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Abstract
It is well known that elastic effects can cause surface instability. In

this paper, we analyze a one-dimensional discrete system which can
reveal pattern formation mechanism resembling the “step-bunching”
phenomena for epitaxial growth on vicinal surfaces. The surface steps
are subject to long range pairwise interactions taking the form of a
general Lennard–Jones (LJ) type potential. It is characterized by two
exponents m and n describing the singular and decaying behaviors of
the interacting potential at small and large distances, and henceforth
are called generalized LJ (m,n) potential. We provide a systematic
analysis of the asymptotic properties of the step configurations and
the value of the minimum energy, in particular their dependence on
m and n and an additional parameter α indicating the interaction
range. Our results show that there is a phase transition between the
bunching and non-bunching regimes. Moreover, some of our statements
are applicable for any critical points of the energy, not necessarily
minimizers. This work extends the technique and results of [7] which
concentrates on the case of LJ (0,2) potential (originated from the
elastic force monopole and dipole interactions between the steps). As
a by-product, our result also leads to the well known fact that the
classical LJ (6,12) potential does not demonstrate step-bunching type
phenomena.
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1 Introduction

Elasticity effects, which may cause surface morphological instability, are

widely believed to be important in epitaxial film growth. In particular, the

elastic effects can lead to the so called step-bunching instability. This phe-

nomenon has been modelled via both discrete [9, 6, 2, 3] and continuum

[13, 14] approaches. Linear stability analysis and numerical simulations of

these models have shown excellent agreement with experiments on epitaxial

growth on vicinal surfaces [9, 14]. Recently, the work [7] rigorously demon-

strates the presence of step bunching and characterizes its profile as well as

some scaling laws for an associated elastic energy. The results show that

the bunching phenomenon depends very much on the form of the underly-

ing interaction between the steps. In this work, we extend the method in

[7] to investigate the energy scaling laws and other asymptotic behaviors of

one-dimensional system with general pairwise interactions. The key tech-

nical difficulty is the non-locality of the interaction between the steps. We

refer to [8] for a review of various surface instability mechanisms in epitaxial

growth.

In [7], we studied the model originally introduced by Tersoff et al. [9,

6] for epitaxial growth on vicinal surface with elastic effects between the

steps. Another model proposed by Duport et al. [2, 3] incorporated elastic

interaction between adatoms and steps, the Schwoebel barrier, and other

kinetic effects. The Tersoff’s model concentrates mostly on the energetic

or relaxation phenomena. It is a discrete atomistic model, tracking all the

step positions {xi : xi < xi+1}i∈Z, which evolve according to the following
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Figure 1: (a) A vicinal surface with steps. The step locations and the
lengths between them are denoted by xi and li := xi+1 − xi for i ∈ Z. (b)
The “almost linear” shape of a step bunch for m = 0, n = 2 in [7].

dynamical law,

dxi
dt

= Fad
xi+1 − xi−1

2
+B

(
µi+1 − µi
xi+1 − xi

− µi − µi−1
xi − xi−1

)
, i ∈ Z. (1)

In the above, li := xi+1 − xi is the length of the i-th terrace (cf. Fig. 1(a)),

Fad is adatom flux, and B := a2 ρ0DkBT
, with a, ρ0, D, kB and T being the

lattice constant, the equilibrium adatom density on a step in the absence of

elastic interactions, the diffusion constant on the terrace, Boltzmann con-

stant and temperature, respectively. The crucial quantity is the chemical

potential

µi = −
∑
j 6=i

(
α1

xj − xi
− α2

(xj − xi)3

)
, (2)

where the α1-term is the force monopole which is attractive while the α2-

term is the force dipole which is repulsive. Their physical origins are lattice

misfit and broken bond effects. Note that the monopole decays much more

slowly in space. It is the key driving force for the step bunching phenomena.
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If we define E to be the following elastic energy of a step configuration,

E =
∑

j>i,j∈Z

∑
i∈Z

(
α1 log |xj − xi|+

α2

2(xj − xi)2

)
, (3)

then µi = ∂E
∂xi

so that (1) can be interpreted as the gradient flow of E with

respect to an appropriate metric on the step configuration space.

The results in [7] are roughly stated as follows. For a system with ref-

erence system length scale of order N , we have obtained scaling laws for

(1) the minimum energy: minE ∼ N2 logN ; (2) minimal terrace length:

mini(xi+1−xi) ∼ N−1/2; and (3) bunch width (system size): xN−x1 ∼ N1/2.

The asymptotics are valid in the limit N → ∞. They demonstrate the ap-

pearance of bunching phenomena and describe quantitatively the shape of

the step bunches (cf. Fig. 1(b)).

A natural question to ask is: what is special about the pairwise in-

teractions in the epitaxial growth model (3)? It seems that the interac-

tion between steps in Eq. (2) is similar to the force between the classical

Lennard–Jones (LJ) (6, 12) interaction. Will the step-bunching-like phe-

nomenon appear in a particle system governed by the well-known LJ (6, 12)

potential? If not, what is the difference between the two cases? Another

interesting question is whether the step-bunching phenomenon depends on

the interaction range. These are relevant questions since in numerical sim-

ulations we often truncate and regularize the LJ potential or other classical

multi-particle interactions. The goal of this paper is to consider in general

the competition between the attraction and repulsion effects and the inter-

action range and investigate how they determine the final pattern formation.
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To be more precise, in the present work, we study a generalized step

model in one dimension with pair potential given by

V (x) =


−α1
m |x|

−m + α2
n |x|

−n, −1 < m < n, m 6= 0, n 6= 0,

α1 log |x|+ α2
n |x|

−n, 0 = m < n,

−α1
m |x|

−m − α2 log |x|, −1 < m < n = 0,

(4)

where m and n are exponents for the interaction strength. Indeed, this is the

simplest but still informative model which incorporates both attractive and

repulsive interactions. In essence, m and n characterize both the singularity

and the decaying rate of the pair interaction potential between the steps.

The condition m < n is to guarantee that the function V (·) is single-welled,

i.e., it has only one global minimum while the restriction −1 < m is to make

sure that the force V ′(·) goes to zero as x → ∞. More precisely, for x > 0

and −1 < m < n, we have

V ′(x) =
α1

xm+1
− α2

xn+1
and V ′′(x) = −α1(m+ 1)

xm+2
+
α2(n+ 1)

xn+2

so that there is only one critical point l∗ and inflection point l∗∗ of V :

l∗ =

(
α2

α1

) 1
n−m

and l∗∗ =

(
α2(n+ 1)

α1(m+ 1)

) 1
n−m

.

(See also Fig. 2 for some illustration.)

For a finite system with N steps, we also want to consider the effective

range of interaction between the steps. Such a consideration can be modeled
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Figure 2: Pair potential V (x) and its derivative V ′(x) in different regimes.
(a) and (b): −1 < m < 0 and 1 < n; (c) and (d): 0 < m < n. Note that for
m < 0, V (x) grows to infinity as x → ∞ while for 0 < m, V (x) decays to
zero as x→∞.

by an energy functional of the following form:

E[YN ] =
∑

1≤i<j≤N, j−i≤bNαc

V (yj − yi), (5)

where YN = (y1, · · · , yN )T with yi < yj for i < j. Note that steps i and j

interact if |i− j| ≤ Nα. We call the above generalized LJ (m,n) model.

The present paper considers the minimization problem of the energy (5),
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i.e., to find an XN = (x1, · · · , xN )T with x1 < x2 < · · · < xN such that

E[XN ] = inf
y1<y2<···<yN

E[YN ]. (6)

We still call the functional (5) an “epitaxial growth model” so as to be con-

sistent with the terminology of the previous work [7] where the interaction

is the LJ (0, 2) potential. Note that if α = 0, then the interaction is nearest-

neighbor which will be shown not to have any bunching instability. On the

other hand, if α > 0, then the interaction is nonlocal. In particular, α = 1

corresponds to fully nonlocal interaction. For the nonlocal case (α > 0), we

will show that bunching instability takes place if −1 < m < 1 < n.

From physical experience, in an LJ (6, 12) system, the system size xN−x1

grows linearly in N . In fact, this is related to the crystallization problem

which asks whether under appropriate conditions, the perfect periodic lattice

configuration is the minimizer as N tends to infinity. In one dimension,

especially for LJ type potential, the crystallization problem is completely

understood [1]. In [12], Ventevogel proved that the lattice structure gives

the minimum energy for the LJ (m,n) potential (Eq. (5)) with 1 < m < n.

As far as we know, all the results on the crystallization problem exclude

the case m < 1 since it is not physically relevant for the models considered

in those works. However, it seems that the regime m < 1 is where step-

bunching takes place. One of our main results of this paper is the demon-

stration of bunching phenomenon for −1 < m < 1 < n but non-bunching

for 1 < m < n. This is carried out by means of a unified approach. To the

best of our knowledge, together with [7], our works are the first to give a
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quantitative description of the bunching phenomena.

These questions are by no means trivial in terms of rigorous analysis or

even intuitively speaking. The difficulties come from the long-range inter-

action and the discreteness of the model. On a technical level, we need to

deal with the double summation in the formulation (5). We will improve

the idea and techniques used in [7] to estimate the force exerted by a step

chain which is essentially a first order information. This leads to a sharp

lower bound for the terrace length. All the other estimates are based on

this lower bound. Interestingly, some of our results are applicable even for

general critical points.

2 Main Results

As mentioned before, this work focuses on the investigation of the step

bunching phenomenon in the fully nonlinear setting. In this case, it is more

convenient to analyze the step bunching phenomena with Neumann bound-

ary condition which is the natural boundary condition for finitely many (N)

steps. (This can be extended to the periodic setting by the concentration-

in-half-period technique as in [7, Theorem 3(b)].)

