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Abstract— In the paper, we consider the problem of robust approx-
imation of transfer Koopman and Perron-Frobenius (P-F) operators
from noisy time series data. In most applications, the time-series
data obtained from simulation or experiment is corrupted with either
measurement or process noise or both. The existing results show
the applicability of algorithms developed for the finite dimensional
approximation of deterministic system to a random uncertain case.
However, these results hold true only in asymptotic and under the
assumption of infinite data set. In practice the data set is finite, and
hence it is important to develop algorithms that explicitly account
for the presence of uncertainty in data-set. We propose a robust
optimization-based framework for the robust approximation of the
transfer operators, where the uncertainty in data-set is treated as deter-
ministic norm bounded uncertainty. The robust optimization leads to a
min-max type optimization problem for the approximation of transfer
operators. This robust optimization problem is shown to be equivalent
to regularized least square problem. This equivalence between robust
optimization problem and regularized least square problem allows us to
comment on various interesting properties of the obtained solution using
robust optimization. In particular, the robust optimization formulation
captures inherent tradeoffs between the quality of approximation and
complexity of approximation. These tradeoffs are necessary to balance
for the proposed application of transfer operators, for the design of
optimal predictor. Simulation results demonstrate that our proposed
robust approximation algorithm performs better than the Extended
Dynamic Mode Decomposition (EDMD) and DMD algorithms for a
system with process and measurement noise.

I. INTRODUCTION

There is increased research trend towards application of transfer
operator theoretic methods involving transfer Perron-Frobenius and
Koopman operators for the analysis and control of nonlinear sys-
tems [1]–[14]. The basic idea behind these methods is to shift the
focus from the state space where the system evolution is nonlinear
to measure space or space of functions where the system evolution
is linear. The linearity of the transfer operator framework offers
several advantages for analysis and design problems involving
nonlinear systems. Furthermore, these methods are amicable to
data-driven analysis, where the finite dimensional approximation
of Koopman and P-F operators can be constructed from times-
series data obtained from simulation or experiment. The success
of the operator theoretic framework relies on the ability to form
an accurate finite dimensional approximation of these operators.
Towards this goal various data-driven methods are proposed for
the finite dimensional approximation of these operators [2], [15]–
[18] with Dynamic Mode Decomposition (DMD) and extended
DMD being the popular ones. By exploiting the duality between
Koopman and P-F operators the work in [19] provides novel
naturally structured DMD algorithm for data-driven approximation
of both Koopman and P-F operator that preserves positivity and
Markov properties of these operators.
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Recent work has focused on the data-driven approximation of
Koopman operator for random dynamical systems (RDS) [20],
[21]. In [20] the authors have provided characterization of the
spectrum and eigenfunctions of the Koopman operator for discrete
and continuous time RDS, while in [21], the authors have provided
an algorithm to compute the Koopman operator for systems with
both process and observation noise. The results in [21] claim that
DMD algorithm will approximate Koopman operator for RDS in
the asymptotic limit of large data set. Furthermore, [21] proposed
system theoretic-based subspace method for the approximation of
Koopman operator with measurement noise where DMD does not
perform well. However, in practice the data set is finite, and it is
essential to account for the presence of uncertainty explicitly in
the algorithm. In this paper, we propose a robust approximation of
transfer operators using the robust optimization-based framework.
Robust optimization-based approach treats uncertainty in the time-
series data as deterministic norm bounded uncertainty resulting
in min-max type optimization problem for the finite dimensional
approximation of transfer operators. In particular, a robust approxi-
mation of transfer operator leads to robust least square optimization
problem where the uncertainty acts as an adversary which tries
to maximize the least square error. Simulation results suggest that
the proposed robust optimization-based approach leads to a better
approximation of transfer operators for RDS with both process and
measurement noise compared to DMD or subspace DMD method.

Existing results from optimization theory establish equivalence
between robust least square problem and a least square problem
with regularization term [22]. This equivalence has an interesting
interpretation of the solution obtained using proposed robust op-
timization. In particular, the regularization term imposes sparsity
structure on the approximation. More importantly, the regularization
term allows us to achieve a trade-off between the quality of approx-
imation and complexity of approximating function. This feature
of the robust approximation solution has significant consequence
towards the application of transfer operator for the design of data-
driven predictor [23]. In particular, the regularization term prevents
over-fitting of training data to model parameters thereby enabling
better prediction on the test data set. We exploit this property of
robust optimization-based approximation framework to propose a
data-driven predictor for a nonlinear system.

