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Abstract. We deliver a novel approach towards the variational description of Lagrangian me-
chanical systems subject to fractional damping by establishing a restricted Hamilton’s principle.
Fractional damping is a particular instance of non-local (in time) damping, which is ubiquitous
in mechanical engineering applications. The restricted Hamilton’s principle relies on including
fractional derivatives to the state space, the doubling of curves (which implies an extra mirror
system) and the restriction of the class of varied curves. We will obtain the correct dynamics,
and will show rigorously that the extra mirror dynamics is nothing but the main one in reversed
time; thus, the restricted Hamilton’s principle is not adding extra physics to the original sys-
tem. The price to pay, on the other hand, is that the fractional damped dynamics is only a
sufficient condition for the extremals of the action. In addition, we proceed to discretise the
new principle. This discretisation provides a set of numerical integrators for the continuous
dynamics that we denote Fractional Variational Integrators (FVIs). The discrete dynamics is
obtained upon the same ingredients, say doubling of discrete curves and restriction of the dis-
crete variations. We display the performance of the FVIs, which have local truncation order
1, in two examples. As other integrators with variational origin, for instance those generated
by the discrete Lagrange-d’Alembert principle, they show a superior performance tracking the
dissipative energy, in opposition to direct (order 1) discretisations of the dissipative equations,
such as explicit and implicit Euler schemes.

1. Introduction

The problem of obtaining a variational description of mechanical systems subject to external
forces has been present in the literature for long time. Concretely, this article is concerned with
the variational nature of the dynamical equations of a Lagrangian system subject to what we call
fractional damping, namely:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= −ρDα

−D
α
−x, (1)

where x is the dynamical variable, L(x, ẋ) is a Lagrangian function, ρ ∈ R+ and Dα
−, with

α ∈ [0, 1], is the retarded fractional derivative defined below (3) (as usual, the dot notation
represents the time derivative). The right hand side is non-local in time, and therefore the previous
equation represents a particular example of non-locally damped mechanical system (we shall focus
on Lagrangians given by kinetic minus potential energy), which are ubiquitous in mechanical
engineering applications (see [2, 34, 37] and references therein). In addition, (1) also involves
the linear damping case, since D2α

− x = ẋ when α = 1/2, where we have used (5b),(5c). This
case is a pardigmatic example of non-Lagrangian/Hamiltonian system, i.e. its dynamics cannot be
obtained from the Hamilton’s principle [1] given a Lagrangian/Hamiltonian function, as proven
in [7]. A remarkable approach towards the variational modelling of external forces, due to its
phenomenological versatility, is the Lagrange-d’Alembert principle [9], where the variation of the
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action is set equal to the work done by external forces under virtual displacements. As happens
with the usual Hamilton’s principle, the Lagrange-d’Alembert’s can be performed in Lagrangian
and Hamiltonian fashions, both related to each other by the Legendre transformation [1]. It is
important to note, however, that Lagrange-d’Alembert principle is not variational in the pure
sense on the word, circumstance that we try to avoid in our apprach.

There are previous approaches to generate a purely variational principle by including fractional
derivatives into the state space of the considered Lagrangian functions; more concretely, we base
our work on [13, 33]. These references delivered promising results, but they present some draw-
backs. Say: in [33] Riewe did not take into account the asymmetric integration by parts of the
fractional derivatives (5a); Cresson and collaborators, in [13, 14], designed the so-called asym-
metric embeddings to surpass that issue, but such objects are unclear from the point of view of
calculus of variations. This last approach implies the doubling of curves in the state space; i.e.
it is necessary to add an extra y-mirror system, which is natural when treating externally forced
system in a variational way, see [6, 15, 23] and references therein.

Taking as well into account a doubled space of curves, in this work we establish a novel ap-
proach to surpass the asymmetry issue while obtaining the correct fractional damped dynamics
(1), embodied in a particular restriction of the usual calculus of variations. Namely, we will apply
the Hamilton’s principle over a properly designed (in a geometric way) Lagrangian function, but
we shall restrict the class of varied curves. We denote this principle by restricted Hamilton’s prin-
ciple. Out of this principle, we shall obtain both (1) and the dynamics of the y-mirror system.
However, we shall rigorously prove, both in Lagrangian and Hamiltonian settings, that the latter
is nothing but the former in reversed time, which implies that the restricted Hamilton’s principle
is not adding extra physics to the studied system. As it is made clear below, the price to pay for
applying this new principle is that the dynamical equations are not anymore necessary and suffi-
cient conditions for the extremals of the action (as in the classical Hamilton’s principle), but only
sufficient. Finally, given that the linear damping case is also included, we elucidate the connection
between the restricted Hamilton’s and Lagrange-d’Alembert principles.

During the last years, the discretisation of variational principles (Hamilton’s, Lagrage-d’Alem-
bert and others [22, 28]) has been of high interest in numerical integration theory, since such
discretisations generate numerical integrators that approximate the systems’ dynamics faithfully
both from dynamical and geometrical perspectives, presenting as well a superior behaviour in the
integration of the energy in the long-term. Thus, we proceed to discretise the restricted Hamilton’s
principle, which leads to the discrete counterpart of (2), i.e.:

D1Ld(xk, xk+1) +D2Ld(xk−1, xk) = h ρ∆α
−∆α
−xk, (2)

where xk is the discrete dynamical variable, Ld(xk, xk+1) the discrete Lagrangian and ∆α
−xk is a

given approximation of Dα
−x(tk) for a time grid tk with time step h (other approaches to discretise

fractional mechanical problems can be found in [5, 10, 12, 14] and references therein). The elements
of the discrete principle are analogous to the continuous’ ones: the discrete dynamical equations are
sufficient conditions for the extremals of the discrete action, and we have an extra y-mirror system
(which again is proven to be the x-system in reversed discrete time). The initialisation of (2) as
a numerical integrator of (1) (which we will call Fractional Variational Integator, FVI) requires
an initial condition which is based on the discrete Legendre transform linking the Lagrangian and
Hamiltonian approaches. With that aim, we develop the restricted Hamilton’s principle also in a
Hamiltonian fashion (both in continuous and discrete scenarios), where, as in the usual discrete
mechanics [22], the momentum mathching condition will be a crucial element when constructing
numerical integrators approximating the Hamiltonian version of (1). As in the continuous side, we
elucidate the connection between the restricted Hamilton’s and Lagrange-d’Alembert principles in
the discrete side. Finally, we test the generated integrators with respect to well-known examples.
With that aim, we use a particular benchmark approximation of the solution of inhomogeneous
fractional-differential equations [31], based on a matrix discretisation of the fractional-differential
operators and, afterwards, the resolution of the discrete dynamics as a matricial-algebraic equation
[32].
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The paper is organised as follows: In §2 we introduce the basics on fractional derivatives (since
they will be used as a tool, we do not put emphasis on the mathematical specifics, and refer
the interested reader to the proper literature); moreover we present the variational description
of Lagrangian/Hamiltonian systems (Hamilton’s principle) both in the continuous and discrete
settings, as well as externally forced systems (Lagrange-d’Alembert principle). §3 is devoted to
develop the continuous restricted Hamilton’s principle, which is stated in its Lagrangian version
in Theorem 3.1. The relationship between the x-system and the y-system in reversed time is given
in Proposition 3.2. The preservation of a particular presymplectic form by (1) is established in
Proposition 3.3, for which the existence and uniqueness of solutions of (1) is necessary, whose
proof is developed in Appendix. The Hamiltonian version of the restricted Hamilton’s principle
is given in Theorem 3.2. §4 accounts for the discrete restricted Hamilton’s principle, established
in Proposition 4.1 and Theorem 4.1. The relationship between the x-system and the y-system in
reversed discrete time is given in Proposition 4.2. The connection between the discrete restricted
Hamilton’s principle and the discrete Lagrange-d’Alembert’s is given in Corollary 4.2, for which
Lemma 4.2 is essential. The definition of the discrete Legendre transform, needed for the initial-
isation of the FVIs, is established in Definition 4.3, whereas the momentum matching condition
and the Hamiltonian version of the FVIs is given in Proposition 4.3. Finally, in §5 we display the
performance of the FVIs in two examples.

2. Preliminaries

2.1. Fractional derivatives. Let α ∈ [0, 1] ⊂ R and f : [a, b] ⊂ R → R, [a, b] ⊂ R, a smooth
function. The fractional derivatives are defined by

RLD
α
−f(t) =

1

Γ(1 − α)

d

dt

∫ t

a

(t− τ)−αf(τ)dτ, RLD
α
+f(t) = − 1

Γ(1 − α)

d

dt

∫ b

t

(τ − t)−αf(τ)dτ, (3a)

CD
α
−f(t) =

1

Γ(1 − α)

∫ t

a

(t− τ)−αḟ(τ)dτ, CD
α
+f(t) = − 1

Γ(1 − α)

∫ b

t

(τ − t)−αḟ(τ)dτ, (3b)

for t ∈ [a,b], and Γ(z) the gamma function, in their Riemann-Liouville and Caputo expressions.
These two kinds of fractional derivatives are related to each other, indeed it can be shown that:

RL
Dα
−f(t) =

−1

Γ(1− α)

f(a)

(t− a)α
+
C
Dα
−f(t),

RL
Dα

+f(t) =
1

Γ(1− α)

f(b)

(b− t)α
+
C
Dα

+f(t). (4)

In this work, the function f will represent the dynamical variable of a mechanical system. Thus, it
is interesting to remark that we can always set f(a) = 0, i.e. the system is at the origin of coordi-
nates at initial time, and consequently both retarded Riemman-Liouville and Caputo versions are
equivalent, according to the first equation in (4)1, for dynamical purposes. We will assume hence-
forth that Dα

± is determined by the Riemann-Liouville expression (3a), unless otherwise stated.
Further relevant properties are:

∫ b

a

f(t)Dα
σg(t)dt =

∫ b

a

(
Dα
−σf(t)

)
g(t)dt, σ = {−,+} , (5a)

Dα
σD

β
σ = Dα+β

σ , 0 ≤ α, β ≤ 1, (5b)
Dα
− = d/dt, Dα

+ = −d/dt, when α = 1. (5c)

For the proof of these properties and more details on fractional derivatives, we refer to [35].

2.2. Continuous Lagrangian and Hamiltonian description of mechanics. In this subsec-
tion we shall consider the configuration space of the studied systems as a finite dimensional smooth
manifold Q. Moreover, TQ and T ∗Q will denote its tangent and cotangent bundles, locally repre-
sented by coordinates (q, q̇) and (q, p), respectively. For more details on the geometric formulation
of mechanics we refer to [1].

1This is particularly apparent for α = 0. Namely: RLD
0
−f(t) = f(t), whereas CD

0
−f(t) = f(t)− f(a).
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2.2.1. Conservative systems. Given a Lagrangian function L : TQ → R, the associated action
functional in the time interval t ∈ [a, b] ⊂ R for a smooth curve q : [a, b] → Q is defined by
S(q) =

∫ b
a
L(q(t), q̇(t)) dt. Through Hamilton’s principle, i.e. the true evolution of the system q(t)

with fixed endpoints q(a) and q(b) will satisfy

δ

∫ b

a

L(q(t), q̇(t)) dt = 0, (6)

we obtain the Euler-Lagrange equations via calculus of variations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (7)

Define the Legendre transformation:

FL : TQ→ T ∗Q; (q, q̇) 7→
(
q, p =

∂L

∂q̇

)
. (8)

If (8) is a global diffeomorphism we say that it is hyperregular, and we call the Lagrangian function
hyperregular. Under the assumption of hyperregularity (which we will take throughout the article),
via the Legendre transformation we can define the Hamiltonian function H : T ∗Q→ R:

H(q, p) := 〈p, q̇〉 − L(q, q̇), (9)

where 〈·, ·〉 : T ∗Q × TQ → R is the natural pairing. From the definition of the Hamiltonian
function (9) it follows that L(q, q̇) = 〈p, q̇〉 − H(q, p). Furthermore, from (6) we can write the
stationary condition of the action functional in a Hamiltonian version, i.e.

