, t)
−ψ(x, t) iλ

]
u(λ;x, t),

∂u

∂t
(λ;x, t) =

[
−iλ2 + i

2 |ψ(x, t)|2 λψ(x, t) + i
2ψx(x, t)

−λψ(x, t)∗ + i
2ψx(x, t)∗ iλ2 − i

2 |ψ(x, t)|2
]

u(λ;x, t).

(2.1)

The standard inverse-scattering transform [4] begins by defining the Jost matrices J±(λ;x, t) to be
the unique fundamental matrix of simultaneous solutions to (2.1) satisfying the boundary conditions
J±(λ;x, t)eiλxσ3 = I + o(1), x→ ±∞. The Jost functions also satisfy the scattering relation

(2.2) J+(λ;x, t) = J−(λ;x, t)

[
a(λ∗)∗ b(λ∗; t)∗

−b(λ; t) a(λ)

]
.

If we denote the first and second columns of J± by j±,1 and j±,2, respectively, then we can define
the Beals-Coifman simultaneous solution to (2.1) as

(2.3) UBC(λ;x, t) :=


[

1
a(λ) j

−,1(λ;x, t)e−iλ
2t, j+,2(λ;x, t)eiλ

2t
]
, λ ∈ C+,[

j+,1(λ;x, t)e−iλ
2t, 1

a(λ∗)∗ j−,2(λ;x, t)eiλ
2t
]
, λ ∈ C−.

Then the function

(2.4) MBC(λ;x, t) := UBC(λ;x, t)ei(λx+λ2t)σ3

satisfies the normalization condition

(2.5) lim
λ→∞

MBC(λ;x, t) = I,

the Schwarz-symmetry condition

(2.6) MBC(λ;x, t) = σ2M
BC(λ∗;x, t)∗σ2, λ ∈ C\R,

and the jump condition

(2.7) MBC
+ (λ;x, t) = MBC

− (λ;x, t)

[
1 + |R(λ)|2 R(λ)∗e−2i(λx+λ2t)

R(λ)e2i(λx+λ2t) 1

]
, λ ∈ R,

where R(λ) := b(λ; t)/a(λ). These properties allow MBC(λ;x, t) to be obtained as the solution of
a Riemann-Hilbert problem.

The function MBC(λ;x, t) has nice properties as λ → ∞ (i.e. (2.5)). However, for general λ
MBC(λ;x, t) is only sectionally meromorphic, with poles arising from zeros of a(λ) corresponding to
solitons. In general, these poles can be handled in the Riemann-Hilbert formalism either by solving
the problem exactly (as we do in Appendix A) or by interpolation (see, for instance, [17]). There are
technical issues with unique solvability of the Riemann-Hilbert problem with spectral singularities,
i.e. points in the continuous spectrum for which MBC(λ;x, t) fails to have a boundary value [8,
§1.1.2]. These spectral singularies, which arise in particular in the case of Peregrine breathers,
can be handled by a limiting procedure. The robust inverse-scattering transform bypasses the
limiting procedure and leads directly to a sectionally analytic Riemann-Hilbert problem, even for
solutions whose scattering data under the standard inverse-scattering transform consist of spectral
singularities of high order (i.e higher-order Peregrine breathers) [7]. While we are not concerned
with spectral singularities in the current work, we take advantage of the robust inverse-scattering
transform’s ability to handle higher-order poles.
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The key observation of the robust inverse-scattering transform is that different fundamental so-
lutions of (2.1) have desirable properties in different sections of the λ-plane. The Beals-Coifman
solution UBC(λ;x, t) is well-behaved for |λ| sufficiently large. On the other hand, there are other
solutions that are bounded in the regions where UBC(λ;x, t) has poles. The following key propo-
sition is proved in [8, Proposition 2.1] for (1.2); nevertheless the proof goes through verbatim for
(1.1).

Proposition 1. Suppose ψ(x, t) is a bounded classical solution of (1.1) defined for (x, t) in a
simply connected domain Ω ⊂ R2 containing (0, 0). Then, for each λ ∈ C, there exists a unique
simultaneous fundamental solution matrix Uin(λ;x, t), (x, t) ∈ Ω, of the Lax pair equations (2.1)
together with the initial condition Uin(λ; 0, 0) = I. Furthermore, Uin(λ;x, t) is an entire function
of λ for each (x, t) ∈ Ω, det Uin(λ;x, t) ≡ 1, and Uin(λ;x, t) = σ2U

in(λ∗;x, t)∗σ2.

Now define D0 ⊂ C to be an open disk centered at the origin of sufficiently large radius to contain
all the singularities of UBC(λ;x, t). Set

(2.8) U(λ;x, t) :=

{
Uin(λ;x, t), λ ∈ D0,

UBC(λ;x, t), otherwise

and define ΣL := (−∞,−r), ΣR := (r,∞), Σ+ := ∂D0 ∩ C+, Σ− := ∂D0 ∩ C− (ΣL and ΣR are
oriented left-to-right while Σ+ and Σ− are oriented clockwise). Then the function

(2.9) M(λ;x, t) := U(λ;x, t)ei(λx+λ2t)σ3 , λ ∈ C\R, (x, t) ∈ R2

is analytic for λ /∈ ΣL ∪ ΣR ∪ Σ+ ∪ Σ−, satisfies the jump (2.7) on ΣL ∪ ΣR, and has the jump

(2.10) M+(λ;x, t) =

M−(λ;x, t)
[

1
a(λ) j

−,1(λ; 0, 0), j+,2(λ; 0, 0)
]
, λ ∈ Σ+,

M−(λ;x, t)
[
j+,1(λ; 0, 0), 1

a(λ∗)∗ j−,2(λ; 0, 0)
]
, λ ∈ Σ−

on the remaining contours. Thus, in addition to having identity asymptotics at infinity (see (2.5)),
M(λ;x, t) satisfies a jump condition in a form amenable to analysis via the nonlinear steepest-
descent method of Deift and Zhou [13]. Once M(λ;x, t) is known, the solution to (1.1) can be
found by

(2.11) ψ(x, t) = 2i lim
λ→∞

λ[M(λ;x, t)]12.

2.2. Definition of the Darboux transformation. We now define the specific Darboux trans-
formations we will use and show how to formulate them in terms of the robust inverse-scattering
transform. The basic idea of a Darboux transformation is to take a solution of (1.1) and find
the solution having the same Beals-Coifman scattering data with the exception of one or more
additional poles (see [22] for further background).

We begin by defining certain Darboux transformations depending on an eigenvalue ξ = α+ iβ ∈
C+ and a row vector of connection coefficients d := (d1, d2) ∈ C2. The Darboux transformations
we study will be derived from these by taking a certain limit of d. Given the matrix U(λ;x, t)
defined in (2.8) and associated to a solution ψ(x, t) of (1.1), we introduce

(2.12) U̇(λ;x, t) :=

(
I +

R(x, t)

λ− ξ

)
U(λ;x, t)

for a to-be-determined matrix R(x, t). The transformation (2.12) is constructed so that U̇(λ;x, t)
has the same jump conditions and normalization as λ→∞ as U(λ;x, t). If we further assume that

R(x, t)2 = 0, then we also have det U̇(λ;x, t) = 1. The remaining freedom in determining R(x, t)
can be used to ensure

(2.13) Res
λ=ξ

U̇(λ;x, t) = lim
λ→ξ

U̇(λ;x, t)

[
d1

d2

] [
id2 −id1

]
= lim

λ→ξ
U̇(λ;x, t)

[
id1d2 −id2

1

id2
2 −id1d2

]
.
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This condition completely specifies R(x, t) (see [8, §3.1] for complete details) as

(2.14) R(x, t) =
U(ξ;x, t)dTdU(ξ;x, t)Tσ2

1− dU(ξ;x, t)Tσ2U′(ξ;x, t)dT
.

At this point we would like to define Ṁ(λ;x, t) := U̇(λ;x, t)ei(λx+λ2t)σ3 and set up the associated

Riemann-Hilbert problem. The problem is that Ṁ(λ;x, t) is not Schwarz-symmetric (i.e. does not
satisfy an analogue of (2.6)), and thus cannot generate a solution of (1.1). This can be remedied

by first performing a Darboux transformation U(λ;x, t) → U̇(λ;x, t) with data (ξ,d), and then

performing a second Darboux transformation U̇(λ;x, t) → Ü(λ;x, t) with data (ξ∗, (dσ2)∗). We
now write the composition of these two Darboux transformations explicitly (the interested reader
can find full details of the straightforward calculation in [8, §3.2]). Define

sf(x, t) := U(ξ;x, t)dT, Nf(x, t) := sf(x, t)
†sf(x, t),

wf(x, t) := dU(ξ;x, t)Tσ2U
′(ξ;x, t)dT

(2.15)

(here the subscript f stands for “finite”) and use these to define

Yf(x, t) :=
4β2(1− wf(x, t)

∗)

4β2|1− wf(x, t)|2 +Nf(x, t)2
sf(x, t)sf(x, t)

Tσ2

+
2iβNf(x, t)

4β2|1− wf(x, t)|2 +Nf(x, t)2
σ2sf(x, t)

∗sf(x, t)
Tσ2,

Zf(x, t) :=σ2Yf(x, t)
∗σ2.

(2.16)

Then

(2.17) Ü(λ;x, t) = Gf(λ;x, t)U(λ;x, t),

where

(2.18) Gf(λ;x, t) := I +
Yf(x, t)

λ− ξ
+

Zf(x, t)

λ− ξ∗
.