The organization of the paper is as follows. In Section II, we
provide a brief overview of transfer Perron-Frobenius and Koopman
operator for random dynamical systems and discuss properties of
these two operators. In Section III, we present the main results on
robust optimization-based framework for robust approximation of
transfer Koopman and P-F operators. Results on application of the
developed framework for the design of data-driven predictor for
nonlinear systems are discussed in Section IV. Simulation results
are presented in Section V followed by conclusions in Section VI.
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II. TRANSFER OPERATORS FOR STOCHASTIC SYSTEM

Consider a discrete time random dynamical system of the form

xt+1 = T (xt, ξt) (1)

where T : X×W → X with X ⊂ RN is assumed to be invertible
with respect to x for each fixed value of ξ and smooth diffeomor-
phism. ξt ∈W is assumed to be independent identically distributed
(i.i.d) random variable drawn from probability distribution ϑ i.e.,

Prob(ξt ∈ B) = ϑ(B)

for every set B ⊂ W and all t. Furthermore, we denote by B(X)
the Borel-σ algebra on X andM(X) the vector space of bounded
complex-valued measure on X . Associated with this discrete time
dynamical system are two linear operators namely Koopman and
Perron-Frobenius (P-F) operator. These two operators are defined
as follows.
Definition 1 (Perron-Frobenius Operator): P : M(X) → M(X)
is given by

[Pµ](A) =

∫
X

∫
W

χA(T (x, v))dϑ(v)dµ(x) =
∫
X
p(x,A)dµ(x)(2)

where χA(x) is the indicator function for set A and p(x,A) is the
transition probability function.
For deterministic dynamical system p(x,A) = δT (x)(A). Under
the assumption that p(x, ·) is absolutely continuous with respect to
Lebesgue measure, m, we can write

p(x,A) =

∫
A

k(x, y)dm(y)

for all A ⊂ X . Under this absolutely continuous assumption, the
P-F operator on the space of densities L1(X) can be written as 1

[Pg](y) =

∫
X

k(x, y)g(x)dm(x)

Definition 2 (Invariant measures): Invariant measures are the fixed
points of the P-F operator P that are additionally probability
measures. Let µ̄ be the invariant measure then, µ̄ satisfies

Pµ̄ = µ̄
Under the assumption that the state space X is compact, it is known
that the P-F operator admits at least one invariant measure.
Definition 3 (Koopman Operator): Given any h ∈ F , U : F → F
is defined by

[Uh](x) = Eξ[h(T (x, ξ))] =

∫
W

h(T (x, v))dϑ(v)

Properties 4: Following properties for the Koopman and Perron-
Frobenius operators can be stated.

a). For any function h ∈ F such that h ≥ 0, we have [Uh](x) ≥
0 and hence Koopman is a positive operator.

d). If we define P-F operator act on the space of densities i.e.,
L1(X) and Koopman operator on space of L∞(X) functions,
then it can be shown that the P-F and Koopman operators are
dual to each others as follows

〈Uf, g〉 = 〈f,Pg〉

where f ∈ L∞(X) and g ∈ L1(X).
e). For g(x) ≥ 0, [Pg](x) ≥ 0.

1with some abuse of notation we are using the same notation for the P-F
operator defined on the space of measure and densities.

f). Let (X,B, µ) be the measure space where µ is a positive but
not necessarily the invariant measure, then the P-F operator
satisfies following property.∫

X

[Pg](x)dµ(x) =

∫
X

g(x)dµ(x)

III. ROBUST APPROXIMATION OF KOOPMAN AND P-F
OPERATOR

In this section, we derive the robust version of Extended Dynamic
Mode Decomposition. Results for the robust implementation of
DMD, Kernel EDMD and NSDMD will follow exactly along sim-
ilar lines. Consider snapshots of data set obtained from simulating
a discrete time random dynamical system x→ T (x, ξ) or from an
experiment

X = [x0, x2, . . . , xM ] (3)

where xi ∈ X ⊂ Rn. The data-set {xk} can be viewed as sample
path trajectory generated by random dynamical system and could be
corrupted by either process or measurement noise or both. A large
number of sample path trajectories need to be simulated to realize
sufficient statistics of the random dynamical system. However, in
practice, only few sample path trajectories over finite time horizon
are available, and it is hard to approximate the statistics of RDS
using the limited amount of data-set. Furthermore, rarely one knows
the probability distribution of the underlying noise process, i.e., ϑ.
Estimating ϑ is in itself a challenging problem. In spite of these
difficulties, it is essential to develop an algorithm for the approxima-
tion of transfer operators that explicitly account for the uncertainty
in data-set. We propose a robust optimization-based approach to
address this challenge. In particular, we consider deterministic, but
norm bounded uncertainty in the data set. Since the trajectory {xk}
is one particular realization of the RDS, the other random realization
can be assumed to be obtained by perturbing {xk}. We assume that
the data points xk are perturbed by norm bounded deterministic
perturbation of the form

δxk = xk + δ, δ ∈ ∆.