δ

∫ b

a

{〈p(t), q̇(t)〉 −H(q(t), p(t))} dt = 0. (10)

Again, using calculus of variations we obtain the Hamilton equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (11)

We shall consider that the physical energy of the system is given by the Hamiltonian function
(9). It is easy to check that dH(q, p)/dt = 0 under (11), showing that the system is conservative.
Equivalently, the Lagrangian energy

E(q, q̇) :=
〈∂L
∂q̇
, q̇
〉
− L(q, q̇), (12)

is invariant under (7), i.e. dE(q, q̇)/dt = 0.

2.2.2. Forced systems. First we model the external forces (which might include damping, dragging,
etc.) through the mapping:

fL : TQ→ T ∗Q. (13)

The forced dynamics is provided by the Lagrange-d’Alembert principle [4, 9]: the true evolution
of the system q(t) between fixed points q(a) and q(b) will satisfy

δ

∫ b

a

L(q, q̇) dt+

∫ b

a

〈fL(q, q̇), δq〉 dt = 0, (14)

where δq ∈ TQ, which provides the forced Euler-Lagrange equations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= fL(q, q̇). (15)

Now, the Lagrangian energy of the system (12) is not preserved by (15). In particular dE(q, q̇)/dt =〈
fL(q, q̇), q̇

〉
, showing that this kind of systems is not conservative.
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The dual version of the Lagrange-d’Alembert principle (14) is naturally obtained through the
Legendre transformation (8). The dual external forces fH : T ∗Q → T ∗Q are defined by fH :=

fL ◦ (FL)
−1 (we recall that we are assuming L hyperregular), while the dynamics is established by

δ

∫ b

a

{〈p, q̇〉 −H(q, p)} dt+

∫ b

a

〈fH(q, p), δq〉 dt = 0, (16)

yielding the forced Hamilton equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ fH(q, p). (17)

Obviously, the Hamiltonian function (9) is not preserved under (17). In particular dH(q, p)/dt =〈
fH(q, p), ∂H∂p

〉
.

2.3. Discrete Lagrangian and Hamiltonian description of mechanics.

2.3.1. Conservative systems. The construction of the discrete version of mechanics relies on the
substitution of TQ by the Cartesian product Q × Q (note that these two spaces contain the
same amount of information at local level) [22, 26]. The continuous curves q(t) will be replaced
by discrete ones, say γd = {qk}0:N := {q0, q1, ..., qN} ∈ QN+1, where N ∈ N and the power
N + 1 indicates the Cartesian product of N + 1 copies of Q. Given an increasing sequence of
times {tk = a+ hk | k = 0, ..., N} ⊂ R, with h = (b − a)/N , the points in γd will be considered
as an approximation of the continuous curve at time tk, i.e. qk ' q(tk). Defining the discrete
Lagrangian Ld : Q × Q → R as an approximation of the action integral in one time step, say
Ld(qk, qk+1, h) '

∫ tk+h

tk
L(q(t), q̇(t)) dt (we shall omit the h dependence of the discrete Lagrangian

unless needed), we can establish the so called discrete action sum:

Sd(γd) =

N−1∑
k=0

Ld(qk, qk+1). (18)

Applying the Hamilton’s principle over (18), i.e. considering variations of γd with fixed endpoints
q0 = q(a), qN = q(b) and extremizing Sd, we obtain the discrete Euler-Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, k = 1, ..., N − 1, (19)

where D1 and D2 denote the partial derivative with respect to the first and second variables,
respectively. If Ld is regular, i.e. the matrix

[
D12Ld

]
is invertible, the equations (19) define a

discrete Lagrangian flow FLd : Q×Q→ Q×Q; (qk, qk+1) 7→ (qk+1, qk+2), which is normally called
variational integrator of the continuous dynamics provided by the Euler-Lagrange equations (7)
(indistinctly, we shall call the equations (19) also variational integrator). Moreover, (19) are a
discretisation in finite differences of (7).

In order to establish the Hamiltonian picture we need to introduce the discrete Legendre trans-
forms. From Ld, two of them can be defined:

F−Ld,F+Ld : Q×Q→ T ∗Q,

in particular

F−Ld(qk, qk+1) = ( qk , p−k = −D1Ld(qk, qk+1)), (20a)

F+Ld(qk, qk+1) = (qk+1, p
+
k+1 = D2Ld(qk, qk+1)). (20b)

We observe that the momentum matching condition, i.e.

p−k = p+
k , (21)

provides the discrete Euler-Lagrange equations (19) according to (20) (based on this, we shall refer
indistinctly to the discrete Legendre transform as momentum matching). Under the regularity of
Ld, both discrete Legendre transforms are invertible and the discrete Hamiltonian flow F̃Ld :
T ∗Q→ T ∗Q; (qk, pk) 7→ (qk+1, pk+1) can be defined by any of the following identities:

F̃Ld = F+Ld ◦ (F−Ld)−1 = F+Ld ◦ FLd ◦ (F+Ld)
−1 = F−Ld ◦ FLd ◦ (F−Ld)−1; (22)
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see [22] for the proof. At the Hamiltonian level, the map F̃Ld is called variational integrator of the
continuous dynamics provided by the Hamilton equations (11). Moreover, the discrete equations
provided by (20) are a discretisation in finite differences of (11).

Remark 2.1. Another advantage of the Hamiltonian version of variational integrators is that it
provides a natural way of initialisating the numerical scheme. As showed in the previous discussion,
two points q0, q1 are necessary in order to start (19) and establish the discrete flow FLd . On the
other hand, a mechanical problem involves as initial data q(a) = q0, q̇(a) = v0 and p(a) = p0; thus
an extra step, providing q1, is in order. This step is naturally determined by (20a), leading to the
algorithm (where the regularity of Ld is assumed):

Algorithm 1. Variational Integrator Scheme
1: Initial data: N, h, q0, p0.
2: solve for q1 from p0 = −D1Ld(q0, q1).
3: Initial points: q0, q1.
4: for k = 1 : N − 1 do

solve for qk+1 from D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0
5: end for
6: Output: (q2, ..., qN ).

end

Other definitions of q1, different from Step 2, can lead to the instability of the discrete flow
FLd . �

A crucial feature of variational integrators is their symplecticity. If ΩT∗Q is the canonical
symplectic form on T ∗Q (which, according to Darboux theorem, can be locally written as ΩT∗Q =
dq∧dp), define ΩQ×Q := (F−Ld)∗ΩT∗Q = (F+Ld)

∗ΩT∗Q. Thus, the symplecticity of the variational
integrators imply F ∗LdΩQ×Q = ΩQ×Q [22, 26], which furthermore imply that the energy cannot be
conserved at the same time [16]. However, symplectic integrators have proven to present a stable
energy behaviour even in long-term simulations [36], behaviour that can be explained in terms of
Backward Error Analysis [17, 18].

2.3.2. Forced systems. As discrete version of the external forces (13) we consider the maps:

f−Ld , f
+
Ld

: Q×Q→ T ∗Q

such that

〈f−Ld(qk, qk+1), δqk〉+ 〈f+
Ld

(qk, qk+1), δqk+1〉 '
∫ tk+h

tk

〈fL(q, q̇), δq〉 dt.

Note that the previous equation implies that f−Ld(qk, qk+1) ∈ T ∗qkQ and f+
Ld

(qk, qk+1) ∈ T ∗qk+1
Q.

The discrete Lagrange-d’Alembert principle [22, 28] provides discrete curves between fixed q0, qN
satisfying the critical condition

δ

N−1∑
k=0

Ld(qk, qk+1) +

N−1∑
k=0

[
〈f−Ld(qk, qk+1), δqk〉+ 〈f+

Ld
(qk, qk+1), δqk+1〉

]
= 0.

These curves are given by the forced discrete Euler-Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) + f−Ld(qk, qk+1) + f+
Ld

(qk−1, qk) = 0, k = 1, ..., N − 1; (23)

they are a discretisation in finite differences of (15) and, under the regularity of the matrix[
D12Ld(qk, qk+1) + D2f

−
Ld

(qk, qk+1)
]
, provide a forced discrete Lagrangian map F f

Ld
: Q × Q →

Q × Q approximating their continuous solution. In the forced case, the discrete Legendre trans-
formation is defined by

F−Lf
d(qk, qk+1) = ( qk , p−k = −D1Ld(qk, qk+1)− f−Ld(qk, qk+1)), (24a)

F+Lf
d(qk, qk+1) = (qk+1, p

+
k+1 = D2Ld(qk, qk+1) + f+

Ld
(qk, qk+1)). (24b)
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The momentum matching condition (21) reproduces the forced discrete Euler-Lagrange equations
(23). Moreover, (24) provide a discretisation in finite differences of (17), whereas (22) (for F f

Ld

and F±Lf
d) yields an approximation F̃ f

Ld
: T ∗Q→ T ∗Q of their continuous flow.

Remark 2.2. Establishing the forced variational flow F f
Ld

: Q×Q→ Q×Q requires as well two
initial points q0, q1 as in the free case discussed in Remark 2.1. According to (24a) the algorithm
for the forced variational integrator is given by:

Algorithm 2. Forced Variational Integrator Scheme
1: Initial data: N, h, q0, p0.
2: solve for q1 from p0 = −D1Ld(q0, q1)− f−Ld(q0, q1).
3: Initial points: q0, q1.
4: for k = 1 : N − 1 do

solve for qk+1 from D1Ld(qk, qk+1) +D2Ld(qk−1, qk) + f−Ld(qk, qk+1) + f+
Ld

(qk−1, qk) = 0
5: end for
6: Output: (q2, ..., qN ).

end

�

3. continuous restricted Hamilton’s principle

3.1. Fractional state space. Consider a smooth curve γ : [a, b] ⊂ R→ Rd for d ∈ N. The local
representation of the curve is given by γ(t) = (x1(t), ..., xd(t)), t ∈ [a, b]. For the set of all smooth
curves C∞([a, b],Rd), let us define the fractional tangent vector of the curve γ by means of the
following mapping

Xα
σ : C∞([a, b],Rd)→ Rd,

γ 7→ Xα
σ γ,

where the fractional tangent vector is defined by

Xα
σ γ := Dα

σγ(t) = (Dα
σx

1(t), ..., Dα
σx

d(t)), t ∈ [a, b],

and Dα
σ represents the α-fractional derivatives (3), σ = {−,+}. In the sequel we shall omit

the t-dependence in curves and fractional tangent vectors; furthermore, we will omit as well the
coordinate superindex i, refering to the local expression of Xα

σ γ just as Dα
σx.

Remark 3.1. Observe that we are choosing Rd as configuration space instead of a d-dimensional
smooth manifold Q, as in §2.2. We do so because the definition of Dα

σγ(t) for γ(t) ⊂ Q is not
unique and depends on the particular set of charts employed to cover the manifold. �

Definition 3.1. We define the fractional tangent space of the curve γ as

V ασ Rd =
{
Xα
σ γ | for γ ∈ C∞([a, b],Rd) , t ∈ [a, b]

}
.

Proposition 3.1. V ασ Rd is a vector space with dim = d.

Proof. The vector structure for curves is defined pointwise, i.e. for γ, δ ∈ C∞([a, b],Rd) and λ ∈ R

(γ + δ)(t) = γ(t) + δ(t), (λγ)(t) = λγ(t).

Noting that Dα
σ is a linear operator according to (3), the vector structure for V ασ Rd is defined by

Xα
σ γ +Xα

σ δ := Xα
σ (γ + δ), λ ·Xα

σ γ := Xα
σ (λγ).

