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This work addresses a classic problem of online prediction with expert advice. We assume an adversarial

opponent, and we consider both the finite-horizon and random-stopping versions of this zero-sum, two-

person game. Focusing on an appropriate continuum limit and using methods from optimal control, we

characterize the value of the game as the viscosity solution of a certain nonlinear partial differential equation.

The analysis also reveals the predictor’s and the opponent’s minimax optimal strategies. Our work provides,

in particular, a continuum perspective on recent work of Gravin, Peres, and Sivan (Proc SODA 2016). Our

techniques are similar to those of Kohn and Serfaty (Comm Pure Appl Math 2010), where scaling limits of

some two-person games led to elliptic or parabolic PDEs.

1 Introduction

Our work addresses a problem involving ‘prediction with expert advice.’ This is a well-established frame-

work in which a player tries to use ‘expert advice’ to invest optimally (for the worst case scenario) against

an adversarial market. The measure of effectiveness of the player’s strategy is regret minimisation: perfor-

mance under the metric of ‘regret’, or distance between a player’s performance and that of the (retrospec-

tively) best-performing ‘expert’. We use linear regret, in other words the difference between a player’s loss

and an expert’s loss. Here, ‘prediction’ is not about modelling a time series probabilistically; instead, the

player tries to synthesise the advice of the experts in a way that guarantees good performance in a worst case

setting.

We consider the following setup. There are two entities – a ’player’ and a ’market’ – and a fixed number

n of ’experts’. The market chooses which experts win or lose at every time step. The player chooses which

expert to listen to at each time step. The two entities’ optimal strategies are mixed, i.e. the strategies involve

probability distributions over the space of available outcomes. The player’s goal is to accumulate overall

winnings as close as possible to those of the best performing expert at the ’end’ of the game (assuming

that the market works against the player). There are two variants: one with a fixed stopping time (’the

finite horizon problem’) and one where the stopping time is random with a constant probability of stopping

at every time step (’the geometric stopping problem’). The goal in each variant is to identify the optimal

strategies of the player and the market, as well as the associated value function.

The general approach is ‘numerical analysis in reverse’ – interpreting each discrete formulation as a

numerical scheme for an appropriate nonlinear PDE. We prove that the solution to the discrete problem is
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asymptotically close to the unique viscosity solution of the PDE; as a result, knowledge of the PDE solution

provides an indication about the optimal strategy for the discrete game. The ’finite horizon problem’ leads

to a parabolic PDE, whereas the ’geometric stopping problem’ is associated to an elliptic PDE.

The overall outline of our analysis is as follows. Firstly, for each variant we define a discrete approxi-

mation scheme associated with a dynamic programming principle for the game. For the geometric stopping

problem the existence of a solution to the scheme is nontrivial. Its construction relies on a time dependent

problem which is run to equilibrium (or equivalently, a contraction mapping argument). For the finite hori-

zon problem, existence of a solution to the scheme is easily established by induction. Convergence of each

scheme is obtained through standard viscosity technology: the scheme is stable, monotone, and consistent,

hence its solution converges to the unique viscosity solution of the PDE. (Our proof uses the framework of

Barles and Souganidis [1], adjusted to accommodate the special features of our problem.) Finally, we give

an explicit solution for the elliptic PDE associated to the geometric stopping problem with three experts (it

is the continuous analogue of the solution obtained using discrete methods in Gravin, Peres, and Sivan’s

paper [2]).

Our work shows that although online machine learning is not in any conventional sense a stochastic

control problem, continuous methods are useful for its analysis (in much the same way that PDEs are useful

for studying stochastic control). It should be noted that we are not the first to apply PDE methods to an

online machine learning problem. Indeed, Kangping Zhu’s thesis [3] used PDE methods to achieve a similar

goal in a somewhat different setting.

To put this work in context, we briefly review some of the machine learning literature on prediction

with expert advice. Most of this work focuses on regret bounds (e.g. using specific strategies to prove

upper bounds on the predictor’s regret). A prediction problem appears in Cover’s article [4] as far back as

1965, where he establishes an O(
√
T ) regret bound, where T is the number of rounds played; Cover also

solves the problem for n = 2. A classical treatment is available in Cesa-Bianchi and Lugosi’s book [5];

it outlines the theoretical foundation of the area and provides a self-contained treatment of many results,

including an upper bound on the regret of order O(
√
T log n), proved using a well-chosen multiplicative

weight algorithm. Some earlier, foundational works include Vovk’s [6] and Littlestone and Warmuth’s [7];

they introduced the weighted majority algorithm as a method the predictor can use to weight the experts’

bids. Haussler et all [8] achieve a Ω(
√
T log n) regret bound in the case of absolute loss. Abernethy et al

[9] consider a game played until a fixed number of losses is incurred by an expert. Luo and Schapire [10]

investigate a version of the game with a randomly chosen final time. In [11] Rakhlin et al. present algorithms

using ”random play out”. A recent paper by Gravin, Peres, and Sivan [2] analyzes the same problems that

we consider here. That work uses discrete methods and connections to random walks; ours can be viewed as

providing its continuous-time analogue. For more detail on the relationship between our work and [2], see

Subsection 3.5. Our PDE characterization of the value function has already seen an interesting application:

in [12], Bayraktar et al use it to obtain an explicit solution for the geometric stopping version of the game

with n = 4 experts.

There are other instances in the literature where scaling limits of multistep decision processes lead to

parabolic or elliptic PDEs. For example, the work of Kohn and Serfaty on two-person game interpretations

of motion by curvature [13] and many other PDE problems [14] has this character. So does the work of

Peres, Sheffield, Schramm, and Wilson connecting the ‘tug-of-war’ game to the infinity-Laplacian [15] and

the p-Laplacian [16] (this work has seen many extensions, e.g. [17], [18], [19], [20]).

A particular advantage of our treatment is that it is not limited to the classical payoff function in the

online machine learning literature, namely regret with respect to the best expert ϕ(x) = maxk{xk}, where

xk is regret with respect to expert k. In fact, it works for a more general class of payoff functions, namely
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functions ϕ that are globally Lipschitz continuous, non-decreasing, symmetric in their dependent variables

xk, have linear growth at ∞, and satisfy ϕ(x1 + c, ..., xn + c) = ϕ(x1, ..., xn) + c. Different choices of ϕ
represent generalizations of the classic linear regret performance measure. We prove results for the general

class of payoff functions described above; we restrict ϕ to ϕ(x) = maxk{xk} only to find the explicit

solution of the n = 3 elliptic case.

The outline of this paper is as follows. In section 2 we introduce notation and the discrete formulation

of the problem we wish to solve, as well as the dynamic programming principle (DPP) for each case. In

section 3 we derive heuristically the associated PDEs. In section 4 we prove that both in the finite horizon

and in the geometric stopping cases the discrete dynamic programming principle introduced in section 3 has

a unique at most linear growth solution. In section 5 we cite results showing that each of our PDEs has a

unique solution among functions with at most linear growth. In section 6 we relate the discrete solutions to

the solutions of the PDEs by proving that the solutions of the appropriately scaled DPP solve the appropriate

PDE in the limit ε → 0. In section 7 we investigate the particular case of n = 3 experts in the geometric

stopping problem, and provide an explicit formula for the solution of the PDE.

2 Notation and Formulation

In this section we introduce our notation and formulate the two variants of our problem. We start in 2.1 with

the basic setup; subsections 2.2 and 2.3 present the two classical variants of the game (described in detail,

for example, in [2]). Lastly, in 2.4 we present the scaled variants of the game.

2.1 Notation

We will be considering a game with randomized strategies but let us focus on a non-probabilistic set up

first. There are two entities - a ’market’ and a ’player’ – as well as n experts denoted by 1, 2, ..., n. The

game is played for T rounds (in the ’finite horizon’ problem), or else with a random stopping time (using

a fixed probability δ of stopping at each time step – we call this the ’geometric stopping’ problem). At

each round t, every expert k makes a prediction (say, whether stock k will go up or down), and the player

chooses to follow a particular expert, say the lth one. The market determines the gains vt,k of each expert k
(vt,k = 1 if expert k made an accurate prediction at round t and vt,k = 0 otherwise). Then the outcomes of

the player and the market are revealed. We denote by xk the player’s ’regret with respect to expert k’; this

is, by definition, expert k’s cumulative gains minus the player’s cumulative gains. Thus the increment of xk
at time t is

∆xt,k = vt,k − vt,l

if the player follows expert l.
The game we study is similar to the one just described, except that the player and the market choose

randomized strategies:

• At each step t, without knowing the player’s move, the market chooses a probability distribution pt,
over all the possible outcomes for the n experts, which we represent by vectors ~v ∈ {0, 1}n. (An

outcome is thus a choice of the subset of experts making correct predictions; for example, if all the

experts are correct then v = ~1 is the vector of ones.)

• Simultaneously, at every turn t without knowing the market’s move, the player chooses a probability

distribution over the n experts, i.e. a vector ~αt = (αt,1, αt,2, ..., αt,n), where
∑

αt,i = 1 and αt,i ≥ 0.

3



Its meaning is that the player follows expert l at time t with probability αt,l (obtaining the same

outcome as expert l, namely vt,l).

• The player seeks to maximize (and the market seems to minimize) the expected final-time regret (the

expectation being taken with respect to probabilities associated with the randomized strategies).