If we apply the general Darboux transformation defined by (2.17) to the trivial background
solution ψ(x, t) ≡ 0, the resulting position of the generated solution can be shifted by replacing
(d1, d2) with (ε−1d1, ε

−1d2) for some fixed constant ε ∈ C∗. We choose to fix two complex constants
c1 and c2 and study the Darboux transformation with connection data (ε−1c1, ε

−1c2) in the limit
ε→ 0. This will have in particular the effect of ensuring ψ(x, t; (1,±1)) achieves its maximum value
at the origin (x, t) = (0, 0). The formulas used to construct the Darboux transformation all have
well-defined limits as ε → 0 that are given explicitly in (2.21)–(2.23) below. We note that those
formulas are unchanged if both c1 and c2 are multiplied by the same nonzero complex number.
Because of this, we can think of c as an element of the complex projective space CP1. This means
that, although we write both c1 and c2, there is actually only one complex degree of freedom in
the Darboux transformation. Furthermore, if either c1 = 0 or c2 = 0 then the limiting Darboux
transformation defined by (2.21)–(2.23) is trivial (i.e. takes the input solution ψ(x, t) to itself).
Thus we restrict ourselves to c ∈ (C∗)2.

2.3. Iteration of the Darboux transformation. If we apply the Darboux transformation with
data {ξ, c} to the trivial solution

(2.19) ψ[0](x, t) ≡ 0

then we obtain a second-order pole soliton ψ[2](x, t; c). In the same way, applying the Darboux
transformation n times in succession (using the robust inverse-scattering transformation each time

to sweep the spectral poles to ∂D0) will generate a 2nth-order pole soliton ψ[2n](x, t; c). In principal
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there is no need to fix the data {ξ, c} between iterations, although we will do so in order to obtain
a well-defined limit as n→∞. We now explain the construction in detail.

Fix ξ ∈ C+ and c = (c1, c2) ∈ (C∗)2. We begin with the background eigenvector matrix

(2.20) U[0](λ;x, t) := e−i(λx+λ2t)σ3

corresponding to the trivial solution (2.19). Let D0 be a circular disc centered at the origin that is

large enough to contain ξ. Suppose that U[n](λ;x, t) is known and is analytic for λ /∈ ∂D0. Set

s[n](x, t) := U[n](ξ;x, t)cT, N [n](x, t) := s[n](x, t)†s[n](x, t),

w[n](x, t) := cU[n](ξ;x, t)Tσ2U
[n]′(ξ;x, t)cT.

(2.21)

Then define

(2.22) G[n](λ;x, t) := I +
Y[n](x, t)

λ− ξ
+

Z[n](x, t)

λ− ξ∗
,

wherein

Y[n](x, t) :=
−4β2w[n](x, t)∗

4β2|w[n](x, t)|2 +N [n](x, t)2
s[n](x, t)s[n](x, t)Tσ2

+
2iβN [n](x, t)

4β2|w[n](x, t)|2 +N [n](x, t)2
σ2s

[n](x, t)∗s[n](x, t)Tσ2,

Z[n](x, t) :=σ2Y
[n](x, t)∗σ2.

(2.23)

Define

(2.24) Ü[n+1](λ;x, t) := G[n](λ;x, t)U[n](λ;x, t).

Now Ü[n+1](λ;x, t) has simple poles at ξ and ξ∗. We apply the idea of the robust inverse-scattering

transform and sweep the poles to ∂D0 by defining Ü[n,in](λ;x, t) := Ü[n](λ;x, t)G[n](λ; 0, 0)−1 for
λ ∈ D0. Then the matrix

(2.25) U[n+1](λ;x, t) :=

{
G[n](λ;x, t)U[n](λ;x, t), λ /∈ D0,

G[n](λ;x, t)U[n](λ;x, t)G[n](λ; 0, 0)−1, λ ∈ D0

is analytic for λ /∈ ∂D0. In terms of the matrix Y[n], the solution ψ[2n+2](x, t) to (1.1) is obtained

from the solution ψ[2n](x, t) by

(2.26) ψ[2n+2](x, t) = ψ[2n](x, t) + 2i([Y[n](x, t)]12 − [Y[n](x, t)∗]21).

For reference we perform the first Darboux transformation explicitly. Writing s[0] =
(
s

[0]
1 , s

[0]
2

)T
,

from (2.26), (2.19), and (2.23) we see

(2.27) ψ[2] =
−8β2w[0]∗(s

[0]
1 )2 + 8β2w[0](s

[0]∗
2 )2 + 8βN [0]s

[0]
1 s

[0]∗
2

4β2|w[0]|2 + (N [0])2
.

We also have (writing ξ = α+ iβ)

s
[0]
1 (x, t) = c1e

−i(ξx+ξ2t), s
[0]
2 (x, t) = c2e

i(ξx+ξ2t),

w[0](x, t) = 2c1c2(x+ 2ξt), N [0](x, t) = |c1|2e2βx+4αβt + |c2|2e−2βx−4αβt.
(2.28)

Combining the previous two equations gives an explicit formula for ψ[2](x, t) for any choice of
c1, c2 ∈ C∗ and ξ ∈ C+.
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Remark 1. Looking at Figures 3 and 4, it appears that ψ[2n](x, t) is a coalescence of 2n single-pole

solitons (and this is indeed the case). Yet the observant reader may have noticed that ψ[2n](x, t) is
generated from the trivial background by only n applications of the Darboux transformation (2.25),
each of which only involves a single pole. How do the n extra poles arise? To understand this,
note that the right (i.e normalized as x → +∞) Beals-Coifman matrix UBC(λ;x, t) associated to

ψ[2n](x, t) with poles of order 2n at λ = ξ and λ = ξ∗ has the asymptotic behavior

(2.29)

{
lim

x→+∞
UBC(λ;x, t)ei(λx+λ2t)σ3 = I,

UBC(λ;x, t)ei(λx+λ2t)σ3 is bounded as x→ −∞,
λ /∈ D0, =(λ) > 0.

However, the matrix U[2n](λ;x, t) has different asymptotics as x → +∞ for =(λ) > 0, and it
is necessary to renormalize to obtain the associated Beals-Coifman matrix, which introduces the
additional pole at each iteration.

Remark 2. If one wanted to study the sequence of odd-order pole solitons {ψ[2n+1](x, t)}, then one

could start with the standard single-pole soliton ψ[1](x, t) and apply the Darboux transformation
(2.25) n times. We anticipate that the large-n behavior of the odd sequence is the same as that of

the even sequence, and so we restrict our attention to ψ[2n](x, t).

2.4. The Riemann-Hilbert problem. Given U[n](λ;x, t), we define

(2.30) M[n](λ;x, t) := U[n](λ;x, t)ei(λx+λ2t)σ3 .

We now pose the Riemann-Hilbert problem satisfied by M[n](λ;x, t). Orient ∂D0 clockwise. From

(2.25) and (2.30), we see the jump for M[n](λ;x, t) is

(2.31) M
[n]
+ (λ;x, t) = M

[n]
− (λ;x, t)V

[n]
M (λ;x, t), λ ∈ ∂D0,

where

(2.32) V
[n]
M (λ;x, t) = e−i(λx+λ2t)σ3G[n−1](λ; 0, 0) · · ·G[1](λ; 0, 0)G[0](λ; 0, 0)ei(λx+λ2t)σ3 .

Explicit evaluation of Y[n](0, 0) shows it is actually independent of n, and so G[n](λ; 0, 0) =

G[0](λ; 0, 0) for all n. The reason for this is the point (x, t) = (0, 0) is the normalization point
of Uin(λ;x, t) in Proposition 1, and hence the values of the quantities (2.21) coincide at (0, 0) for
each n. Thus

(2.33) V
[n]
M (λ;x, t) := e−i(λx+λ2t)σ3G[0](λ; 0, 0)nei(λx+λ2t)σ3 .

From (2.22) we have

(2.34) G[0](λ; 0, 0) = I +
Y[0](0, 0)

λ− ξ
+

Z[0](0, 0)

λ− ξ∗
.

By direct calculation we have

(2.35) Y[0](0, 0) =
2iβ

|c|2
σ2(c∗)Tcσ2 =

2iβ

|c|2

(
c2c
∗
2 −c1c

∗
2

−c∗1c2 c1c
∗
1

)
and

(2.36) Z[0](0, 0) = σ2Y
[0](0, 0)∗σ2 =

−2iβ

|c|2

(
c1c
∗
1 c1c

∗
2

c∗1c2 c2c
∗
2

)
.

The eigenvalues of G[0](λ; 0, 0) are λ−ξ
λ−ξ∗ and λ−ξ∗

λ−ξ . Recall the eigenvector matrix S defined by (1.4).

We define a second eigenvector matrix by

(2.37) S̃ :=
1

|c|

(
c∗2 c1

−c∗1 c2

)
.
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Then we have the following two useful representations of the jump matrix for M[n](λ;x, t):

V
[n]
M (λ;x, t) = e−i(λx+λ2t)σ3S

( λ−ξ
λ−ξ∗

)n
0

0
(
λ−ξ∗
λ−ξ

)n
S−1ei(λx+λ2t)σ3

= e−i(λx+λ2t)σ3S̃

(λ−ξ∗λ−ξ

)n
0

0
(
λ−ξ
λ−ξ∗

)n
 S̃−1ei(λx+λ2t)σ3 .

(2.38)

We therefore have the basic Riemann-Hilbert Problem 1 for M[n](λ;x, t). The 2nth-order pole

soliton ψ[2n](x, t; c) is obtained from M[n](λ;x, t) via (1.5).

3. Analysis in the zero region

We now prove Theorem 1. Starting with M[n](λ;x, t), we perform a series of invertible transfor-
mations to analyze Riemann-Hilbert Problem 1 asymptotically. Recall χ := x/n and τ := t/n as
introduced in (1.6). If χ > 0, define

(3.1) N[n](λ;χ, τ) :=

{
M[n](λ;nχ, nτ)e−in(λχ+λ2τ)Sein(λχ+λ2τ), λ ∈ D0,

M[n](λ;nχ, nτ)
(
λ−ξ∗
λ−ξ

)nσ3
, λ /∈ D0

(χ > 0).

If χ < 0, define

(3.2) N[n](λ;χ, τ) :=

{
M[n](λ;nχ, nτ)e−in(λχ+λ2τ)S̃ein(λχ+λ2τ), λ ∈ D0,

M[n](λ;nχ, nτ)
(
λ−ξ
λ−ξ∗

)nσ3
, λ /∈ D0

(χ < 0).