Considering that for any curve γ the canonical basis of Rd is a linearly independent generating
system with d elements for Xα

σ γ with coordinates Dα
σx

i, we conclude that V ασ Rd is a vector space
with dim = d. �
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Now, we enlarge our space of cuves in the following way: given γx, γy ∈ C∞([a, b],Rd) it is
straightforward to define the curve γ̃ ∈ C∞([a, b],Rd × Rd) by γ̃(t) := (γx(t), γy(t)) for t ∈ [a, b],
which locally we shall denote γ̃ = (x, y) (which we will use indistinctly). Furthermore, for the
space of curves C∞([a, b],Rd×Rd) we establish the vector bundle TαRd, with V α−Rd×V α+Rd (whose
vector structure is straightforward after Definiton 3.1 and the Cartesian product; see [1] for further
details) as the fiber over the base space Rd×Rd. More particuarly, for a given curve γ̃, Ωαγ̃ ∈ TαRd is
defined by Ωαγ̃ := ((γx, γy), (Xα

−γx, X
α
+γy)), t ∈ [a, b], and has natural coordinates (x, y,Dα

−x,D
α
+y)

(henceforth, we shall use indistinctly Ωαγ̃ and its coordinates). The bundle projection τα : TαRd →
Rd×Rd is given by τα(Ωαγ̃ ) = (x, y); furthermore, it is apparent that TαRd ∼= Rd×Rd×Rd×Rd.
On the other hand, TRd is defined as the vector bundle with V 1

−Rd× V 1
−Rd as fiber over Rd×Rd,

with elements Ξγ̃ := ((γx, γy), (X1
−γx, X

1
−γy)) = ((γx, γy), (D1

−γx, D
1
−γy)) = ((γx, γy), (γ̇x, γ̇y)),

t ∈ [a, b], and local coordinates ((x, y), (ẋ, ẏ)). The bundle projection is given by τ : TRd → Rd×Rd,
τ(Ξγ̃) = (x, y). With these elements we define the fractional state space.

Definition 3.2. Consider the vector bundles TαRd and TRd. We define the fractional state space
as the bundle product of them over Rd × Rd, i.e.

TRd := TRd ⊗Rd×Rd TαRd.

Thus, Σ(x,y) := (γx, γy, X−γx, X−γy, X
α
−γx, X

α
+γy) ∈ TRd, t ∈ [a, b], is locally described by

Σ(x,y) = (x, y, ẋ, ẏ, Dα
−x,D

α
+y). (25)

The bundle projection T : TRd → Rd × Rd is defined by T(Σ(x,y)) = (x, y).

For more details on bundle products we refer to [1]. The construction of the dual bundle

T∗Rd := T∗Rd ⊗Rd×Rd Tα∗Rd,

which we will denote fractional phase space, follows straightforwardly from the dual bundles Tα∗Rd
and T∗Rd. For P(x,y) ∈ T∗Rd, we fix local coordinates

P(x,y) = (x, y, px, py, p
α
x , p

α
y ). (26)

The bundle projection P : T∗Rd → Rd ×Rd is locally given by P(P(x,y)) = (x, y). It is easy to see
that both TRd and T∗Rd are locally equivalent to the Cartesian product of 6 copies of Rd.

3.2. Fractional dynamics. In order to establish the fractional dynamics we are going to consider
a subclass of curves C∞(γ̃(a,b) ;Rd×Rd) ⊂ C∞([a, b],Rd×Rd), in particular those γ̃ = (γx, γy) such
that γx(a) = xa, γx(b) = xb and γy(a) = ya, γy(b) = yb for xa, xb, ya, yb ∈ Rd; i.e. those curves
with fixed endpoints. Let us define de action sum S : C∞(γ̃(a,b) ;Rd × Rd) → R for a Lagrangian
function L : TRd → R (which henceforth we shall consider C2) by

S(γ̃) =

∫ b

a

L
(
x(t), y(t), ẋ(t), ẏ(t), Dα

−x(t), Dα
+y(t)

)
dt, (27)

and a particular set of varied curves and variations, namely:

Definition 3.3. Define the set of restricted varied curves as Γ(η,ε)(t) := γ̃(t) + εη(t), ε ∈ R,
where Γ(η,ε)(t) ∈ C∞(γ̃(a,b) ;Rd × Rd) and η(t) := (δγx(t), δγx(t)), t ∈ [a, b], is defined such that
δγx ∈ C∞([a, b],Rd) with δγx(a) = δγx(b) = 0. As it is easy to see, an unrestricted variation
would be defined by (δγx(t), δγy(t)), with δγx 6= δγy. We impose δγx(t) = δγy(t) to the variations,
which locally is expressed by δx = δy, vanishing at the endpoints.

Note that the introduction of Dα
+y(t) in the action (27) breaks its causality, since it depends

on future times [t, b]. Thus, apparently it is not suitable for the physical description of the x and
y systems. We will see in the following discussion, however, that their dynamics can be decoupled
thanks to the restriction of the variations presented in Definition 3.3. Moreover, the choice of
mechanical Lagrangians and the definition of the fractional derivatives (3a) help to surpass the
causality issue.

We have already all the ingredients to establish the restricted Hamilton’s principle:
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Theorem 3.1. A sufficient conditions for a curve γ̃ ∈ C∞([a, b],Rd×Rd), subject to the restricted
variations in Definition 3.3, to be an extremal of the action S : C∞(γ̃(a,b) ;Rd × Rd) → R (27) is
the so-called restricted fractional Euler-Lagrange equations:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
−Dα

−

(
∂L

∂Dα
+y

)
= 0, (28a)

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
−Dα

+

(
∂L

∂Dα
−x

)
= 0. (28b)

Proof. To find the extremals of S for restricted varied curves Γ(η,ε)(t) we impose the usual critical
condition, i.e. δS := d

dεS(Γ(η,ε))
∣∣
ε=0

= 0. Using that

d

dε
L(ΣΓ(η,ε)

)
∣∣∣
ε=0

=
∂L

∂x
δx+

∂L

∂ẋ
δẋ+

∂L

∂Dα
−x

Dα
−δx+

∂L

∂y
δx+

∂L

∂ẏ
δẋ+

∂L

∂Dα
+y

Dα
+δx,

where

ΣΓ(η,ε)
= (x+ ε δx, y + ε δx, ẋ+ ε d(δx)/dt, ẏ + ε d(δx)/dt,Dα

−x+ εDα
−δx,D

α
+y + εDα

+δx),

according to Γ(η,ε) in Definition 3.3, we obtain:

δS =

∫ b

a

{∂L
∂x

δx+
∂L

∂ẋ
δẋ+

∂L

∂Dα
−x

Dα
−δx+

∂L

∂y
δx+

∂L

∂ẏ
δẋ+

∂L

∂Dα
+y

Dα
+δx

}
dt (29)

=

∫ b

a

{∂L
∂x
− d

dt

(
∂L

∂ẋ

)
+Dα

+

(
∂L

∂Dα
−x

)
+
∂L

∂y
− d

dt

(
∂L

∂ẏ

)
+Dα

−

(
∂L

∂Dα
+y

)}
δx dt

+
∂L

∂ẋ
δx
∣∣∣b
a

+
∂L

∂ẏ
δx
∣∣∣b
a
,

where in the second equality we have integration by parts with respect to the total and fractional
derivatives (5a). According to the vanishing endpoint conditions, all the border terms are equal
to zero, leading to

δS = −
∫ b

a

{[ d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
−Dα

−

(
∂L

∂Dα
+y

)]
δx+

[ d
dt

(
∂L

∂ẏ

)
− ∂L

∂y
−Dα

+

(
∂L

∂Dα
−x

)]
δx
}
dt.

Finally, from this last expression and considering arbitrary δx, it is easy to see that the restricted
fractional Euler-Lagrange equations (30) are a sufficient condition for δS = 0; and the claim
holds. �

Remark 3.2. For unrestricted variations δx 6= δy, both arbitrary, and fixed endpoint conditions,
the necessary and sufficient conditions for the extremals of (27) are the (unrestricted) fractional
Euler-Lagrange equations:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
−Dα

+

(
∂L

∂Dα
−x

)
= 0,

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
−Dα

−

(
∂L

∂Dα
+y

)
= 0. (30)

Other derivations of fractional Euler-Lagrange equations can be found in [3]. Moreover, from the
linearity of the fractional derivatives (3), it is easy to prove that the restricted Euler-Lagrange
equations (28) are invariant under linear constant change of variables, i.e. x = Λ z, y = Λ z̄,
with Λ ∈ Rd×d a regular constant matrix. If furthermore we pick the Caputo definition of the
fractional derivatives (3b), the equations are invariant under affine change of variables x = Λ z+ζ,
y = Λ z̄ + ζ̄; for constant ζ, ζ̄ ∈ Rd (see [19] for more details). �

Define now the Lagrangian L : TRd → R by

L(x, y, ẋ, ẏ, Dα
−x,D

α
+y) := L(x, ẋ) + L(y, ẏ)−Dα

−x ρD
α
+y, (31)

where L : TRd → R is a C2 function, ρ = diag(ρ1, · · · , ρd) ∈ Rd×d and we represent the matrix
product µT M ν, for µ, ν ∈ Rd and M ∈ Rd×d, by µM ν. In this case, the restricted fractional
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Euler-Lagrange equations (28) read:
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x
+ ρDα

−D
α
−x = 0, (32a)

d

dt

(
∂L(y, ẏ)

∂ẏ

)
− ∂L(y, ẏ)

∂y
+ ρDα

+D
α
+y = 0, (32b)

which are the usual Euler-Lagrange equations for a Lagrangian system plus a fractional damping
term (1). The following proposition provides an interpretation of the y-mirror system.

Proposition 3.2. If we set y(t) := x(a+ b− t), which implies that γ̃ ∈ C∞(γ̃(a,b) ;Rd × Rd) with
γy(a) = xb, γy(b) = xa, and we consider an even Lagrangian function L : TRd → R in the second
variable, i.e. L(z,−ż) = L(z, ż), then (32b) is (32a) in reversed time.

Proof. Defining the reverse time by t̃ := a+ b− t for t ∈ [a, b], it is easy to see that ẏ(t) = −x′(t̃)
by applying the chain rule, where we consider x′(t̃) = dx(t̃)/dt̃. Then

∂L(y(t), ẏ(t))

∂y
=
∂L(x(t̃),−x′(t̃))

∂x
=1

∂L(x(t̃), x′(t̃))

∂x
,

d

dt

(
∂L(y(t), ẏ(t))

∂ẏ

)
=

d

dt

(
∂L(x(t̃),−x′(t̃))

∂ẏ

)
=2 − d

dt

(
∂L(x(t̃),−x′(t̃))

∂x′

)
=3

d

dt̃

(
∂L(x(t̃), x′(t̃))

∂x′

)
,

where in =1 we have used the parity L(x,−x′) = L(x, x′), and in =2 , =3 , the chain rule and the
redefinition of the time t̃ = a+ b− t and parity again, respectively. On the other hand, using (5b)
and according to (3a) and y(t) = x(a+ b− t):

D2α
+ y(t) =− 1

Γ(1− 2α)

d

dt

∫ b

t

(τ − t)−2αx(a+ b− τ)dτ

=1
1

Γ(1− 2α)

d

dt

∫ a

a+b−t
((a+ b− t)− τ̃)−2αx(τ̃)dτ̃

=2
1

Γ(1− 2α)

d

dt̃

∫ t̃

a

(t̃− τ̃)−2αx(τ̃)dτ̃ =3 D2α
− x(t̃),

where in =1 we have used the change of variables τ̃ = a + b − τ , in =2 the redefinition of time
and, in =3 , the definition of Dα

− in (3a). Plugging all these elements in (32b) we obtain

d

dt̃

(
∂L(x(t̃), x′(t̃))

∂ẋ

)
− ∂L(x(t̃), x′(t̃))

∂x
+ ρDα

−D
α
−x(t̃) = 0

for t̃ : b→ a, and the claim holds. �

Thus, our conclusion is that, for the (mechanical) Lagrangians of interest in this work, i.e.