The state variables xj for this game are the player’s regret with respect to the jth expert, meaning

expert’s gain minus player’s gain. At risk of redundancy, we emphasize that market and the player know

they are playing against each other, and this influences their optimal strategies. The player chooses the

probability distribution on ~αt so as to minimize her expected regret at the end of the game; meanwhile the

market chooses the probability distribution pt which maximizes expected regret at the end of the game.

These distributions are not fixed throughout the game and will depend on various unknowns, and on which

version of the game is being considered (the ’finite horizon’ version or the ’geometric stopping’ one).

For notational convenience, whenever we look at the player’s optimization subject to
∑

αi = 1 and αi ≥
0, we will write this choice as minplayer. Similarly, whenever the market chooses an optimal probability

distribution p on the set of all possible choices v ∈ {0, 1}n, we denote the market’s maximization with

maxmarket. We write E for the expected value over the mixed strategies. Lastly, whenever the market

chooses a probability distribution p on the set of all possible choices v ∈ {0, 1}n, subject to the condition of

’balance’, i.e.

Ep[vi] = Ep[vk] ∀i, k balance condition , (2.1)

we denote this by maxbalance.

As the final time measure of regret, we consider an arbitrary function ϕ(x1, ..., xn) that satisfies the

following properties:

ϕ is globally Lipschitz continuous, (2.2)

non-decreasing in each variable, (2.3)

symmetric in its dependent variables x1, ..., xn, (2.4)

|ϕ(x)| ≤ C1|x|+ C2 (a consequence of (2.2)), and (2.5)

for every c it holds that ϕ(x1 + c, ..., xn + c) = ϕ(x1, ..., xn) + c. (2.6)

One such function ϕ is ϕ(x) = maxk xk.

2.2 The Finite Horizon Problem

The finite horizon problem is to determine the player’s expected regret (the value function of the game)

and the associated optimal strategies for both the player and the market, provided that the game ends at

an a priori fixed time T and starts at time t such that t ∈ N, t ≤ T with initial regret vector x. One can

write the value function through a dynamic programming principle (DPP): it is the expected payoff at final

time, provided the player and the market play optimally against each other, in particular doing the best that

could be done after one time step. Through the dynamic programming principle, the discrete finite horizon

formulation becomes:

wd(t, x) = min
player

max
market

E[wd(t+ 1, x+∆x)] (2.7)

wd(T, x) = ϕ(x).
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2.3 The Geometric Stopping Problem

The geometric stopping problem is to determine the player’s expected regret (the value function) provided

the game starts at regret vector x. The game either stops with probability δ, 0 < δ < 1, in which case the

payoff is ϕ(x); or else it continues, with probability 1 − δ, for at least one more round, with player and

market playing against each other optimally. One can thus express the value function through a DPP:

ud(x) = δϕ(x) + (1− δ) min
player

max
market

E[ud(x+∆x)]. (2.8)

Observe that there is no time-dependence in this case. (The probability of stopping, δ, is assumed constant,

i.e. independent of time).

2.4 The Scaled Games

Since we are interested in the behavior of the games over long periods of time, we consider scaled versions

of them. For the finite horizon problem we scale spatial steps to be 0 and ε (instead of 0 and 1) and time

steps to be ε2 (instead of 1), so the game is played for T/ε2 steps. The reason for this scaling is that we

expect to obtain a parabolic PDE in the limit. Then, the analogue of equation (2.7) is:

w(t, x) = min
player

max
market

E[w(t+ ε2, x+ ε∆x)] (2.9)

w(T, x) = ϕ(x).

For the geometric stopping case (2.8) we observe that the expected number of rounds until stopping is

1/δ , since the probability of stopping after any step is δ. We choose, just as in the previous case, to have

spatial steps ε, and a typical number of steps of order ε−2 , hence we choose δ = ε2. The analogue of (2.8)

is thus:

u(x) = ε2ϕ(x) + (1− ε2) min
player

max
market

E[u(x+ ε∆x)]. (2.10)

The goal of this work is to investigate the limiting behavior of the solutions of (2.9) and (2.10). A key ob-

servation is that the statements of the DPP, as ε→ 0 are semi-discrete numerical schemes for corresponding

PDEs. We prove that the solution of (2.9) converges to that of the parabolic problem

wt(t, x) +
1

2
max

v∈{0,1}n
〈D2w(t, x) · v, v〉 = 0, (2.11)

w(T, x) = ϕ(x),

as ε goes to 0, whereas the solution of (2.10) converges to that of

u(x) = ϕ(x) +
1

2
max

v∈{0,1}n
〈D2u(x) · v, v〉 (2.12)

as ε goes to 0.
A central question is whether the scaled games are equivalent to the unscaled ones. Whenever ϕ satisfies

εϕ(x
ε
) = ϕ(x), the answer is yes. In particular it is true for the classical choice of regret ϕ(x) = maxk{xk}.

For the finite horizon case, let the discrete-in-time, continuous-in-space function wd solve (2.7) and define

w̃(τ, y) = εwd(
τ

ε2
,
y

ε
).
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It satisfies

w̃(t, x) = min
player

max
market

E[w̃(t+ ε2, x+ ε∆x)]

with w̃(T, x) = εϕ(x
ε
) at the final time. So if εϕ(x

ε
) = ϕ(x), w̃ is the solution of (2.9). The situation with

the geometric stopping case is similar. We scale

ũ(y) = εud(
y

ε
)

and take δ = ε2 in (2.8). Then ũ solves

1

ε
ũ(y) = ε2ϕ(

y

ε
) + (1− ε2) min

player
max
market

E[
1

ε
ũ(y + ε∆y)].

Here, too, if εϕ(x
ε
) = ϕ(x), then ũ solves the scaled DPP (2.10).

2.5 Balanced Strategies

The goal of this subsection is to prove that for finite, positive ε an optimal strategy of the market can be

achieved using ’balanced strategies’ (to be explained in the lemma below). The argument for the following

lemma generalizes an argument in [2].

Lemma 1. Let w(x1, x2, ..., xn) be a function satisfying the following properties:

1. w is monotone nondecreasing in each xi

2. w(x1 + c, x2 + c, ..., xn + c) = w(x1, x2, ..., xn) + c for all c ∈ R.

Then, the market has at least one optimal strategy for

min
player

max
market

Ew(x+ ε∆x) (2.13)

that is balanced in the sense that

E[vi] = E[vj].

for all i and j.

Proof. Firstly, we examine (2.13), calling it ‘W’. Then,

W = min
player

max
market

E[w(x+ ε∆x)]. (2.14)

= min
player

max
market

∑

k
αkEp[w(x+ ε~v − ε~1vk)] (2.15)

= min
player

max
market

[

∑

k
αkEp[w(x+ ε~v)]− ε

∑

k

αkEp[vk]

]

(2.16)

= min
player

max
market

[

Ep[w(x+ ε~v)]− ε
∑

k

αkEp[vk]

]

. (2.17)

Here αk is the probability that the player follows expert k, p is the market’s probability distribution on the

expert’s outcomes, and~1 = (1, ..., 1). The equalities above follow by the definition of expected value, using

translation invariance (i.e. property 2 above) and the fact that
∑

k αk = 1.
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Suppose there exists an optimal strategy p for the market which is not balanced. We will construct an

optimal strategy which is balanced. Since the market is unbalanced, there exists an expert with a largest

expected value, say it is expert k, i.e. k = argmaxj(Ep[vj ]). The expression (2.17) is a linear programming

problem in p and ~α, so minmax = maxmin, i.e. the optimal strategies are unchanged if the player

minimizes first. The player wants to minimize the second sum, because she has no influence over the first

sum, so she may choose to follow expert k, i.e. she may choose αk = 1. Pick an expert i such that

Ep[vi] < Ep[vk]; to simplify notation, suppose i = 1 and we shall write E instead of Ep. Then, consider the

pair of market outcomes where the only difference is v1’s value - 0 or 1. Observe that if the market increases

the probability of a term where v1 = 1 at the expense of a term where v1 = 0 , he increases E[w(x+ ε∆x)],
since, by monotonicity

w(x+ ε(0, v2, ...vn)− ε~1vk) ≤ w(x+ ε(1, v2, ...vn)− ε~1vk). (2.18)

By changing the probabilities of these two outcomes appropriately, the market obtains a strategy satisfying

E[v1] = E[vk] that is at least as good as the original one; note that the other expectations E[v2], ...,E[vn]
remain unchanged. Performing this operation for every s such that E[vs] < E[vk], we obtain a balanced

strategy for the market which performs at least as well as the original optimal one.

3 Heuristic PDE Derivations

In this section we use the DPP formulation to derive, at least heuristically, the associated PDEs. First we

consider the geometric stopping case, then the finite horizon case.