We consider here the nonlinear energy minimization problem (6) and

study the properties of its minimizers. Without loss of generality, we assume

α1 = α2 = 1 in the rest of the paper. We remark that m,n can be non-

integers. The existence of a minimizer follows from the continuity of V and

its behavior as x approaching 0 or∞. The proof is omitted here as it is very

similar to [7, Theorem 1(b)]. In this work, we will estimate the minimum
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energy

EN := min
y1<y2<···<yN

E[YN ] (7)

and investigate the asymptotic behavior of minimizers or even critical points

XN and their dependence on m, n, and α as N → +∞.

Here we make a remark about the notation. For simplicity, XN can

refer to a general step configuration, a minimizer, or a critical point and its

energy is denoted by E[XN ]. The meaning of XN will be clear or specified

in the context it appears. However, EN will always refer to the minimum

energy as defined in (7).

In order to give precise statements, we first introduce the following quan-

tities.

Definition 1 (minimal terrace length λN and system size wN ). For any

step configuration XN = (x1, · · · , xN )T with x1 < · · · < xN , we define

λN := min
1≤i≤N−1

{xi+1 − xi}, (8)

wN := xN − x1. (9)

Next we define the bunching phenomenon as follows.

Definition 2 (Bunching/Non-bunching regime). We say a sequence of con-

figurations {XN}∞N=1 is a bunching (respectively non-bunching) sequence, if

lim sup
N→+∞

wN
N

= 0

(
respectively lim inf

N→+∞

wN
N

> 0

)
. (10)

We say that the system with parameters m,n, and α is in the bunching
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(respectively non-bunching) regime if any sequence of energy minimizers

{XN}∞N=1 is a bunching (respectively non-bunching) sequence.

For convenience, we state the following condition which will be used very

often in the paper. A step configuration XN = (x1, · · · , xN )T with x1 <

· · · < xN is said to satisfy the force balance if
∂E

∂xi
= 0, for all i = 1, · · · , N .

Expressed in terms of the length variables, this condition becomes

∑
j≤i≤k,k−j≤bNαc−1

V ′(lj + · · ·+ li + · · ·+ lk) = 0. (11)

The above is clearly the same as the vanishing of the first variation of the

energy E at any minimizer or critical point.

Remark 1.

1. Note that as critical points or even minimizers might not be unique,

the quantities λN and wN in general will depend on the particular step

configuration XN . However, the main point of our results is that their

dependence on N are all asymptotically the same.

2. Our definition of bunching v.s. non-bunching is somewhat different

from the terminology used in the literature where people often consider

kinetic effects in the bunching phenomenon. They sometimes say that

bunching occurs if a large number of steps concentrate in a region

which is much narrower compared with the initial configuration [5].

On the other hand, we focus on whether the average terrace length is

asymptotically zero or not as N → ∞. A non-bunching sequence, in
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our sense wN/N → l∞ > 0, may be regarded as a bunching sequence in

the literature if l∞ � l0 where l0 is the average initial terrace length.

By means of an appropriate ansatz, we can obtain a heuristic scaling

law for the minimum energy (which is in fact a rigorous upper bound for the

energy) and also the underlying shape of the step bunch. This is performed

in Section 3. The results, illustrated in the phase diagram Fig. 3, can already

reveal two interesting physical regimes which we will concentrate on in this

paper. One is −1 < m < 1 < n corresponding to the potential appeared

in the epitaxial growth model [9]. The other is 1 < m < n corresponding

to the classical LJ type potential. The bunching phenomenon appears in

the former but not the latter. The main purpose of this paper is to give a

quantitative description of the two regimes and the transition between them.

Theorem 1 (bunching regime). Let −1 < m < 1 < n and 0 < α ≤ 1. Then

there exist positive constants C, C ′, β, and N0 such that, for any N > N0

and minimizer XN of the energy functional (5), the following hold.

(A) energy scaling law

CN1+
(1−m)nα
n−m ≤ EN ≤ C ′N1+

(1−m)nα
n−m , −1 < m < 0,

(n−1)α
n N1+α logN − CN1+α log logN ≤ EN ≤

(n− 1)α

n
N1+α logN + C ′N1+α, m = 0, α < 1;

n−1
2n N

2 logN − CN2 log logN ≤ EN ≤
n− 1

2n
N2 logN + C ′N2, m = 0, α = 1,

−CN1+
(1−m)nα
n−m ≤ EN ≤ −C ′N1+

(1−m)nα
n−m , 0 < m < 1.
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(B) minimal terrace length

CN−
(1−m)α
n−m ≤ λN ≤ C ′N−

(1−m)α
n−m , m 6= 0, (12)

CN−
α
n (logN)−

1
n ≤ λN ≤ C ′N−

α
n , m = 0; (13)

(C) system size

CN1− (1−m)α
n−m ≤ wN ≤ C ′N1−β, m 6= 0, (14)

CN1−α
n (logN)−

1
n ≤ wN ≤ C ′N1−β, m = 0. (15)

In particular, we have λN � 1 and the system is in the bunching regime.

Theorem 2 (non-bunching regime). Suppose that either (i) 1 < m < n,

0 < α ≤ 1 or (ii) −1 < m < n, α = 0. There exist positive constants C,

C ′, and N0 such that, for any N > N0 and minimizer XN of the energy

functional (5), the following hold.

(A) energy scaling law

 case (i): −CN ≤ EN ≤ −C ′N ;

case (ii): |EN | ≤ CN ;
(16)

(B) minimal terrace length

C ≤ λN ≤ C ′; (17)

(C) system size

CN ≤ wN ≤ C ′N. (18)
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In particular, we have λN = O(1) and the system is in the non-bunching

regime.

We remark that that the various constants C and C ′ in the above may be

different in different parts of the statements. In general, they can depend

on n,m, and α, but not on the system size N .

Remark 2.

1. We note again that the epitaxial growth model (m = 0 and n = 2) be-

longs to the bunching regime (Theorem 1) while the classical Lennard–

Jones model (m = 6 and n = 12) belongs to the non-bunching regime

(Theorem 2).

2. All of the statements in Theorem 1 involve an exponent with value

1−m
n−m which is a decreasing function of m and n in the region −1 <

m < 1 < n. This leads to that the scaling for the minimum terrace

length λN is an increasing function of m. In a sense, the bunching

phenomena is “weakened”. This is also revealed in the dependence of

λN on α: a bigger value of α, i.e. more nonlocal interaction, causes a

more prominent bunching effect. The case m = 0 is critical in all of

the above quantitative results.

3. The parameter ranges for m and n in Theorem 1 are included in case

(ii) of Theorem 2. The difference appears in their values of α. In

particular, α = 0 corresponds to finite-range interaction (and in fact

nearest neighbor as Nα = 1) which does not lead to any bunching

phenomenon.

13



4. The upper and lower bounds in part (C) of Theorem 1 do not match in

general. But we can still provide some partial results where the bounds

do match (see Proposition 3 for the case of −1 < m ≤ 0, 1 < n, and

α = 1). In any case, the positive β in part (C) of Theorem 1 indicates

that the system is in the bunching regime.

5. Our intuition leads us to believe that the bunch shape is roughly linear

so that wN ∼ NλN . This is related to the fact that the optimal en-

ergy scaling is the same as that given by the uniform step train ansatz

(see Section 3). Such a linear shape is rigorously proved in [7, The-

orems 4 and 5] for the (m = 0, n = 2) elasticity model. Our current

work extends this description to our generalized LJ (m,n) model to the

regime −1 < m < 0, 1 < n and α = 1 (see Proposition 3). In the non-

bunching case, such a statement is very much related to the well-known

crystallization conjecture — ground states are believed to be periodic

in infinite extent. In the one dimensional case, this is solved in several

works [10, 11, 12].

6. For technical reasons, for the parameter regime −1 < m < n < 1,

we are only able to provide an upper bound for the minimum energy

EN . Heuristically, the result says that the system is in the bunching

regime, and in fact, of the “most severe” type. See the statement and

discussion in Section 3, in particular, the region A in Fig. 3.

7. Note that each of the exponents m and n determines simultaneously

the behaviors of the potential V for x � 1 and x � 1. We believe

that Theorems 1 and 2 also work for more general potential V (x), not

14



necessarily of Lennard–Jones type (4) but still satisfying V (x) ∼ |x|−m

asymptotically for |x| � 1 and V (x) ∼ |x|−n for |x| � 1.

Here we compare our results and technique of proof with some works

on the crystallization problem. Refs. [12] and [4] show the crystallization

phenomenon for a one-dimensional system with Lennard–Jones (m,n) inter-

action for 1 < m < n. Refs. [10] and [11] are further extensions of [12]. All

of them use energetic consideration of the energy functional E (5). The cal-

culation involves careful rearrangement argument for the double summation

of the pair potential V . However, some of our statements (for example, the

lower bound of minimal terrace length, and upper bound for the bunching

size) hold for any critical point of E, not just for minimizers. To achieve

these, we make use of the force balance condition (11) which only involves

a single summation. These are summarized and formulated in the following

corollaries. The results are new and different from all the previous works.

Corollary 1. Suppose that −1 < m < 1 < n, and 0 < α ≤ 1. Then there

exist positive constants C, β, and N0 such that for all N > N0 and all

critical point XN = (x1, · · · , xN )T of (5), we have

wN ≤ CN1−β.

In particular, any sequence of critical points {XN}∞N=1 is a bunching se-

quence. (The estimate here are exactly the same as the upper bound for

wN in Theorem 1(C).)