L(z, ż) :=
1

2
ż m ż − U(z), (33)

with m = diag (m1, · · · ,md) ∈ Rd×d+ and U : Rd → R a smooth function, we can consider the
y-mirror system as the x-system in reversed time, as long as γy(t) is bounded by y(a) = xb and
y(b) = xa. Thus, doubling the space of curves as exposed in §3.1 allows us to surpass the issue
raised by the asymetric integration by parts (5a) without adding extra unnecessary (physical)
information to the dynamics. In addition, the non-causal terms in the action (27) due to the
presence of the advanced fractional derivative become causal in reversed time since Dα

+y(t) =

Dα
−x(t̃), as we just proved. Finally, we observe that the restricted varied curves introduced in

Definition 3.3 acquire a particular shape when we set y(t) = x(a+ b− t), as we show in Figure 1.

Remark 3.3. Note that the (unrestricted) fractional Euler-Lagrange equations (30) for the La-
grangians (31) read

d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x
+ ρDα

+D
α
+y = 0,

d

dt

(
∂L(y, ẏ)

∂ẏ

)
− ∂L(y, ẏ)

∂y
+ ρDα

−D
α
−x = 0,

which are a coupled system of fractional differential equations with meaningless dynamics. �
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Figure 1. We show the varied curves Γ(η,ε)(t) = (xε(t), yε(t)) = (x(t), y(t)) +
ε(δx(t), δx(t)), according to Definition 3.3, when we set y(t) = x(a+ b− t). The
horizontal arrows represent the two directions of time.

In addition, Dα
−D

α
− = D2α

− (5b); therefore α = 1/2 implies D2α
− = d/dt (5c). According to

this, it is easy to see that, given α = 1/2, then equation (32a) is equivalent to the forced Euler-
Lagrange equations (15) when fL(x, ẋ) = −ρ ẋ. This establishes the relationship between the
restricted Hamilton’s principle and the Lagrange-d’Alembert principle, expressed in Figure 2.

Figure 2. In the diagram it is reflected that the Lagrange-d’Alembert princi-
ple for a general Lagrangian and a particular set of external forces produce the
same forced equations as enlarging the phase space, then applying the restricted
Hamilton’s principle for the action S =

∫ b
a
L dt (27), and then setting α = 1/2.

Picking the mechanical Lagrangian (33), equations (32) read

mẍ+∇U(x) + ρDα
−D

α
−x = 0, (34a)

mÿ +∇U(y) + ρDα
+D

α
+y = 0, (34b)

which are the dynamical equations of a Lagrangian system with 2α fractional damping, and will
be considered in the examples, §5.

3.3. Preservation of presymplectic form. Before proving the preservation of a given presym-
plectic form in TRd we point out that the equations (32) define a continuous flow Ft : TRd → TRd,
with F0 =Id. The existence of this flow is ensured by the proof of existence and uniqueness of
the cited equations in Appendix. In particular, it is proven that given initial conditions (x0, ẋ0),
the existence and uniqueness of smooth (x(t), ẋ(t)) is ensured, ensuring furthermore the existence
and uniqueness of Dα

−x(t) according to definition (3) (equivalently for the mirror y-system). We
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shall ignore issues related to global versus local flows, which are easily dealt with by restricting
the domains of the flows. Given initial conditions Xα

0 := (x0, y0, ẋ0, ẏ0, 0, y
α
0 )2, the flow provides

Ft(X
α
0 ) = Xα(t), with Xα(t) := (x(t), y(t), ẋ(t), ẏ(t), Dα

−x(t), Dα
+y(t)).

Now, define the one-form and two-form on TRd, with L : TRd → R a C2 function:

Θ :=

(
∂L(x, ẋ)

∂ẋi
+
∂L(y, ẏ)

∂ẏi

)
dxi, (35a)

Ω :=dΘ =
∂2L

∂xj∂ẋi
dxi ∧ dxj +

∂2L

∂ẋj∂ẋi
dxi ∧ dẋj +

∂2L

∂yj∂ẏi
dxi ∧ dyj +

∂2L

∂ẏj∂ẏi
dxi ∧ dẏj . (35b)

It is straightforward to see that Ω is presymplectic on TRd, since the fractional variables are
absent, therefore it is degenerate, and dΩ = ddΘ = 0. We can establish the following preservation
result.

Proposition 3.3. The flow generated by the restricted fractional Euler-Lagrange equations when
we set the Lagrangian function (31), i.e. equations (32), preserves the presymplectic form Ω (35b).
In other words, F ∗t Ω = Ω.

Proof. The action (27), in our fractional context, can be seen as a function S : TRd → R, and its
variation δS = 〈dS , δXα

0 〉, where we set δXα
0 := (δx0, δy0, δẋ0, δẏ0, δx

α
0 , δy

α
0 ) ∈ TTRd arbitrary.

According to (29), when we pick the Lagrangian (31) and along the solutions of (32), we have that

〈dS , δXα
0 〉 =

(
∂L(x, ẋ)

∂ẋi
+
∂L(y, ẏ)

∂ẏi

)
δxi
∣∣∣t
t0

=1 〈Θ(Xα(t)), δXα(t)〉 − 〈Θ(Xα
0 ), δXα

0 〉

=2 〈Θ(Xα(t)), (Ft)∗δX
α
0 〉 − 〈Θ(Xα

0 ), δXα
0 〉 = 〈(Ft)∗Θ(Xα

0 ), δXα
0 〉 − 〈Θ(Xα

0 ), δXα
0 〉

= 〈(Ft)∗Θ(Xα
0 )−Θ(Xα

0 ) , δXα
0 〉,

where we have used arbitrary initial and final times t0, t, respectively. In =1 we have employed the
definition of Θ (35a); in =2 we have used the flow Ft : TRd → TRd introduced above. It follows
straightforwardly that

dS = (Ft)
∗Θ−Θ.

Now, taking the differential in both sides, considering that the differential and the pull-back
commute and the definition of Ω (35b), we obtain (Ft)

∗dΘ − dΘ = 0 and then F ∗t Ω = Ω, from
which the result follows. �

3.4. The Legendre transformation. Let us define the fractional Legendre transform FL :
TRd → T∗Rd as the fiber derivative for a Lagrangian function L : TRd → R, i.e.

FL : T(x,y)Rd −→ T∗(x,y)R
d

Σ(x,y) 7→ D(x,y)L(Σ(x,y)),
(36)

where D(x,y) denotes the partial derivative in the fiber T−1((x, y)). Locally we have

FL(Σ(x,y)) =

(
∂L

∂ẋ
,
∂L

∂ẏ
,
∂L

∂Dα
−x

,
∂L

∂Dα
+y

)
. (37)

It is easy to check that FL is fiber preserving [1]. Moreover, we will say that FL is regular if it is
a diffeomorphism, and furthermore we will call L regular if that is the case (which we will assume
throughout the article). Hence, we define the Hamiltonian function H : T∗Rd → R by

H(P(x,y)) := 〈FL(Σ(x,y)),Σ(x,y)〉 − L(Σ(x,y)), (38)

where the coordinates of P(x,y) := FL(Σ(x,y)) are given in (26) and 〈·, ·〉 : T∗(x,y)R
d×T(x,y)Rd → R

denotes the natural pairing. Employing these elements, we can establish the Hamiltonian version
of the restricted Hamilton’s principle.

2Observe that, according to (3), the only available value of Dα−x(t0) is 0.



FRACTIONAL DAMPING THROUGH RESTRICTED CALCULUS OF VARIATIONS 13

Theorem 3.2. A sufficient condition for a curve γ̃ ∈ C∞([a, b],Rd×Rd), subject to the restricted
variations in Definition 3.3, to be an extremal of the action S : C∞(γ̃(a,b) ;Rd × Rd) → R (27) is
the so-called restricted fractional Hamilton equations:

ẋ =
∂H

∂px
, Dα

−x =
∂H

∂pαx
, ṗx = −∂H

∂x
+Dα

−p
α
y , (39a)

ẏ =
∂H

∂py
, Dα

+y =
∂H

∂pαy
, ṗy = −∂H

∂y
+Dα

+p
α
x . (39b)

Proof. Setting the action (27) in its Hamiltonian form, i.e.

S(γ̃) =

∫ b

a

{
pxẋ+ py ẏ + pαxD

α
−x+ pαyD

α
+y −H(x, y, px, py, p

α
x , p

α
y )
}
dt,

and imposing the critical condition with restricted variations, i.e. δS = d
dεS(Γ(η,ε))

∣∣
ε=0

= 0, after
applying fractional and total integration by parts we arrive to

δS =

∫ b

a

{
δpx

(
ẋ− ∂H

∂px

)
+ δpy

(
ẏ − ∂H

∂y

)
+ δpαx

(
Dα
−x−

∂H

∂pαx

)
+ δpαy

(
Dα

+y −
∂H

∂pαy

)
+

(
−ṗx −

∂H

∂x
+Dα

+p
α
x − ṗy −

∂H

∂y
+Dα

−p
α
y

)
δx
}
dt+ pxδx

∣∣∣b
a

+ pyδx
∣∣∣b
a
,

which leads to

δS =

∫ b

a

{
δpx

(
ẋ− ∂H

∂px

)
+ δpαx

(
Dα
−x−

∂H

∂pαx

)
+

(
−ṗx −

∂H

∂x
+Dα

−p
α
y

)
δx

+δpy

(
ẏ − ∂H

∂y

)
+ δpαy

(
Dα

+y −
∂H

∂pαy

)
+

(
−ṗy −

∂H

∂y
+Dα

+p
α
x

)
δx
}
dt,

since the boundary terms vanish. From this last expression is straightforward to see that (39) is
a sufficient condition for the extremals given arbitrary variations δx, δpx, δpy, δpαx , δpαy . �

Remark 3.4. For unrestricted variations δx 6= δy, both arbitrary, and fixed endpoint conditions,
the necessary and sufficient conditions for the extremals of (27) are the (unrestricted) fractional
Hamilton equations:

ẋ =
∂H

∂px
, Dα

−x =
∂H

∂pαx
, ṗx = −∂H

∂x
+Dα

+p
α
x ,

ẏ =
∂H

∂py
, Dα

+y =
∂H

∂pαy
, ṗy = −∂H

∂y
+Dα

−p
α
y .

�

From (31) and (38) we get the Hamiltonian

H(x, y, px, py, p
α
x , p

α
y ) = H(x, px) +H(y, py)− pαx ρ−1 pαy , (40)

where H(z, pz) := 〈pz, ż〉 − L(z, ż). For the particular Hamiltonian (40), the restricted Hamilton
equations (39) read:

ẋ =
∂H

∂px
, Dα

−x = −ρ−1 pαy , ṗx = −∂H
∂x

+Dα
− p

α
y , (41a)

ẏ =
∂H

∂py
, Dα

+y = −ρ−1 pαx , ṗy = −∂H
∂y

+Dα
+ p

α
x . (41b)

We see that the x and y dynamics are also coupled in principle. On the other hand, in the next
result we show that the relationship between x and y systems is consistent with the Lagrangian
case under inversion of time.

Proposition 3.4. If we set y(t) := x(a+ b− t), py(t) := −px(a+ b− t) and pαy (t) := px(a+ b− t),
and we consider an even Hamiltonian function in the second variable, i.e. H(z,−pz) = H(z, pz),
then (41b) is (41a) in reversed time.
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Proof. Given that ẏ(t) = −x′(t̃) and

∂H(y(t), py(t))

∂py
=1

∂H(x(t̃),−px(t̃))

∂py
=2 −∂H(x(t̃),−px(t̃))

∂px
=3 −∂H(x(t̃), px(t̃))

∂px
,

where in =1 we use the hypotheses, in =2 the chain rule and in =3 the parity of the Hamiltonian;
we see that

ẏ(t) =
∂H(y(t), py(t))

∂py
⇒ −x′(t̃) = −∂H(x(t̃), px(t̃))

∂px
⇒ x′(t̃) =

∂H(x(t̃), px(t̃))

∂px
.