Several possible choices for the uncertainty set ∆ can be consid-
ered. For example

∆ := {δ ∈ Rn : ‖ δ ‖2≤ ρ} (4)

restrict the 2-norm of δ to ρ. Another possible choice could be

∆ := {δ ∈ Rn : ‖ δ ‖Qi≤ 1, i = 1, . . . , d} (5)

where Qi ≥ 0 and implies that uncertainty δ lies at the intersection
of ellipsoids. More generally, one can also consider ∆ set to be of
the form

∆ = {δ ∈ Rn : hi(δ) ≤ 0, i = 1, . . . , d} (6)

for some convex function hi(δ). These different choices for the
uncertainty set ∆ allow us to encapsulate the information about the
uncertainty δ. For example, if the vector random variable in R2 is
uniformly distributed with support in interval [−d, d]×[−d, d], then
the uncertainty set ∆ can be written as intersection of two ellipsoids
E1 = {(x, y)|x

2

a2
+ y2

b2
≤ 1} and E2 = {(x, y)|x

2

b2
+ y2

a2
≤ 1}

where a >> d and 1/a2 + 1/b2 = 1/d2(Fig. 1(a)). For example,
let d = 0.5. Then [−0.5, 0.5] × [−0.5, 0.5] can be expressed as
the intersection of the two ellipsoids E1 and E2, with a = 50 and
b = 0.4996, as shown in figure 1(b).
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Fig. 1. (a) Uncertainty set as intersection of two ellipsoids. (b) Represen-
tation of the uncertainty set ∆ = [−0.5, 0.5] × [−0.5, 0.5].

Now let D = {ψ1, ψ2, . . . , ψK} be the set of dictionary functions
or observables. The dictionary functions are assumed to belong to
ψi ∈ L2(X,B, µ) = G, where µ is some positive measure, not
necessarily the invariant measure of T . Let GD denote the span of
D such that GD ⊂ G. The choice of dictionary functions are very
crucial and it should be rich enough to approximate the leading
eigenfunctions of Koopman operator. Define vector valued function
Ψ : X → CK as

Ψ(x) :=
[
ψ1(x) ψ2(x) · · · ψK(x)

]
(7)

In this application, Ψ is the mapping from physical space to feature
space. Any function φ, φ̂ ∈ GD can be written as

φ =

K∑
k=1

akψk = Ψa, φ̂ =

K∑
k=1

âkψk = Ψâ (8)

for some set of coefficients a, â ∈ CK . Let

φ̂(x) = [Uφ](x) + r = Eξ[φ(T (x, ξ))] + r. (9)

Unlike deterministic case where we evaluate (9) at the data point
{xk}, for the uncertain case we do not have sufficient data points
to evaluate the expected value in the above expression. Instead we
use the fact that different realizations of the RDS will consist of
the form {xk + δ} with δ ∈ ∆ to write (9) as follows:

φ̂(xm + δxm) = φ(xm+1) + r, k = 1, . . . ,M − 1. (10)

The objective is to minimize the residual for not just one pair of
data points {xm, xm+1}, but over all possible pairs of data points
of the form {xm + δ, xm+1}. Using (8) we write the above as
follows:

Ψ(xk + δxk)â = Ψ(xk+1)a + r.

We seek to find matrix K, the finite dimensional approximation
of Koopman operator that maps coefficient vector a to â, i.e.,
Ka = â, while minimizing the residual term, r. Premultiplying
by Ψ>(xm) on both the sides of above expression and summing
over m we obtain[

1

M

∑
m

Ψ>(xm)Ψ(xm + δxm)K−Ψ>(xm)Ψ(xm+1)

]
a.

In the absence of the uncertainty the objective is to minimize the
appropriate norm of the quantity inside the bracket over all possible
choices of matrix K. However, for robust approximation, presence
of uncertainty acts as an adversary whose goal is to maximize
the residual term. Hence the robust optimization problem can be
formulated as a min−max optimization problem as follows.

min
K

max
δ∈∆
‖ GδK−A ‖F=: min

K
max
δ∈∆
F(K,Gδ,A) (11)

where

Gδ =
1

M

M∑
m=1

Ψ(xm)>Ψ(xm + δxm)