Corollary 2. The following estimates for the minimal terrace length λN

15



and the system size wN hold for any critical point XN of the energy E (5):

l∗ ≥ λN ≥



CN−
(1−m)α
n−m , −1 < m < 1 < n,m 6= 0, 0 < α ≤ 1,

CN−
α
n (logN)−

1
n , m = 0, 1 < n, 0 < α ≤ 1,

C, 1 < m < n, 0 < α ≤ 1,

C, −1 < m < n,α = 0;

(N−1)l∗ ≥ wN ≥



CN1− (1−m)α
n−m , −1 < m < 1 < n,m 6= 0, 0 < α ≤ 1,

CN1−α
n (logN)−

1
n , m = 0, 1 < n, 0 < α ≤ 1,

CN, 1 < m < n, 0 < α ≤ 1,

CN, −1 < m < n,α = 0.

In particular, if (1 < m < n, 0 < α ≤ 1) or (−1 < m < n, 1 < n, α = 0),

then any sequence of critical points {XN}∞N=1 is a non-bunching sequence.

(The estimates here are exactly the same as the lower bounds for λN and

wN in Theorems 1(B, C) and 2(B, C).)

The rest of the paper is outlined as follows. In Section 3, we give an

upper bound for the minimum energy EN in various regimes (Theorem 3).

The results are illustrated in the phase diagram (Fig. 3) which heuristically

reveal the bunching and non-bunching regimes and the transition between

them. Theorems 1 and 2 are proved in Sections 4.2–4.4. Given the proofs,

Corollaries 1 and 2 follow immediately. In the Appendix, Section A, we

prove Theorem 3 which involves quite detail and elaborate calculations.
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3 Upper Bounds for the Minimum Energy EN and

Phase Diagram

Inspired by the numerical evidence in [9] and the analytical results from

[7], we anticipate that the optimal height profile in our general epitaxial

growth model (5) is almost a uniform step train consisting of a series of

consecutive terraces with roughly equal lengths l0. In this section, we would

exploit such a step profile as an ansatz. More precisely, let l0 be a positive

number. Then the uniform step train with length l0 is defined as:

X0
N = (x01, · · · , x0N )T , x0i = (i− 1) l0, i = 1, 2, · · · , N. (19)

By optimizing the value of l0, we arrive at an upper bound for the minimum

energy EN and also a first illustration about its dependence on m, n and α.

The result is listed in five cases corresponding to different parameter

values.

Theorem 3 (Upper bound for EN ). For any 0 ≤ α ≤ 1 and −1 < m < n,

(there exists an l0 such that) the following upper bounds for E[X0
N ] hold.

(Again, in the following the constants C can depend on m,n and α but not

on N .)

Case A: −1 < m < n < 1, 0 < α.

E[X0
N ] ≤

 −CN
1+α, mn > 0,

CN1+α, mn ≤ 0.

17



Case B: −1 < m < n = 1, 0 < α.

E[X0
N ] ≤ CN1+α logN.

Case C: −1 < m < 1 < n, 0 < α.

E[X0
N ] ≤



CN1+
n(1−m)α
n−m , −1 < m < 0,

(n−1)α
n N1+α logN + CN1+α, m = 0, 0 < α < 1,

n−1
2n N

1+α logN + CN2, m = 0, α = 1,

−CN1+
n(1−m)α
n−m , 0 < m < 1.

Case D: 1 = m < 1 < n, 0 < α.

E[X0
N ] ≤ −CN logN.

Case E:

E[X0
N ] ≤

 (i): −CN, 1 < m < n, 0 < α,

(ii): CN, −1 < m < n, α = 0.
(20)

(We remark that Cases A to D with α = 0 are in fact included in Case E.)

In the above, it might be illustrative to consider the chosen values of l0

even though it is not needed in the statement. Overall, we have l0 ∼ N−α

for Cases (A) and (B), l0 ∼ N−
α(1−m)
n−m for Case (C), and l0 ∼ 1 for Cases

(D) and (E).

The above quantitative description is illustrated in the form of a phase

18



Figure 3: Phase Diagram of the Scaling Law. This diagram characterizes
the scaling behaviors of Lennard–Jones (m,n) potential.

diagram for α > 0 (Figure 3). Note that bunching phenomena occurs in

cases A, B, C, and D with the typical length scale l0 for the minimal terrace

length gradually increases. In other words, the bunching effect is weakened.

Case A (−1 < m < n < 1) corresponds to weak repulsion but strong

attraction leading to the most severe type of bunching with l0 ∼ O(N−α)

(for 0 < α ≤ 1). Case E (1 < m < n) corresponds to strong repulsion but

weak attraction leading to no bunching with l0 ∼ O(1). We point out again

that the Tersoff’s epitaxial growth model [9, 6] analyzed in [7] corresponds

to Case C with m = 0, n = 2. The classical Lennard-Jones potential falls in

Case E with m = 6, n = 12.

The proof of the Theorem is quite involved in terms of calculation and is

thus postponed to Appendix A. But here we remark about the scope of this

paper. Our main contribution is a quantitative description of Cases C and

E. We will provide matching lower bounds for the minimum energy EN , the

minimum terrace length λN and the system size wN . For technical reasons,

our method currently cannot handle Case A rigorously beyond the upper
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bound for EN . Cases B and D are critical boundary cases in the phase

diagram whose asymptotics are hard to quantify.

4 Proof of the Theorems

In this section, we will prove our main results: Theorem 1 (which covers

Case C for the bunching regime) and Theorem 2 (which covers Case E for

the non-bunching regime). Upper bounds for the minimum energy EN for

both Theorems are already stated in Theorem 3 in the previous section. To

establish more precise information, we will make use of the force balance

condition (11) (Lemma 1) and minimum energy consideration (Lemma 3).

It turns out that the crucial quantity is the minimum terrrace length λN .

Furthermore, there is a connection between λN and a lower bound for EN

(see (34)). Using this relation, we are able to obtain matching lower and

upper bounds for both λN and EN . Note that the use of force balance

is applicable for any critical points of the energy, not just minimizers. In

particular, the proof of the upper bound for the system size wN in Section

4.3 fully takes advantage of such a consideration.

4.1 Useful Lemmas

We first obtain some a priori upper bounds for all the terrace lengths

and the system bunch size wN . The first three use force balance while the

others use energy consideration.

Proposition 1. Suppose that −1 < m < n and 0 ≤ α ≤ 1. For any N

and critical point XN = (x1, · · · , xN )T of (5), we have xi+1−xi ≤ l∗ for all
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i = 1, 2, · · · , N − 1. In particular,

λN := min
1≤i≤N−1

{xi+1 − xi} ≤ l∗, (21)

wN := xN − x1 ≤ (N − 1)l∗. (22)

Proof. We prove the statement by contradiction. Suppose for some i that

li > l∗. Then lj+ · · ·+ li+ · · ·+ lk ≥ li > l∗ for all j ≤ i ≤ k. Since V ′(x) > 0

for x > l∗, we have

∑
j≤i≤k, k−j≤bNαc−1

V ′(lj + · · ·+ li + · · ·+ lk) > 0

contradicting the force balance condition (11).

Next we show a lower bound for the terrace length. The proof is again

based on the force balance condition. We focus on the terrace i with minimal

length li = λN and consider all interacting pairs (j, k) with j ≤ i ≤ k. The

result is achieved by carefully estimating all the forces related to the pair

(j, k). The following proposition is a first step toward the optimal lower

bound of λN and is extremely useful in the remaining part of this work.

Proposition 2. Suppose that −1 < m < n, 1 < n, and 0 < α ≤ 1. For

any N and critical point XN = (x1, · · · , xN )T of (5), we have N−α � λN

in the sense that lim
N→∞

N−α

λN
= 0.

In particular, there is an N0 such that for N > N0, it holds that N−α ≤

λN .
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Proof. Let li = λN . Again, by the force balance condition (11), we have

0 =
∑

j≤i≤k, k−j≤bNαc−1

V ′(lj + · · ·+ li + · · ·+ lk)

≤ V ′(li) +
∣∣∣{(j, k) : j ≤ i ≤ k, k − j ≤ bNαc − 1}

∣∣∣max
ξ>0

V ′(ξ)

≤ λ−m−1N − λ−n−1N + CN2α.

Note that for large N , we have N−α ≤ 1
2 . If 1

2 ≤ λN , then we are done. Now

suppose λN < 1
2 . Then we have 0 ≤

[
(12)n−m−1

]
λ−n−1N +CN2α and thence

λN ≥ CN−
2α
n+1 � N−α. In either cases, we have the desired statement.

The following important lemma gives an upper bound of the force exerted

by a step chain.

Lemma 1. Suppose that −1 < m < n, 1 < n, and 0 < α ≤ 1. There exist

C and N0 such that for any N > N0 and critical point XN = (x1, · · · , xN )T

of (5), for 1 ≤ k ≤ bNαc − 1, we have

max

(
k∑
i=1

V ′(ξi)

)
≤


Cλ−1N (NαλN )−m, −1 < m < 0,

Cλ−1N logN, m = 0,

Cλ−1N , 0 < m,

(23)

where the maximum is taken over the set

{λN ≤ ξ1 < ξ2 < · · · < ξk, ξi+1 − ξi ≥ λN for i = 1, 2, · · · , k − 1}

(24)

Proof. Let ξi’s be from the set (24). We define k1 = |{i : 0 < ξi ≤ l∗∗}| and
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Figure 4: (a) Maximization of chain configuration for force V ′ (Lemma 1);
(b) minimization of chain configuration for energy V (Lemma 3).

k2 = |{i : l∗∗ < ξi}|. Then k1 + k2 = k and k1, k2 ≤ bNαc. Without loss

of generality, we assume that k1, k2 ≥ 1. (If one of them is 0, the result

is still true.) Note that V ′(·) is monotonically increasing on (0, l∗∗), and

monotonically decreasing on (l∗∗,∞). Then

k∑
i=1

V ′(ξi) ≤
k1−1∑
i=0

V ′(l∗∗ − iλN ) +

k2−1∑
i=0

V ′(l∗∗ + iλN )

≤ 2V ′(l∗∗) + λ−1N

∫ l∗∗+(k2−1)λN

l∗∗−(k1−1)λN
V ′(x) dx

= 2V ′(l∗∗) + λ−1N [V (l∗∗ + (k2 − 1)λN )− V (l∗∗ − (k1 − 1)λN )]

≤ C + λ−1N [V (l∗∗ + (k2 − 1)λN )− V (l∗)]

≤ Cλ−1N + λ−1N V ((l∗∗ + 1)NαλN ),

where in the last inequality we have used the facts that 1 ≤ λ−1N and

l∗∗ + (k2 − 1)λN ≤ (l∗∗ + 1)NαλN which follow from Propositions 1 and
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2, respectively. Now (23) follows since for sufficiently large N , we have

V ((l∗∗ + 1)NαλN ) ≤


C(NαλN )−m, −1 < m < 0,

C logN, m = 0,

0, 0 < m,

where we have used Proposition 2 again for the case −1 < m < 0.