From the proof of Proposition 3.2, Dβ
+y(t) = Dβ

−x(t̃), and therefore it is easy to see that

Dα
+y(t) = −ρ−1 pαx(t)⇒ Dα

−x(t̃) = −ρ−1 pαy (t̃).

Finally, considering

∂H(y(t), py(t))

∂y
=
∂H(x(t̃),−px(t̃))

∂y
=
∂H(x(t̃), px(t̃))

∂x
,

where again we use the chain rule and the parity of the Hamiltonain, and that ṗy(t) = p′x(t̃)
according to the hypotheses, we get

ṗy(t) = −∂H(y(t), py(t))

∂y
+Dα

+ px(t)⇒ p′x(t̃) = −∂H(x(t̃), px(t̃))

∂x
+Dα

−p
α
y (t̃),

and the claim holds. �

The mechanical Hamiltonian

H(z, pz) =
1

2
pzm

−1 pz + U(z) (42)

presents even parity in the second variable, and therefore the previous result applies. The restricted
fractional Hamilton equations (41) in this case, after replacing the fractional relationship in the
dynamical equation for px and py, read

ẋ = m−1 px, ṗx = −∇U(x)− ρ Dα
−D

α
− x, (43a)

ẏ = m−1 py, ṗy = −∇U(y)− ρ Dα
+D

α
+ y, (43b)

where we recognize the usual Hamilton equations for mechanical systems plus a fractional damping
term. We observe that, after getting rid of the pure fractional equation, the dynamics of x and y
are again decoupled. Furthermore, when α = 1/2 it is easy to see that the x-equations (analogous
arguments can be applied to the y-equations) are equivalent to the forced Hamilton equations (17)
when fH(x, px) = −ρm−1px. Indeed, when α = 1/2:

ẋ =1 m−1px, ṗx = −∇U(x)− ρD1/2

− D1/2

− x =2 −∇U(x)− ρ ẋ = −∇U(x)− ρm−1px,

which are the usual Hamilton equations for mechanical systems with linear damping.

Remark 3.5. We observe in the right hand side of =2 that the damping force is not actually
defined in T ∗Rd, but in TRd, i.e. fL(x, ẋ) = −ρ ẋ, and that we can relate it to a pure “cotangent”
force thanks to =1 , say fH(x, px) = −ρm−1px. This is a specific phenomenon of our approach,
and differs from the usual description of forced systems §2.2.2. However, we observe as well that
both dynamics, i.e.

ẋ = m−1px, ṗx = −∇U(x)− ρ ẋ,
ẋ = m−1px, ṗx = −∇U(x)− ρm−1px, (44)

define the same subspace in TT ∗Rd, whose natural coordinates are (x, px, ẋ, ṗx). �

Remark 3.6. Define the one-form on T∗Rd given by ΘH := (FL)∗Θ, with Θ defined in (35a)
and FL in (37). Using the Lagrangian (31) and the coordinates (26), it is easy to see that
ΘH = (px + py) dx. Using analogous arguments than in Proposition 3.3, it is easy to see that the
flow generated by equations (41) preserves the presymplectic form ΩH := dΘH = dx∧dpx+dx∧dpy.
�
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4. Discrete restricted Hamilton’s principle

4.1. Discrete Lagrangian dynamics. Let us consider the increasing sequence of times {tk =
a + hk | k = 0, ..., N} ⊂ R where h is the fixed time step determined by h = (b − a)/N . Define a
discrete curve as a collection of points in Rd i.e. γd := {x0, x1, ..., xN−1, xN} = {xk}0:N ∈ R(N+1)d

(here R(N+1)d denotes (Rd)(N+1) := Rd×· · ·×Rd, the Cartesian product of (N +1) copies of Rd).
As usual, we will consider these points as an approximation of the continuous curve at time tk,
namely xk ' x(tk). Given {zk}0:N (later on we shall particularise in {xk}0:N and {yk}0:N ) define
the following sequences:

{Sκ zk}0:N−1 , Sκ zk := κ zk + (1− κ) zk+1, κ ∈ [0, 1] ⊂ R, (45a){
∆α
−zk

}
0:N

, ∆α
−zk :=

1

hα

k∑
n=0

αnzk−n, (45b)

{
∆α

+zk
}

0:N
, ∆α

+zk :=
1

hα

N−k∑
n=0

αnzk+n, (45c)

where

αn :=
−α (1− α) (2− α) · · · (n− 1− α)

n!
; α0 := 1. (46)

The discrete series ∆α
−xk (resp. ∆α

+yk) are an approximation of Dα
−x(tk) (resp. Dα

+y(tk)). For
more details on the approximation of fractional derivatives we refer to ([14], Chapter 5).

Remark 4.1. We observe that (45b), (45c) are well-defined for k = 0 and k = N . Namely,
straightforward computations lead to ∆α

−x0 = α0x0/h
α and ∆α

+yN = α0yN/h
α. �

Given two sequences {Fk}0:N , {Gk}0:N , the discrete fractional derivatives (45b), (45c), obey
the following discrete integration by parts relationships:

Lemma 4.1. Consider {Fk}0:N , {Gk}0:N , with F0 = FN = G0 = GN = 0. Then

N−1∑
k=0

(∆α
+Gk)Fk =

N∑
k=1

Gk(∆α
−Fk). (47a)

N−1∑
k=0

Gk+1(∆α
−Fk+1) =

N−1∑
k=1

(∆α
+Gk)Fk. (47b)

Proof. (47a) (see [10] for more details):

N∑
k=1

Gk(∆α
−Fk) =1

1

hα

N∑
k=1

k∑
n=0

αnGkFk−n =2
1

hα

N∑
k=0

k∑
n=0

αnGkFk−n =3
1

hα

N∑
n=0

N∑
k=n

αnGkFk−n

=4
1

hα

N∑
n=0

N−n∑
k=0

αnGk+nFk =5
1

hα

N∑
k=0

N−k∑
n=0

αnGk+nFk =6
1

hα

N−1∑
k=0

N−k∑
n=0

αnGk+nFk

=7

N−1∑
k=0

(∆α
+Gk)Fk.

In =1 the definition (45b) is used. In =2 F0 = 0 is taken into account. To prove =3 is enough to
notice that, for a fixed j = 0, ..., N, the elements ai := αiGjFj−i, i = 0, ..., j, on the left hand side,
disposed in columns, form an upper diagonal (N + 1) × (N + 1), whereas the same elements on
the right hand side, for j = 0, ..., N and i = j, ..., N , account for the transposed matrix; therefore
their total sums are equal. In =4 the sum index is rearranged. In =5 equivalent arguments to =3

can be used. In =6 FN = 0 is taken into account. Finally, in =7 the definition (45c) is used.
(47b):
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N−1∑
k=0

Gk+1(∆α
−Fk+1) =1

N∑
k=1

Gk(∆α
−Fk) =2

N−1∑
k=0

(∆α
−Gk)Fk =3

N−1∑
k=1

(∆α
+Gk)Fk.

In =1 we have arranged the sum index. In =2 we have used (47a) and, finally, in =3 we have used
F0 = 0. �

Remark 4.2. By simple inspection it is easy to check that the discrete asymetric integration by
parts does not hold for out of phase indices, for instance

∑N−1
k=0 (∆α

+Gk)Fk+1 6=
∑N−1
k=1 Gk(∆α

−Fk+1)
and similar cases. �

Next, according to §2.3, we shall consider the discrete Lagrangian as an approximation of the
continuous action (27), i.e.

Ld '
∫ tk+h

tk

L
(
x(t), y(t), ẋ(t), ẏ(t), Dα

−x(t), Dα
+y(t)

)
dt,

for a+ h < tk < b− h. As mentioned above, we shall use (45b),(45c) as discrete counterparts for
the fractional derivatives. We see that these discrete series imply the whole discrete past for x and
the whole discrete future for y at time tk. Thus, it is clear that the approximation of the action
in the discrete time interval [k, k + 1] would depend on x(0,k+1) := (x0, ..., xk+1) ∈ Rd(k+2) and
y(k,N) := (yk, ..., yN ) ∈ Rd(N+1−k), accounting for the discrete version of the non-locality of the
fractional derivatives. Moreover, it is explicit that the approximation of the action shall depend
as well on the interval [k, k + 1] and therefore on k. According to this, we establish the function

Lkd : Rd(k+2)
X × Rd(N+1−k)

Y −→ R

(x(0,k+1), y(k,N)) 7→ Lkd(x(0,k+1), y(k,N)),
(48)

where we remark the correspondence of the first k + 2 entries with the discrete x-path, and the
last N + 1− k with the y-path. If we define the sets of discrete curves as

Cxd =
{
γxd = {xk}0:N ∈ Rd(N+1) |x0 = xa, xN = xb

}
,

Cyd =
{
γyd = {yk}0:N ∈ Rd(N+1) | y0 = ya, yN = yb

}
,

then the discrete action sum is defined naturally by Sd : Cxd × C
y
d → R:

Sd(γ̃d) :=

N−1∑
k=0

Lkd(x(0,k+1), y(k,N)), (49)

where γ̃d := (γxd , γ
y
d ) ∈ Cxd × C

y
d . Next, we introduce the discrete restricted variations.

Definition 4.1. Given a discrete curve γ̃d = (γxd , γ
y
d ) ∈ Cxd × Cyd , we define the set of varied

discrete curves by
Γxε := γxd + ε δγxd , Γyε := γyd + ε δγyd . (50)

where δγxd := {δxk}0:N , δγ
y
d := {δyk}0:N are the discrete variations, defined such that

δx0 = δxN = 0, δy0 = δyN = 0. (51)

We define the set of restricted varied discrete curves, by

Γx(ε,η) := γxd + ε ηd, Γy(ε,η) := γyd + ε ηd, (52)

where we establish ηd = δγxd = δγyd . In other words, we set δxk = δyk for k = 1, ..., N − 1.

In the following proposition we establish the necessary and sufficient condition for the extremals
of (49) under restricted variations (discrete restricted Hamilton’s principle).
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Proposition 4.1. Given the discrete action (49) subject to restricted variations (52) and endpoint
conditions (51), the necessary and sufficient conditions for the extremals are

N−1∑
i=k−1

DxkL
i
d(x(0,i+1), y(i,N)) +

k∑
i=0

DykL
i
d(x(0,i+1), y(i,N)) = 0, (53)

for k = 1, ..., N − 1, where Dxk := ∂/∂xk and Dyk := ∂/∂yk.

Proof. The condition for the extremals is d
dεSd((Γ

x
(ε,η),Γ

y
(ε,η)))

∣∣∣
ε=0

= 0, which, as it is easy to see,
is equivalent to

δ

N−1∑
k=0

Lkd(x(0,k+1), y(k,N))

= δL0
d(x(0,1), y(1,N)) + δL1

d(x(0,2), y(1,N)) + · · ·

· · ·+ δLN−2
d (x(0,N−1), y(N−2,N)) + δLN−1

d (x(0,N), y(N−1,N)) = 0,

given that δxk = δyk. Considering the variations with respect to x and y separately, we obtain

δx

N−1∑
k=0

Lkd(x(0,k+1), y(k,N))

=Dx0
L0
d δx0 +Dx1

L0
d δx1

+D
x0
L1
d δx0 +D

x1
L1
d δx1 +D

x2
L1
d δx2

...
...

...

+D
x0
LN−1

d δx0 +Dx1
LN−1

d δx1 +Dx2
LN−1

d δx2 + · · ·+DxN−1
LN−1

d δxN−1 +DxN
LN−1

d δxN ,

where Dxi represents the partial derivative with respect to xi, and

δy

N−1∑
k=0

Lkd(x(0,k+1), y(k,N))

=D
y0
L0
d δx0 +D

y1
L0
d δx1 +D

y2
L0
d δx2 + · · ·+D

yN−1
L0
d δxN−1 +D

yN
L0
d δxN

+Dy1
L1
d δx1 +D

y2
L1
d δx2 + · · ·+D

yN−1
L1
d δxN−1 +D

yN
L1
d δxN

...
...