3.1 The PDE for Geometric Stopping Case

We ‘derive’ formally a limiting elliptic PDE. This derivation makes assumptions on the behavior of u, for

example sufficient smoothness. For now the derivation is heuristic, but later on it will be justified, in the

sense that we will prove that this game is a convergent numerical scheme for the PDE. Substituting the

Taylor expansion of u into the DPP (2.10) gives

u(x) = ϕ(x) +
(1− ε2)ε

ε2
min
player

max
market

E[〈∇u,∆x〉+ ε

2
〈D2u ·∆x,∆x〉+O(ε2)]. (3.1)

As ε→ 0, the dominating term in the minmax is E[〈∇u,∆x〉], so we focus on it:

E~α,p[〈∇u,∆x〉] =
n
∑

i=1

αiEp[〈∇u,~v − vi ·~1〉] =
n
∑

i=1

[∂iu− αi

n
∑

k=1

∂ku]Ep[vi]. (3.2)

The equality follows by linearity, inner product definition, rearranging, change of summation, and the fact

that ~α is a probability distribution. We focus on the expression on the last line:

min
player

max
market

n
∑

i=1

[∂iu− αi

n
∑

k=1

∂ku]Ep[vi]. (3.3)

This expression is a pair of dual linear programs in min max form, with variables ~α and p, which represent

the player’s and the market’s probability distributions, respectively. As such,

min
player

max
market

= max
market

min
player

.
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We prove in Subsection 4.4 that uε satisfies the following properties: monotonicity in each variable and the

translation property, i.e.

u(x1 + c, x2 + c, ..., xn + c) = u(x1, x2, ..., xn) + c. (3.4)

Later on, we will prove that uε → u and thus u inherits those properties. Moreover, we are assuming for this

heuristic discussion that u is differentiable, so monotonicity turns into ∂ju ≥ 0 ∀ j, whereas differentiating

translation invariance, we obtain
n
∑

i=1

∂iu = 1. (3.5)

We claim that

1. the player’s optimal strategy is αi = ∂iu;

2. the market’s optimal strategy is any probability distribution p satisfying Ep[vj ] = maxk=1,...nEp[vk]
for every j such that ∂ju > 0; and

3. the value of the minmax in (3.3) is 0.

To prove 1, we observe that if αi = ∂iu, then (3.3) is 0 for every choice of the market’s strategy p. Suppose

αi 6= ∂iu. Since
∑

αi = 1, then there would exist a pair of indicies so that (∂ju−αj) > 0 and (∂ku−αk) <
0. The market can take advantage of this and put all the weight into vj , obtaining a positive contribution

(∂ju− αj)E[vj] > 0, which is a worse outcome for the player. So the choice of αi = ∂iu is superior to the

player’s other options.

To prove 2, we note that minα
∑

(∂iu − αi)Ep[vi] attains the minimum when αi 6= 0 at summands

where Ep[vj ] = maxk=1,...nEp[vk]. Using
∑

αi = 1 and
∑

∂iu = 1, we obtain

n
∑

i=1

∂iu(Ep[vi]− max
k=1,...n

Ep[vk]).

The maximal value the market can obtain is 0, achieved when

Ep[vi] = max
k=1,...n

Ep[vk]

for all indices i such that ∂iu > 0. If the market doesn’t follow this strategy, the resulting value will be less

than 0. The proof of the claims is now complete.

Reviewing the preceding results, and assuming (as it seems natural) that ∂iu > 0 for all i, we see that

the strategy of the player is fully determined:

αi = ∂iu market indifference condition, (3.6)

whereas the player influences (but doesn’t fully determine) market’s choices:

Ep[vi] = Ep[vk] ∀i, k balance condition . (3.7)

The optimal value of the minmax is 0, so the ε order term in the Taylor expansion vanishes. In order to

obtain a PDE, we need to go to the second order of the Taylor expansion. We incorporate the knowledge of
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strategies of the player and the market by writing maxbalance to indicate that αi is determined by (3.6) and

p is restricted to (3.7). Thus, we obtain:

u(x) = ϕ(x) +
1− ε2

2
max
balance

E[〈D2u ·∆x,∆x〉+O(ε)].

In the limit ε→ 0 we obtain the equation

u(x) = ϕ(x)− L(u), (3.8)

where

L(u) := −1

2
max
balance

E[〈D2u ·∆x,∆x〉] (3.9)

= −1

2
max
balance

(
∑

i,j,k

αk∂
2
ijuE[(vi − vk)(vj − vk)]). (3.10)

3.2 The PDE for the Finite Horizon Problem

Returning to the time dependent problem, we observe a lot of similarities. Again we start by substituting the

Taylor expansion of w into the DPP (2.9); this gives

0 = min
player

max
market

E[〈∇w,∆x〉+ ε(wt +
1

2
〈D2w ·∆x,∆x〉) +O(ε2)].

Again, as ε → 0, the dominating term is Eα,p[〈∇w,∆x〉]. The analysis of this term done in subsection 3.1

applies here too. In particular, the ‘market indifference’ and the ‘balance’ conditions are the same. This

leaves the same restrictions over the minmax as in the previous case, hence the ε2-order term has the same

‘balance’ condition as in the previous case. This yields the limiting equation

wt −L(w) = 0, (3.11)

for the operator L defined by (3.9), with a final time condition

w(T, x) = ϕ(x).

3.3 The Operator L
We need to understand the operator L(u). Firstly, we investigate the expectation part. Let p(v) be the

probability of a particular vector v ∈ {0, 1}n , and let ṽ = ~1− v. Then,

E[(vi − vk)(vj − vk)] =
∑

v∈{0,1}n
(vi − vk)(vj − vk)p(v) =

∑

v∈{0,1}n
1vi=vj 6=vk(v)p(v),

where 1 is the indicator function.

Substituting in L(u), we obtain

L(u) = −1

2
max
balance

∑

i,j,k

∑

v∈{0,1}n
(αk∂

2
iju1vi=vj 6=vk)p(v)

= −1

4
max
balance

∑

v∈{0,1}n

∑

i,j,k

(αk∂
2
iju1vi=vj 6=vk)(p(v) + p(ṽ)), (3.12)
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since 1vi=vj 6=vk takes the same value for v and for ṽ = ~1 − v (for any triplet i, j, k). In view of (3.12) we

can treat p as a probability distribution on pairs of complementary strategies. The restriction of ‘balance’

can be ignored, since if we choose v and ṽ to have the same probability for every v, then

Ep[vi] =
1

2
∀i.

Recall that equation (3.5) holds:
n
∑

k=1

∂ku = 1.

For any fixed v ∈ {0, 1}n we write this as

∑

i:vi=0

∂iu = 1−
∑

i:vi=1

∂iu

and differentiate again to get

(
∑

j:vj=0

∂j)(
∑

i:vi=0

∂iu) = −
∑

j:vj=0

∂j(
∑

i:vi=1

∂iu) =
∑

i:vi=1

∂i(−
∑

j:vj=0

∂ju) =
∑

i:vi=1

∂i(
∑

j:vj=1

∂ju).

Thus we obtain the equality

(
∑

i:vi=0

∂i)
2u = (

∑

i:vi=1

∂i)
2u, (3.13)

which we will use in the following calculation of the sum on the right hand side of (3.12). For any fixed

v ∈ {0, 1}n , let

S =
∑

i,j,k

(αk∂
2
iju1vi=vj 6=vk).

Then

S = (
∑

k

αk)(
∑

i:vi=1

∂i)
2u = (

∑

i:vi=1

∂i)
2u

(by rearrangement of derivatives, combining terms, and observing that the sum of αk equals 1.) Returning

now to (3.12), we have

L(u) = −1

4
max
balance

∑

v∈{0,1}n
(p(v) + p(ṽ))(

∑

i:vi=1

∂i)
2u (3.14)

= −1

2
max

v∈{0,1}n
〈D2u · v, v〉.

For the second line above we used that the probabilities p sum up to 1, so the maximum linear combination,

weighted by those probabilities, is achieved by assigning all the weight on the largest term.

In conclusion, the elliptic PDE (3.8) is

u(x) = ϕ(x) +
1

2
max

v∈{0,1}n
〈D2u · v, v〉,

10



and the parabolic PDE (3.11) is

wt(t, x) +
1

2
max

v∈{0,1}n
〈D2w(t, x) · v, v〉,= 0.

as announced earlier in (2.12) and (2.11).

The justification of our heuristic calculation, to be presented in Section 6, relies on the fact that our

operator L is degenerate elliptic. We check this now. Recall that, by definition, an operator L(u,D2u) is

degenerate elliptic if

L(u,M1) ≤ L(u,M2)

when M1 −M2 is non-negative, that is M1 −M2 ≥ 0 as matrices.

Lemma 2. The operator

L(u) = −1

2
max

v∈{0,1}n
〈D2u · v, v〉

is degenerate elliptic.

Proof. Let M1 −M2 ≥ 0. Then, for any v we have 〈M1 · v, v〉 ≥ 〈M2 · v, v〉. We take the maximum over

the set of vectors v such that v ∈ {0, 1}n: first on the left side, then on the right side, obtaining

max
v∈{0,1}n

〈M1 · v, v〉 ≥ max
v∈{0,1}n

〈M2 · v, v〉.

Finally, we multiply by −1/2 to obtain the desired inequality

L(u,M1) ≤ L(u,M2).

3.4 Optimal strategies

A remaining question is what the PDEs tell us about the optimal strategies for the player and the market.

The answer lies (formally, at least) in the preceding calculation. Consider the elliptic PDE and suppose its

solution is known and C2. Suppose the vector of regrets so far is x. Then the best move of the player is to

follow expert i with probability

αi = ∂iu(x).

In turn, the market looks for a v ∈ {0, 1}n (and its complement ~1− v) that saturates the maximum in

L(u) = −1

2
max

v∈{0,1}n
〈D2u · v, v〉. (3.15)

Observe that by (3.12), v saturates the maximum precisely when 1 − v saturates the maximum. Having

found v, the market’s optimal strategy is this: with probability 1/2 advance the experts such that vi = 1, and

with probability 1/2 advance the rest of the experts, i.e. those for which vi = 0. If maxv∈{0,1}n 〈D2u · v, v〉
is achieved for more than one pair of vectors v and its complement ~1 − v, then the market’s strategy is not

unique.