A =
1

M

M∑
m=1

Ψ(xm)>Ψ(xm+1), (12)

with K,Gδ,A ∈ CK×K . The min−max optimization problem
(11) is in general nonconvex and will depend on the choice of
dictionary functions. This is true because F in (11) is not in general
concave function of δ for fixed K. Hence, we convexify the problem
as follows

min
K

max
δG∈∆̄

‖ (G + δG)K−A ‖F (13)

where δG ∈ RK×K is the new perturbation term characterized
by uncertainty set ∆̄ which lies in the feature space of dictionary
function and the matrix G = 1

M

∑M
m=1 Ψ(xm)>Ψ(xm). ∆̄ is the

new uncertainty set defined in the feature space and will inherit
the structure from set ∆ in the data space. In particular, following
result can be used to connect the two uncertainty set, ∆ and ∆̄
when ∆ is described as in Eq. (4).
Proposition 5: In the convex problem (13), δG is bounded as

‖ δG ‖F≤ λΛΓ (14)

where ‖ δxm ‖F≤ λ, ‖ Ψ(xm) ‖F≤ Λ and ‖ Ψ′(xm) ‖F≤ Γ for
all m.

Proof: From Taylor series expansion we have, Ψ(xm +
δxm) = Ψ(xm) + Ψ′(xm)δxm, where Ψ′(xm) is the first
derivative of Ψ(x) at xm. Hence,

Gδ = G+
1

M

M∑
m=1

Ψ>(xm)δxmΨ′(xm)

Let δG = 1
M

∑M
m=1 Ψ>(xm)δxmΨ′(xm). Hence,

‖ δG ‖F = ‖ 1

M

M∑
m=1

Ψ>(xm)δxmΨ′(xm) ‖F

≤ 1

M

M∑
m=1

‖ Ψ>(xm)δxmΨ′(xm) ‖F

≤ 1

M

M∑
m=1

‖ Ψ>(xm) ‖F · ‖ δxm ‖F · ‖ Ψ′(xm) ‖F

≤ λΛΓ

Similar results can be used to connect the two uncertainty set ∆ and
∆̄ for the case where ∆ is described in Eqs. (5) and (6) to convert
non-convex optimization problem to convex. For the uncertainty set
given in Eq. (5), it can be easily shown that the problem simplifies
to case described in the above proposition, where λ depends on the
eigenvalues of the matrices Qi. Similarly, for the uncertainty set
given in (6), under the assumption that ∆ is compact, it also boils
down to proposition 5.
In [19], we proposed Naturally Structured Dynamic Mode Decom-
position (NSDMD) algorithm for finite dimensional approximation
of the transfer Koopman and P-F operator. Apart from preserving



positivity and Markov properties of the transfer operator, this algo-
rithm exploits the duality between P-F and Koopman operator to
provide the approximation of P-F operator. The algorithm presented
for the robust approximation of Koopman operator can be combined
with NSDMD for the robust approximation of P-F operator. In
particular, under the assumption that all the dictionary functions
are positive, following modification can be made to optimization
formulation (13) for the approximation of Koopman operator.

min
K

max
δG∈∆̄

‖ (G + δG)K−A ‖F

s.t. Kij ≥ 0

[ΛKΛ−1]ij ≥ 0

ΛKΛ−1
1 = 1 (15)

where Λ = 〈Ψ(x),Ψ(x)〉 with [Λ]ij = 〈ψi, ψj〉 is symmetric pos-
itive definite matrix. We refer the interested reader to [19] for details
of NSDMD formulation. Using duality the robust approximation of
the P-F operator, P, can then be written as P = K>. Most common
approach for solving the robust optimization problem is by using a
robust counterpart. In the following section we show that the robust
counterpart of the robust optimization problem can be constructed
and is a convex optimization problem.

A. Robust Optimization, Regularization, and Sparsity

The robust optimization problem (13) has some interesting connec-
tion with optimization problems involving regularization term. In
particular, we have following Theorem.
Theorem 6: Following two optimization problems

min
K

max
δG:‖δG‖F≤λ

‖ (G + δG)K−A ‖F (16)

min
K
‖ GK−A ‖F +λ ‖ K ‖F (17)

are equivalent.
Proof: The following proof is from [22], and we outline here

for the convenience of the reader. For any δG ∈ ∆̄, such that
‖ δG ‖F≤ λ, ‖ (G + δG)K − A ‖F=‖ (GK + δGK − A) ‖F .
By triangle inequality, using the fact that ‖ δG ‖F≤ λ, we have
‖ (G + δG)K− A ‖F≤‖ GK−A ‖F +λ ‖ K ‖F . On the other
hand, given any K, we can choose a δG, such that δGK is aligned
with (GK−A) and thus the two problems are equivalent.
The regularization term penalize the Frobenius norm of the matrix
K and is also known as Tikhonov regularization. Equivalence to the
more popular `1 regularization or Lasso regularization can also be
shown if we change the structure of the uncertainty set. Note that
in the above theorem the uncertainty set ∆̄ is defined as follows:

∆̄ := {δG ∈ RK×K :‖ δG ‖≤ λ}

The equivalence between the robust optimization problem (13) and
the `1 Lasso regularization can be established as follows.
Theorem 7: Define

∆̄ := {δG = (δG1, . . . , δGK) ∈ RK×K :‖ δGi ‖2≤ c}.