In preparation for the energetic consideration, we have the following

result for the pair potential.

Lemma 2. Suppose that −1 < m < n. For 0 < x < l∗, we have V (l∗+x) <

V (l∗ − x).

Proof. Denote y = |l∗ − x|−1, z = |l∗ + x|−1. Then 0 < z < 1 = l∗ < y and

yn+2 − zn+2

ym+2 − zm+2
= yn−m + zm+2

(
yn−m − zn−m

ym+2 − zm+2

)
> yn−m > 1 >

m+ 1

n+ 1
.

Note that V (l∗+ x) = V (l∗− x) and V ′(l∗+ x) = V ′(l∗− x) at x = 0. Next

we consider the following expression for 0 < x < l∗:

V ′′(l∗ + x)− V ′′(l∗ − x)

=− (m+ 1)zm+2 + (n+ 1)zn+2 + (m+ 1)ym+2 − (n+ 1)yn+2

=(n+ 1)
{
−m+1
n+1

(
zm+2 − ym+2

)
+ (zn+2 − yn+2)

}
=(n+ 1)(zm+2 − ym+2)

{
yn+2 − zn+2

ym+2 − zm+2
− m+ 1

n+ 1

}
< 0.

Upon integrating the above inequality, the desired statement follows.
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Lemma 3. Suppose that 0 ≤ m < 1, 1 < n, and 0 < α ≤ 1. There exist C

and N0 such that for any N > N0 and critical point XN = (x1, · · · , xN )T of

(5), for 1 ≤ k ≤ bNαc − 1, we have

min

(
k∑
i=1

V (ξi)

)
≥

 −Cλ
−1
N − Cλ

−1
N (kλN )1−m, 0 < m < 1,

k log(kλN )− CNα, m = 0,
(25)

where the minimum is taken over the set

{λN ≤ ξ1 < ξ2 < · · · < ξk, ξi+1 − ξi ≥ λN for i = 1, 2, · · · , k − 1} .

(26)

In particular, we have

min

(
k∑
i=1

V (ξi)

)
≥ −Cλ−1N (NαλN )1−m, 0 < m < 1. (27)

Proof. Given any ξi’s from the set (26), we define k1 = |{i : 0 < ξi ≤ l∗}|

and k2 = |{i : l∗ < ξi}|. Then k1 + k2 = k and k1, k2 ≤ bNαc. Without loss

of generality, assume k ≥ 4 and k1, k2 ≥ 1. (The result remains the same

if anyone of them is zero.) Recall that V (·) is monotonically decreasing on

(0, l∗), and monotonically increasing on (l∗,∞). Then

k∑
i=1

V (ξi) ≥
k1−1∑
i=0

V (l∗ − iλN ) +

k2−1∑
i=0

V (l∗ + iλN )

≥ 2V (l∗) + λ−1N

∫ l∗

l∗−(k1−1)λN
V (x) dx+ λ−1N

∫ l∗+(k2−1)λN

l∗

V (x) dx

≥ 2V (l∗) + λ−1N

∫ l∗+(k1−1)λN

l∗

V (x) dx+ λ−1N

∫ l∗+(k2−1)λN

l∗

V (x) dx
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= 2V (l∗) + λ−1N

[
W (l∗ + (k1 − 1)λN ) +W (l∗ + (k2 − 1)λN )− 2W (l∗)

]
,

where we have used Lemma 2 in the third inequality. SinceW ′′(x) = V ′(x) >

0, W (x) is convex on (l∗,∞). By Jensen’s inequality, we have

W (l∗ + (k2 − 1)λN ) +W (l∗ + (k1 − 1)λN ) ≥ 2W (l∗ +
k − 2

2
λN ).

Then

k∑
i=1

V (ξi) ≥ 2V (l∗) + 2λ−1N

[
W

(
l∗ +

k − 2

2
λN

)
−W (l∗)

]
≥ −Cλ−1N + 2λ−1N W

(
l∗ +

k − 2

2
λN

)
.

(i) If kλN ≤ 2, then

k∑
i=1

V (ξi) ≥ −Cλ−1N ≥

 −Cλ
−1
N − Cλ

−1
N (kλN )1−m, 0 < m < 1,

k log(kλN )− CNα, m = 0,

where for m = 0, we have used the facts k log(kλN ) ≤ k log 2 ≤ 2Nα and

λNN
α ≥ 1 from Proposition 2.

(ii) If kλN > 2, then 1 = l∗ ≤ k
2λN ≤ l∗ + k−2

2 λN ≤ kλN . Note that

W (·) is monotonically decreasing on (l∗,∞). Thus

W (l∗ + k−2
2 λN ) ≥W (kλN ) ≥

 −C(kλN )1−m − C, 0 < m < 1,

kλN log(kλN )− kλN − C, m = 0.

Now if 0 < m < 1, then
∑k

i=1 V (ξi) ≥ −Cλ−1N (kλN )1−m while if m = 0,
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then
∑k

i=1 V (ξi) ≥ −Cλ−1N + 2k log(kλN )− 2k ≥ k log(kλN )− CNα.

Thus (25) is proved.

Lemma 4. Let 0 ≤ m < 1 < n and 0 < α ≤ 1. There exist C and N0

such that for any N > N0 and critical point XN = (x1, · · · , xN )T of (5),

for 1 ≤M ≤ bNαc − 1, we have

M∑
k=1

[k log(kλN )− CNα] ≥ 1

2
M2 log(NαλN )− CMNα. (28)

In particular,
∑bNαc

k=1 [k log(kλN )− CNα] ≥ −CN2α.

Proof. Note that x log x ≥ −1
e for 0 ≤ x ≤ 1. By Proposition 2, log(NαλN ) ≥

0. Therefore,

M∑
k=1

[k log(kλN )− CNα]

≥− CMNα +
M∑
k=1

k log(NαλN ) +Nα
M∑
k=1

k

Nα

(
log

k

Nα

)
≥− CMNα +

M(M + 1)

2
log(NαλN )− MNα

e

≥ 1

2
M2 log(NαλN )− CMNα

proving the desired statement.

4.2 Proof of Theorem 1 (Bunching Regime): Matching Bounds

for λN and EN

Using the results from the previous section, we establish here a lower

bound for λN and a connection between λN and the minimum energy EN .
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Together they lead to matching lower and upper bounds for both quantities.

Proof of Theorem 1(B) (lower bound for λN). By Proposition 1, we

have λN ≤ 1 < l∗∗. Let li = λN . Utilizing the force balance condition (11),

we have

0 =
∑

j≤i≤k,k−j≤bNαc−1

V ′(lj + · · ·+ li + · · ·+ lk)

= V ′(li) + Fi +
i−1∑

j=1∨(i−bNαc+1)

Gj

= λ−m−1N − λ−n−1N + Fi +
i−1∑

j=1∨(i−bNαc+1)

Gj , (29)

where Fi is the summation of chains starting from the ith terrace and Gj is

the summation of chains crossing over the ith terrace:

Fi =

(i+bNαc−1)∧(N−1)∑
k=i+1

V ′(li + · · ·+ lk),

Gj =

(j+bNαc−1)∧(N−1)∑
k=i

V ′(lj + · · ·+ lk), 1 ∨ (i− bNαc+ 1) ≤ j ≤ i− 1.

The estimates of Fi and Gj are divided into the following cases.

Case (i): −1 < m < 0, 1 < n. By Lemma 1, we have Fi ≤ Cλ−1N (NαλN )−m

and Gj ≤ Cλ−1N (NαλN )−m for 1 ∨ (i− bNαc+ 1) ≤ j ≤ i− 1. Substituting

these into (29) leads to

0 ≤ λ−m−1N − λ−n−1N + CNαλ−1N (NαλN )−m.
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Thus λ−n−1N ≤ λ−m−1N +CNαλ−1N (NαλN )−m ≤ CN (1−m)αλ−1−mN . Therefore,

CN−
(1−m)α
n−m ≤ λN .

Case (ii): m = 0, 1 < n. By Lemma 1 again, we have Fi ≤ Cλ−1N logN

and Gj ≤ Cλ−1N logN for 1∨ (i− bNαc+ 1) ≤ j ≤ i− 1. Substituting these

with m = 0 into (29) leads to

0 ≤ λ−1N − λ
−n−1
N + CNαλ−1N logN.

Thus λ−n−1N ≤ λ−1N + CNαλ−1N logN ≤ CNαλ−1N logN . Therefore,

CN−
α
n (logN)−

1
n ≤ λN .