11



3.5 Comparison with paper [2] by Gravin, Peres, Sivan

Our work is closely related to paper [2] by Gravin, Peres, and Sivan. Briefly: this paper and [2] look at the

same problem through different lenses. The fundamental difference is that we study a natural continuum

limit, while they focus on the problem in its original discrete-time form. This leads to differences with

respect to [2] in both the character of our results and the methods used to demonstrate them. Our rigorous

results are mainly concerned with the value function, which we characterize as the unique viscosity solution

of an appropriate PDE problem; in deriving these results, we also obtain heuristic guidance about how the

optimal strategies are related to the solution of the PDE. In [2], by contrast, no PDE is studied; instead, the

value of the game is studied using methods from random walks, combined with what an optimal control

theorist would call “verification arguments.” Of course [2] also studies the form of the optimal strategies,

and its conclusions are similar to ours. However our continuum viewpoint offers a different perspective,

in which the main features of the optimal strategies are understood by considering a linear programming

problem.

Another distinction from [2] is the choice of how to measure “regret.” Our methods permit treatment

of the continuum problem with a relatively broad class of measures ϕ of regret: if xj is the player’s regret

with respect to the jth expert, we require mainly that ϕ(x1, . . . , xN ) be increasing in each variable, satisfy

ϕ(x1 + c, . . . , xN + c) = ϕ(x1, . . . , xN ) + c, and have linear growth at infinity. The paper [2], by contrast,

focuses exclusively on the classic measure ϕ(x) = maxNj=1 xj (i.e. the player’s shortfall compared to the

best-performing expert).

There are, of course, many similarities and parallels between our work and [2]. In fact, our work began

when we read [2] and realized that a continuum perspective might be of interest. A particular parallel is

worth noting: our exact solution of the geometric stopping problem with 3 players and objective ϕ(x) =
max3j=1 xj is the continuum analogue of a result proved in the discrete setting in [2]. (We found it by looking

at the optimal strategies identified in [2] and considering their continuum analogues.)

4 The Games as Numerical Schemes for the PDEs

This section discusses the discrete solutions uε and wε. Concerning the former: even the existence of uε
is not immediately obvious. We prove it (and obtain an estimate that is uniform in ε) by representing the

time-independent dynamic programming principle as a "numerical scheme for the PDE (2.12)" similar to

those discussed by eg Oberman’s paper [21].

In this section we represent the time-independent discrete problem as a numerical scheme Fε for the

elliptic PDE (2.12). Throughout this section we follow the setup of Oberman’s paper [21] in discussing the

scheme and showing that the DPP has a unique solution. In particular, all the definitions in this section are

from [21], as well as adapted theorem statements and proofs. Our treatment differs from [21] in that we

work with a scheme which is continuous, not discrete, in space.

This section also discusses the solution wε of the finite horizon problem. There the existence and unique-

ness of wε are easily established, but we need to prove uniform estimates as ε→ 0.

4.1 Definitions of Fε, Sρ, and Basic Properties

In writing the DPP, one considers a point x and all its ‘neighbors’, which are of the form x + ε(v − vk~1);
we write N(x) for the collection of all such neighbors as v ranges over {0, 1}n. We order the neighbors

in some order, say increasing if (v, vk) were written in binary as a n + 1-letter word, to obtain neighbors

xv,vk = x + ε(v − vk~1), where (v, vk) = 0, 1, 2, ..., 2n+1 − 1; altogether there are N = 2n+1 neighbors,

12



where n is the number of experts. From now on, we write u(xj) = uj . In particular, we use the convention

that u0 = u(x).
We consider the solution to the geometric stopping problem, which we rearrange by subtracting (1 −

ε2)u(x), combining all terms on one side, and dividing by ε2:

u(x) = ε2ϕ(x) + (1− ε2) min
player

max
market

E[u(x+ ε∆x)],

so

0 = u(x)− ϕ(x)− 1− ε2

ε2
min
player

max
market

E[u(x+ ε∆x)− u(x)].

Inspired by this rearrangement of the geometric DPP, we define the time-independent approximation
scheme as Fε[u] = 0, where

Fε[u](x) := u(x)− ϕ(x) − 1− ε2

ε2
min
player

max
market

E[u(x+ ε∆x)− u(x)] (4.1)

= u(x)− ϕ(x) − 1− ε2

ε2
min
player

max
market

∑

p(v)αk[uj − u0]

= u− ϕ+
1− ε2

ε2
max
player

min
market

∑

p(v)αk[u0 − uj ] (4.2)

= F x
ε (u, u0 − uj).

Evidently, for any fixed x the value of

Fε[u](x) := F x
ε (u0, u0 − uj),

depends only on the values u at x, and its neighbors x + ε∆x. In F x
ε (·, ·) the first argument refers to the

function u(x) before ϕ, and the subsequent arguments u0 − uj , j = 0, 1, ..., N − 1 refer to the finite

differences u0 − uj in the expected value terms.

We will prove that the scheme has a number of properties, whose analogues can be found in [21]:

Definition 1. The scheme Fε is proper if there exists δ > 0 such that for all x, y ∈ R
N and x0, y0 ∈ R,

x0 ≤ y0 implies F x
ε (x0, y)− F x

ε (y0, y) ≤ δ(x0 − y0).

Definition 2. The scheme Fε is degenerate elliptic if the map

F x
ε (u0, u0 − uj)

is non-decreasing in each variable u0, u0 − uj for all j = 0, 1, 2, ..., 2n+1 − 1.

Definition 3. The finite difference scheme Fε is Lipschitz continuous if there exists a constant K such that

for all z, y ∈ R
N+1,

|Fε(z)− Fε(y)| ≤ K||z − y||∞. (4.3)

Lemma 3. The scheme Fε is proper and degenerate elliptic.

13



Proof. The scheme is proper as Fε(x0, y)− Fε(y0, y) = x0 − y0.

The operator 1−ε2

ε2
maxα minp

∑

p(v)αk[u − uj ] is degenerate elliptic as a maxmin of a positive linear

combination of its u-differences. Therefore, the scheme F x
ε (u, u − uj) is degenerate elliptic: it is a sum of

the function u, the function −ϕ, and a degenerate elliptic operator.

Lemma 4. The scheme Fε is Lipschitz continuous with K = 1 + (1− ε2)/ε2.

Proof. Firstly, observe that the sum of two Lipschitz continuous schemes is Lipschitz continuous. Since

u−ϕ is Lipschitz continuous with a constant 1, we only need to find a Lipschitz constant C for the maxmin
part of the scheme; then K = 1 + C(1− ε2)/ε2.

Define Fp,α[ũ] =
∑

j(v,vk)
p(v)αkũj . Observe that Fp,α is a linear combination of its independent

variables ũj with weights that are non-negative and sum up to 1, as the non-negative weights come from an

expectation. Then, Fp,α is Lipschitz continuous with constant 1. For any admissible vectors u,w, we get

the following sequence of inequalities:

Fp,α[u] ≤ Fp,α[w] + |u− w|∞,
max
α

Fp,α[u] ≤ max
β

Fp,β[w] + |u− w|∞,

min
p

max
α

Fp,α[u] ≤ min
ρ

max
β

Fρ,β [w] + |u− w|∞.

The same equality holds, of course, with u and w switched. Hence, minpmaxα Fp,α[ũ] is Lipschitz contin-

uous with constant 1. This means that the overall Lipschitz constant is K = 1 + (1− ε2)/ε2.

We introduce some notation for the next lemma. Given u,w ∈ R
M , define u ∨ w = max(u,w),

u+ = max(u, 0), u− = min(u, 0). The following lemma is found in [21].

Lemma 5. (ordered Lipschitz continuity property) Let Fε be a Lipschitz continuous, degenerate elliptic

scheme with Lipschitz constant K . Then for any y, z ∈ R
N+1 we have

−K||(z − y)−||∞ ≤ Fε(z) − Fε(y) ≤ K||(z − y)+||∞. (4.4)

4.2 The Euler Map

We define the Euler map associated to our scheme Fε[u].

Definition 4. For ρ > 0, define the explicit Euler map Sρ by

Sρ(u) = u− ρFε[u]. (4.5)

Intuitively: the scheme Fε[uε] = 0 is a numerical approximation of an elliptic PDE, and the map

u 7→ Sρ(u) is the time step map for an explicit discretization of the associated parabolic equation. The

following theorem and its proof are found in [21].

Theorem 1. Fix ρ such that ρK < 0.5. Then, the Euler map is monotone.

Proof. Suppose u ≤ w. Then,

Sρ(u)− Sρ(w) = u0 − w0 + ρ(Fε(w0, w0 − wj)− Fε(u0, u0 − uj)),

≤ u0 − w0 + ρK||(w0 − u0, w0 −wj − u0 + uj)
+||∞,

≤ (u0 −w0)(1− ρK) ≤ 0.