The normalization for N[n](λ;χ, τ) as λ→∞ is unchanged from that of M[n](λ;χ, τ). Introducing
the phase functions ϕ(λ;χ, τ) by (1.8) and ϕ̃(λ;χ, τ) by

(3.3) ϕ̃(λ;χ, τ) := i(λχ+ λ2τ) + log

(
λ− ξ
λ− ξ∗

)
,

the jump matrices for N[n](λ;χ, τ) can be written as

(3.4) V
[n]
N (λ;χ, τ) :=

{
e−nϕ(λ;χ,τ)σ3S−1enϕ(λ;x,t)σ3 , χ > 0,

e−nϕ̃(λ;χ,τ)σ3S̃−1enϕ̃(λ;x,t)σ3 , χ < 0

for λ ∈ ∂D0 (oriented clockwise). Note that ϕ(λ;χ, τ) and ϕ̃(λ;χ, τ) are independent of c.
Our immediate goal is to understand the topology of the level curves <(ϕ(λ;χ, τ)) = 0 in the

complex λ-plane as χ and τ vary. Note that <(ϕ(λ;χ, τ)) is zero for all λ ∈ R. Also, observe the
critical points are those λ values satisfying

(3.5) 2τ(λ− α)3 + (χ+ 2ατ)(λ− α)2 + 2β2τ(λ− α) + (β2χ− 2β + 2αβ2τ) = 0.

This cubic has real coefficients.
Assume first that τ = 0. Then there are two critical points

(3.6) λ±(χ, 0) = α±
(

2β − β2χ

χ

)1/2

(we write (·)1/2 for the principal branch of the square root). If χ = 2
β , then the two critical points

coincide at α. If χ > 2
β , then λ±(χ, 0) are complex conjugates. As we will see shortly, the ray

{(χ, τ) : χ > 2
β , τ = 0} is in the zero region, so we assume χ ≥ 2

β . As λ→∞, iλχ is the dominant

term in ϕ(λ;χ, 0), so <(ϕ(λ;χ, 0)) < 0 for =(λ) > 0 and <(ϕ(λ;χ, 0)) > 0 for =(λ) < 0 if |λ| is
sufficiently large. Looking at the logarithm term, <(ϕ(λ;χ, 0)) > 0 for |λ − ξ| sufficiently small,
and <(ϕ(λ;χ, 0)) < 0 for |λ − ξ∗| sufficiently small. Therefore there must be a level line curve
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<(ϕ(λ;χ, 0)) = 0 completely enclosing λ = ξ (and another around λ = ξ∗). Since <(ϕ(λ;χ, 0)) is
harmonic (and not constant) away from ξ and ξ∗, there can be at most one closed loop of the zero
level lines in the upper half-plane and at most one in the lower half-plane. Therefore, the zero level
curves must be exactly the real axis along with two simple loops enclosing ξ and ξ∗ that intersect
the real axis at a single (shared) point if χ = 2

β (as shown in the left panel in Figure 10) or that

are entirely in their respective half-planes if χ > 2
β (as shown in the center panel in Figure 10). By

explicit calculation, we check that λ±(χ, 0) lie outside the two closed loops if χ > 2
β .

Now fix χ > 2
β . For τ > 0 sufficiently small, ϕ(λ;χ, τ) has three distinct critical points. Two

of these form a complex conjugate pair with real part approximately α. We define λ±(χ, τ) to
be the analytic continuation (in τ) of λ±(χ, 0). This analytic continuation is well defined if τ is
sufficiently small such that λ+(χ, S) 6= λ−(χ, S) for 0 ≤ S ≤ τ . The third critical point is negative
real (for τ sufficiently small). We denote this critical point by λ0(χ, τ) for any values of χ and
τ for which λ±(χ, τ) are defined. Since τ is nonzero, as λ → ∞, <(ϕ(λ;χ, τ)) is dominated by
<(iλ2τ). As the local behavior near ξ and ξ∗ is topologically unchanged, the zero level curves must
be topologically the same as in the case τ = 0 with the addition of an unbounded curve that, for
large |λ|, is approximately parallel to the imaginary axis. See the right panel in Figure 10.
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Figure 10. Signature charts of <(ϕ(λ;χ, τ)) in the complex λ-plane for ξ = i. Left:
(χ, τ) = (2, 0). Center: (χ, τ) = (2.05, 0). Right: (χ, τ) = (2.25, 0.6). The left panel
illustrates the topology of the zero level lines for general ξ = α + iβ if χ = 2

β and

τ = 0, the center panel illustrates the general topology for χ > 2
β and τ = 0, and the

right panel illustrates the general topology for χ > 2
β and τ > 0 with |τ | sufficiently

small.

For fixed χ > 2
β , let τ → +∞ (the argument as τ → −∞ is analogous). Then, excluding

shrinking neighborhoods of ξ and ξ∗, <(ϕ(λ;χ, τ)) is well approximated everywhere by <(iλ2τ).
This means that, with the possible exception of shrinking loops around ξ and ξ∗, the zero level
curves of <(ϕ(λ;χ, τ)) are the real axis and an unbounded curve with real part approximately α.
Furthermore, explicit calculation shows that <(ϕ(a + iβ;χ, τ)) > 0 for a < α (for τ sufficiently
large), and thus there are no closed loops on which <(ϕ(λ;χ, τ)) > 0 around ξ (or, by symmetry,
around ξ∗).

Therefore, for fixed χ > 2
β , there is (at least one) topological change in the zero level lines of

<(ϕ(λ;χ, τ)) as τ changes from zero to infinity. We show below that any (χ, τ) values before the
first transition (starting from τ = 0) are in the zero region. The topological change can happen
in one of three ways, all of which occur for certain values of χ, τ , and ξ. The first way is for
λ+(χ, τ) and λ−(χ, τ) to coincide on the real axis at a point distinct from λ0(χ, t). This transition
is illustrated in the first panel in Figure 11 (as well as the first panel in Figure 10 in the special
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case τ = 0). We conjecture that, as τ increases from this configuration, a single band will open in
the model Riemann-Hilbert problem. This suggests a transition from the zero region to a region in
which the solution to (1.1) is nonzero and non-oscillatory. A necessary algebraic condition for this
to occur is for the discriminant of (3.5) to be zero, which is equivalent to

(16α4β2 + 32α2β4 + 16β6)τ4 + (32α3β2χ− 16α3β + 32αβ4χ− 144αβ3)τ3

+(24α2β2χ2 − 24α2βχ+ 8β4χ2 − 72β3χ+ 108β2)τ2

+(8αβ2χ3 − 12αβχ2)τ + (β2χ4 − 2βχ3) = 0.

(3.7)

If ξ = i, this simplifies to (1.7), a quadratic relation in τ2.

-
+

+
-

+

-

Ξ

Ξ
*

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

-
+

+
-

+

-

Ξ

Ξ
*

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

-
+

+
-

+

-

Ξ

Ξ
*

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 11. Signature charts of <(ϕ(λ;χ, τ)) in the complex λ-plane for ξ = i. Left:

(χ, τ) ≈ (2.2, 0.595). Center: (χ, τ) = (9
4 ,

3
√

3
8 ). Right: (χ, τ) ≈ (2.3, 0.649). The

left panel illustrates the boundary between the zero region with χ > 0 and what
we conjecture is a nonzero non-oscillatory region. The right panel illustrates the
boundary between the zero region with χ > 0 and what we conjecture is a nonzero
single-phase region. The center panel illustrates the single point lying at the corner
of the three different regions.

The second way the topological change can occur is if λ+(χ, τ), λ−(χ, τ), and λ0(χ, τ) all coincide.
This is illustrated in the second panel in Figure 11. This double-critical behavior appears to
correspond with a point at the corner of three different regions. If α = 0, a necessary condition for
this triple critical point is the discriminant of (3.7) must be zero, which occurs exactly (for τ > 0)
at the critical point

(3.8) (χc, τc) =

(
9

4β
,
3
√

3

8β2

)
.

The third way for the topological change to occur, illustrated in the third panel in Figure 11, is
when λ+(χ, τ) and λ−(χ, τ) simultaneously intersect a zero level line of <(ϕ(λ;χ, τ)) off the real
axis. We expect this to correspond to an opening of two bands in the model Riemann-Hilbert
problem and a transition between the zero region and a region in which the solution to (1.1)
has single-phase oscillations with period of order n−1. A necessary algebraic condition for this
transition is the explicit (although transcendental) algebro-logarithmic relation (1.11). In Figure
6 we illustrate the boundary of the zero region computed using (3.7) and (1.11) for ξ = i and
ξ = 1

2 + 2i.
At this point we have proven the existence of a connected open region in the χτ -plane containing

the ray {(χ, τ) : χ > 2
β , τ = 0} such that
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• The point λ = ξ is enclosed by a simple loop on which <(ϕ(λ;χ, τ)) = 0. For λ immediately
outside this loop <(ϕ(λ;χ, τ)) < 0, and for λ immediately inside this loop <(ϕ(λ;χ, τ)) > 0.
• The point λ = ξ∗ is enclosed by a simple loop on which <(ϕ(λ;χ, τ)) = 0. For λ immediately

outside this loop <(ϕ(λ;χ, τ)) > 0, and for λ immediately inside this loop <(ϕ(λ;χ, τ)) < 0.

We denote the maximal region satisfying these conditions Z+. Furthermore, if (χ, τ) ∈ Z+, then it
is immediate from (1.8) and (3.3) that (−χ,−τ) has complementary properties:

• The point λ = ξ is enclosed by a simple loop on which <(ϕ̃(λ;−χ,−τ)) = 0. For λ
immediately outside this loop <(ϕ̃(λ;−χ,−τ)) > 0, and for λ immediately inside this loop
<(ϕ̃(λ;−χ,−τ)) < 0.
• The point λ = ξ∗ is enclosed by a simple loop on which <(ϕ̃(λ;−χ,−τ)) = 0. For λ

immediately outside this loop <(ϕ̃(λ;−χ,−τ)) < 0, and for λ immediately inside this loop
<(ϕ̃(λ;−χ,−τ)) > 0.