Following two optimization problems are equivalent

min
K

max
δG∈∆̄

‖ (G + δG)K−A ‖F (18)

min
K
‖ GK−A ‖F +c

K∑
k=1

‖ Kk ‖1 (19)

where Kk is the kth column of matrix K.

Refer to [22] for the proof. It is well known that the optimization
problem with the regularization term especially the `1 Lasso type
regularization induce sparsity structure on the optimal solution. The
equivalence between robust optimization and regularized optimiza-
tion problem provides an alternate point of view to the sparsity
structure, i.e., robustness implies sparsity. In [24], sparse DMD
algorithm is proposed where `1 type regularization term is used to
impose sparsity structure on the amplitude terms which appear in
the temporal expansion of data along dynamic modes. We expect
similar robust optimization-based viewpoint can be provided to the
sparse DMD algorithm proposed in [24].

IV. DESIGN OF ROBUST PREDICTOR

While the optimization problem with the regularization term (19)
and the robust optimization problem (16) are equivalent, the robust
optimization point of view to the optimization problem offers a
particular advantage. In particular, robust optimization viewpoint
provides a systematic way of determining the regularization pa-
rameter which often is a tuning parameter. On the other hand,
the optimization formulation with the regularization term has inter-
esting interpretation borrowed from machine learning literature. In
problems involving model fitting from data one of the fundamental
tradeoff arise between the quality of approximation and complexity
of approximation function. For example, in the absence of the
regularization term, the optimization problem will find a matrix
K that best tries to fit the training data to the model. Hence,
without the regularization term, there will be a tendency to over-
fit model parameters to data. Such over-fitted model will perform
well on the training data and give a smaller value of optimal cost.
However, these over-fitted models will often perform poorly on the
test data-set. On the other hand, the optimization problem with the
regularization term tries to strike a balance between over fitting and
prediction. This observation on the role of regularization term has
an important implication on the proposed application of transfer
operator framework for the design of data-driven predictor. For the
design of predictor dynamics, we first use training data for the
approximation of the transfer Koopman operator. Let {x0, . . . , xM}
be the training data-set and K be the finite-dimensional approxi-
mation of the transfer Koopman operator obtained using the robust
algorithm (13). Let x̄0 be the initial condition from which we
want to predict the future. The initial condition from state space is
mapped to the feature space using the same choice of basis function
used in the robust approximation of Koopman operator i.e.,

x̄0 =⇒ Ψ(x̄0)> =: z ∈ RK .

This initial condition is propagated using Koopman operator as

zn = Knz.

The predicted trajectory in the state space is then obtained as

x̄n = Czn

where matrix C is obtained as the solution of the following least
square problem

min
C

M∑
i=1

‖ xi − CΨ(xi) ‖22 (20)

In the simulation section, we demonstrate the effectiveness of
the proposed robust prediction algorithm on linear and nonlinear
systems.



V. SIMULATION RESULTS

In this simulation section we compare our proposed robust
optimization-based approach for the approximation of transfer op-
erator with existing approaches namely subspace DMD, and regular
DMD. Hence for the purpose of completeness we explain in brief
the subspace DMD method for approximation from [21].
Consider the random dynamical system (1) with noisy observables
h : X × S → CK :

h(xt, st) = Ψ(xt) + w(st) (21)

where w : S → CK is a random variable on a probability space
(S,ΣS , µS) of the observation noise. Consider the data matrix as
a concatenation of m observations as

Yt = [h(xt) · · · h(xt+m−1)] (22)

Let (Y0, Y1, Y2, Y3) be a quadruple formed from the data set, such
that

Y0 = [h(x0) h(x1) · · · h(xm−1)]

Y1 = [h(x1) h(x2) · · · h(xm)]

Y2 = [h(x2) h(x3) · · · h(xm+1)]

Y3 = [h(x3) h(x4) · · · h(xm+2)]

Define Yp, Yf as

Yp = [Y >0 Y >1 ]>; Yf = [Y >2 Y >3 ]> (23)

Then the Subspace DMD algorithm [21] is as follows :
1) Build the data sets Yp and Yf from the data set.
2) Compute the orthogonal projection of rows of Yf onto the

row space of Yp as O = YfPY H
p

.
3) Compute the compact SVD O = UqSqV

H
q and define Uq1

and Uq2 by the first and last K rows of Uq respectively.
4) Compute the compact SVD Uq1 = USV H and define Ã =

UHYfV S
−1.