Case (iii): 0 < m < 1, 1 < n. Without loss of generality, suppose that

i ≤ N
2 . Otherwise, we switch the order of {lk}N−1k=1 by setting l′i = lN−i and

analyze l′i. By Lemma 1, we have

Fi ≤ Cλ−1N . (30)

Let Si = {j : lj + · · ·+ li ≤ l∗∗, i− j ≤ bNαc−1} and j0 = minSi. Note that

Si 6= ∅ as i ∈ Si. Hence j0 is well-defined. For j satisfying j0 ≤ j ≤ i − 1,

utilizing Lemma 1, we have Gj ≤ Cλ−1N . Note that |{j0, j0 + 1, · · · , i−1}| <

i− j0 + 1 ≤ l∗∗λ−1N ≤ Cλ
−1
N . Therefore

i−1∑
j=j0

Gj ≤ Cλ−2N . (31)
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For j satisfying 1 ∨ (i− bNαc+ 1) ≤ j ≤ j0 − 1, we have lj + · · ·+ li > l∗∗.

Thus

Gj ≤ V ′(lj + · · ·+ li) +

∞∑
k=1

V ′(lj + · · ·+ li + kλN )

≤ V ′(lj + · · ·+ li) + λ−1N

∫ ∞
lj+···+li

V ′(x) dx

= V ′(lj + · · ·+ li)− λ−1N V (lj + · · ·+ li).

In the last step, we have used the fact that limx→+∞ V (x) = 0 due to

0 < m < n. Utilizing Lemma 1 again, we have

j0−1∑
j=1∨(i−bNαc+1)

V ′(lj + · · ·+ li) ≤ Cλ−1N .

Notice that W ′(x) = V (x) < 0 for x > l∗∗. Thus W (·) is monotonically

decreasing on (l∗∗,∞) for 0 < m < n. Then

j0−1∑
j=1∨(i−bNαc+1)

Gj ≤ Cλ−1N − λ
−1
N

j0−1∑
j=1∨(i−bNαc+1)

V (lj + · · ·+ li)

≤ Cλ−1N − λ
−1
N

V (l∗∗) +

bNαc∑
k=1

V (l∗∗ + kλN )


≤ Cλ−1N − λ

−1
N

[
λ−1N

∫ l∗∗+NαλN

l∗∗

V (x) dx

]
≤ Cλ−1N − λ

−2
N W (l∗∗ +NαλN ) + λ−2N W (l∗∗)

≤ Cλ−2N − λ
−2
N W ((l∗∗ + 1)NαλN ), (32)

where in the last inequality we have used the assumption 1 ≤ λ−1N and the
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result 1 ≤ NαλN from Proposition 2. Now (32) leads to

j0−1∑
j=1∨(i−bNαc+1)

Gj ≤ Cλ−2N + Cλ−2N (NαλN )1−m ≤ Cλ−2N (NαλN )1−m. (33)

Substituting (30), (31), and (33) into (29), we obtain

0 ≤ λ−m−1N − λ−n−1N + Cλ−2N (NαλN )1−m.

Thus λ−n−1N ≤ λ−m−1N + Cλ−2N (NαλN )1−m ≤ CN (1−m)αλ−1−mN . Therefore,

CN−
(1−m)α
n−m ≤ λN .

This completes the proof of Theorem 1(B).

Proof of Theorem 1(C) (lower bound wN). This follows immediately

from the lower bound in Theorem 1(B) by the fact that NλN ≤ wN .

To continue, note that there is an interesting relation between the es-

timates of the minimum energy EN and the minimal terrace length λN .

Roughly speaking, EN is a “monotonically increasing function” of λN (when

it is sufficiently small). This fact is then used to relate the lower (respec-

tively, upper) bound of EN to the lower (respectively, upper) bound of λN .

Proof of Theorem 1(A)(lower bound for EN) and (B)(upper bound

for λN). We first claim that for −1 < m < 1, 1 < n, there exist C and N0

such that for any N > N0 and critical point XN = (x1, · · · , xN )T of (5), the
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following holds.

E[XN ] ≥



CN1+(1−m)αλ−mN , −1 < m < 0, 1 < n, 0 < α ≤ 1,

N1+α log(NαλN )− CN1+α, m = 0, 1 < n, 0 < α < 1,

1
2N

2 log(NλN )− CN2, m = 0, 1 < n,α = 1,

−CNλ−1N (NαλN )1−m, 0 < m < 1, 1 < n, 0 < α ≤ 1.

(34)

Note that all the functions in the right side of (34) are increasing functions

of λN . Given the above, the energy upper bound for EN (from Theorem 3)

implies the desired upper bound for λN while the lower bound for λN (from

Theorem 1(B) which is just proved) implies the desired lower bound for EN .

More precisely,

(1) for −1 < m < 0, 1 < n, 0 < α ≤ 1,

CN1+
(1−m)nα
n−m ≥ EN (from Theorem 3 (Case C))

and E[XN ] ≥ CN1+(1−m)αλ−mN (from (34))

imply λN ≤ CN−
(1−m)α
n−m (for any minimizers),

while

λN ≥ CN−
(1−m)α
n−m (from Theorem 1(B)) implies EN ≥ CN1+

(1−m)nα
n−m ;

(2) for m = 0, 1 < n, 0 < α ≤ 1,

(n− 1)α

n
N1+α logN ≥ EN (from Theorem 3 (Case C))

and E[XN ] ≥ N1+α log(NαλN ) (from (34))
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imply λN ≤ CN−
α
n (for any minimizers),

while

λN ≥ CN−
α
n (logN)−

1
n (from Theorem 1(B))

implies EN ≥
(n− 1)α

n
N1+α logN − CN1+α log logN.

The other cases: m = 0, α = 1 and 0 < m, 0 < α ≤ 1 follow similarly.

Thus it remains to establish (34). Its proof is divided into several cases.

Case (i): −1 < m < 0, 1 < n. First let P = {(i, j) : 1 ≤ i < j ≤ N}. Then

P = P1 ∪ P2, where

P1 =

{
(i, j) ∈ P : j − i ≤

⌊1

2
Nα
⌋}

and P2 =

{
(i, j) ∈ P :

⌊1

2
Nα
⌋
< j − i ≤ bNαc

}
.

Note that |P1| = CN1+α +O(N) and |P2| = CN1+α +O(N). If (i, j) ∈ P2,

then for sufficiently large N , we have xj − xi ≥ 1
2N

αλN ≥ l∗ by the lower

bound of λN from Proposition 2. Hence for (i, j) ∈ P2, we have V (xj−xi) ≥

V (12N
αλN ) ≥ C(NαλN )−m. On the other hand, for (i, j) ∈ P1, we have the

trivial lower bound V (xj − xi) ≥ minV ≥ C > 0. Therefore,

E[XN ] =
∑

(i,j)∈P1

V (xj − xi) +
∑

(i,j)∈P2

V (xj − xi)

≥ C(CN1+α +O(N)) + (CN1+α +O(N))C(NαλN )−m

≥ CN1+(1−m)αλ−mN .
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(In the above, note that the second term is much bigger than the first due

to the facts that m < 0 and NαλN � 1 (Proposition 2).)

Case (ii): m = 0, 1 < n, and 0 < α < 1. We have

E[XN ] =

N−bNαc∑
i=1

+
N−1∑

i=N−bNαc+1

(i+bNαc−1)∧(N−1)∑
k=i

V (li + · · ·+ lk)


≥ (N − bNαc)[Nα log(NαλN )− CNα] +

bNαc−1∑
k=1

[k log(kλN )− CNα]

≥ N1+α log(NαλN )− bNαcNα log(NαλN )− CN1+α − CN2α

≥ N1+α log(NαλN )− CN1+α

where in the last inequality we have used the estimate λN ≤ l∗ from Propo-

sition 1 and the fact that for 0 < α < 1, the terms N2α logNα, N2α are both

bounded by N1+α for large N .

Case (iii): m = 0, 1 < n, and α = 1. We have

E[XN ] =
N−1∑
i=1

[
N−1∑
k=i

V (li + · · ·+ lk)

]
≥

N−1∑
k=1

[k log(kλN )− CN ]

≥ 1

2
N2 log(NλN )− CN2.

Case (iv): 0 < m < 1, 1 < n. We have

E[XN ] =
N−1∑
i=1

(i+bNαc−1)∧(N−1)∑
k=i

V (li + · · ·+ lk)


≥ −C

N−1∑
i=1

[
λ−1N (NαλN )1−m

]
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≥ −CNλ−1N (NαλN )1−m.

Note that in the above, we have used Lemma 3 in the first inequalities for

Cases (ii)–(iv) to give a lower bound for the energy of a step chain while the

calculus Lemma 4 is only used for Cases (ii) and (iii).

Thus (34) is completely verified.

Remark 3. In many applications, people use the truncated and shifted po-

tential instead of merely truncated potential here. In other words, their pair

potential reads as Ṽ (xj − xi) = V (xj − xi) − VN , where VN is a constant

which may depend on N . Although the minimum energy is modified with

this shifted potential, the minimizer remains the same as ours.

4.3 Completion of Proof of Theorem 1: Upper Bounds for

wN

Before proving the statement, we note again the obvious lower bound

NλN . wN . On the other hand, from the scaling law for the minimum

energy EN , we expect that the bunch shape is almost linear so that we

should also have wN . NλN . We will verify this in the case −1 < m ≤ 0,

1 < n, and α = 1 in which the attraction part of the pair potential is quite

strong. In this regime, we are able to obtain an estimate for wN which is

“sharp” in the sense that the exponents for the lower and upper bounds

“almost match”. This is stronger than the statement of Theorem 1(C) but

is proved only for a smaller range of the parameters.

Proposition 3. Let −1 < m ≤ 0, 1 < n, and α = 1. For any δ > 0 and
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0 < δ′ < 1
2 , there exist Cδ′ and Cδ,δ′ such that for any N and minimizer

XN = (x1, · · · , xN )T of (5), we have

wN,δ′ ≤

 Cδ′N
n−1
n−m , −1 < m < 0,

Cδ,δ′N
n−1
n

+δ, m = 0,
(35)

where wN,δ′ := xN−bδ′Nc − xbδ′Nc.