The first inequality follows from the ordered Lipschitz continuity property. The second inequality fol-

lows from u ≤ w, and the last one from the assumption of the theorem. This establishes monotonicity.
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4.3 Properties of ϕ̃

We work with ϕ - a measure of regret and a Lipschitz continuous function which also satisfies properties

(1.2 -1.6). One example of such a function is the classical

ϕ(x) = max
k

{xk},

which has discontinuous first derivatives, so we don’t want to assume that ϕ is smooth. We will need a

smoothed version of ϕ. We define it using a mollifier η, defined as:

η(x) =

{

cηe
− 1

1−|x|2 if |x| < 1

0 if |x| ≥ 1,

where the constant cη is chosen so that η integrates to 1. Our smoothed version of ϕ is

ϕ̃ = ϕ ∗ η. (4.6)

The following specific properties of ϕ̃ are easily verified:

ϕ̃ is C∞,with uniformly bounded derivatives of order k for any k ≥ 1, (4.7)

ϕ̃ is uniformly ’close to’ ϕ in the sense that |ϕ− ϕ̃|∞ ≤ K

for K = the constant of the global Lipschitz bound, (4.8)

ϕ̃ is monotone in each variable, (4.9)

ϕ̃ has the translation property (3.4). (4.10)

Now, we estimate the expectation term, when ϕ̃ replaces u. In order to do so, we use its Taylor expan-

sion:

E := | min
player

max
market

E[ϕ̃(x+ ε∆x)− ϕ̃(x)]|

≤
∣

∣

∣
min
player

max
market

[

ε

n
∑

k=1

〈∇ϕ̃k,E[∆xk]〉+
ε2

2
E[〈D2ϕ̃ ·∆x,∆x〉] +O(ε3)

]
∣

∣

∣
.

Let us focus on the ε-order factor. Because of Lemma 1 it is sufficient to consider balanced strategies for

the market. For such strategies we have

E[∆xk] =

n
∑

i=1

αiEp[vk − vi] = 0.

So the ε order term is 0. Then, we can bound the term with ε2 (using the uniform bound on ∇2ϕ̃), obtaining

E ≤ | min
player

max
market

E[ϕ̃(x+ ε∆x)− ϕ̃(x)]| ≤ Cε2. (4.11)

We use this result in the following lemma.

Lemma 6. The function ϕ̃ is an almost-solution to the scheme, i.e. |Fε[ϕ̃]| ≤ K1 for some constant K1,

independent of the small parameter ε.
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Proof. Let us bound the absolute value of the scheme at ϕ̃. We use the preceding estimate for E

|Fε[ϕ̃]| = |ϕ̃− ϕ+
1− ε2

ε2
min
player

max
market

E[ϕ̃(x+ ε∆x)− ϕ̃(x)]|

≤ |ϕ̃− ϕ|+ 1− ε2

ε2
| min
player

max
market

E[ϕ̃(x+ ε∆x)− ϕ̃(x)]|

≤ K +
1− ε2

ε2
Cε2

≤ K + C(1− ε2).

This has the form we want:

|Fε[ϕ̃]| ≤ K1.

4.4 Existence and Uniqueness of a Solution of Fε

Theorem 2. Fix ρ so that ρK < 0.5. Then, for some M > 0 (independent of ε) the Euler map is a strict

contraction in the sup norm on a ball of size M , centered at ϕ̃.

The proof of Theorem 2 is parallel to the proof of Theorem 7 from [21].

We now present the main result of this subsection:

Theorem 3. The scheme Fε has a unique solution uε in the class of functions u such that u− ϕ̃ is uniformly

bounded on R
n. Moreover the solution uε has the following properties:

1. There is a constant M such that |uε − ϕ̃| ≤M ∀x ∈ R
n.

2. The function uε is monotone nondecreasing in each variable xj .

3. The function uε has the translation property, i.e.

uε(x1 + c, x2 + c, ..., xn + c) = uε(x1, x2, ..., xn) + c.

Proof. Observe that |u − ϕ̃| is bounded if and only if |u − ϕ| is bounded. By theorem 2, Sρ is a strict

contraction (with the maximum norm) on the set of functions {u : |u − ϕ̃| ≤ M} for some M . Here M
is a constant independent of ε. We realize that the assertion holds for all sufficiently large M , independent

of ε. By the contraction mapping theorem, Sρ has a unique fixed point in the set above. The solution is

obtained by iterating (with ρ sufficiently small) starting from arbitrary initial data in the ball about ϕ̃ with

radius M . Being a fixed point, i.e. satisfying U = U−ρFε[U ], is equivalent to satisfying Fε[U ] = 0, which

is equivalent to satisfying the geometric dynamic programming principle. Therefore we see that the fixed

point of Sρ, namely uε, is the desired solution of the scheme.

We already addressed the growth of our solution. As for monotonicity and translation invariance, we

present the proofs in lemmas 8 and 9 below.

Lemma 7. The solution uε is symmetric, i.e. we can switch the values of every pair of spatial coordinates

without changing the function’s value:

uε(x1, x2, ..., xn) = uε(x2, x1, ..., xn). (4.12)
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Proof. This is a consequence of uniqueness but for clarity we prove it using induction.

For simplicity of notation we prove the above claim for x1 and x2. The proof goes by induction on the

iterates of the Euler map Sρ. Consider any ε > 0, small. Firstly, ϕ is symmetric, i.e. ϕ(x1, x2, ..., xn) =
ϕ(x2, x1, ..., xn).Next, suppose ψ is symmetric, i.e. ψ(x1, x2, ..., xn) = ψ(x2, x1, ..., xn). Then we observe

that the function

f(x) = ψ(x)(1 − ρ

ε2
) + ρϕ(x) +

ρ

ε2
(1− ε2) min

player
max
market

Eψ(x+ ε∆x)

is also symmetric since experts 1 and 2 have symmetric roles in the game. Observe that the function f above

is simply equal to Sρ:

Sρ = u(x)− ρ[u(x)− ϕ(x)− 1− ε2

ε2
min
player

max
market

E[u(x+ ε∆x)− u(x)]] = f(x).

Thus if ψ is symmetric, then Sρ(ψ) is symmetric. So we iterate applying the Euler map Sρ, starting from

the symmetric ϕ. By theorem 3, the iterates of the Euler map converge to the unique solution uε to Fε. We

pass the symmetry property through the limit, obtaining that uε is symmetric.

Lemma 8. The solution uε is monotone, i.e. if x̃1 ≥ x1, then

uε(x̃1, x2, ..., xn) ≥ uε(x1, x2, ..., xn). (4.13)

This property follows for every coordinate, as the proof for all other coordinates is identical.

Proof. The argument here is similar to the one in Lemma 7.

Lemma 9. The solution uε has the following property: for any c ∈ R, and any (x1, x2, ..., xn) ∈ R
n

uε(x1 + c, x2 + c, ..., xn + c) = uε(x1, x2, ..., xn) + c. (4.14)

Proof. The argument here is similar to the one in Lemma 7.

4.5 Growth and Qualitative Behavior of the Solutions to the Finite Horizon Problem

In the previous subsection, we showed that the solution to the discrete geometric stopping problem has at

most linear growth as |x| → ∞. We now show that the discrete solution of the finite horizon problem also

has at most linear growth in x. This is achieved by the following theorem:

Theorem 4. A solution wε to the time-dependent dynamic programming principle (2.9) exists and is unique.

In addition, it satisfies

|wε(t, ·) − ϕ̃|∞ < C(T − t+ 1), (4.15)

with a constant C that is independent of ε. Moreover,

1. wε(t, x) grows at most linearly as |x| → ∞ (with a bound that is uniform as ε→ 0)

2. The function wε is monotone nondecreasing in each variable xj

3. The function wε satisfies translation invariance, i.e.

wε(t, x1 + c, x2 + c, ..., xn + c) = wε(t, x1, x2, ..., xn) + c.
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Proof. Existence and uniqueness follow directly from the dynamic programming principle: solutions are

built one time step at a time: at levels T, T − ε2, T − 2ε2, .... The proof of the estimate is by induction on

the number of time steps. For t = T , wε(t, ·) = ϕ by definition and the bound is an immediate consequence

of our choice of ϕ̃ (a smoothed out version of ϕ, see 4.8). For the inductive step, suppose the bound holds

at t = T − kε2, i.e.

|wε(t, x)− ϕ̃(x)|∞ < C(T − t+ 1).

Then, let us consider what happens at t− ε2. The argument used to prove (4.11) shows that for the optimal

choices of strategy by the market and the player, the following holds:

E = |E[ϕ̃(x+ ε∆x)− ϕ̃(x)]| ≤ Cε2.

We use this in the second line of the estimate:

|wε(t− ε2, x)− ϕ̃| = | min
player

max
market

E[wε(t, x+ ε∆x)]− ϕ̃(x)|

= | min
player

max
market

E[wε(t, x+ ε∆x)− ϕ̃(x+ ε∆x) + ϕ̃(x+∆x)− ϕ̃(x)]|

≤ |C(T − t+ 1) + min
player

max
market

(ϕ̃(x+ ε∆x)− ϕ̃(x))|

= C(T − t+ 1) + Cε2

= C(T − (t− ε2) + 1).

This concludes the inductive step.

The symmetry, monotonicity, and translation invariance properties are easily established inductively,

using arguments parallel to the one used for Lemma 7.

5 Review of Known Results about Viscosity Solutions of our PDEs

In section 3 we showed that the discrete solutions to the finite horizon and geometric stopping problems have

at most linear growth as |x| → ∞. We will prove in section 6 that the solutions converge as ε → 0 to the

viscosity solution of the appropriate PDE. Since the discrete solutions have linear growth as |x| → ∞ (with

a bound that is independent of ε), we only need to concern ourselves with at most linear growth solutions to

the PDEs.

The existence and uniqueness of viscosity solutions of our PDE’s (with at most linear growth at ∞) are

well known. This short section provides the relevant definitions and results.

5.1 The Time Dependent Case

The following definitions are standard.