5) Compute the eigenvalues λ and eigenvectors w̃ of Ã.
6) Return the dynamic modes w = λ−1Uq2V S

−1w̃ and corre-
sponding eigenvalues λ.

A. IEEE 9 bus system

In this section, we consider the IEEE 9 bus system, the line diagram
of which is shown in Fig. 2. The model used is based on the
modeling described in [25].

Fig. 2. IEEE 39 bus system.

The power network is described by a set of differential algebraic
equations (DAE) and the power system dynamics is divided into
three parts: differential equation model describing the generator and
load dynamics, algebraic equations at the stator of the generator and

algebraic equations describing the network power flow. We consider
a power system model with ng generator buses and nl load buses.
The generator dynamics at each generator bus can be represented
as a 4th order dynamical model:

dδi

dt
= ωi − ωs

dωi

dt
=
Tmi

Mi
−
E′qiIqi

Mi
−

(Xqi −X′di )

Mi
IdiIqi −

Di(ωi − ωs)

Mi

dE′qi
dt

= −
E′qi
T ′doi

−
(Xdi −X′di )

T ′doi
Idi +

Efdi
T ′doi

dEfdi
dt

= −
Efdi
TAi

+
KAi

TAi

(Vrefi − Vi)

The algebraic equations at the stator of the generator are:

Vi sin(δi − θi) +RsiIdi −XqiIqi = 0

E′qi − Vi cos(δi − θi) −RsiIqi −X′diIdi = 0

for i = 1, . . . , ng .

(24)

The network equations corresponding to the real and reactive power
at generator and load buses are shown below.

IdiVi sin(δi − θi) + IqiVi cos(δi − θi) + PLi
(Vi)

−
n̄∑
k=1

ViVkYik cos(θi − θk − αik) = 0

IdiVi cos(δi − θi) − IqiVi sin(δi − θi) +QLi
(Vi)

−
n̄∑
k=1

ViVkYik sin(θi − θk − αik) = 0

for i = 1, . . . , ng .

PLi
(Vi) −

n̄∑
k=1

ViVkYik cos(θi − θk − αik) = 0

QLi
(Vi) −

n̄∑
k=1

ViVkYik sin(θi − θk − αik) = 0

for i = ng + 1, . . . , ng + nl.

(25)

here, δi, ωi, Eqi , and Efdi are the dynamic states of the generator
and correspond to the generator rotor angle, the angular velocity
of the rotor, the quadrature-axis induced emf and the emf of fast
acting exciter connected to the generator respectively. The algebraic
states Idi and Iqi are the direct-axis and quadrature-axis currents
induced in the generator respectively. Each bus voltage and its angle
are denoted by Vi and θi. The parameters Tmi , Vrefi , ωs,Mi, and
Di are the mechanical input and machine parameters applied to
the generator shaft, reference voltage, rated synchronous speed,
generator inertia, and internal damping. The stator internal resis-
tance is denoted by Rsi and Xqi , Xdi , X ′di are the quadrature-
axis salient reactance, direct-axis salient reactance and direct-axis
transient reactance. The exciter gain and time-constant are given by
KAi and TAi .
A power system stabilizer (PSS), that acts as a local controller to
the generator is designed based on the linearized DAEs. The input
to the PSS controller is ωi(t) and PSS output, Vrefi(t), is fed to
the fast acting exciter of the generator. An IEEE Type-I PSS is
considered here which consists of a wash-out filter and two phase-
lead filters. The transfer function of PSS is given by

∆Vrefi(s)

∆ωi(s)
= kpss

(1 + sTnum)2

(1 + sTden)2

sTw
1 + sTw

(26)



where kpss is the PSS gain, Tw is the time constant of wash-out
filter and Tnum, Tden are time constants of phase-lead filter with
Tnum > Tden.
Elimination of the algebraic variables by Kron reduction, generates
a reduced order dynamic model given by ∆ẋg = Agg∆xg+E1∆ũ
where ∆xg ∈ R7ng and ∆ũ ∈ Rng .
In this example, there are three generators and we consider static
loads and hence the dynamic model is of dimension 21. Data was
collected over 25 time steps, with sampling time δt = .2 seconds.
The obtained data was corrupted with uniform noise with support
on [−0.4, 0.4].
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Fig. 3. (a) Eigenvalues obtained using Ribust DMD, normal DMD and
Subspace DMD. (b) Dominant eigenvalues.