Proof. Let P = {(i, j) : 1 ≤ i < j ≤ N}. We partition P into P1, P2, P3

where

P1 =
{

(i, j) ∈ P : 1 ≤ i ≤ bδ′Nc, i < j < N − bδ′Nc)
}
,

P2 =
{

(i, j) ∈ P : 1 ≤ i ≤ bδ′Nc, N − bδ′Nc ≤ j ≤ N
}
,

P3 =
{

(i, j) ∈ P : bδ′Nc < i < j ≤ N
}
.

Note that |P1| + |P3| =
(
1
2 − δ

′2)N2 + O(N) and |P2| = δ′2N2 + O(N). In

addition, for (i, j) ∈ P2, we have xj − xi ≥ wN,δ′ ≥ (N − 2bδ′Nc)λN � l∗

for sufficiently large N .

For −1 < m < 0, the monotonicity of V (·) on (l∗,∞) leads to V (xj −

xi) ≥ V (wN,δ′) ≥ Cw−mN,δ′ for (i, j) ∈ P2 and sufficiently large N . Thus,

EN =
∑

(i,j)∈P1∪P3

V (xj − xi) +
∑

(i,j)∈P2

V (xj − xi)

≥ −C
[
(12 − δ

′2)N2 +O(N)
]

+ Cw−mN,δ′
[
δ′2N2 +O(N)

]
≥ Cδ′w−mN,δ′N

2.

Recall that EN ≤ CN1+
(1−m)n
n−m . Therefore wN,δ′ ≤ Cδ′N

n−1
n−m .
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If m = 0, then V (xj − xi) ≥ V (wN,δ′) ≥ logwN,δ′ for (i, j) ∈ P2 and

sufficiently large N . By Lemmas 3 and 4, we have

EN =
∑

(i,j)∈P1

V (xj − xi) +
∑

(i,j)∈P3

V (xj − xi) +
∑

(i,j)∈P2

V (xj − xi)

=

bδ′Nc∑
i=1

∑
j:(i,j)∈P1

V (xj − xi) +
N−1∑

i=bδ′Nc+1

∑
j:(i,j)∈P3

V (xj − xi) +
∑

(i,j)∈P2

V (xj − xi)

≥
N−bδ′Nc−1∑

k=N−bδ′Nc−bδ′Nc

[k log(kλN )− CN ] +

N−bδ′Nc−1∑
k′=1

[
k′ log(k′λN )− CN

]
+ (logwN,δ′)[δ

′2N2 +O(N)]

≥
(

1

2
− δ′2

)
N2 log(NλN ) + δ′2N2 logwN,δ′ − Cδ′N2

≥ n− 1

n

(
1

2
− δ′2

)
N2 logN + δ′2N2 logwN,δ′ − Cδ′N2 log logN.

Note that in the first inequality above, we have used the change of indices

k = N −bδ′Nc− i and k′ = N − i. Moreover, in the last inequality we have

used the fact that λN ≥ CN−
1
n (logN)−

1
n . Recall that in Case C in Section

3, we have EN ≤ n−1
2n N

2 logN + CN2. Therefore, for any δ > 0, we have

for sufficiently large N that

wN,δ′ ≤ Cδ′N
n−1
n (logN)

C′
δ,δ′ ≤ Cδ,δ′N

n−1
n

+δ

completing the proof of (35).

Now we prove the upper bounds in Theorem 1(C). The statements to

be proved “seem weaker” than Proposition 3 as the exponents in the lower

and upper bounds do not match. However they cover a wider range of m

37



and α and are applicable for any critical point of E. The proof is based on

a novel covering idea which is completely different from the earlier parts of

this paper and also of [7].

Proof of Theorem 1(C). Choose any δ such that 0 < δ < α ≤ 1. We

define the terrace index set I := {1, 2, · · · , N − 1} and terrace intervals

Ti = [xi, xi+1) for i ∈ I. Let

M :=

⌊
xN−bNδc − xbNδc

l∗∗

⌋
.

Since NλN � 1, we have M � 1 for sufficiently large N . We further define

Kτ = [xbNδc + (τ − 1)l∗∗, xbNδc + τ l∗∗) for τ = 1, · · · ,M, (36)

K̄τ = Kτ−1 ∪Kτ ∪Kτ+1 for τ = 2, · · · ,M − 1. (37)

We call Kτ a T -dense (terrace-dense) interval if
∣∣{j : Tj ⊂ K̄τ}

∣∣ ≥ N δ
3 , and

T -sparse (terrace-sparse) interval if
∣∣{j : Tj ⊂ K̄τ}

∣∣ < N
δ
3 . We further define

dense, sparse, and boundary terrace index set as follows:

ID =
{
i ∈ I : Ti ⊂ K̄τ for some T-dense Kτ

}
, (38)

IS =

{
i ∈ I\ID : xi ∈

M−1⋃
τ=2

Kτ

}
, (39)

IB = I\(ID ∪ IS). (40)

Now we analyze the length of the intervals in the above sets.

1. Estimation of
∑

i∈IB |Ti|. For any i ∈ IB, one of the following three
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cases holds:

i < bN δc, i ≥ N − bN δc, or xi ∈ K1 ∪KM ∪
[
xbNδc +Ml∗∗, xN−bNδc

)
.

In the last case, we have Ti ⊂ K1 ∪ K2 ∪ KM ∪
[
xbNδc +Ml∗∗, xN−bNδc

)
.

By Proposition 1, we have li ≤ l∗ for all i ∈ I. Therefore,

∑
i∈IB

|Ti| ≤ 2N δl∗ + 4l∗∗ ≤ CN δ. (41)

2. Estimation of
∑

i∈ID |Ti|. For any i ∈ ID, Ti is covered by at most

three T -dense K̄τ . Thus

|ID| ≥
1

3

∑
Kj T -dense

∣∣{j : Tj ⊂ K̄j}
∣∣ ≥ 1

3
N

δ
3 |{τ : Kτ T -dense}|, (42)

where we have used the definition of T -dense interval in the second inequal-

ity. Using the facts |K̄τ | = 3l∗∗, |ID| ≤ N , and (42), the length contributed

by ID can be estimated as:

∑
i∈ID

|Ti| ≤
∑

Kτ T -dense

|K̄τ |

= 3l∗∗

∣∣∣{τ : Kτ T -dense}
∣∣∣ ≤ 9l∗∗N

− δ
3 |ID| ≤ CN1− δ

3 . (43)

3. Estimation of
∑

i∈IS |Ti|. For any i ∈ IS, there exists a τ ∈

{2, · · · ,M} such that xi ∈ Kτ . By the definition of the T -sparse interval,
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we deduce that

|{(j, k) : j ≤ i ≤ k, lj + · · ·+ lk ≤ l∗∗}| ≤ N
2δ
3 .

Thus

∑
j≤i≤k,lj+···+lk≤l∗∗

V ′(lj + · · ·+ lk) ≥ N
2δ
3 V ′(li) ≥ −N

2δ
3 l−n−1i . (44)

Let j0 = min{lj : lj + · · ·+ li ≤ l∗∗} and k0 = max{lk : li+ · · ·+ lk ≤ l∗∗}.

Obviously, Tj0 , Tk0 ⊂
⋃M
τ=1Kτ .

Without loss of generality, we suppose that i ≤ N
2 . Hence i+ b13N

αc ≤

N − 1 for sufficiently large N . Since V ′(li + · · ·+ lk) > 0 for lj + · · ·+ lk >

l∗∗ > l∗, we have

∑
j≤i≤k,lj+···+lk>l∗∗

V ′(lj + · · ·+ lk) >

j0−1∑
j=1∧(i−b 13Nαc)

i+b 1
3
Nαc∑

k=k0+1

V ′(lj + · · ·+ lk).

(45)

For sufficiently large N , we have

k0 − i+ 1 ≤ l∗∗λ−1N ≤

 CN
(1−m)α
n−m , −1 < m < 1,m 6= 0,

CN
α
n (logN)

1
n , m = 0,

where we have used the lower bound for λN established in Theorem 1(B)

and the fact that l∗∗ < C. Consequently, i + b13N
αc − k0 ≥ b14N

αc + 1 for
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sufficiently large N . Fix any j ∈ {1 ∧
(
i− b13N

αc
)
, · · · , j0 − 1}, we have

i+b 1
3
Nαc∑

k=k0+1

V ′(lj + · · · lk) ≥
i+b 1

3
Nαc∑

k=k0+1

V ′(l∗∗ + (k − k0)l∗)

≥
b 1
4
Nαc+1∑
k′=1

V ′(l∗∗ + k′l∗)

≥ l−1∗
∫ 1

4
Nαl∗

l∗∗

V ′(x) dx

≥ V
(

1

4
Nα

)
− V (l∗∗). (46)

Collecting (44), (45), and (46) together with the fact that

∣∣∣∣{1 ∧
(
i− b1

3
Nαc

)
, · · · , j0 − 1

}∣∣∣∣ ≥ bN δc+ 1,

we obtain for sufficiently large N that

∑
j≤i≤k

V ′(lj + · · ·+ lk) ≥

 ∑
j≤i≤k,lj+···+lk≤l∗∗

+
∑

j≤i≤k,lj+···+lk>l∗∗

V ′(lj + · · ·+ lk)

≥ −N
2δ
3 l−n−1i +N δ

[
V

(
1

4
Nα

)
− V (l∗∗)

]
≥ −N

2δ
3 l−n−1i + CN δ.

Thus li ≤ CN−
δ

3(n+1) . We now estimate the length contributed by IS as

∑
i∈IS

|Ti| ≤ CN−
δ

3(n+1) |IS| ≤ CN
1− δ

3(n+1) . (47)

The proof is concluded by combining (41), (43), and (47).
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The whole Theorem 1 is thus proved.

Corollary 1 follows immediately as the technique in the proof of the upper

bounds in Theorem 1(C) only makes use of the force balance condition (11).