We denote this complementary region by Z−, and we call Z := Z+ ∪ Z− the zero region. We now
use nonlinear steepest-descent analysis to show that ψ[2n](x, t) is exponentially close to zero in the
zero region as n→∞.

If χ > 0, we denote the bounded region in the λ-plane containing ξ in which <(ϕ(λ;χ, τ)) > 0 by
Dξ, and the bounded region containing ξ∗ in which <(ϕ(λ;χ, τ)) < 0 by Dξ∗ . Similarly, if χ < 0,
we denote the bounded region containing ξ in which <(ϕ(λ;χ, τ)) < 0 by Dξ, and the bounded

region containing ξ∗ in which <(ϕ(λ;χ, τ)) > 0 by Dξ∗ . Recall that the jump for N[n](λ;χ, τ) is
defined on the loop ∂D0 enclosing both ξ and ξ∗. The next step in the analysis is to deform the
jump contour from ∂D0 to ∂Dξ ∪ ∂Dξ∗ . Define

(3.9) O[n](λ;χ, τ) :=


N[n](λ;χ, τ)V

[n]
N (λ;χ, τ), λ ∈ D0 ∩ (Dξ ∪Dξ∗)c,

N[n](λ;χ, τ)V
[n]
N (λ;χ, τ)−1, λ ∈ (Dξ ∪Dξ∗) ∩Dc

0,

N[n](λ;χ, τ), otherwise.

Then, orienting ∂Dξ and ∂Dξ∗ clockwise, the function O[n](λ;χ, τ) is analytic for λ /∈ ∂Dξ ∪
∂Dξ∗ , satisfies O

[n]
+ (λ;χ, τ) = O

[n]
− (λ;χ, τ)V

[n]
O (λ;χ, τ) for λ ∈ ∂Dξ ∪ ∂Dξ∗ , where V

[n]
O (λ;χ, τ) =

V
[n]
N (λ;χ, τ), and O[n](λ;χ, τ) → I as λ → ∞. Now observe we have the following four factoriza-

tions:

S−1 =

(
1

c∗2
c1

0 1

)(
|c|
c1

0

0 c1
|c|

)(
1 0
− c2
c1

1

)
(use for λ ∈ ∂Dξ, χ > 0),(3.10)

S−1 =

(
1 0
− c2
c∗1

1

)( c∗1
|c| 0

0 |c|
c∗1

)(
1

c∗2
c∗1

0 1

)
(use for λ ∈ ∂Dξ∗ , χ > 0),(3.11)

S̃−1 =

(
1 0
c∗1
c2

1

)(
c2
|c| 0

0 |c|
c2

)(
1 − c1

c2
0 1

)
(use for λ ∈ ∂Dξ, χ < 0),(3.12)

S̃−1 =

(
1 − c1

c∗2
0 1

)( |c|
c∗2

0

0
c∗2
|c|

)(
1 0
c∗1
c∗2

1

)
(use for λ ∈ ∂Dξ∗ , χ < 0).(3.13)

For convenience we indicate when we will use each factorization; of course each relation is an
algebraic identity that holds independent of λ or χ. First, suppose χ > 0. We define four simple

clockwise-oriented loops Σ
(out)
ξ , Σ

(in)
ξ , Σ

(out)
ξ∗ , and Σ

(in)
ξ∗ such that:

• Σ
(out)
ξ encloses Dξ and lies entirely in the region in which <(ϕ(λ;χ, τ)) < 0.

• Σ
(in)
ξ encloses ξ and lies entirely in Dξ (so that <(ϕ(λ;χ, τ)) > 0).

• Σ
(out)
ξ∗ encloses Dξ∗ and lies entirely in the region in which <(ϕ(λ;χ, τ)) > 0.
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• Σ
(in)
ξ∗ encloses ξ∗ and lies entirely in Dξ∗ (so that <(ϕ(λ;χ, τ)) < 0).

Also define the following four annular regions:

• L(out)
ξ is bounded by ∂Dξ and Σ

(out)
ξ .

• L(in)
ξ is bounded by ∂Dξ and Σ

(in)
ξ .

• L(out)
ξ∗ is bounded by ∂Dξ∗ and Σ

(out)
ξ∗ .

• L(in)
ξ∗ is bounded by ∂Dξ∗ and Σ

(in)
ξ∗ .

For (χ, τ) ∈ Z and χ > 0, define

(3.14) P[n](λ;χ, τ) :=



O[n](λ;χ, τ)

(
1

c∗2
c1
e−2nϕ(λ;χ,τ)

0 1

)
, λ ∈ L(in)

ξ ,

O[n](λ;χ, τ)

(
1 0

− c2
c1
e2nϕ(λ;χ,τ) 1

)−1

, λ ∈ L(out)
ξ ,

O[n](λ;χ, τ)

(
1 0

− c2
c∗1
e2nϕ(λ;χ,τ) 1

)
, λ ∈ L(in)

ξ∗ ,

O[n](λ;χ, τ)

(
1

c∗2
c∗1
e−2nϕ(λ;χ,τ)

0 1

)−1

, λ ∈ L(out)
ξ∗ ,

O[n](λ;χ, τ), otherwise.

Then P[n](λ;χ, τ) is analytic for λ /∈ ∂Dξ∪∂Dξ∗∪Σ
(out)
ξ ∪Σ

(in)
ξ ∪Σ

(out)
ξ∗ ∪Σ

(in)
ξ∗ , has the normalization

P[n](λ;χ, τ)→ I as λ→∞, and has the jumps P
[n]
+ (λ;χ, τ) = P

[n]
− (λ;χ, τ)V

[n]
P (λ;χ, τ), where

(3.15) V
[n]
P (λ;χ, τ) :=



(
1

c∗2
c1
e−2nϕ(λ;χ,τ)

0 1

)
, λ ∈ Σ

(in)
ξ ,( |c|

c1
0

0 c1
|c|

)
, λ ∈ ∂Dξ,(

1 0

− c2
c1
e2nϕ(λ;χ,τ) 1

)
, λ ∈ Σ

(out)
ξ ,(

1 0

− c2
c∗1
e2nϕ(λ;χ,τ) 1

)
, λ ∈ Σ

(in)
ξ∗ ,(

c∗1
|c| 0

0 |c|
c∗1

)
, λ ∈ ∂Dξ∗ ,(

1
c∗2
c∗1
e−2nϕ(λ;χ,τ)

0 1

)
, λ ∈ Σ

(out)
ξ∗ .

The jumps for P[n](λ;χ, τ) on the contours Σ
(out)
ξ , Σ

(in)
ξ , Σ

(out)
ξ∗ , and Σ

(in)
ξ∗ all decay exponentially

to I as n→∞. Thus we define Q(λ;χ, τ) as the n-independent solution to the following Riemann-
Hilbert problem:

Riemann-Hilbert Problem 2 (The model problem in the zero region with χ > 0). Fix a pair
of nonzero complex numbers (c1, c2), along with a pair of real numbers (χ, τ) ∈ Z with χ > 0.
Determine the unique 2× 2 matrix Q(λ;χ, τ) with the following properties:

Analyticity: Q(λ;χ, τ) is analytic for λ ∈ C except on ∂Dξ ∪ ∂Dξ∗, where it achieves
continuous boundary values.
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Jump condition: The boundary values taken by Q(λ;χ, τ) are related by the jump condi-
tions Q+(λ;χ, τ) = Q−(λ;χ, τ)VQ(λ;χ, τ), where

(3.16) VQ(λ;χ, τ) :=



[ |c|
c1

0

0 c1
|c|

]
, λ ∈ ∂Dξ,[

c∗1
|c| 0

0 |c|
c∗1

]
, λ ∈ ∂Dξ∗ .

Normalization: As λ→∞, the matrix Q(λ;χ, τ) satisfies the condition

(3.17) Q(λ;χ, τ) = I +O(λ−1)

with the limit being uniform with respect to direction.

This Riemann-Hilbert problem reduces to two scalar problems, and as such can be solved explic-
itly using the Plemelj formula. However, we will not need the exact formula, only that Q(λ;χ, τ)
is diagonal:

(3.18) Q(λ;χ, τ) ≡
(
Q11(λ;χ, τ) 0

0 Q22(λ;χ, τ)

)
.

Finally, we define the error function by the ratio

(3.19) R[n](λ;χ, τ) := P[n](λ;χ, τ)Q(λ;χ, τ)−1.

The jumps across ∂Dξ and ∂Dξ∗ cancel exactly. Therefore, R[n](λ;χ, τ) is analytic for λ /∈ Σ
(in)
ξ ∪

Σ
(out)
ξ ∪ Σ

(in)
ξ∗ ∪ Σ

(out)
ξ∗ , R[n](λ;χ, τ) → I as λ → ∞, and R

[n]
+ (λ;χ, τ) = R

[n]
− (λ;χ, τ)V

[n]
R (λ;χ, τ),

where

(3.20) V
[n]
R (λ;χ, τ) = Q−(λ;χ, τ)V

[n]
P (λ;χ, τ)Q+(λ;χ, τ)−1.

Therefore, the jump matrices for R[n](λ;χ, τ) are exponentially close to the identity matrix as
n→∞. From standard nonlinear steepest-descent analysis (see, for instance, [13] or [11, Appendix

B]), there is a constant d > 0 such that R[n](λ;χ, τ) = I+O(e−dn) uniformly in λ and uniformly in

(χ, τ) bounded a fixed distance away from the edge of the zero region. This implies that P[n](λ;χ, τ)

is exponentially close to Q(λ;χ, τ) as n → ∞. Unwinding the transformations M[n](λ;χ, τ) →
N[n](λ;χ, τ)→ O[n](λ;χ, τ)→ P[n](λ;χ, τ), for fixed (χ, τ) ∈ Z with χ > 0, we have in particular

(3.21) [M[n](λ;nχ, nτ)]12 = O(e−dn)

for some constant d > 0 uniformly in λ. Thus, from (1.5), for fixed (χ, τ) ∈ Z with χ > 0, (1.12)
holds for some constant d > 0. The analysis for (χ, τ) ∈ Z with χ < 0 follows exactly the same
logic, only starting from the factorizations (3.12)–(3.13) instead of (3.10)–(3.11). This concludes
the proof of Theorem 1 and the asymptotic description of the zero region.