In Fig. 3(a) we compare the eigenvalues obtained using different
methods, namely, Robust DMD, normal DMD and subspace DMD.
In Fig. 3(b) we show the dominant eigenvalues and find that the
robust DMD performs much better, compared to other methods, and
captures the dominant eigenvalues with more accuracy. Moreover,
normal DMD and subspace DMD generates eigenvalues which are
placed on the right half plane, implying the system to be unstable,
though the original system is stable. Hence, we conclude that
Robust DMD does a better job compared to the existing methods.
In the above comparison, we had chosen linear dictionary func-
tions. However, one can choose radial basis functions or Hermite
polynomials as dictionary functions and can get similar results.

B. Noisy rotations on a circle

We consider the example discussed in [20], [26]. A dynamical
system T , corresponding to rotation on the unit circle S1 is given
by

T (x) = x+ θ (27)

where θ ∈ S1 is a constant number. We consider a stochastic
dynamical system with process noise, so that the RDS is given
by

T (x, ξ) = x+ θ + ξ (28)

where ξ are independent and identically distributed random vari-
ables taking values in [−0.7, 0.7]. In this example we considered
x(0) = 1, θ = π/320. We consider the dictionary functions as

Ψ = e2πinx (29)

where n = −50,−49, · · · , 49, 50. Data was collected for 6000
time steps and data for the first 50 time steps was used for training
purpose.
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Fig. 4. (a) Clean data. (b) Noisy data. (c) Comparison of eigenvalues
obtained with different algorithms.

The clean data and the noisy data is shown in Fig. 4(a) and (b)
respectively. The eigenvalues obtained using the different algo-
rithms is plotted in Fig. 4(c) and it can be seen that the robust
DMD algorithm provides closer match for the eigenvalues of the
deterministic system. Moreover, normal DMD and subspace DMD



yields unstable eigenvalues, though the original system is not
unstable. As mentioned earlier, normal DMD and subspace DMD
works for RDS when the training data set is large enough, but in
reality it may not be possible to obtain such large data sets and in
that case robust DMD provides much better approximation of the
Koopman operator.

C. Stuart-Landau equation

The nonlinear stochastic Stuart-Landau system [21]. The stochas-
tic Stuart-Landau equation on a complex function z(t) =
r(t) exp(iθ(t)) is given by

ż = (µ+ iγ)z − (1 + iβ)|z|2z + σξ(t), (30)

where ξ(t) is a white Gaussian noise of unit variance and i is the
imaginary unit. In absence of process noise, the solution of (30)
evolves on the limit cycle |z| =

√
µ. Hence, the continuous time

eigenvalues lie on the imaginary axis, if the process noise is absent.
The discretized version of (30) is

(
rt+1

θt+1

)
=

(
rt + (µrt − r3

t )δt
θt + (γ − βr2

t )δt

)
+ σp

(
δt 0
0 δt/rt

)
ξt. (31)

We assume that the observation are corrupted with noise and of
the form

yt =
(
e−10iθt e−9iθt · · · e9iθt e10iθt

)
+ σowt. (32)

The noisy output data was used to construct the finite dimensional
approximation of the operator, with δt = 0.01. Both the process
noise and measuement noise considered here are uniform with sup-
port [−.03, 0.3] and [−0.1, 0.1] respectively. A sample trajectory
is shown in Fig. 5.
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Fig. 5. Sample output trajectory

The system was initialized at (1,−π) and data was obtained for
100 time steps and data of the first 30 steps was used as the training
data and the prediction was made over future steps. The dictionary
functions we chose are einθt , n = −10,−9, · · · , 9, 10. The
eigenvalues of the approximate robust DMD Koopman operator,
normal DMD Koopman and subspace DMD operator for the initial
condition (1,−π) are shown in Fig. 6(a). It is observed that all the
algorithms are capturing the oscillatory nature of the underlying
system, but normal DMD and subspace DMD generate a Koopman
operator which has an eigenvalue on the right half plane implying
the system to be unstable. The first few dominant eigenvalues
obtained using the three different algorithms are shown in Fig. 6(b).
Once the Koopman operators are obtained, one can use the obtained
operator to predict the future. In Fig. 8(a) and (b), we compare
the errors in prediction in r and θ respectively, when using robust
DMD and subspace DMD for the system starting from (1,−π).
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Fig. 6. (a) Eigenvalue comparison of Robust DMD, normal DMD and
subspace DMD. (b) Dominant eigenvalues.
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subspace DMD. (b) Dominant eigenvalues.
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Fig. 8. (a) Error in prediction in r for initial state at (1,−π). (b) Error
in prediction in θ initial state at (1,−π).