4.4 Proof of Theorem 2 (Non-Bunching Regime)

Now we prove Theorem 2 which covers the non-bunching regime corre-

sponding to the Case E in Fig. 3.

Proof of (A) (energy scaling law). Suppose λN > C for some constant

C — this will be proved in the next step, (B).

Now, for case (i) (1 < m < n and 0 < α ≤ 1), we have V (x) < 0 for

x > x∗ = (mn )
1

n−m . Hence,

EN =

N−1∑
i=1

bNαc∧(N−i)∑
k=1

V (xi+k − xi) ≥
N−1∑
i=1

∑
{k≥1: xi+k−xi≥x∗}

V (xi+k − xi)

≥ (N − 1) min
{C0: C0≥x∗}

∞∑
k′=1

V (C0 + (k′ − 1)λN )

≥ −CN.

Next, for case (ii) (−1 < m < n and α = 0), we have EN ≥ (N −1) minV ≥

−|minV |N = −CN . The statements follow after combining with the upper

bounds for EN .

Proof of (B) (minimal terrace length). The upper bound λN ≤ C ′ is

already proved in Proposition 1. In particular, C ′ can be l∗. Now we show

the lower bound C ≤ λN .

If 0 < α ≤ 1, then we follow the proof of the lower bound in Theorem
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1(B) for 0 < m < 1, 1 < n, and 0 < α ≤ 1. We still have (30), (31), and (32)

for 1 < m < n and 0 < α ≤ 1. Note that NαλN ≥ 1. Thus for 1 < m < n

and 0 < α ≤ 1, we have W ((l∗∗+1)NαλN ) ≥ −C for some positive constant

C. Now from (32), we have

j0−1∑
j=1∨(i−bNαc+1)

Gj ≤ Cλ−2N . (48)

Substituting (30), (31), and (48) into (29), we obtain

0 ≤ λ−m−1N − λ−n−1N + Cλ−2N

so that λ−n−1N ≤ λ−m−1N + Cλ−2N ≤ Cλ−1−mN . Hence C ≤ λN for some

constant C (as m < n).

If α = 0, using our convention, we have Nα = 1, i.e. the interaction is

nearest neighbor. It can easily be shown that all the critical points are linear

chains with li = l∗ for all i as l∗ is the only critical point of V . Then the

result follows immediately. But we present the following argument which

works more generally even for finite range interaction. For this, similar to

Proposition 2, we still employ the force balance condition (11) leading to

0 ≤ λ−m−1N − λ−n−1N + C.

Note that either 1
2 ≤ λN or λN < 1

2 . For the latter case, we have

λ−n−1N (1− (
1

2
)n−m) ≤ λ−n−1 − λ−m−1 ≤ C
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and thence C ≤ λN .

Proof of (C) (system size). This follows immediately from C ≤ λN ≤ C ′.

Theorem 2 is thus completely proved.

Again Corollary 2 follows immediately as the proof of the lower bounds

for λN in both Theorems 1 and 2 only makes use the force balance condition

(11).

A Proof of Theorem 3: Upper Bounds for EN

We first state the following simple lemma without proof.

Lemma 5. (i) If φ(x) ≥ 0 and is monotonically decreasing on [1,+∞),

then ∣∣∣∣∣∣
bNαc∑
k=1

φ(k)−
∫ Nα

1
φ(x) dx

∣∣∣∣∣∣ ≤ φ(1) (49)

(ii) If φ(x) ≥ 0 and is monotonically increasing on [1,+∞), then

∣∣∣∣∣∣
bNαc∑
k=1

φ(k)−
∫ Nα

1
φ(x) dx

∣∣∣∣∣∣ ≤ φ(Nα). (50)

Proof of Theorem 3. We estimate the upper bound of E[X0
N ] where X0

N =

(x01, · · · , x0N )T with x0i = (i − 1)l0 for i = 1, · · · , N with some appropriate

l0. For convenience, we write

E[X0
N ] = em[X0

N ]− en[X0
N ] (51)
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where for −1 < s and s 6= 0, we have

es[X
0
N ] =

∑
1≤i<j≤N, j−i≤bNαc

−1

s
|xj − xi|−s = −

bNαc∑
k=1

(N − k)
1

s
k−sl−s0

= −1

s
l−s0

N bNαc∑
k=1

k−s −
bNαc∑
k=1

k1−s

 , (52)

while for s = 0, we have

es[X
0
N ] =

∑
1≤i<j≤N, j−i≤bNαc

log |xj − xi| =
bNαc∑
k=1

(N − k) log(kl0)

=

bNαc∑
k=1

(N − k) log(kl0). (53)

We will estimate the above summation by applying part (i) of Lemma 5 for

φ(x) = x−s (s > 0) on [1,+∞) but part (ii) for φ(x) = x−s (s < 0), log x,

and x log x on [1,+∞).

Without loss of generality, we assume N ≥ 2. We first give some useful

upper bounds for em[X0
N ] and −en[X0

N ] with m,n 6= 0:

(i) for −1 < m < 0,

em[X0
N ] = − 1

m
l−m0

N bNαc∑
k=1

k−m −
bNαc∑
k=1

k1−m


≤ 1

|m|
l−m0

(
N

∫ Nα

1
x−m dx+N1−αm −

∫ Nα

1
x1−m dx+Nα(1−m)

)
≤ 1

|m|
l−m0

(
1

1−m
N1+α(1−m) − 1

1−m
N + 2N1−αm

)
≤ 1

|m|
l−m0

(
1

1−m
N1+α(1−m) + 2N1−αm

)
. (54)
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(ii) for 0 < m < 1,

em[X0
N ] =

1

m
l−m0

bNαc∑
k=1

k1−m −N
bNαc∑
k=1

k−m


≤ 1

m
l−m0

(∫ Nα

1
x1−m dx+Nα(1−m) −N

∫ Nα

1
x−m dx+N1−αm

)
≤ 1

m
l−m0

(
1

2−m
Nα(2−m) − 1

1−m
N1+α(1−m) +

1

1−m
N + 2N1−αm

)
≤ 1

m

(
1

2−m
− 1

1−m

)
l−m0 N1+α(1−m) +

1

m

(
2 +

1

1−m

)
l−m0 N

≤ − 1

m(1−m)(2−m)
l−m0 N1+α(1−m) +

3

m(1−m)
l−m0 N.

(55)

(iii) for 1 < m,

em[X0
N ] = − 1

m
l−m0

N bNαc∑
k=1

k−m −
bNαc∑
k=1

k1−m


≤ − 1

m
l−m0 (N + 2−mN −Nα)

≤ − 1

m
(2l0)

−mN. (56)

(iv) for 0 < n < 1,

−en[X0
N ] ≤ 1

n
l−n0 N

bNαc∑
k=1

k−n ≤ 1

n
l−n0 N

(∫ Nα

1
x−n dx+N−αn

)
≤ 1

n(1− n)
l−n0 N1+α(1−n) +

1

n
l−n0 N1−αn.

(57)
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(v) for 1 < n,

−en[X0
N ] ≤ 1

n
l−n0 N

bNαc∑
k=1

k−n ≤ 1

n
l−n0 N

(∫ Nα

1
x−n dx+ 1

)
=

1

n
l−n0 N

(
1 +

1

n− 1
− 1

n− 1
N−α(n−1)

)
≤ 1

n− 1
l−n0 N. (58)

Now we proceed to prove the theorem. We remark that the classification

and computation in the following cases are quite tedious. As the goal is to

obtain upper bounds, we certainly would like the bounds to be “as low as”

possible and preferably with negative prefactor. Hence in some cases, we

will be very careful in choosing the constants – see the sub-cases A1, A2 and

C4 in the following.

Case (A): −1 < m < n < 1, 0 < α ≤ 1. Overall, we will choose l0 ∼ N−α

and the bounds obtained are of the type EN . N . The first two cases cover

the regime mn > 0 while the rest cover the regime mn ≤ 0.

(A1) 0 < m < n < 1. Collecting (57) and (55) together with l0 = C0N
−α

and C0 =
(
2m(1−m)(2−m)

n(1−n)

) 1
n−m

, we obtain

E[X0
N ] ≤

(
1

n(1− n)
C−n0 − 1

m(1−m)(2−m)
C−m0

)
N1+α

+
1

n
C−n0 N +

3

m(1−m)
C−m0 N1+αm

≤ − 1

2m(1−m)(2−m)
C−m0 N1+α +

(
1

n
C−n0 +

3

m(1−m)
C−m0

)
N1+αm,

(59)
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where we used the fact that

1

n(1− n)
C−n0 − 1

m(1−m)(2−m)
C−m0 = − 1

2m(1−m)(2−m)
C−m0 .