4. The near-field limit and the Painlevé-III hierarchy

We now prove Theorem 2. Our first move is to obtain an n-independent Riemann-Hilbert problem
whose solution is a good approximation of M[n](λ;x, t) in a suitable rescaling near (x, t) = (0, 0).
Recall the near-field scalings X := nx, T := n2t (see (1.13)). We also scale the spectral parameter
λ:

(4.1) Λ := n−1λ.

With this scaling in mind we recall that the radius of the jump contour D0 for M[n](λ;x, t) is
arbitrary (as long as it encloses ξ). Thus we choose ∂D0 to be a circle of radius n centered at
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the origin (and hence |Λ| = 1). Applying these scalings for x, t, and λ to the jump matrix for

M[n](λ;x, t) in (1.3) gives

e−i(λx+λ2t)σ3S

(
λ− ξ
λ− ξ∗

)nσ3
S−1ei(λx+λ2t)σ3

∣∣∣
x=n−1X, t=n−2T, λ=nΛ

=(
I +O(n−1)

)
e−i(ΛX+Λ2T )σ3Se−2iβΛ−1σ3S−1ei(ΛX+Λ2T )σ3 .

(4.2)

Neglecting the terms of O(n−1), we arrive (formally) at the near-field Riemann-Hilbert problem.

Riemann-Hilbert Problem 3 (The near-field problem). Let (X,T ) ∈ R2 be fixed but arbitrary
parameters. Find the unique 2× 2 matrix-valued function A(Λ;X,T ) with the following properties:

Analyticity: A(Λ;X,T ) is analytic in Λ for |Λ| 6= 1, and it takes continuous boundary
values from the interior and exterior of |Λ| = 1.
Jump condition: The boundary values on the jump contour (oriented clockwise) follow
the relation

(4.3) A+(Λ;X,T ) = A−(Λ;X,T )e−i(ΛX+Λ2T )σ3Se−2iβΛ−1σ3S−1ei(ΛX+Λ2T )σ3 , |Λ| = 1.

Normalization: A(Λ;X,T )→ I as Λ→∞.

If (c1, c2) = (1,±1) and ξ = i, then Riemann-Hilbert Problem 3 is exactly Riemann-Hilbert
Problem 3 in [7] used to define Ψ(X,T ; (1,±1)). We now define

(4.4) Ψ(X,T ; c) := 2i lim
Λ→∞

Λ[A(Λ;X,T )]12.

As we show in Theorem 2, this function Ψ(X,T ; c) is the scaled limit of ψ[2n](x, t; c) in the near
field. From here on we assume ξ = i.

4.1. The function Ψ(X,T ) and the NLS equation: Proof of Theorem 2(a). To prove
(1.14) we follow the standard argument used in [7, Theorem 1]. To measure the difference between
Riemann-Hilbert Problem 1 (appropriately scaled) and Riemann-Hilbert Problem 3, define the ratio
matrix

(4.5) F(Λ;X,T ; c) := M[n]

(
nΛ;

X

n
,
T

n2
; c

)
A(Λ;X,T ; c)−1.

Then F(Λ;X,T ) is analytic for |Λ| 6= 1, whereas for |Λ| = 1 we have

F+(Λ;X,T ) = F−(Λ;X,T )A−(Λ;X,T )(I +O(n−1))A−(Λ;X,T )−1

= F−(Λ;X,T )(I +O(n−1)).
(4.6)

Here the first line follows from (4.2), while the second line follows from the boundedness of
A(Λ;X,T ) and the fact that det A(Λ;X,T ) ≡ 1. Since we also have F(Λ;X,T ) → I as Λ → ∞,
the function F(Λ;X,T ) satisfies a small-norm Riemann-Hilbert problem, from which it follows [13]
that

(4.7) F(Λ;X,T ) = I +O(n−1)

uniformly for compact regions in the XT -plane. Starting from (1.5),

1

n
ψ[2n]

(
X

n
,
T

n2

)
=

2i

n
lim
λ→∞

λ

[
M[n]

(
λ;
X

n
,
T

n2

)]
12

=
2i

n
lim

Λ→∞
nΛ ([F(Λ;X,T )]11[A(Λ;X,T )]12 + [F(Λ;X,T )]12[A(Λ;X,T )]22)

= 2i lim
Λ→∞

Λ[A(Λ;X,T )]12 +O(n−1)

= Ψ(X,T ) +O(n−1)

(4.8)
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uniformly in X and T chosen from compact sets.
To prove that Ψ(X,T ; c) satisfies the nonlinear Schrödinger equation, define

(4.9) K(Λ;X,T ) := A(Λ;X,T )e−i(ΛX+Λ2T )σ3 .

Then, following the proof of [7, Proposition 3] with their matrix Q = 1√
2

[
1 −1
1 1

]
replaced with the

more general matrix S (indeed, S = Q if c = (1, 1)), the function K(Λ;X,T ) satisfies the system
of overdetermined ordinary differential equations

∂K

∂X
(Λ;X,T ) =

[
−iΛ Ψ(X,T )

−Ψ(X,T ) iΛ

]
K(Λ;X,T ),

∂K

∂T
(Λ;X,T ) =

[
−iΛ2 + i

2 |Ψ(X,T )|2 ΛΨ(X,T ) + i
2ΨX(X,T )

−ΛΨ(X,T )∗ + i
2ΨX(X,T )∗ iΛ2 − i

2 |Ψ(X,T )|2
]

K(Λ;X,T ),

(4.10)

which is simply the Lax pair (2.1) with ψ, x, t, and λ replaced by Ψ, X, T , and Λ, respectively.
This means (1.15) is equivalent to the condition KXT (Λ;X,T ) = KTX(Λ;X,T ), and so Ψ(X,T )
satisfies (1.15). This completes the proof of Theorem 2(a).

4.2. The function Ψ(X,T ) and the PIII hierarchy: Proof of Theorem 2(b). In [7, §3.2.1]
it is shown that Ψ(X,T ; (1,±1)) satisfies (1.16) by deriving a Lax pair in Λ and X for the function

(4.11) B(Λ;X,T )e−i(ΛX+Λ2T+2Λ−1)σ3 ,

where

(4.12) B(Λ;X,T ) :=

{
A(Λ;X,T )e−i(ΛX+Λ2T )σ3S−1ei(ΛX+Λ2T )σ3 , |Λ| < 1,

A(Λ;X,T )e2iΛ−1σ3 , |Λ| > 1.

The derivation depends on the fact that the jump for this function across the unit circle is constant,
but not on the particular constant jump matrix. Since we have

(4.13) (B(Λ;X,T )e−i(ΛX+Λ2T+2Λ−1)σ3)+ = (B(Λ;X,T )e−i(ΛX+Λ2T+2Λ−1)σ3)−S−1, |Λ| = 1,

the derivation in [7] goes through unchanged, and Ψ(X,T ; c) satisfies (1.16) for general c ∈ (C∗)2.
We now calculate Ψ(0, 0; c) and ΨX(0, 0; c).

Lemma 1. For any c = (c1, c2) ∈ (C∗)2 and ξ = i, Ψ(0, 0; c) = 8
c1c∗2
|c|2 .

Proof. Using the (Riemann-Hilbert) properties of A(Λ;X,T ), we see that B(Λ;X,T ) defined in
(4.12) is unimodular and analytic for Λ 6= 0 away from |Λ| = 1, and has the property B(Λ;X,T )→ I
as Λ→∞. The jump condition satisfied by B(Λ;X,T ) is

(4.14) B+(Λ;X,T ) = B−(Λ;X,T )e−i(ΛX+Λ2T+2Λ−1)σ3S−1ei(ΛX+Λ2T+2Λ−1)σ3 , |Λ| = 1.

Moreover, since e2iΛ−1σ3 = I + 2iσ3Λ−1 + O(Λ−2) as Λ → ∞, the identity (4.4) implies that we
recover Ψ(X,T ; c) via the limit

(4.15) Ψ(X,T ; c) = 2i lim
Λ→∞

Λ[B(Λ;X,T )]12.

When (X,T ) = (0, 0), we have the explicit formula

(4.16) B(Λ; 0, 0) =

{
S, |Λ| < 1,

Se−2iΛ−1σ3S−1e2iΛ−1σ3 , |Λ| > 1.

Then, as Λ→∞,

(4.17)
Se−2iΛ−1σ3S−1e2iΛ−1σ3 = S

(
I− 2iΛ−1σ3 +O(Λ−2)

)
S−1

(
I + 2iΛ−1σ3 +O(Λ−2)

)
= I + 2i(σ3 − Sσ3S

−1)Λ−1 +O(Λ−2),
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and hence

(4.18) Ψ(0, 0; c) = −4
[
σ3 − Sσ3S

−1
]
12

= 8
c1c
∗
2

|c|2
,

as asserted. �

Lemma 2. For any c = (c1, c2) ∈ (C∗)2 and ξ = i, ΨX(0, 0; c) = 32
c1c∗2
|c|4 (c2c

∗
2 − c1c

∗
1).

Proof. We expand B(Λ;X,T ) as

(4.19) B(Λ;X,T ) = I +
1

Λ
B−1(X,T ) +

1

Λ2
B−2(X,T ) +O

(
1

Λ3

)
, Λ→∞.

From (4.9) and (4.12),

(4.20) K(Λ;X,T ) = B(Λ;X,T )e−i(Λx+Λ2T+2iΛ−1)σ3 , |Λ| > 1.

Inserting this expression into

(4.21) KT (Λ;X,T )K(Λ;X,T )−1 =

[
−iΛ2 + i

2 |Ψ(X,T )|2 ΛΨ(X,T ) + i
2ΨX(X,T )

−ΛΨ(X,T )∗ + i
2ΨX(X,T )∗ iΛ2 − i

2 |Ψ(X,T )|2
]

and expanding as Λ→∞ shows

(4.22) ΨX(0, 0; c) = 4[B−2(0, 0)]12 − 4[B−1(0, 0)]12[B−1(0, 0)]22.