Definition 5. A real-valued, lower-semicontinuous function w(t, x) defined for x ∈ R
n and t ≤ T is a

viscosity supersolution of the final-value problem (2.11) if for any (t0, x0) with t0 < T and any smooth

ψ(t, x) such that w − ψ has a local minimum at (t0, x0) we have

ψt(t0, x0) +
1

2
max

v∈{0,1}n
〈D2ψ(t0, x0) · v, v〉 ≤ 0,

and w ≥ ϕ at the final time t = T .
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Definition 6. A real-valued, upper-semicontinuous function w(t, x) defined for x ∈ R
n and t ≤ T is a

viscosity subsolution of the final-value problem (2.11) if for any (t0, x0) with t0 < T and any smooth

ψ(t, x) such that w − ψ has a local maximum at (t0, x0) we have

ψt(t0, x0) +
1

2
max

v∈{0,1}n
〈D2ψ(t0, x0) · v, v〉 ≥ 0,

and w ≤ ϕ at the final time t = T .

Definition 7. A viscosity solution of the final-value problem (2.11) is a continuous function w that is both

a subsolution and a supersolution.

Theorem 5. The final-value problem (2.11) - informally written as

wt +
1

2
max

v∈{0,1}n
〈D2w · v, v〉 = 0,

subject to w(T, x) = ϕ(x) - has a unique viscosity solution w that grows at most linearly and w is uniformly

continuous. Moreover, if w1 is a subsolution, and w2 is a supersolution, then necessarily w1 ≤ w2.

Proof. The statement is a special case of theorem 2.1 in [22], applied backwards in time.

5.2 The Stationary Case

Now we focus on viscosity solutions for the stationary equation. As before, the following definitions are

well-known.

Definition 8. A real-valued, lower-semicontinuous function u(x) defined for x ∈ R
n is a viscosity superso-

lution of the stationary problem (2.12) if for any x0 ∈ R
n and any smooth ψ(x) such that u− ψ has a local

minimum at x0 we have

ψ(x0)− ϕ(x0)−
1

2
max

v∈{0,1}n
〈D2ψ(x0) · v, v〉 ≥ 0.

Definition 9. A real-valued, upper-semicontinuous function u(x) defined for x ∈ R
n is a viscosity subso-

lution of the stationary problem (2.12) if for any x0 ∈ R
n and any smooth ψ(x) such that u− ψ has a local

maximum at x0 we have

ψ(x0)− ϕ(x0)−
1

2
max

v∈{0,1}n
〈D2ψ(x0) · v, v〉 ≤ 0.

Definition 10. A viscosity solution of (2.12) is a continuous function u that is both a subsolution and a

supersolution.

Theorem 6. The stationary equation (2.12), informally written as

u− ϕ− 1

2
max

v∈{0,1}n
〈D2u · v, v〉 = 0,

has a unique viscosity solution u that is uniformly continuous and grows at most linearly at infinity.

Proof. We check that the conditions of Theorem 5.1 in [23] hold: ϕ(x) ∈ UC(Rn) is of at most linear

growth. Moreover,

L(u) = −1

2
max

v∈{0,1}n
〈D2u · v, v〉

is degenerate elliptic by the Lemma 2. This establishes the conditions of Theorem 5.1; we now conclude

from [23] that the elliptic equation has a unique viscosity solution that grows at most linearly as |x| →
∞.
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6 Convergence to the Viscosity Solution

In this section we show that the solutions of our discrete problems converge to the viscosity solution of

our PDEs as ε → 0. In order to do so, we follow the setup of Barles and Souganidis [1]. The essence

of the Barles-Souganidis convergence result is that if an approximation scheme is monotone, stable, and

consistent, then solutions converge as ε → 0 to the viscosity solution of the associated PDE. This section

provides the argument in a self-contained form as it applies to our setting. Following standard notation, in

the geometric stopping case we write

Fε[u(x)] := F (ε, x, u0, u),

The induction defining the finite-horizon problem solution wε can also be viewed as solving a ‘scheme’ and

this viewpoint will be useful for analyzing the limit as ε → 0. We define the finite horizon approximation

scheme as:

F̃ε[w(t, x)] :=
w(t, x) −minplayer maxmarketE[w(t+ ε2, x+ ε∆x)]

ε2
. (6.1)

Following standard notation here too, we write this as

F̃ε[w(x)] := F (ε, t, x, w0, w).

6.1 Monotonicity

Definition 11. A time-independent scheme Fε is monotone if

F (ε, x, u0, u) ≤ F (ε, x, u0, v)

whenever u ≥ v for all ε ≥ 0, x ∈ R
n, u0 ∈ R, and u, v ∈ UC(Rn).

A time-dependent scheme F̃ε is monotone if

F̃ε(ε, t, x, w0, w) ≤ F̃ε(ε, t, x, w0, v)

whenever w ≥ v for all ε ≥ 0, t < T , x ∈ R
n, w0 ∈ R, and w, v ∈ UC(Rn).

Lemma 10. Our schemes Fε and F̃ε are monotone.

Proof. Firstly, let us prove the statement for the time-dependent scheme:

F̃ (ε, t, x, w0, w) :=
w0 −minplayer maxmarketE[w(t+ ε2, x+ ε∆x)]

ε2

≤ w0 −minplayer maxmarketE[v(t+ ε2, x+ ε∆x)]

ε2

= F̃ (ε, t, x, w0, v)

The inequality follows from applying an expected value to w(t + ε2, x + ε∆x) ≥ v(t + ε2, x + ε∆x) and

reversing signs.

Next, we prove the statement for the stationary scheme:

F (ε, x, u0, u) := u0 − ϕ(x) − 1− ε2

ε2
min
player

max
market

E[u(x+ ε∆x)− u0]

≤ u0 − ϕ(x) − 1− ε2

ε2
min

market
max
market

E[v(x+ ε∆x)− u0]

= F (ε, x, u0, v)

The inequality follows from applying the expected value to u(x+ ε∆x)− u0 ≥ v(x+ ε∆x)− u0.
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6.2 Main Result

As already mentioned, [1] shows that if a numerical scheme is stable, monotone, and consistent then its

solutions converge to those of the associated PDE. In this paper stability is provided by Theorems 3 and 4,

which proves uniform bounds on uε and wε (independent of ε). The heuristic argument in Section 2 provides

the essence of the argument for consistency (taking into account that uε and wε are increasing in each xi
and satisfy the "translation property"). A more rigorous proof of consistency will be part of the proof of the

following convergence theorem.

Theorem 7. The unique solutions uε and wε of Fε and F̃ε converge to the unique solutions of (2.12) and

(2.11), respectively.

Proof. The first part of the proof follows [1] and [23]. We do the proof in the time dependent case (the

stationary case is identical). We define w, w by

w(t, x) = lim sup
ε→0, τ→t

y→x

wε(τ, y) (6.2)

and

w(t, x) = lim inf
ε→0, τ→t

y→x

wε(τ, y). (6.3)

The functions w and w have the translation property and are monotone in each variable because the se-

quences wε have those properties. We prove that w(t, x) is a sub-solution (the proof that w(t, x) is a

supersolution is completely parallel).

Consider ξ ∈ C∞, which touches w(t, x) at (t0, x0) - a local maximum of w(t, x) − ξ(t, x); we also

assume t0 < T (the other case t0 = T is presented towards the end of this proof). To make notation

simpler we can modify ξ, (without loss of generality) so that (i) w − ξ has a maximum at (t0, x0) and (ii)

w(t0, x0)− ξ(t0, x0) = 0.

We change coordinates so that x̃ = π(x) is the projection of x orthogonal to (1, 1, ..., 1) whereas z :=
1
n
(x1 + ... + xn), is the projection of x onto (1, 1, ..., 1). Since w has the translation property, there is a

unique function w̃(t, x̃) defined for x̃ ∈ {x1 + ...+ xn} = 0 such that w(t, x) = w̃(t, π(x)) + z.

We fix a δ and employ Theorem 3.2 from [23]. We obtain a sequence of functions ψ̃j(t, x̃) with the

following properties:

1. ψ̃j(t, x̃) touches w̃ at (t′j, x
′
j) near (t0, π(x0)), so w̃ − ψ̃j has a strict local maximum at (t′j , x

′
j) and

without loss of generality w̃(t′j , x
′
j)− ψ̃j(t

′
j , x

′
j) = 0.

2. The first derivatives of ψ̃j at (t′j , x
′
j) converge (as j → ∞) to the first derivatives of ξ at (t0, π(x0), 0).

3. The second derivative matrix Xj of ψ̃j(t, x̃) at (t′j, x
′
j) (with respect to spatial variables x̃) converges

to the matrix X, which satisfies

X̃ =

(

X 0
0 0

)

≤ A+ Cδ. (6.4)

where A = D2ξ(t0, x0) is the Hessian of ξ at (t0, x0) in the variables z, x̃ and C is a constant

depending on ξ only.
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We extend ψ̃j to ψj(t, x) = ψ̃j(t, π(x)) + z, and observe that ψj(t, x) has the same second derivatives as

ψ̃j with respect to t, x̃, as well as ∂zzψj = 0. We observe that

(∂1 + ...+ ∂n)ψj = 1,

by construction, regardless of location. Therefore, we can differentiate the above expression, obtaining, for

every k,

∂k(∂1 + ...+ ∂n)ψj = 0. (6.5)

We will use this relation in the argument below.

We argue similarly to [1]. Consider

w − ψj = w̃ + z − (ψ̃j + z) = w̃ − ψ̃j ,

which implies that ψj touches w whenever ψ̃j touches w̃. In particular, ψj touches w at (t′j , x
′
j , z) for any z.