(A2) −1 < m < n < 0. For −1 < n < 0, we have

−en[X0
N ] =

1

|n|
l−n0

bNαc∑
k=1

k1−n −N
bNαc∑
k=1

k−n


≤ 1

|n|
l−n0

(∫ Nα

1
x1−n dx+Nα(1−n) −N

∫ Nα

1
x−n dx+N1−αn

)
≤ 1

|n|
l−n0

(
1

2− n
Nα(2−n) − 1

1− n
N1+α(1−n) +

1

1− n
N + 2N1−αn

)
≤ 1

|n|

(
1

2− n
− 1

1− n

)
l−n0 N1+α(1−n) +

1

|n|

(
2 +

1

1− n

)
l−n0 N1−αn

≤ − 1

|n|(1− n)(2− n)
l−n0 N1+α(1−n) +

3

|n|(1− n)
l−n0 N1−αn. (60)

Collecting (60) and (54) together with l0 = C0N
−α and C0 =

(
|m|(1−m)

2|n|(1−n)(2−n)

) 1
n−m

,

we obtain

E[X0
N ] ≤

(
1

|m|(1−m)
C−m0 − 1

|n|(1− n)(2− n)
C−n0

)
N1+α

+
2

|m|
C−m0 N +

3

|n|(1− n)
C−n0 N

≤ − 1

2|n|(1− n)(2− n)
C−n0 N1+α +

(
2

|m|
C−m0 +

3

|n|(1− n)
C−n0

)
N,

(61)

where we used the fact that

1

|m|(1−m)
C−m0 − 1

|n|(1− n)(2− n)
C−n0 = − 1

2|n|(1− n)(2− n)
C−n0 .
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(A3) 0 = m < n < 1 and 0 < α < 1. We set l0 = N−α ≤ 1. Then

em[X0
N ] = −

bNαc∑
k=1

k log(kl0) +N

bNαc∑
k=1

log(kl0)

= −
bNαc∑
k=1

k log k +N

bNαc∑
k=1

log k + (log l0)

NbNαc −
bNαc∑
k=1

k


≤ N

∫ Nα

1
log x dx+N logNα − α(logN)

NbNαc −
bNαc∑
k=1

k


≤ N1+α logNα +N logNα − αN1+α logN + αN logN + αN2α logN

= 2N logNα +N2α logNα. (62)

Collecting (57) and (62) together with l0 = N−α, we obtain

E[X0
N ] ≤ 1

n(1− n)
N1+α +

1

n
N + 2N logNα +N2α logNα

≤ 1

n(1− n)
N1+α +

4

n
N1∧2α logNα. (63)

(A4) 0 = m < n < 1 and α = 1. We set l0 = N−1 ≤ 1. Then

em[X0
N ] = −

N∑
k=1

k log(kl0) +N

N∑
k=1

log(kl0)

= −
N∑
k=1

k log k +N

N∑
k=1

log k + (log l0)

(
N2 −

N∑
k=1

k

)

≤ −
∫ N

1
x log x dx+N logN +N

∫ N

1
log x dx+N logN − 1

2
N(N − 1) logN

≤ −1

2
N2 logN +

1

4
N2 +N2 logN + 2N logN − 1

2
N2 logN +

1

2
N logN

≤ 3N logN +
1

4
N2. (64)
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Collecting (57) and (64) together with l0 = N−1, we obtain

E[X0
N ] ≤ 1

n(1− n)
N2 +

1

n
N + 3N logN +

1

4
N2

≤
(

1

n(1− n)
+

1

4

)
N2 +

4

n
N logN. (65)

(A5) −1 < m < 0 = n and 0 < α < 1. We set l0 = N−α ≤ 1. Then

−en[X0
N ] =

bNαc∑
k=1

k log(kl0)−N
bNαc∑
k=1

log(kl0)

=

bNαc∑
k=1

k log k −N
bNαc∑
k=1

log k − (log l0)

NbNαc −
bNαc∑
k=1

k


≤
∫ Nα

1
x log x dx+Nα logNα −N

∫ Nα

1
log x dx+N logNα

+ α(logN)

NbNαc −
bNαc∑
k=1

k


≤ 1

2
N2α logNα +Nα logNα −N1+α logNα +N logNα + αN1+α logN

=

(
1

2
N2α +Nα +N

)
logNα. (66)

Collecting (54) and (66) together with l0 = N−α, we obtain

E[X0
N ] ≤ 1

|m|(1−m)
N1+α +

2

|m|
N +

(
1

2
N2α +Nα +N

)
logNα

≤ 1

|m|(1−m)
N1+α +

5

|m|
N1∧2α logNα. (67)
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(A6) −1 < m < 0 = n and α = 1. We set l0 = N−1 ≤ 1. Then

−en[X0
N ] =

N∑
k=1

k log(kl0)−N
N∑
k=1

log(kl0)

=
N∑
k=1

k log k −N
N∑
k=1

log k − (log l0)

(
N2 −

N∑
k=1

k

)

≤
∫ N

1
x log x dx+N logN −N

∫ N

1
log x dx+N logN

+ (logN)
1

2
N(N − 1)

≤ 1

2
N2 logN +N logN −N2 logN +N logN +

1

2
N2 logN

= 2N logN. (68)

Collecting (54) and (68) together with l0 = N−α, we obtain

E[X0
N ] ≤ 1

|m|(1−m)
N2 +

2

|m|
N + 2N logN

≤ 1

|m|(1−m)
N2 +

4

|m|
N logN. (69)

(A7) −1 < m < 0, 0 < n < 1. Collecting (57) and (54) together with

l0 = N−α, we obtain

E[X0
N ] ≤

(
1

n(1− n)
+

1

|m|(1−m)

)
N1+α +

(
2

|m|
+

1

n

)
N. (70)

Case (B): −1 < m < n = 1. In this case, we set l0 = N−α. Then

−en[X0
N ] = l−10

N bNαc∑
k=1

k−1 − bNαc

 ≤ N1+α

(∫ Nα

1
x−1 dx+ 1

)
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= N1+α logNα +N1+α. (71)

Collecting (54), (55), (62), and (64), we obtain

em[X0
N ] =



1
|m|(1−m)N

1+α + 2
|m|N, −1 < m < 0,

− 1
m(1−m)(2−m)N

1+α + 3
m(1−m)N

1+αm, 0 < m < 1,

2N logNα +N2α logNα, m = 0, 0 < α < 1,

3N logN + 1
4N

2, m = 0, α = 1,

(72)

which can be summarized as

E[X0
N ] ≤ CN1+α logN. (73)

Case (C): −1 < m < 1 < n. Overall, we will take l0 ∼ N−
α(1−m)
n−m but in

Case C4, it is crucial that we obtain a negative prefactor. Hence the choice

of the constant in l0 is important.

(C1) −1 < m < 0. Collecting (58) and (54) together with l0 = N−
α(1−m)
n−m ,

we obtain

E[X0
N ] ≤

(
1

n− 1
+

1

|m|(1−m)

)
N1+

n(1−m)α
n−m +

2

|m|
N1−α+n(1−m)α

n−m . (74)

(C2) For m = 0 and 0 < α < 1, we set l0 = N−
α
n ≤ 1. Thus

em[X0
N ] = −

bNαc∑
k=1

k log(kl0) +N

bNαc∑
k=1

log(kl0)
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= −
bNαc∑
k=1

k log k +N

bNαc∑
k=1

log k + (log l0)

NbNαc −
bNαc∑
k=1

k


≤ N

∫ Nα

1
log x dx+N logNα − α

n
(logN)

NbNαc −
bNαc∑
k=1

k


≤ N1+α logNα +N logNα − α

n
N1+α logN +

α

n
N logN +

α

n
N2α logN

=
(n− 1)α

n
N1+α logN + 2(N +N2α) logN. (75)

Collecting (58) and (75) together with l0 = N−
α
n , we obtain

E[X0
N ] ≤ 1

n− 1
N1+α +

(n− 1)α

n
N1+α logN + 2(N +N2α) logN

≤ (n− 1)α

n
N1+α logN + CN1+α. (76)

(C3) For m = 0 and α = 1, we set l0 = N−
1
n ≤ 1. Thus

em[X0
N ] = −

N∑
k=1

k log(kl0) +N
N∑
k=1

log(kl0)

= −
N∑
k=1

k log k +N

N∑
k=1

log k + (log l0)

(
N2 −

N∑
k=1

k

)

≤ −
∫ N

1
x log x dx+N logN +N

∫ N

1
log x dx+N logN − 1

2n
N(N − 1) logN

≤ −1

2
N2 logN +

1

4
N2 +N2 logN + 2N logN − 1

2n
N2 logN +

1

2n
N logN

≤ n− 1

2n
N2 logN + 3N logN +

1

4
N2. (77)

Collecting (58) and (77) together with l0 = N−
1
n , we obtain

E[X0
N ] ≤ 1

n− 1
N2 +

n− 1

n
N2 logN + 3N logN +

1

4
N2
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≤ n− 1

2n
N2 logN + CN2. (78)

(C4) 0 < m < 1. Collecting (58) and (55) together with l0 = C0N
−α(1−m)

n−m

and C0 =
(
2m(1−m)(2−m)

n−1

) 1
n−m

, we obtain

E[X0
N ] ≤

(
1

n− 1
C−n0 − 1

m(1−m)(2−m)
C−m0

)
N1+

n(1−m)α
n−m

+
3

m(1−m)
C−m0 N1+

m(1−m)α
n−m

≤ − C−n0

n− 1
N1+

n(1−m)α
n−m +

3C−m0

m(1−m)
N1+

m(1−m)α
n−m , (79)

where we used the fact that 1
n−1C

−n
0 − 1

m(1−m)(2−m)C
−m
0 = − 1

n−1C
−n
0 .

Case (D): 1 = m < n. We set l0 = 1. Then

em[X0
N ] = l−10

−N bNαc∑
k=1

k−1 + bNαc


≤ −N

∫ Nα

1
x−1 dx+ 2N = −N logNα + 2N. (80)

By (58) with l0 = 1, we have

− en[X0
N ] ≤ 1

n− 1
N. (81)

Therefore,

E[X0
N ] ≤ −N logNα +

3

n− 1
N. (82)

Case (E). There are two cases depending on whether α > 0 or not. But in
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either cases, l0 ∼ 1.

(E1) 1 < m < n and 0 < α ≤ 1. Collecting (58) and (56) together with

l0 = (2
m+1m
n−1 )

1
n−m , we obtain

E[X0
N ] ≤

(
1

n− 1
l−n0 − 1

m
(2l0)

−m
)
N

= − 1

n− 1
l−n0 N, (83)

where we used the fact that 1
n−1 l

−n
0 − 2−m

m l−m0 = − 1
n−1 l

−n
0 .

(E2) −1 < m < n and α = 0. Let l0 = 1. Then E[X0
N ] = (N − 1) minV ≤

CN.

All the cases are thus considered.
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