From the formula (4.16) for B(Λ; 0, 0),

(4.23) [B−2(0, 0)]12 = − 8

|c|2
c1c
∗
2, [B−1(0, 0)]12 = − 4i

|c|2
c1c
∗
2, [B−1(0, 0)]22 = − 4i

|c|2
c2c
∗
2.

Combining (4.22) and (4.23) gives the desired result. �

Now that Ψ(0, 0; c) and ΨX(0, 0; c) are known, higher derivatives ∂jΨ
∂Xj (0, 0; c) can be found using

(1.16). Our next step is to prove (1.18).

Lemma 3. Ψ(−X,T ; c∗σ1) = Ψ(X,T ; c) for any c ∈ (C∗)2.

Proof. Let A(Λ;X,T ) be the unique solution of Riemann-Hilbert Problem 3 with given c =
(c1, c2) ∈ (C∗)2 and (X,T ) ∈ R2, and hence

(4.24) 2i [A(Λ;X,T ; c)]12 =
Ψ(X,T ; c)

Λ
+O

(
1

Λ2

)
, Λ→∞.

From the different representations given in (2.38) with S = S(c) and S̃ = S̃(c) defined as in (1.4)
and (2.37), it follows that the jump matrix

(4.25) VA(Λ;X,T ; c) := e−i(ΛX+Λ2T )σ3S(c)e−2iΛ−1σ3S(c)−1ei(ΛX+Λ2T )σ3

in (4.3) also has the representation

(4.26) VA(Λ;X,T ; c) = e−i(ΛX+Λ2T )σ3S̃(c)e2iΛ−1σ3S̃(c)−1ei(ΛX+Λ2T )σ3 .

Using the identity

(4.27) S(σ1c
∗) =

1

|c∗|

(
c∗2 −c1

c∗1 c2

)
= σ3

1

|c|

(
c∗2 c1

−c∗1 c2

)
σ3 = σ3S̃(c)σ3,

we see that

(4.28)

VA(−Λ;−X,T ; c∗σ1) = e−i(ΛX+Λ2T )σ3S(c∗σ1)e2iΛ−1σ3S(c∗σ1)−1ei(ΛX+Λ2T )σ3

= σ3e
−i(ΛX+Λ2T )σ3S̃(c)e2iΛ−1σ3S̃(c)−1ei(ΛX+Λ2T )σ3σ3

= σ3VA(Λ;X,T ; c)σ3.
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Thus, the matrix function Â(Λ;X,T ; c) := σ3A(−Λ;−X,T ; c∗σ1)σ3 satisfies the jump condition

(4.29) Â+(Λ;X,T ; c) = Â−(Λ;X,T ; c)VA(Λ;X,T ; c), |Λ| = 1,

which is exactly the jump condition (4.3) in Riemann-Hilbert Problem 3. Moreover, Â(Λ;X,T ; c)

is well-defined and analytic away from |Λ| = 1, det Â(Λ;X,T ; c) = 1 on its domain of definition,

and Â(Λ;X,T ; c)→ I as Λ→∞. Therefore, Â(Λ;X,T ; c) = σ3A(−Λ;−X,T ; c∗σ1)σ3 also solves
Riemann-Hilbert Problem 3. The identity

(4.30) A(Λ;X,T ; c) = σ3A(−Λ;−X,T ; c∗σ1)σ3

follows from uniqueness of the solution to the Riemann-Hilbert problem. Using (4.30), we write

(4.31) Ψ(−X,T ; c∗σ1) = 2i lim
Λ→∞

Λ [A(Λ;−X,T ; c∗σ1)]12 = 2i lim
Λ→∞

Λ [σ3A(−Λ;X,T ; c)σ3]12 .

Now replacing Λ with −Λ gives

(4.32) Ψ(−X,T ; c∗σ1) = −2i lim
Λ→∞

Λ [σ3A(Λ;X,T ; c)σ3]12 = Ψ(X,T ; c),

as desired. �

Now we prove (1.19).

Lemma 4. Ψ(X,−T ; c)∗ = Ψ(X,T ; c) if c ∈ R2. In particular, Ψ(X, 0; c) is real-valued when
c ∈ R2.

Proof. Let A(Λ;X,T ) be the unique solution of Riemann-Hilbert Problem 3 with given c ∈ R2 and
(X,T ) ∈ R2. Note that S ∈ R2×2 and that the jump matrixVA(Λ;X,T ; c) defined in (4.25) admits
the symmetry

(4.33)

VA(−Λ∗;X,−T ; c)∗ = e−i(ΛX+Λ2T )σ3S∗e−2iΛ−1σ3(S∗)−1ei(ΛX+Λ2T )σ3

= e−i(ΛX+Λ2T )σ3Se−2iΛ−1σ3S−1ei(ΛX+Λ2T )σ3

= VA(Λ;X,T ; c).

Thus, the matrix function Â(Λ;X,T ; c) := A(−Λ∗;X,−T ; c)∗ satisfies the jump condition

(4.34) Â+(Λ;X,T ; c) = Â−(Λ;X,T ; c)VA(Λ;X,T ; c), |Λ| = 1,

which is exactly the jump condition (4.3) in Riemann-Hilbert Problem 3. Moreover, Â(Λ;X,T ; c)

is well-defined and analytic away from |Λ| = 1, det Â(Λ;X,T ; c) = 1 on its domain of definition,

and Â(Λ;X,T ; c) → I as Λ → ∞. Therefore, Â(Λ;X,T ; c) = A(−Λ∗;X,−T ; c)∗ also solves
Riemann-Hilbert Problem 3. Uniqueness implies

(4.35) A(Λ;X,T ; c) = A(−Λ∗;X,−T ; c)∗.

Using (4.35),

(4.36)

Ψ(X,−T ) = 2i lim
Λ→∞

Λ [A(Λ;X,−T )]12 = 2i lim
Λ→∞

Λ [A(−Λ∗;X,T )∗]12

= −
(

2i lim
Λ→∞

Λ∗ [A(−Λ∗;X,T )]12

)∗
.

Now replacing Λ with −Λ∗ gives

(4.37) Ψ(X,−T ) =

(
2i lim

Λ→∞
Λ [A(Λ;X,T )]12

)∗
= Ψ(X,T )∗,

which completes the proof. �

Lemmas 1, 2, 3, and 4, combined with the fact that Ψ(X,T ; c) satisfies the second member of
the Painlevé-III hierarchy given in (1.16), prove Theorem 2(b).
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4.3. The Painlevé-III function u(x): Proof of Theorem 2(c). Inserting the definition (1.20)
into the Painlevé-III equation (1.21) and using the chain rule to convert s-derivatives to X-
derivatives shows that (1.21) is satisfied as long as

(4.38) XΨΨXXX + 3ΨΨXX −XΨXΨXX − 2(ΨX)2 + 4Ψ4 + 2XΨ3ΨX + 2XΨ3ΨX = 0,

which holds from (1.16) since T = 0 and Ψ(X, 0; c) is a real-valued function (since c ∈ R2). Plugging
the expansion Ψ(X, 0; c) = Ψ(0, 0; c) + ΨX(0, 0; c)X +O(X2) as X → 0 into the definition (1.20)
along with X = −1

8s
2 immediately gives the expansion

(4.39) u(s; c) = s+
ΨX(0, 0; c)

8Ψ(0, 0; c)
s3 +O(s5), x→ 0.

Using the explicit forms for Ψ(0, 0; c) and ΨX(0, 0; c) given in (1.17) shows (1.22). Higher derivatives

u(j)(0; c), j ≥ 5 can now be computed using the governing Painlevé-III equation (1.21). This
completes the proof of Theorem 2.

Appendix A. Reformulation of the Riemann-Hilbert problem as a linear system

We now show how to rewrite Riemann-Hilbert Problem 1 for M[n] as the linear system (A.26)
of 4n equations in 4n unknowns. In principal, this linear system can be solved explicitly for any
fixed n, thus allowing the determination of ψ[2n](x, t) via (A.17). In practice, the entries of the
resulting coefficient matrix are increasingly complicated functions of x and t as n increases, and the
system can only be feasibly solved for at most a few values of n. However, picking specific values
of x and t reduces the problem to the inversion of a 4n× 4n matrix with numerical entries, which
can be done rapidly to any desired precision using standard numerical linear algebra packages for
moderately large values of n. This procedure was used to create Figures 1–9. Analogous methods
have been used previously to study semiclassical behavior of the nonlinear Schrödinger equation
[20], the sine-Gordon equation [10], and the three-wave resonant interaction equations [9].

From (2.30) and (2.25) we have, using M[0](λ;x, t) ≡ I,
(A.1)

M[n](λ;x, t) =

{
G[n−1](λ;x, t) · · ·G[0](λ;x, t), λ /∈ D0,

G[n−1](λ;x, t) · · ·G[0](λ;x, t)e−i(λx+λ2t)σ3G[0](λ; 0, 0)−nei(λx+λ2t), λ ∈ D0.

For succinctness we define

(A.2) Π[n](λ;x, t) := G[n−1](λ;x, t) · · ·G[0](λ;x, t).

From the jump condition (2.31), we have M
[n]
− (λ;x, t) = M

[n]
+ (λ;x, t)V

[n]
M (λ;x, t)−1. Since the left-

hand side extends analytically into D0, the right-hand side must as well. Our conditions for the
linear system will arise from the fact that

(A.3) M
[n]
+ (λ;x, t)V

[n]
M (λ;x, t)−1 = Π[n](λ;x, t)e−i(λx+λ2t)σ3G[0](λ; 0, 0)−nei(λx+λ2t)σ3

is analytic at ξ and ξ∗. We can write

(A.4) G[0](λ; 0, 0)−1 = I +
W

λ− ξ
+

X

λ− ξ∗
,

where (recall ξ = α+ iβ)

W :=
2iβ

|c|2

(
c1c
∗
1 c1c

∗
2

c∗1c2 c2c
∗
2

)
=

2iβ

|c|2

(
c1 c1

c2 c2

)(
c∗1 0
0 c∗2

)
,

X :=
−2iβ

|c|2

(
c2c
∗
2 −c1c

∗
2

−c∗1c2 c1c
∗
1

)
=
−2iβ

|c|2

(
c∗2 c∗2
−c∗1 −c∗1

)(
c2 0
0 −c1

)
.