Since w̃− ψ̃j has a local max at (t′j , x
′
j) there exists a ball B(t′j, x

′
j , r) with radius r, so that w̃− ψ̃j < 0 on

the ball. Moreover, because we want the local maximum to be a global maximum, we can change ψ̃j(t, x)
so that

ψ̃j(t, x̃) ≥ (ϕ̃(x̃, 0) + C(T − t+ 1)) ≥ sup
ε
wε

outside the ball B(t′j , x
′
j , r). The second inequality is a consequence of theorem 4. The function ϕ̃ = ϕ ∗ η

is the smooth version of ϕ, introduced in subsection 4.3. After the adjustment of ψ̃j we obtain that (t′j , x
′
j)

is a global max of w̃ − ψ̃j .

Sincew(t, x) = lim supε→0, τ→t
y→x

wε(τ, y) andwε has the translation property (i.e. wε(t, x) = w̃ε(t, π(x))+

z), we can obtain sequences εn and (τn, yn) such that π(yn) = 0 and

1. w̃εn − ψ̃j achieves its global max at (τn, yn)

2. (τn, yn) → (t′j , x
′
j)

3. wεn(τn, yn) → w̃(t′j , x
′
j).

Denote θn = w̃εn(τn, yn)− ψ̃j(τn, yn). Since we have global maxima, we obtain

wεn(τ, y)− ψj(τ, y) ≤ θn,

or equivalently

wεn(τ, y) ≤ ψj(τ, y) + θn.

We are prepared to use the properties of the scheme:

0 = F̃ (εn, τn, yn, wεn(τn, yn), wεn)

= F̃ (εn, τn, yn, ψj(τn, yn) + θn, wεn)

≥ F̃ (εn, τn, yn, ψj(τn, yn) + θn, ψj + θn).

The equalities follows from wεn being a solution to the scheme, while the inequality follows from mono-

tonicity with respect to the larger function ψj(τ, y) + θn. Now we take limits in order to apply consistency
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of the scheme:

0 ≥ lim
j

lim
n
F̃ (εn, τn, yn, ψj(τn, yn) + θn, ψj + θn)

= lim
j

lim
n

ψj(τn, yn)−minplayer maxmarketE[ψj(τn + ε2n, yn + εn∆yn)]

ε2n

= lim
j

lim
n

− 1

ε2n
min
player

max
market

E[εn〈∇ψj ,∆y〉+ ε2n(ψjt +
1

2
〈D2ψj ·∆y,∆y〉) + o(ε2n)]

We begin with two observations. First, o(ε2n) divided by the ε2n denominator is insignificant as it vanishes

in the limit; thus the o(ε2n) can (and will) be ignored in what follows. Our second observation is that the ε2n
term

ε2n(ψjt +
1

2
〈D2ψj ·∆y,∆y〉)

can be simplified using translation invariance; in fact it can be rewritten into its PDE form in an entirely

parallel fashion to the one used in the heuristic derivation found in subsection 2.3. In particular, its value

depends only on the market’s choices (not the player’s choices).

Observe that the min over all the player’s choices is less than or equal to the expression with a particular

choice of the player. Thus

min
player

max
market

E[εn〈∇ψj ,∆y〉+ ε2n(ψjt +
1
2〈D2ψj ·∆y,∆y〉)]

ε2n

is less than or equal to the value of

max
market

E[εn〈∇ψj ,∆y〉+ ε2n(ψjt +
1
2〈D2ψj ·∆y,∆y〉)]

ε2n
(6.6)

when the player chooses the particular strategy

αi = ∂iψj, i = 1, ..., n.

Note that we use that
∑n

k=1 ∂kψ = 1 and ∂iψj ≥ 0 for k = 1, ..., n. The equality comes from ψj having

the translation property; the inequalities ∂iψj ≥ 0 follow by a standard argument from the facts that wεn

is nondecreasing in xi, and that wεn − ψj has a local maximum at the point around which we perform the

Taylor expansion.

The expression 6.6 seems to have a term proportional to ε−1
n , i.e.

ε−2
n E[εn〈∇ψj ,∆y〉].

However, for the particular choice of values for α this term vanishes as shown in subsection 3.1:

E~α,p[〈∇u,∆x〉] =
n
∑

i=1

[∂iu− αi]Epvi.

Thus (6.6) is actually equal to :

max
market

(ψjt +
1

2
〈D2ψj ·∆y,∆y〉),
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which using the arguments in subection 3.3 equals

ψjt +
1

2
max

v∈{0,1}n
〈D2ψj · v, v〉.

We conclude that:

lim
j

lim
n

− 1

ε2n
min
player

max
market

E[εn〈∇ψj ,∆y〉+ ε2n(ψjt +
1

2
〈D2ψj ·∆y,∆y〉) + o(ε2n)]

≥ lim
j
(−ψjt(t

′
j , x

′
j , 0)−

1

2
max

v∈{0,1}n
〈D2ψj(t

′
j , x

′
j) · v, v〉)

= −ψt(t0, x0)−
1

2
max

v∈{0,1}n
〈X̃ · v, v〉

≥ −ξt(t0, x0)−
1

2
max

v∈{0,1}n
〈D2ξ(t0, x0) · v, v〉 −Kδ.

The equalities above essentially follow the heuristic argument in section 2: applying the definition,

canceling terms, and Taylor expansion. The last inequality follows, because limj ψ(t0, x̃0, 0) and ξ(t0, x0)
have matching time derivatives by construction, and because the matrix comparison in 6.4 holds. In the

expression above we may chose δ as small as we like; sending it to 0 completes the proof that w is a

supersolution for t < T .

Finally, let us consider the final time t0 = T for the time-dependent case. We need to show that

w(T, x) ≤ ϕ(T, x). In fact, we will prove that w(T, x) = ϕ(T, x). Because of the translation property, we

can examine points x0 such that
∑

j x0,j = 0, and a barrier function ψ̃, such that

ψ̃(t, x̃) =
|x̃− x0|2

δ
+
T − t

µ

for
∑

j x̃j = 0. Just as before, we extend ψ̃ and w̃ so that

ψ(t, x) = ψ̃(t, π(x)) + z

and

w(t, x) = w̃(t, π(x)) + z.

Since

w − ψ = w̃ + z − (ψ̃ + z) = w̃ − ψ̃,

we can focus on maximizing w̃ − ψ̃ (and not w − ψ). We consider the half-space (t ≤ T,
∑

j xj = 0) and

let (τδ,µ, xδ,µ) be the point where maximum of w̃ − ψ̃ attains its max. We see that

(τδ,µ, xδ,µ) → (T, x0) as δ, µ → 0.

Moreover,

w̃(τδ,µ, xδ,µ) ≥ w̃(τδ,µ, xδ,µ)− ψ̃(τδ,µ, xδ,µ) ≥ w̃(T, x0). (6.7)

Because of the above and w̃ = lim sup w̃ε, we see that

w̃(τδ,µ, xδ,µ) → w̃(T, x0) as δ, µ → 0. (6.8)
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Consider the maximum point τδ,µ, xδ,µ. If τδ,µ < T , then we repeat the argument presented above for the

interior case to get

0 = −ψt(T, x0)−
1

2
max

v∈{0,1}n
〈D2ψ(T, x0) · v, v〉. (6.9)

We restrict our attention to choices of δ > 0, µ > 0 so that δ − nµ > 0. Then,

0 = −ψt(t̃0, x̃0)−
1

2
max

v∈{0,1}n
〈D2ψ(t̃0, x̃0) · v, v〉 ≥

1

µ
− n

δ
=
δ − nµ

µδ
, (6.10)

which is a contradiction. Therefore, if (δ, µ) → 0 with 0 < δ − µn, then τδ,µ = T when δ and µ are

sufficiently small. We have leftover to prove that w(T, x0) = ϕ(x0); in order to do that, by 6.8 it is enough

to show that w̃(T, xδ,µ) = ϕ(xδ,µ), when δ, µ - sufficiently small. The proof is parallel to the one of the

interior case. We use that

w(T, x) = lim sup
ε→0, τ→T

y→x

wε(τ, y) (6.11)

and that wε has the translation property to obtain sequences εn and (τn, yn), for which π(yn) = 0 and

• w̃εn is maximized on t ≤ T at (τn, yn)

• (τn, yn) → (T, xδ,µ)

• w̃εn → w̃(T, xδ,µ).

If τn < T for infinitely many τn, we obtain equation (6.10), a contradiction. Hence, for all large n we

obtain τn = T , which implies w̃εn = ϕ(yn). Combining with the fact that ϕ is continuous, we deduce that

w̃(T, xδ,µ) = ϕ(xδ,µ). This concludes the proof that w is a subsolution.

As already mentioned, the proof that w is a supersolution is parallel. The main difference is working

with the optimal choice for the market instead of the player.

We would like to show that w = w is the unique viscosity solution to the PDE (2.11). One inequality

comes from comparison principle: since w(t, x) is a upper semicontinuous sub-solution, as we just proved,

and w(t, x) is a lower semicontunous super-solution, then by comparison principle (Theorem 5) we obtain

the desired inequality w(t, x) ≤ w(t, x). The other inequality follows by the definition of lim sup and

lim inf . Therefore w(t, x) = w(t, x) = w, which is what we wanted to show.

6.3 Consequences of the main result

We proved that limwε = w and limuε = u. As a result a lot of the properties of the solutions to the discrete

problem are inherited.