+DyN−1
LN−1

d δxN−1 +DyN
LN−1

d δxN .

Adding up the columns, we arrive to

δ

N−1∑
k=0

Lkd(x(0,k+1), y(k,N)) =
(N−1∑
i=0

D
x0
Lid +D

y0
L0
d

)
δx0

+

N−1∑
k=1

( N−1∑
i=k−1

DxkL
i
d +

k∑
i=0

DykL
i
d

)
δxk +

(
DxN

LN−1
d +

k∑
i=0

DykL
i
d

)
δxN .

Equating the last expression to 0, considering δx0 = δxN = 0 and arbitrary variations δxk, we
arrive directly to (53). �

Remark 4.3. Observe that the discrete Lagrangian problem established by (48) and (49) is of
the higher-order type, i.e. the discrete Lagrangian depends on multiple copies (more than two) of
the configuration manifold (see [8, 11] for more details). As striking difference with respect to the
kind of problem in these references, we note that the number of copies of RdX and RdY the discrete
Lagrangian (48) depends on is not fixed and is determined by k. This circumstance prevents in
general the definition of a discrete flow in the sense expressed in §2.3, where FLd : Q×Q→ Q×Q
can be obtained from (19) under regularity conditions. This can be seen as well noticing that all
variables are present at the same time in (53) for any k, which makes mandatory to solve them
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simultaneously in order to obtain the sequences {xk}0:N , {yk}0:N . However, we will see below
that particular choices of Lkd lead to actual discrete flows. �

Remark 4.4. For unrestricted variations (50), i.e. δxk 6= δyk and both arbitrary, and endpoint
conditions (51), the necessary and sufficient conditions for the extremals of (49) read

N−1∑
i=k−1

DxkL
i
d(x(0,i+1), y(i,N)) = 0,

k∑
i=0

DykL
i
d(x(0,i+1), y(i,N)) = 0; k = 1, ..., N − 1. �

Next, let us pick the discrete Lagrangian

Lkd(x(0,k+1), y(k,N)) := Ld(xk, xk+1) + Ld(yk, yk+1)− h∆α
−xk ρ∆α

+yk, (54)

where Ld : Rd×Rd → R is a particular discretisation of the continuous action integral defined for
the Lagrangian L : TRd → R in (31), the discrete fractional derivatives are defined in (45b), (45c)
and ρ ∈ Rd×d. Furthermore, we set LNd := 0 since Ld is not defined in such a case. Naturally, this
is the discrete counterpart of the continuous Lagrangian (31).

Theorem 4.1. Given the discrete Lagrangian (54), restricted variations (52) and endpoint con-
ditions (51), a sufficient condition for the extremals of (49) is

D1Ld(xk, xk+1) +D2Ld(xk−1, xk)− h ρ∆α
−∆α
−xk = 0, (55a)

D1Ld(yk, yk+1) + D2Ld(yk−1, yk)− h ρ∆α
+∆α

+yk = 0, (55b)

for k = 1, ..., N − 1, and Di denotes the partial derivative with respect to the i-th variable.

Proof. To prove the claim it is enough to show that equations (55) are a sufficient condition of
(53) to be satisfied.

First, we see that

∂

∂xk

N−1∑
i=k−1

Lid =
∂

∂xk

(
−
k−2∑
i=0

Lid +

N−1∑
i=0

Lid

)
=

∂

∂xk

N−1∑
i=0

Lid =
∂

∂xk

N∑
i=0

Lid, (56a)

∂

∂yk

k∑
i=0

Lid =
∂

∂yk

(
−

N−1∑
i=k+1

Lid +

N−1∑
i=0

Lid

)
=

∂

∂yk

N−1∑
i=0

Lid. (56b)

In (56a) we use that
∑k−2
i=0 ∂L

i
d/∂xk = 0 because there is no dependence of Lid on xk in the range

[0, k − 2], and that LNd = 0 in the last equality (which implies that we have already picked the
Lagrangian (54)). Equivalent arguments lead to

∑N−1
i=k+1 ∂L

i
d/∂yk = 0 in order to prove (56b).

Recalling that k = 1, ..., N − 1, from (56a) we get:

∂

∂xk

N−1∑
i=k−1

Lid =
∂

∂xk

N∑
i=0

Lid =1

N−1∑
i=1

(
D1Ld(xi, xi+1) +D2Ld(xi−1, xi)

)
δik − h

∂

∂xk

N∑
i=1

∆α
−xiρ∆α

+yi

=
N−1∑
i=1

(
D1Ld(xi, xi+1) +D2Ld(xi−1, xi)

)
δik − h

∂

∂xk

N−1∑
i=1

xiρ∆α
+∆α

+yi

=2

N−1∑
i=1

(
D1Ld(xi, xi+1) +D2Ld(xi−1, xi)− h ρ∆α

+∆α
+yi

)
δik

= D1Ld(xk, xk+1) +D2Ld(xk−1, xk)− h ρ∆α
+∆α

+yk,

where δij represents the Kronecker delta. In the previous computation, right hand side of =1 , we
have taken into account that

∂

∂xk

N∑
i=0

∆α
−xi ρ∆α

+yi =
∂

∂xk

N∑
i=1

∆α
−xi ρ∆α

+yi

given that ∂(∆α
−x0 ρ∆α

+y0)/∂xk = 0 for k = 1, ..., N − 1. Moreover, in the right hand side of =2

we have used (47a), ∂(x0 ρ∆α
+∆α

+y0)/∂xk = 0 and ∂xi/∂xk = δij for k in the range [1, N − 1].
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Using equivalent arguments, it can be proven from (56b) that:

∂

∂yk

k∑
i=0

Lid =
∂

∂yk

N−1∑
i=0

Lid =

N−1∑
i=1

(
D1Ld(yi, yi+1) +D2Ld(yi−1, yi)− h ρ∆α

−∆α
−xi

)
δik

= D1Ld(yk, yk+1) +D2Ld(yk−1, yk)− h ρ∆α
−∆α
−xk,

where again (47a) and the range k = 1, ..., N − 1 are used.
Adding both terms together and equating the sum to 0, which accounts for (53), we obtain:

D1Ld(xk, xk+1) +D2Ld(xk−1, xk)− h ρ∆α
+∆α

+yk

+D1Ld(yk, yk+1) +D2Ld(yk−1, yk)− h ρ∆α
−∆α
−xk = 0.

Swapping the fractional terms and equating each block to 0, we directly obtain (55) as a sufficient
condition for (53) to hold. �

We note that equations (55) are the natural discrete version of (32).

Remark 4.5. Observe that a term h∆α
−xk+1∆α

+yk+1 is admissible in (54) according to the defini-
tion (48), leading to a term h

∑N−1
k=0 ∆α

−xk+1∆α
+yk+1 in the action sum (49). However, it provides

the same discrete dynamics as ∆α
−xk∆α

+yk, according to (47b), which makes it redundant. Further
terms, as those described in Remark 4.2, are meaningless since the asymetric integration by parts
is not defined for them. �

In the next result we prove that the x and y dynamics in (55) are also related under inversion
of time at a discrete level.

Proposition 4.2. Given yk := xN−k, then (55b) is (55a) in reversed discrete time.

Proof. We define the reversed discrete time as k̃ := N − k, such that k̃ = N, ..., 0, for k = 0, ..., N .
Given that, we observe that, under inversion of time:

D1Ld(yk, yk+1) + D2Ld(yk−1, yk) = D1Ld(xN−k, x(N−k)+1) + D2Ld(x(N−k)−1, xN−k)

= D1Ld(xk̃, xk̃+1) + D2Ld(xk̃−1, xk̃).

On the other hand:

∆α
+∆α

+yk =
1

h2α

N−k∑
n=0

αn

N−k−n∑
p=0

αp yk+n+p =
1

h2α

(N−k)∑
n=0

αn

(N−k)−n∑
p=0

αp x(N−k)−n−p

=
1

h2α

k̃∑
n=0

αn

k̃−n∑
p=0

αp xk̃−n−p = ∆α
−∆α
−xk̃.

Multiplying ∆α
−∆α
−xk̃ by h ρ, adding it to D1Ld(xk̃, xk̃+1) + D2Ld(xk̃−1, xk̃) and equating the

sum to 0, the claim holds. �

As advanced in Remark 4.3, in spite all variables are present at the same time in (53), which
a priori makes necessary to solve them all simultaneously, we can find particular and meaningful
Lagrangian functions (54) such that the discrete dynamics (55a) (we restrict ourselves to the x-
system since we have just proved that y can be interpreted as x in reversed time) is provided by
a discrete flow. That is established in the following algorithm, accounting for the definition of the
FVIs:

Algorithm 3. Fractional Variational Integrator Scheme
1: Initial data: N, h, α, ρ, x0, px0 .
2: solve for x1 from px0 = I(x0, x1).
3: Initial points: x0, x1.
4: for k = 1 : N − 1 do

solve for xk+1 from D1Ld(xk, xk+1) +D2Ld(xk−1, xk)− h ρ∆α
−∆α
−xk = 0

5: end for
6: Output: (x2, ..., xN ).
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end

Observe that the initialisation condition in Step 2, i.e. px0
= I(x0, x1), has to be properly

determined. This will be object of discussion when defining the fractional discrete Legendre
transformation in §4.3.

4.2. Discrete mechanical Lagrangian. Now, let us pick the discrete Lagrangian

Ld(zk, zk+1) :=
1

2h
(zk+1 − zk)m (zk+1 − zk)− hU(Sκzk), (57)

where Sκzk is given in (45a), as the usual discretisation of the mechanical Lagrangian (33). In
this case, (55) read

m
xk+1 − 2xk + xk−1

h2
+ κ∇U(Sκxk) + (1− κ)∇U(Sκxk−1) + ρ∆α

−∆α
−xk = 0,

m
yk+1 − 2yk + yk−1

h2
+ κ∇U(Sκyk) + (1− κ)∇U(Sκyk−1) + ρ∆α

+∆α
+yk = 0,

(58)

where we have divided both sides by h. We observe that these equations are a discretisation in
finite differences of (34).

According to what happens in the continous case, i.e. D2α
− = d/dt when α = 1/2, we expect

a particular discretisation of the total time derivative from the term ∆α
−∆α
−xk. This is proven in

the following result.

Lemma 4.2. For α = 1/2 and k = 1, ..., N − 1,

h∆1/2

− ∆1/2

− xk =

k∑
n=0

αn
∣∣
α=1/2

k−n∑
p=0

αp
∣∣
α=1/2

xk−n−p = xk − xk−1.

Proof. According to (46) we have that α0 = 1 and α1 = −1/2 for α = 1/2, leading, after expanding
the summations, to

k∑
n=0

αn

k−n∑
p=0

αpxk−n−p = (xk − xk−1) +

k∑
n=2

2αnxk−n +

k∑
n=1

αn

k−n∑
p=1

αpxk−n−p.

In this expansion, the value of the sum when k = 0, explicited in Remark 4.1, has been taken into
account. The claim automatically holds for k = 1. For k ≥ 2, arranging the sum indices we see
that the previous expression can be rewritten as

k∑
n=0

αn

k−n∑
p=0

αpxk−n−p =(xk − xk−1)

+

r∑
s=2

βs0xk−s +

k−(r+1)∑
l=0

βr+1
l xk−(r+1)−n +

k∑
n=r

αn

k−n∑
p=1

αpxk−n−p,

(59)

where, for a fixed k, we set r = k − 1 and

βjl = 2αl+j +

j−1∑
i=1

αiαl+j−i, (60)

(it is apparent that j is not a power but a superindex). For a fixed k = k̃, (59) acquires the form

k̃∑
n=0

αn

k̃−n∑
p=0

αpxk̃−n−p = (xk̃ − xk̃−1) + β2
0xk̃−2 + β3

0xk̃−3 + · · ·+ βk̃−2
0 x2 + βk̃−1

0 x1 + βk̃0x0.