(A.5)
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By direct calculation, we have the relations

(A.6) WX = XW = 0, X2 = −2iβX, W2 = 2iβW.

Using these, we have

G[0](λ; 0, 0)−n = I +

n∑
k=1

(
n
k

)(
Wk

(λ− ξ)k
+

Xk

(λ− ξ∗)k

)

= I +

n∑
k=1

(
n
k

)
(2iβ)k−1

(
W

(λ− ξ)k
+ (−1)k

X

(λ− ξ∗)k

)
.

(A.7)

Dropping the explicit dependence on n, we now set

(A.8) L(λ;x, t) := Π[n](λ;x, t)e−i(λx+λ2t)σ3 .

Therefore, the condition that the quantity in (A.3) is analytic at λ = ξ and λ = ξ∗ can be

reformulated as the fact that L(λ;x, t)G[0](λ; 0, 0)−n is analytic at λ = ξ and λ = ξ∗. We expand
L (which has poles of order n at ξ and ξ∗) about λ = ξ and λ = ξ∗:

(A.9) L(λ;x, t) =

∞∑
j=−n

L+
j (x, t)(λ− ξ)j , L(λ;x, t) =

∞∑
j=−n

L−j (x, t)(λ− ξ∗)j .

Here the unknown 2× 2 matrices L±j are independent of λ. Using the expansions (A.7) and (A.9),

along with (A.6), the analyticity conditions become
(A.10) ∞∑

j=−n
L+
j (λ− ξ)j

(I +

n∑
k=1

(
n
k

)
(2iβ)k−1

(
W

(λ− ξ)k
+ (−1)k

X

(λ− ξ∗)k

))
= O(1), λ→ ξ

and
(A.11) ∞∑

j=−n
L−j (λ− ξ∗)j

(I +
n∑
k=1

(
n
k

)
(2iβ)k−1

(
W

(λ− ξ)k
+ (−1)k

X

(λ− ξ∗)k

))
= O(1), λ→ ξ∗.

Expanding (A.10) and collecting powers of λ−ξ gives 2n equations for L+
−n, . . . ,Ln−1. For example,

for n = 1 we obtain the two equations

(A.12) L+
−1W = 0, L+

−1 −
1

ξ − ξ∗
L+
−1X + L+

0 W = 0.

Multiplying the second equation by W on the right and then using the first equation and the
relations (A.6) yields the simplified equation L+

0 W = 0. Indeed, using the same procedure of
right-multiplying by W and using forward substitution and (A.6) works for general n to deliver the
equations L+

j W = 0, −n ≤ j ≤ n− 1. Similarly, expanding (A.11) and collecting powers of λ− ξ∗

gives, after analogous manipulations, the equations L−j X = 0, −n ≤ j ≤ n− 1. From the explicit

forms (A.5) for W and X, we see these matrix equations are equivalent to the vector equations

(A.13) L+
j

(
c1

c2

)
= 0, L−j

(
c∗2
−c∗1

)
= 0, −n ≤ j ≤ n− 1.

Next, recalling L = Π[n]e−i(λx+λ2t)σ3 , we expand

(A.14) e−i(λx+λ2t)σ3 =

∞∑
j=0

D+
j (x, t)(λ− ξ)j =

∞∑
j=0

D−j (x, t)(λ− ξ∗)j
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(here the coefficient matrices D±j are known, or at least can be computed) and

(A.15) Π[n](λ;x, t) = I +
n∑
j=1

(
A+
−j(x, t)

(λ− ξ)j
+

A−−j(x, t)

(λ− ξ∗)j

)

(here the coefficient matrices A±−j are unknown). If we write

(A.16) A+
−j =:

(
r−j u−j
∗ ∗

)
, A−−j =:

(
s−j v−j
∗ ∗

)
,

(here * denotes an entry we will not need), then

(A.17) ψ[2n](x, t) = 2i(u−1(x, t) + v−1(x, t)).

Since the equations for the entries in the top and bottom rows in (A.13) decouple, we only need to

calculate the first rows of the matrices A±−j to reconstruct ψ[2n](x, t). This gives 4n linear equations
in 4n unknowns, which we now express in a form suitable for numerical computations.

Direct calculation gives

(A.18) L+
j =

j+n∑
k=0

A+
j−kD

+
k , L−j =

j+n∑
k=0

A−j−kD
−
k , −n ≤ j ≤ −1.

Furthermore, if we define the constants γ±k,m by the expansions

(A.19)
1

(λ− ξ∗)m
=

∞∑
k=0

γ+
k,m(λ− ξ)k, 1

(λ− ξ)m
=

∞∑
k=0

γ−k,m(λ− ξ∗)k,

then we also have

(A.20)
L+
j = D+

j +
∑n

k=1 A+
−kD

+
j+k +

∑j
`=0

(∑n
m=1 γ

+
j−`,mA−−m

)
D+
` ,

L−j = D−j +
∑n

k=1 A−−kD
−
j+k +

∑j
`=0

(∑n
m=1 γ

−
j−`,mA+

−m

)
D−` ,

0 ≤ j ≤ n− 1.

Comparing (A.13) with (A.18) and (A.20), we see that D+
j only occurs multiplied by (c1, c2)T, and

D−j only occurs multiplied by (c∗2,−c∗1)T, so we define

(A.21)

(
f+
j (x, t)

g+
j (x, t)

)
:= D+

j (x, t)

(
c1

c2

)
,

(
f−j (x, t)

g−j (x, t)

)
:= D−j (x, t)

(
c∗2
−c∗1

)
, 0 ≤ j ≤ 2n− 1.

We also define

Fj :=

(
f+
j 0

0 f−j

)
, Gj :=

(
g+
j 0

0 g−j

)
,

Hjk :=


0

j∑
`=0

γ+
`kf

+
j−`

j∑
`=0

γ−`kf
−
j−` 0

 , Ijk :=


0

j∑
`=0

γ+
`kg

+
j−`

j∑
`=0

γ−`kg
−
j−` 0

 .

(A.22)
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Using these, we define the 4n× 4n coefficient matrix
(A.23)

T :=



F0 G0 0 0 · · · 0 0
F1 G1 F0 G0 · · · 0 0
...

...
...

...
...

...
Fn−1 Gn−1 Fn−2 Gn−2 · · · F0 G0

Fn + H0,n Gn + I0,n Fn−1 + H0,n−1 Gn−1 + I0,n−1 · · · F1 + H0,1 G1 + I0,1

Fn+1 + H1,n Gn+1 + I1,n Fn + H1,n−1 Gn + I1,n−1 · · · F2 + H1,1 G2 + I1,1
...

...
...

...
...

...
F2n−1 + Hn−1,n G2n−1 + In−1,n F2n−2 + Hn−1,n−1 G2n−2 + In−1,n−1 · · · Fn + Hn−1,1 Gn + In−1,1


,

the 4n-vector of unknowns

(A.24) y :=
(
r−n s−n u−n v−n · · · r−1 s−1 u−1 v−1

)
,

and the 4n-vector of inhomogeneous terms

(A.25) f := (0 0 · · · 0︸ ︷︷ ︸
2n terms

−f+
0 − f−0 − f+

1 − f−1 · · · − f+
n−1 − f

−
n−1).

Here T, y, and f depend on x, t, n, c, and ξ. At last, the equations for the top rows in (A.13) can
be recast as

(A.26) Ty = f ,

a form amenable to numerical computation for moderately large values of n. Once y is obtained from
solving this equation, the solution ψ[2n](x, t) to the nonlinear Schrödinger equation is immediately
recovered from (A.17).

Appendix B. Numerical computation of Ψ(X,T ; c) for arbitrary c ∈ (C∗)2

A numerical procedure was developed in [7, §5] to compute the special functions Ψ(X,T ; (1,±1))
for the first time, with the aid of RHPackage [24] in context of the numerical framework introduced
in [31]. While Riemann-Hilbert Problem 3 can be solved numerically using RHPackage without
contour deformations for (X,T ) lying in a small rectangle containing the origin, e.g. |X|+ |T | < 2,
for large values of X one needs to deform the jump contours of this Riemann-Hilbert Problem
by introducing lens-shaped domains to use the Deift-Zhou method of nonlinear steepest descent.
In this section we briefly describe the deformations necessary to compute Ψ(X, 0; c) for arbitrary
c ∈ (C∗)2 and large values of X. These deformations are a generalization of what was employed in
[7, §4.1] to arbitrary c ∈ (C∗)2. Before we begin, we note it is sufficient to consider the case X ≥ 0
by (1.18) and T ≥ 0 by (1.19).

The function B(Λ;X,T ) defined in (4.12) is unimodular and satisfies the following Riemann-
Hilbert problem.

Riemann-Hilbert Problem 4 (Reformulated near-field problem). Let (X,T ) ∈ R2 be fixed but
arbitrary parameters. Find the unique 2 × 2 matrix-valued function B(Λ;X,T ) with the following
properties:

Analyticity: B(Λ;X,T ) is analytic for |Λ| 6= 1 and takes continuous boundary values from
the interior and exterior of the jump contour.
Jump condition: The boundary values on the jump contour (oriented clockwise) follow
the relation

(B.1) B+(Λ;X,T ) = B−(Λ;X,T )e−i(ΛX+Λ2T+2Λ−1)σ3S−1ei(ΛX+Λ2T+2Λ−1)σ3 , |Λ| = 1.

Normalization: B(Λ;X,T )→ I as Λ→∞.
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Figure 12. Signature charts of =(φ(z; v)) in the complex z-plane. Left: v = −0.134

(representative for −54−1/2 < v < 0). Center: v = 0. Right: v = 0.134 (representa-

tive for 0 < v < 54−1/2).