The errors are plotted around the actual values of r and θ. For
example, the error in r is plotted around the actual value of r = 1.
As mentioned earlier, the first 30 time step data was used as the
training data, and the operators obtained using the training data
has been used to predict future 70 time steps. As can be seen from
Fig. 8(a) and (b), robust DMD algorithm yields much smaller error,
when compared to subspace DMD. The error in prediction using
normal DMD increases exponentially and is not shown in the error
plot. However, we find that the error using subspace DMD decreases
initially and then grows exponentially. This is because the coupling
from the unstable subspace to the stable subspace is small and hence
initially the dominant stable eigenvalues makes the error decrease
but as the system evolves, the effect of the unstable eigenvalue
becomes more prominent and the error grows exponentially.

As mentioned earlier, compared to subspace DMD Robust DMD
provides better approximation of systems, when the size of training
data is not substantial. To illustrate this point, we used different
sizes of training data set and used it to predict future 10 time steps.
In particular, we varied the training data from 10 time steps to 40
time steps and looked at the average error in prediction in both r
and θ over 10 future time steps.

In Fig. 9(a) we plot the average error in prediction in r. The x-
axis shows the number of time steps used for training and for each
such training data set, the state r was predicted for 10 future time
steps and the average error in the prediction is plotted along the
y-axis. It can be observed that for all the different sizes of training
data used, average error for Robust DMD algorithm always shows
smaller error compared to subspace DMD. Similarly, in Fig. 9(b),
we plot the average error is prediction of θ and observe the same.
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Fig. 9. (a) Average error in prediction of r. (b) Average error in prediction
of θ.

D. Stochastic Burger equation

The third example we consider in this paper is stochastic Burger’s
equation

∂tu(x, t) + u∂xu = k∂2
xu+ σpe(x, t)

with k = 0.01, e(x, t) is uniform random distribution with support
[−1, 1] and σp = 0.2. In the simulation, we approximated the PDE
solution using the Finite Difference method [27] with the initial
condition u(x, 0) = sin(2πx) and Dirichet boundary condition
u(0, t) = u(1, t) = 0. Given the spatial and temporal ranges, x ∈
[0, 1], t ∈ [0, 1], the discretizaion steps are chosen as ∆t = 0.02
and ∆x = 1× 10−2.
The generated data is plotted in Fig. 10(a). The robust DMD algo-
rithm, subspace DMD algorithm and the regular DMD algorithm
are applied to data set collected over 100 time steps. We assumed
that both process and measurement noise and each has variance of
0.2. The eigenvalues obtained using regular DMD, subspace DMD
and robust DMD approach are shown in Fig. 10)(b) and zoomed in
plot shown in Fig. 10(c). As in the previous examples, we find that
one of the eigenvalues obtained using regular DMD and subspace
DMD approach is unstable. Furthermore, the dominant eigenvalues
show a closer match for robust DMD compared to other methods.
Since the eigenvalues obtained with robust DMD algorithm shows a
closer match, it is logical to believe that prediction using the robust
DMD Koopman operator will be much more efficient compared to
either regular DMD or subspace DMD.
We used 100 time steps data as the training data and used
the obtained operators to predict future 15 states. Since ∆x =
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Fig. 10. (a) Data generated by Stochastic Burger’s equation with obser-
vation noise (b) Eigenvalues of the continuous time system.(c) Zoomed in
region of dominant eigenvalues captured by the three methods.

1 × 10−2, the discretized system has 100 states, namely,(
z1 z2 · · · z100

)
. In Fig. 11(a) and (b) we plot the errors

in prediction of z2 and z50 respectively, when using robust DMD
and subspace DMD algorithms. It can be seen that the error in
prediction with robust DMD is much smaller than the error obtained
with subspace DMD. In Fig. 11(c) we plot the average error in all
the states at each prediction time step. We do not plot the error
using regular DMD because since the Koopman operator obtained
using regular DMD has an eigenvalue with large positive real part,
it is highly unstable and the error diverges exponentially fast.

VI. CONCLUSIONS

Robust optimization-based approach is proposed for the finite
dimensional approximation of Koopman operator for dynamical
system forced with process and measurement noise. The proposed
approach leads to a better and stable approximation of Koop-
man operator compared to regular DMD-based approximation and
subspace DMD algorithm. We showed that the proposed robust
formulation for the approximation of Koopman operator allows us
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Fig. 11. (a) Error in prediction of z2. (b) Error in prediction of z50. (c)
Average error in prediction.

to balance the tradeoff between the quality of approximation and
complexity of approximation. This allows us to make use of the
robust formulation for the design of data-driven predictor dynamics
for nonlinear systems.
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