According to this, it is enough to prove that βj0 = 0 for any j, for which we proceed by induction.
From (60) and (46), it follows that β2

0 = 2α2 + α1α1, which vanishes for α = 1/2. Taking this as
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the first induction step, it is enough to prove that βj+1
0 = 0 assuming that βj0 = 0. This is shown

next:

βj+1
0 = 2αj+1 +

j∑
i=1

αiαj+1−i = 2αj+1 +

r−1∑
i=1

αiαr−i

= 2αj+1 − 2αr + 2αr +

r−1∑
i=1

αiαr−i = 2αj+1 − 2αr = 0,

where we have set r = j + 1. Hence the claim follows. �

Using similar arguments, one can prove that

h∆1/2

+ ∆1/2

+ yk =

N−k∑
n=0

αn
∣∣
α=1/2

N−k−n∑
p=0

αp
∣∣
α=1/2

yk+n+p = −(yk+1 − yk).

It follows straightforwardly that

∆1/2

− ∆1/2

− xk =
xk − xk−1

h
, ∆1/2

+ ∆1/2

+ yk = −yk+1 − yk
h

, (61)

showing that ∆1/2

− ∆1/2

− xk, ∆1/2

+ ∆1/2

+ yk are the backward and forward (up to a minus sign) difference
operators, respectively; thus order one approximations of the velocity. This leads to the following
corollary of Theorem 4.1.

Corollary 4.2. Given α = 1/2, then (55a) is equivalent to the forced discrete Euler-Lagrange
equations (23) when f−Ld(xk, xk+1) = 0, f+

Ld
(xk, xk+1) = −ρ (xk+1 − xk).

Proof. The result follows straightforwardly by replacing (61) (first relationship) in (55a) and com-
paring with (23) for f−Ld(xk, xk+1) = 0, f+

Ld
(xk, xk+1) = −ρ (xk+1 − xk). �

An equivalent result can be obtained for the y-mirror system setting f−Ld(yk, yk+1) = ρ(yk+1−yk)

and f+
Ld

(yk, yk+1) = 0. This discussion makes explicit the relationship between the discretisation of
the Lagrange-d’Alembert principle (§2.3.2, (23)) and the restricted Hamilton’s principle developed
in this work, that we display in Figure 3 (where we omit the y-system for sake of simplicity).

Figure 3. In the diagram it is reflected that the Lagrange-d’Alembert principle
for a general discrete Lagrangian and a particular set of discrete forces, produce
the same discrete forced equations as enlarging the discrete phase space, then
applying the discrete restricted Hamilton’s principle for Lkd (54), and then setting
α = 1/2.
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4.3. Discrete Legendre transformation. The main guidelines to construct the discrete Le-
gendre transformation in the fractional case are the following:

1. As in the usual discrete mechanics §2.3, we want to reproduce the discrete Lagrangian
dynamics (55) through momentum matching.

2. We seek for a fair discretisation of the fractional Hamilton equations in the case of me-
chanical Hamiltonians (41).

3. We intend to obtain initialisation condition (Step 2) for Algorithm 3.
According to this, we provide the following definition of the discrete Legendre transformation.
Previously, we introduce the intermediate variables:

xαk := ∆α
−xk, yαk := ∆α

+yk,

and replace them into the Lagrangian (54) in order to establish the following definition

Lkd(x(0,k+1), y(k,N)) := L̃kd(xk, xk+1, yk, yk+1, x
α
k , y

α
k , x

α
k+1, y

α
k+1). (62)

For the sake of generality, we allow the presence of xαk+1 = ∆α
−xk+1 and yαk+1 = ∆α

+yk+1, which
are admissible as discussed in Remark 4.5.

Definition 4.3. Given the discrete Lagrangian (62), we define the discrete Legendre transforma-
tion by: [

p−xk
p−yk

]
= −

[
Dxk L̃

k
d

Dyk L̃
k
d

]
−
[
∆α
− ∆α

+

] [0 1
1 0

] [
Dxαk

L̃kd
Dyαk

L̃kd

]
, (63a)[

p+
xk+1

p+
yk+1

]
=

[
Dxk+1

L̃kd
Dyk+1

L̃kd

]
+
[
∆α
− ∆α

+

] [0 1
1 0

] [
Dxαk+1

L̃kd
Dyαk+1

L̃kd

]
, (63b)[

pαxk
pαyk

]
=

[
Dxαk

L̃kd
Dyαk

L̃kd

]
(63c)

where we consider the row matrix [∆α
− ∆α

+] in the sense of operators.

Proposition 4.3. Given the discrete Legendre transformation in Definition (4.3), the particu-
lar discrete Lagrangian L̃kd = Ld(xk, xk+1) + Ld(yk, yk+1) − hxαk+1 ρ y

α
k+1 and the intermediate

variables xαk := ∆α
−xk, y

α
k := ∆α

+yk, the following statements are true:
1. The momentum matching condition p−xk = p+

xk
, p−yk = p+

yk
, is equivalent to the discrete

Lagrangian dynamics (55).
2. Given the mechanical Hamiltonian (42) and Ld(zk, zk+1) = 1

2h (zk+1− zk)m (zk+1− zk)−
hU(zk+1), i.e. we pick κ = 0 in (45a),(57) , then (63) provides a discretisation of (41).

3. Under the hypotheses of Statement 2, when α = 1/2 (63) provides a discretisation of (44),
i.e. the Hamiltonian dynamics with linear damping.

Proof. Statement 1: from (63a), (63b) and L̃kd = Ld(xk, xk+1) + Ld(yk, yk+1) − hxαk+1ρy
α
k+1 it

follows:[
p−xk
p−yk

]
= −

[
D1Ld(xk, xk+1)
D1Ld(yk, yk+1)

]
,[

p+
xk+1

p+
yk+1

]
=

[
D2Ld(xk, xk+1)
D2Ld(yk, yk+1)

]
− h ρ

[
∆α
− x

α
k+1

∆α
+ y

α
k+1

]
=

[
D2Ld(xk, xk+1)
D2Ld(yk, yk+1)

]
− h ρ

[
∆α
−∆α
− xk+1

∆α
+∆α

+ yk+1

]
.

Now setting the momentum matching condition p−xk = p+
xk
, p−yk = p+

yk
it is straightforward to

obtain (55).
Statement 2: under the hypotheses, we have that (41) read

ẋ = m−1px, Dα
−x = −ρ−1 pαy , ṗx = −∇U(x) +Dα

− p
α
y ,

ẏ = m−1py, Dα
+y = −ρ−1 pαx , ṗy = −∇U(y) +Dα

+ p
α
x .

(64)

On the other hand, from (63) we get
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[
pxk
pyk

]
=

[
mxk+1−xk

h

myk+1−yk
h

]
,[

pxk+1

pyk+1

]
=

[
mxk+1−xk

h − h∇U(xk+1)

myk+1−yk
h − h∇U(yk+1)

]
−
[
h ρ∆α

− x
α
k+1

h ρ∆α
+ y

α
k+1

]
,[

pαxk+1

pαyk+1

]
= −

[
h ρ yαk+1

h ρxαk+1

]
= −

[
h ρ∆α

+ yk+1

h ρ∆α
− xk+1

]
.

(Observe that, in the last equation, we have taken a k-step forward in (63c)). From this, splitting
x and y sides and rearranging terms, we obtain

xk+1 = xk + hm−1pxk , ∆α
− xk+1 = −h−1ρ−1pαyk+1

, pxk+1
= pxk − h∇U(xk+1) + ∆α

−p
α
yk+1

,

yk+1 = yk + hm−1pyk , ∆α
+ yk+1 = −h−1ρ−1pαxk+1

, pyk+1
= pyk − h∇U(yk+1) + ∆α

+p
α
xk+1

,

(65)

which are a natural discretisation of (64).
Statement 3: we focus on the x-system in (65). Replacing the fractional equation into the third

one, we obtain

xk+1 = xk + hm−1pxk , pxk+1
= pxk − h∇U(xk+1)− h ρ∆1/2

− ∆1/2

− xk+1

=1 pxk − h∇U(xk+1)− ρ (xk+1 − xk)

=2 pxk − h∇U(xk+1)− h ρm−1 pxk ,

where, in =1 we have employed Lemma 4.2 and in =2 we have employed the discrete x-dynamics,
i.e. xk+1 = xk + hm−1pxk . Naturally, the previous equations are a discretisation of (44). �

Furthermore, the discrete Legendre transformation in Definition 4.3 provides a initialisation
step px0

= I(x0, x1) (Step 2) for Algorithm 3. Namely, the x-part of (63a) reads

pxk = −Dxk L̃
k
d −∆α

−D
α
xk
L̃kd, (66)

which, for k = 0, only involves px0
, x0 and x1. For the particular L̃kd in the theorem above, the

initial condition reads px0
= −D1Ld(x0, x1).

Remark 4.6. The matrix
[
0 1
1 0

]
in second term of the right hand side of (63a) and (63b) obeys

to the necessity of decoupling x and y dynamics at the discrete level, which we achieved by
restricting the variations and setting the critical conditions as (only) sufficient in the Lagrangian
side, as shown in Proposition 4.1 and Remark 4.4. In other words, it can be considered as a
discrete Hamiltonian consequence of the restricted Hamilton’s principle. �

Remark 4.7. It is interesting to note that the result remains the same for any L̃kd = Ld(xk, xk+1)+
Ld(yk, yk+1) − κ̃ h xαk ρ yαk − (1 − κ̃)hxαk+1 ρ y

α
k+1, with κ̃ ∈ [0, 1], which is a way of rephrasing

Remark 4.5. However, the presence of xαk turns the initial condition (66) meaningless from a
physical point of view, which makes convenient setting κ̃ = 0. In that case, the pick of Ld(xk, xk+1),
which implies a particular choice of κ in (45a) and (57), leads to different discretisations of (64)
and (44). We remark that the chosen one (κ = 0) preserves the semi-implicitness of variables x, px
of the symplectic-Euler methods [36] for (44); say: the final integrator is explicit in the variable
px and implicit in the variable x. �

5. Numerical simulations

As a first test example, we employ the linearly damped harmonic oscillator with potential
function U(x) = cx2/2 and dynamical equation (exactly solvable):

mẍ+ cx+ ρẋ = 0, (67)

with m = 1, c = 1, ρ = 0.2, x(0) = 1 and px(0) = ẋ(0) = 0.5 in the simulations.
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Figure 4. Fractional Variational Integrators (FVIs), determined by Algorithm
3, for several values of α, with h = 0.5 and N = 30. The Exact (red) line
corresponds to the exact solution of (67) for the given set of parameters and initial
conditions.

In Figure 4, we show the outcome of Algorithm 3 with initial condition px0
= −D1Ld(x0, x1)

according to (66), for several α’s, where we choose κ = 1/2 in (57) since it provides the midpoint
rule for the potential and it is where the maximum local truncation order (namely 2) is achieved in
usual low-order variational integrators [22]. We observe that the FVI approximates properly the
solution of (67) when α = 1/2, which is natural since that is the case when (34a)→ (67) (in other
words, D1/2

− D1/2

− = d/dt). Moreover, according to Corollary 4.2, that is also the case when the FVI
is equivalent to the Forced Variational Integrator (coming out of the discrete Lagrange-d’Alembert
principle), Algorithm 2, when f+

Ld
(xk, xk+1) = −ρ (xk+1 − xk). This theoretical agreement is

numerically tested (and shown) up to machine rounding error in Figure 5 (Lower-Left plot), for
the different implementations of both Algorithms 3 and 2. We also show the comparison of the
FVI to implicit and explicit Euler integrators for (44), choosing a smaller h for the latter, which
is necessary to obtain stable simulations for the explicit Euler scheme. In particular, we compare
the x-trajectories in Figure 5 (Upper plots) and the energy in Figure 6 (Left and Middle plots),
where naturally, we define the continuous and discrete energies by E(t) = p(t)2/2m+cx(t)2/2 and
Ek = p2

k/2m + cx2
k/2 for k = 0, ..., N ; respectively. While implicit and explicit Euler artificially

gains respectively looses energy, the FVI respects the energy decay due to the dissipation much
better and is very close to the exact solution.