To solve Riemann-Hilbert Problem 4 for X > 0 large, we introduce

(B.2) v := X−3/2T, z := X1/2Λ

and define C(z;X, v) := B(X−1/2z;X,X3/2v). Recall that Ψ(X,T ; c) is recovered from B(Λ;X,T )
via (4.15), which implies

(B.3) Ψ(X,X3/2v) = 2iX−1/2 lim
z→∞

z [C(z;X, v)]12 , X > 0,

and the phase in the diagonal matrices conjugating S−1 in the jump condition (B.1) now has the
form

(B.4) ΛX + Λ2T + 2Λ−1 = X1/2(z + vz2 + 2z−1) =: X1/2φ(z; v).

It is clear that for each X > 0 and v ≥ 0, C(z;X, v) satisfies the jump condition

(B.5) C+(z;X, v) = C−(z;X, v)e−iX
1/2φ(z;v)σ3S−1eiX

1/2φ(z;v)σ3 , z ∈ Γ,

where Γ is a Jordan curve (depending on X) surrounding z = 0 with clockwise orientation, and
C(z;X, v) is analytic in the complement of Γ. The matrix C(z;X, v) is unimodular and has the
same normalization as B(Λ;X,T ): C(z;X, v)→ I as z →∞ for each fixed X > 0 and v ≥ 0.

We now proceed with introducing lens-shaped regions and deforming the jump contour to control
the exponential factors in the jump matrix (B.5) as in [7]. For given v ≥ 0, the critical points of
the phase φ(z; v) are roots of the real cubic equation

(B.6) 2vz3 + z2 − 2 = 0,

which are all real and distinct if 0 ≤ v < 54−1/2. If v > 54−1/2, however, there is a complex
conjugate pair of roots and a real root. In the former case, the level curve =(φ(z; v)) = 0 along

which the exponential factors e±iX
1/2φ(z;v)σ3 are purely oscillatory has a component that is a Jordan

curve enclosing the origin in the z-plane, and that passes through two critical points, with the
remaining critical point (if v > 0) in the exterior domain. We take this curve as the jump contour
Γ in (B.5) for C(z;X, v) and denote the relevant two critical points of φ(z; v) by a < b, where a
and b depend on v. Note that when v = 0, (B.6) is a real quadratic with the roots a = −

√
2 and

b =
√

2. See Figure 12 for representative level curves =(φ(z; v)) = 0 and the roots of (B.6) for
different values of v ∈ R.

The real axis splits Γ into two arcs, Γ+ lying in the upper half plane and Γ− lying in the lower
half plane. We deform Γ± by opening lens-shaped domains L± and R± on the left and right sides
of Γ±. The outer boundary arcs C±L and C±R of these regions meet the real axis at 45◦ angles as
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shown in the left-hand panel of Figure 13 and on each of these arcs =(φ(z; v)) has a definite sign.
The line segment from a to b is denoted I. We label the region between C+

R and the real axis by

Ω+, the region between C−R and the real axis by Ω−, the region between C±R and Γ± by R±, and

the region between C±L and Γ± by L±. See Figure 13 for illustrations of these domains and contour
arcs.

To separate the exponential factors e±iX
1/2φ(z;v) in the jump condition (B.5), we make the fol-

lowing substitutions:

(B.7) E(z;X, v) :=



C(z;X, v)

[
1 0

c2
c1
e2iX1/2φ(z;v) 1

]
, z ∈ L+,

C(z;X, v)
(
|c|
c1

)σ3 [1
c1c∗2
|c|2 e

−2iX1/2φ(z;v)

0 1

]
, z ∈ R+,

C(z;X, v)
(
|c|
c1

)σ3
, z ∈ Ω+,

C(z;X, v)
(
|c|
c∗1

)−σ3
, z ∈ Ω−,

C(z;X, v)
(
|c|
c∗1

)−σ3 [ 1 0

− c2c∗1
|c|2 e

2iX1/2φ(z;v) 1

]
, z ∈ R−,

C(z;X, v)

[
1 − c∗2

c∗1
e−2iX1/2φ(z;v)

0 1

]
, z ∈ L−,

C(z;X, v), otherwise.

Now C+(z;X, v) = C−(z;X, v) for z ∈ Γ±, so this transformation removes the jump condition
across Γ+ and Γ− and C(z;X, v) can be considered to be a well-defined analytic function on Γ+

and Γ−. Moreover, C(z;X, v) is unimodular and has the normalization limz→∞C(z;X, v) = I. It
therefore is the solution of the following Riemann-Hilbert problem.

Riemann-Hilbert Problem 5 (Large-X problem). Let (X, v) ∈ R>0×R≥0 be fixed but arbitrary
parameters. Find the unique 2× 2 matrix-valued function E(z;X, v) with the following properties:

Analyticity: E(z;X, v) is analytic in z for z ∈ C \ (C−L ∪ C
−
R ∪ I ∪ C

+
R ∪ C

+
L ), and it

takes continuous boundary values from the interior and exterior of the union of the five
arcs C−L ∪ C

−
R ∪ I ∪ C

+
R ∪ C

+
L .

Jump condition: The boundary values on the jump contour C−L ∪C
−
R ∪I∪C

+
R ∪C

+
L follow

the relations

E+(z;X, v) = E−(z;X, v)

[
1 0

− c2
c1
e2iX1/2φ(z;v) 1

]
, z ∈ C+

L ,(B.8)

E+(z;X, v) = E−(z;X, v)

[
1

c1c∗2
|c|2 e

−2iX1/2φ(z;v)

0 1

]
, z ∈ C+

R ,(B.9)

E+(z;X, v) = E−(z;X, v)

(
|c|2

|c1|2

)σ3
, z ∈ I,(B.10)

E+(z;X, v) = E−(z;X, v)

[
1 0

− c2c∗1
|c|2 e

2iX1/2φ(z;v) 1

]
, z ∈ C−R ,(B.11)

E+(z;X, v) = E−(z;X, v)

[
1 − c∗2

c∗1
e−2iX1/2φ(z;v)

0 1

]
, z ∈ C−L .(B.12)

Normalization: E(z;X, v)→ I as z →∞.
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Figure 13. Left: The regions Ω±, R±, and L± used in the definition of E(z;X, v).
Right: The jump contours for Riemann-Hilbert Problem 5. In both plots v = 0.

Since =(φ(z; v)) > 0 for z ∈ C+
L ∪ C

−
R and =(φ(z; v)) < 0 for z ∈ C+

R ∪ C
−
L , the jump matrices

supported on these four contour arcs are exponentially small (as X → +∞) perturbations of the
identity matrix uniformly except near the end points a and b. For the jump contours in Riemann-
Hilbert Problem 5 with v = 0, see the right panel of Figure 13. The picture is completely analogous
for 0 < v < 54−1/2.

Riemann-Hilbert Problem 5 can be used to numerically compute Ψ(X,T ) for values of X >

541/3T 2/3. We now focus our attention on the case T = 0 (hence v = 0) and c ∈ R2. For
cross-validation of the numerical procedure described here along with further details, see [7, §5].

As discussed in [7, §5], although the jump matrices on the four arcs C−L ∪ C
−
R ∪ C

+
R ∪ C

+
L

become exponentially small perturbations of the identity matrix as X → ∞, their Sobolev norms
(differentiation with respect to z) grow. This presents a numerical challenge that is overcome
in RHPackage by a rescaling algorithm (see [31] for details). Thus, to have a procedure that is
asymptotically robust as X > 0 becomes large, one has to remove the so-called connecting jump
condition (B.10) on the line segment I. To this end, we introduce the parametrix

(B.13) ∆(z; v) :=

(
z − a(v)

z − b(v)

)ipσ3
, p :=

ln
(
|c|2
|c1|2

)
2π

> 0, z ∈ C \ I,

which exactly satisfies the jump condition

(B.14) ∆+(z; v) = ∆−(z; v)

(
|c|2

|c1|2

)σ3
, z ∈ I,

and is normalized as ∆(z; v) → I as z → ∞. Thus, setting Ĉ(z;X, v) := C(z;X, v)∆(z; v)−1 for
z ∈ C\I removes the connecting jump condition across I as desired and conjugates the existing other
jump matrices given in (B.8)–(B.12) by ∆(z; v). This comes with the cost of introducing bounded
singularities in the jump matrices at z = a and z = b since ∆(z; v) has bounded singularities at
these points. To remedy this, we place small circles centered at z = a and z = b and transfer the
jump conditions on the line segments inside these circles to jump conditions on arcs of these circles
connecting the endpoints of these line segments. This successfully removes the aforementioned
singular jump conditions, but introduces jump matrices on the small circles centered at z = a(v)
and z = b(v) whose components now grow exponentially as X → +∞. Observe that for p = a, b,

(B.15) φ(z; v)− φ(p; v) =
φ′′(p; v)

2
(z − p)2 +O((z − p)3), z → p.
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Therefore,

(B.16) e±i|X|
1/2φ(z;v) = O(1), X → +∞

if |z−p| = O(|X|−1/4) as X → +∞ for both p = a(v) and p = b(v). In order to overcome the growth

of these factors, we scale the common radius of these circles by |X|−1/4 as X becomes large. As
noted in [7, §5], while shrinking the circles at a faster rate ensures boundedness of the exponentials
supported on them, it also moves the support of the jump matrices closer to singularities at a faster
rate and hence should be avoided. The jump contours of the Riemann-Hilbert problem used to
compute Ψ(X, 0) numerically for large values of X > 0 are given in Figure 14. In practice, the jump
contours are truncated if the jump matrices supported on them differ from the identity matrix by
at most machine precision. For more details see [31, Chapter 2 and Chapter 7] and [7, §5].
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Figure 14. Left: Jump contours used in the numerical solution of the Riemann-

Hilbert problem satisfied by Ĉ(z;X, v = 0), which is asymptotically and numerically
well-adapted for large X > 0. Right: Truncated jump contours that are used in
practice if X > 0 is large. For both plots, X = 2000 and v = 0.
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