Lemma 11. The solution w of the time-dependent problem (2.11) is symmetric, monotone, and translation

invariant, ie if x̃1 ≥ x1 and c - any constant, then

w(t, x1, x2, ..., xn) = w(t, x2, x1, ..., xn), (6.12)

w(t, x̃1, x2, ..., xn) ≥ w(t, x1, x2, ..., xn), (6.13)

w(t, x1 + c, x2 + c, ..., xn + c) = w(t, x1, x2, ..., xn) + c. (6.14)

Proof. We observe thatwε → w as ε→ 0 by Theorem 7, so we pass the equality through the limit, obtaining

in the end the desired identities.
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Lemma 12. The solution u of the elliptic PDE (2.12) is symmetric, monotone, and translation invariant, ie

if x̃1 ≥ x1 and c - any constant, then

u(x1, x2, ..., xn) = u(x2, x1, ..., xn). (6.15)

u(x̃1, x2, ..., xn) ≥ u(x1, x2, ..., xn) (6.16)

u(x1 + c, x2 + c, ..., xn + c) = u(x1, x2, ..., xn) + c. (6.17)

Proof. We observe that uε → u as ε→ 0 by theorem 7, so we pass the equality through the limit, obtaining

in the end the desired identities.

7 Exact Solution

It is natural to ask how the PDE might be used. We offer two simple applications in this section: an exact

solution of the geometric stopping case for n = 3 experts and a demonstration that the associated argument

does not generalise straightforwardly to n = 4 experts. (There is now an explicit solution for the geometric

stopping case with n = 4 experts [12]. Its derivation makes use of our PDE.)

7.1 The Geometric Stopping Case with n = 3

The following result is a continuous analogue of one in [2].

Theorem 8. The solution of our PDE (2.12) in the geometric stopping case for n = 3 experts and ϕ =
max{x1, x2, x3} is symmetric with respect to x1, x2, x3, and in the quadrant where x1 ≥ x2 ≥ x3, its

formula is

u(x) = x1 +
1

2
√
2
e
√
2(x2−x1) +

1

6
√
2
e
√
2(2x3−x2−x1). (7.1)

Proof. Since by Theorem 6 the PDE (2.12) has a unique at most linear growth solution, all we need to do is

verify that u(x), which has linear growth, is a C2 solution.

First, let us establish that the expression u(x) is a solution within a quadrant. One can differentiate the

formula to find the first derivatives:

∂1u = 1− 1

2
e
√
2(x2−x1) − 1

6
e
√
2(2x3−x2−x1),

∂2u =
1

2
e
√
2(x2−x1) − 1

6
e
√
2(2x3−x2−x1),

∂3u =
2

6
e
√
2(2x3−x2−x1).

We see that indeed ∂1u+ ∂2u+ ∂3u = 1 as expected. The interesting v are (1, 0, 0), (0, 1, 0), and (0, 0, 1),
i.e.

L(u) = −1

2
max{∂21u, ∂22u, ∂23u, 0}

and we find second derivatives

∂11u =
1√
2
e
√
2(x2−x1) +

1

3
√
2
e
√
2(2x3−x2−x1)

∂22u =
1√
2
e
√
2(x2−x1) +

1

3
√
2
e
√
2(2x3−x2−x1)

∂33u =
2
√
2

3
e
√
2(2x3−x2−x1).
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Hence, in this quadrant

∂11u = ∂22u ≥ ∂33u ≥ 0.

Plugging into the PDE, we establish that

u(x) = x1 +
1

2
√
2
e
√
2(x2−x1) +

1

6
√
2
e
√
2(2x3−x2−x1) = max{x1, x2, x3} − L(u),

hence u(x) is a solution to the PDE in this quadrant, and by symmetry in all quadrants.

All we have left to show is that the expression u(x) stays C2 across the surfaces bounding the quadrants,

and at the origin. Observe that the expression is C2, with bounded third derivatives away from the surfaces

(x1 = x2 > x3 and x1 > x2 = x3). The expression is symmetric across the surfaces, and even, as

∂1u|x1=x2
= 1− 1

2
e0

√
2 − 1

6
e
√
2(2x3−x1−x1) =

1

2
− 1

6
e
√
2(2x3−x1−x1) = ∂2u|x1=x2

and

∂2u|x2=x3
=

1

2
e
√
2(x2−x1) − 1

6
e
√
2(x3−x1) =

2

6
e
√
2(x3−x1) = ∂3u|x2=x3

.

Because the expression is even, it is C2 across these surfaces. It remains to show that u is C2 at the origin.

Let us consider the Taylor expansion of the function in the quadrant x1 ≥ x2 ≥ x3. It is

u(x) =

√
2

3
+
x1 + x2 + x3

3
+

√
2

3
[x21 + x22 + x23 − (x1x2 + x1x3 + x2x3)] + ...,

which is a symmetric function up to second order, with bounded third derivatives. By symmetry, the second

order part of the Taylor expansion is the same in other sectors. Thus the formula is C2 at the origin. Thus

the function is C2 at the origin, as well as everywhere else. We established that u(x) is a C2 solution of the

PDE.

Now that we have presented the solution to the n = 3 geometric stopping problem, we analyze which

strategy the solution corresponds to (see subsection 3.4). On the quadrant x1 ≥ x2 ≥ x3, the solution u has:

1

2
max

v∈{0,1}n
〈D2u · v, v〉 = 1

2
∂11u =

1

2
∂22u.

Since ∂11u = 〈D2u · v, v〉 when v = (1, 0, 0) and ∂22u = 〈D2u · v, v〉 when v = (0, 1, 0), we see (via the

discussion in Section 3.4) that the market has two optimal strategies:

• choose (1, 0, 0) and (0, 1, 1) with probability 1/2 each, or

• choose (0, 1, 0) and (1, 0, 1) with probability 1/2 each.

How could one find the explicit solution (7.1)? Well, suppose we know the optimal strategy v∗ on a

region σ. Then,

u(x) =
1

2
〈D2u · v∗, v∗〉+ ϕ(x)

is the corresponding PDE (or ODE). We know that the solutions of u(x) = 1
2∂kku+ϕ(x) involve exponen-

tials, so we expect a solution of the form

u(x) = ϕ(x) +
∑

ck exp(ak1x1 + ...+ aknxn).

The boundary condition of at most linear growth at infinity helps rule out the exponentials that grow at

infinity, whereas the boundary conditions on the walls x1 = x2, x2 = x3 helps one determine the explicit

solution formula.
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7.2 The Geometric Stopping Case with n = 4 is different

It is natural to ask whether the geometric stopping case with n = 4 experts (and ϕ(x) = max{x1, x2, x3, x4})

can be solved explictly by making an educated guess based on what we just did for n = 3. We show in this

section that the answer is no. (In fact an exact solution for the geometric stopping case with n = 4 experts is

now known; it was found by [12], using our PDE characterization and arguments much more involved than

those in this section.)

Recall that for n = 3, one of the market’s two optimal strategies in the sector x1 > x2 > x3 was to

advance the leading expert (i.e. take v = (1, 0, 0)) with probability 1/2, and to advance everyone else (i.e.

take v = (0, 1, 1)) with probability 1/2. With this in mind, we ask whether for n = 4 it would be optimal

in the sector x1 > x2 > x3 > x4 for the market to advance the leading expert with probability 1/2 and

advance everyone else with probability 1/2. If so, then in this sector the value function would satisfy

u(x) =
1

2
∂11u+max{x1, x2, x3, x4}

It must also have linear growth at infinity, and at the sector’s boundaries symmetry demands that ∂1u = ∂2u
when x1 = x2, ∂2u = ∂3u when x2 = x3, and ∂3u = ∂4u when x3 = x4. These conditions fully determine

the function; after some calculation, one obtains

u4(x) = x1 +
1

2
√
2
e
√
2(x2−x1) +

1

6
√
2
e
√
2(2x3−x2−x1) +

1

12
√
2
e
√
2(3x4−x3−x2−x1). (7.2)

We shall show that the proposed strategy is not optimal (and u4 is not the value function in the sector

x1 > x2 > x3 > x4) by showing that ∂11u4 6= maxv∈{0,1}n〈D2u4 · v, v〉 in part of this sector. It suffices to

show that

∂11u4 < (∂1 + ∂2)
2u4

in part of the sector. Explicit calculation gives

∂11u4 =
1√
2
e
√
2(x2−x1) +

1

3
√
2
e
√
2(2x3−x2−x1) +

1

6
√
2
e
√
2(3x4−x3−x2−x1),

∂22u4 =
1√
2
e
√
2(x2−x1) +

1

3
√
2
e
√
2(2x3−x2−x1) +

1

6
√
2
e
√
2(3x4−x3−x2−x1), and

∂12u4 =− 1√
2
e
√
2(x2−x1) +

1

3
√
2
e
√
2(2x3−x2−x1) +

1

6
√
2
e
√
2(3x4−x3−x2−x1).

Therefore

(∂1 + ∂2)
2u4 = ∂11u4 + 2∂12u4 + ∂22u4 =

4

3
√
2
e
√
2(2x3−x2−x1) +

4

6
√
2
e
√
2(3x4−x3−x2−x1).

Evidently, when x1 = x2 = x3 = x4, ∂11u4 = 3
2
√
2
, which is strictly smaller than (∂1 + ∂2)

2u4 = 2√
2

. So

(by continuity)

∂11u4 < (∂1 + ∂2)
2u4

in part of the sector near x1 = x2 = x3 = x4. Thus the proposed strategy is not optimal, and u4 is not the

value function in this sector.
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