We finally do a numerical convergence study by investigating the global error in both x and px
variables (Lower-Right plot in Figure 5) as well as for the energy (Right plot in Figure 6). Here,
the global error is defined as

max |x(tk)− xk|, ∀ k,
and equivalently for any other quantity. For all quantities the convergence is of order O(h0.94),
i.e. we obtain a convergence rate of approximately 1.
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Figure 5. Upper-Left: FVI vs. implicit Euler for h = 0.2. Upper-Right: FVI
vs. explicit Euler for h = 0.1. Lower-Left: Difference FVI-Lagrange-d’Alembert
integrators: xFV Ik − xLdAk for h = 0.2. Lower-Right: Log-Log plot of the global
error of x and px vs. the time step h for FVI.

Figure 6. Left: FVI vs. implicit Euler for h = 0.2. Middle: FVI vs. explicit
Euler for h = 0.1. Right: Log-Log plot of the global error of the energy vs. the
time step h for FVI.

As for α 6= 1/2, we employ the following test example:

ẍ+ x+D3/2

− x = F (t), F (t) = 8 for 0 ≤ t ≤ 1, F (t) = 0 for t > 1, (68)

and initial conditions x(0) = ẋ(0) = 0. This equation corresponds to (34a) when U(x) = x2/2,
m = ρ = 1, α = 3/4 and we add the inhomogeneous external force F (t) in the right hand side
(which can be easily carried out by equating the virtual work of such a force and the variation
of the actions (27) and (49), in continuous and discrete scenarios, respectively, under restricted
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calculus of variations). Equation (68) has an exact solution3, but it is of difficult implementation.
For that reason, we employ the benchmark numerical solution designed for MatLab in [31]. We
display the performance of the FVI versus the benchmark solution (with a much smaller time
step) (Left plot in Figure 7) and observe a global convergence of order O(h0.97) (Right plot in
Figure 7), i.e. a convergence rate of approximately 1 as for the α = 1/2 case.

Figure 7. Left: Benchmark solution (h = 5× 10−3) vs. FVI (h = 10−1). Right:
Log-Log plot of the global error of x vs. the time step h (with the benchmark
solution as reference).

6. Conclusions

We have developed a restricted Hamilton’s principle providing the dynamics of Lagrangian
systems subject to fractional damping (1) (continuous setting), (2) (discrete setting), as sufficient
conditions for the extremals of the action. The discrete dynamics (2) is the result of the discretisa-
tion of the mentioned restricted Hamilton’s principle (instead of the discretisation of the equations
(1) themselves), following the spirit of discrete mechanics and variational integrators [22]. As it is
well-know, the variational principles and preservation properties (symplecticity, Noether’s theorem
[1]) of the generated dynamics are closely related; we find a particular example in our approach,
say the preservation of the presymplectic form Ω (35b), as proven in Proposition 3.3. Nevertheless,
the dynamical importance of Ω has to be clarified in future work. This two-form is defined on the
fractional state space, Definition 3.2, which is designed to accomodate the fractional derivatives.
It is a vector bundle over the real space, particularly Rd × Rd, which is necessary due to the
unclear unique definition of fractional derivatives (3) on a general smooth manifold Q. From the
geometrical perspective, an interesting challenge for future work is to carry out this generalisation.

The discretisation of the restricted fractional principle leads to the discrete equations (2), and
to what we denote Fractional Variational Integrators FVIs, via the Algorithm 3. When α = 1/2,
the theoretical local truncation order of FVIs is 1 [20], which is consistent with the observed global
convergence order, i.e. O(h0.94), in Figure 5, Lower-Right plot. However, this global convergence
and the local truncation order 1 represents an improvement from what is expected from the order
theorems in [22, 30], since, as proven in [24], ∆α

−xk (45b) is only a consistent approximation of
Dα
−x(tk) (3a), and thus one would expect a slower global convergence. This is an interesting

phenomenom to explore in future works. Moreover, the performance of FVI is proven to be
superior to other order 1 methods, such as both Euler’s. This is particularly evident with respect
to the energy, as shown in Figure 6, accounting for another example of the superior performance of

3Particularly, it is a so-called inhomogeneous sequential fractional differential equation, i.e.(
D
n/q
− + a1D

(n−1)/q
− + · · ·+ anD

0
−

)
x(t) = F (t),

with (n, q) = (4, 2), a1 = a4 = 1, a2 = a3 = 0 [25].
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integrators with variational origin in this aspect. In the context of this work, this is furthermore
explained thanks to the relationship between the FVI and the Forced Variational Integrators,
Algorithm 2, obtained from the discrete Lagrange-d’Alembert principle, which is established in
Corollary 4.2. Naturally, we also test the FVI for α 6= 1/2.

We notice that the chosen discretisations limit the local truncation order of the FVIs and
their global convergence. Thus, as a natural extension of this work, we intend to carry out the
application of higher-order techniques, as introduced in [27, 29].

Appendix: Existence and uniqueness of solutions of fractional differential
equations (32)

We study the existence and uniqueness of solutions of (32). It has been proven, Proposition
3.2, that x and y systems are equivalent in reversed directions of time. Thus, we focus on the
x-system and set d = 1 for simplicity. We are considering L : TR→ R a C2 function; furthermore
we shall consider

(
∂2L/∂ẋ∂ẋ

)−1 smooth. All in all, (32a), can be expressed as

ẋ = v,

v̇ = f(x, v) + ρ̄(x, v)Dβ
−x,

(69)

with initial condition x(t0) = x0, v(t0) = v0, β = 2α and f, ρ̄ : R2 → R given by

f(x, v) =

(
∂2L

∂v∂v

)−1(
− ∂2L

∂x∂v
v +

∂L

∂x

)
, ρ̄(x, v) = −

(
∂2L

∂v∂v

)−1

ρ,

with ρ ∈ R+, adding up for the vector field F : R2 → R2

F (x, y) :=
(
v , f(x, v) + ρ̄(x, v)Dβ

−x
)
. (70)

In proving the existence and uniqueness of solutions of (69), we shall take a local approach;
in particular we consider the set B = It × Ix × Iv ⊂ R3, with It = [t0 − δt, t0 + δt], Ix =
[x0−δx, x0 +δx], Iv = [v0−δv, v0 +δv], It ⊂ [a, b] and δt, δx, δv ∈ R+. We consider Rd as a Banach
space equipped with the norm

||v|| = max {|v1|, |v2|, ..., |vd|} , v ∈ Rd.

Given that, we define the cylinder C = It × D, with D =
{

(x, v) ∈ R2 | ||(x, v)− (x0, v0)|| ≤ b
}
,

b = ||(δx, δv)||. We establish the following hypotheses:

H1. ||f(x, v)− f(x̃, ṽ)|| ≤ K||(x, v)− (x̃, ṽ)|| in D for K ∈ R+.
H2. ρ̄ is continuous in D.

Note that these two hypotheses follow directly from the assumptions over L and
(
∂2L/∂ẋ∂ẋ

)−1,
say they are C2 and smooth, respectively. Given this, our strategy is to prove that the vector
field (70) satisfy the required conditions to apply both Peano and Picard-Lindelöf theorems [21],
ensuring the existence and uniqueness of solutions of (69) in C̃ = Ĩt×D, with Ĩt = [t0− δ̃t, t0 + δ̃t],
δ̃t =min{δt , b/M}, where M ∈ R+ is constructed in the proof below. Moreover, this solution
(x(t), v(t)) can be set smooth by establishing the proper Banach space of functions when applying
the aforementioned theorems.

Proposition 6.1. Given the hypotheses H1, H2, the following is true: F : D→ R2

(1) is bounded.
(2) is Lipschitz continuous.

Proof. (1) Let (x, v) ∈ D, then ||F (x, v)|| =max
{
|v|, |f(x, v) + ρ̄(x, v)Dβ

−x|
}
. On the one hand,

|v| ≤ |v0 + b| <∞. On the other, by H1 f is continuous in D and therefore |f(x, v)| ≤Mf <∞.
By H2, ρ̄ is also continuous; thus |ρ̄(x, v)| ≤ Mρ̄ < ∞. Now, we shall use the Caputo definition
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(3b) of the fractional derivative in (70), just by using the relationship (4) and setting x0 = 0.With
that, in It ×D we have

|f(x, v) + ρ̄(x, v)Dβ
−x| ≤ |f(x, v)|+ |ρ̄(x, v)||Dβ

−x| ≤Mf +Mρ̄|Dβ
−x|

=Mf +
Mρ̄

Γ(1− β)

∣∣∣ ∫ t

t0

(t− τ)−β ẋ(τ)dτ
∣∣∣ = Mf +

Mρ̄

Γ(1− β)

∣∣∣ ∫ t

t0

(t− τ)−βv(τ)dτ
∣∣∣

≤Mf +
Mρ̄

Γ(1− β)

∫ t

t0

|(t− τ)−β ||v(τ)|dτ ≤Mf +
Mρ̄|v0 + b|
Γ(1− β)

∫ t

t0

|(t− τ)−β |dτ

≤Mf +
Mρ̄|v0 + b|
Γ(1− β)

δ1−β
t <∞,

where, according to β = 2α, we consider α ∈ [0, 1/2], since β must be less of equal to 14. From this,
it follows that ||F (x, v)|| ≤M <∞, where M =

{
|v0 + b| or Mf +

Mρ̄|v0+b|
Γ(1−β) δ

1−β
t

}
, depending on

whether the max
{
|v|, |f(x, v) + ρ̄(x, v)Dβ

−x|
}

is achieved in the first or second entry.

(2) We have that

||F (x, v)− F (x̃, ṽ)|| = ||
(
v − ṽ, f(x, v)− f(x̃, ṽ) + ρ̄(x, v)Dβ

−x− ρ̄(x̃, ṽ)Dβ
−x̃
)
||, (71)

which is equal to the maximum of the absolute value of both entries. On the one hand

|v − ṽ| ≤ ||(x, y)− (x̃, ṽ)||, (72)

by construction. On the other

|f(x, v)− f(x̃, ṽ) + ρ̄(x, v)Dβ
−x− ρ̄(x̃, ṽ)Dβ

−x̃| ≤ |f(x, v)− f(x̃, ṽ)|+ |ρ̄(x, v)Dβ
−x− ρ̄(x̃, ṽ)Dβ

−x̃|

≤K||(x, y)− (x̃, ṽ)||+Mρ̄|Dβ
−x−D

β
−x̃| = K||(x, y)− (x̃, ṽ)||+ Mρ̄

Γ(1− β)

∣∣ ∫ t

t0

(t− τ)−β(v(τ)− ṽ(τ))dτ
∣∣

≤K||(x, y)− (x̃, ṽ)||+ Mρ̄

Γ(1− β)
||(x, y)− (x̃, ṽ)||

∫ t

t0

|(t− τ)−β |dτ

≤K||(x, y)− (x̃, ṽ)||+ Mρ̄δ
1−β
t

Γ(1− β)
||(x, y)− (x̃, ṽ)|| =

(
K +

Mρ̄δ
1−β
t

Γ(1− β)

)
||(x, y)− (x̃, ṽ)||,

where we have used H1, H2 and (72). Thus, it follows that

||F (x, v)− F (x̃, ṽ)|| ≤ K̃ ||(x, y)− (x̃, ṽ)||,

where K̃ =
{

1 orK +
Mρ̄δ

1−β
t

Γ(1−β)

}
, depending on whether the maximum on the right hand side of

(71) is achieved on the first or second entry. In both cases, K̃ ∈ R+. �
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