
Unstable kink-soliton profiles for the sine-Gordon equation on a
Y-junction graph with δ-interaction

Jaime Angulo Pava 1 and Ramón G. Plaza 2

November 13, 2020

1 Department of Mathematics, IME-USP
Rua do Matão 1010, Cidade Universitária, CEP 05508-090, São Paulo, SP (Brazil)

angulo@ime.usp.br
2 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,

Universidad Nacional Autónoma de México, Circuito Escolar s/n,
Ciudad Universitaria, C.P. 04510 Cd. de México (Mexico)

plaza@mym.iimas.unam.mx

Abstract

The aim of this work is to establish a linear instability result of stationary, kink and kink/anti-
kink soliton profile solutions for the sine-Gordon equation on a metric graph with a structure
represented by a Y-junction. The model considers boundary conditions at the graph-vertex
of δ-interaction type, or in other words, continuity of the wave functions at the vertex plus
a law of Kirchhoff-type for the flux. It is shown that kink and kink/anti-kink soliton type
stationary profiles are linearly (and nonlinearly) unstable. For that purpose, a linear instability
criterion that provides the sufficient conditions on the linearized operator around the wave
to have a pair of real positive/negative eigenvalues, is established. As a result, the linear
stability analysis depends upon of the spectral study of this linear operator and of its Morse
index. The extension theory of symmetric operators, Sturm-Liouville oscillation results and
analytic perturbation theory of operators are fundamental ingredients in the stability analysis.
A comprehensive study of the local well-posedness of the sine-Gordon model in E(Y) × L2(Y)
where E(Y) ⊂ H1(Y) is an appropriate energy space, is also established. The theory developed
in this investigation has prospects for the study of the instability of stationary wave solutions
of other nonlinear evolution equations on metric graphs.

Mathematics Subject Classification (2010). Primary 35Q51, 35J61, 35B35; Secondary
47E05.

Key words. sine-Gordon model, metric graphs, kink and anti-kink solutions, δ-type interaction,
analytic perturbation theory, extension theory, instability.

1 Introduction

In recent years, there has been a growing interest among the scientific community in modeling
and analyzing evolution problems described by partial differential equations (PDEs) on graphs.
A metric graph is a network-shaped structure of edges which are assigned a length (that is, a
metric) and connected at vertices according to boundary conditions which determine the dynamics
on the network. This trend has been mainly motivated by the demand of reliable mathematical
models for different phenomena in branched systems which, in meso- or nano-scales, resemble a
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thin neighborhood of a graph, such as Josephson junction networks [49, 50], electric circuits [15],
unidirectional shallow water flow in a network [23], blood pressure waves in large arteries [51],
or nerve impulses in complex arrays of neurons [57], just to mention a few examples (see also
[7,19,20,24,25,27,31,41,44] and the many references therein). One of the main difficulties consists
on the fact that metric graphs are not manifolds. From a mathematical viewpoint, the nature of
a PDE model on a graph is tantamount to a system of PDEs defined on appropriate intervals in
which the coupling is given exclusively through the boundary conditions at the vertices, known as the
“topology of the graph” (see, for example, a recent review of the extension of Hamiltonian dynamics
to non-manifold structures by Bibikov and Prokhorov [21]). Hence, both the model equation and
the geometry are complex in general, making the problem difficult to tackle. A first step is to
consider simple geometries, such as star-shaped graphs and Y-junctions. Another simplification is
to solve linear equations, such as Schrödinger operators, on graphs. In this case the system is called
a quantum graph and there is a broad literature on the subject (see, e.g., [18–20,22,41,42]).

The extension of the analysis to nonlinear dispersive equations on graphs is an emerging subfield
that has recently attracted the attention of mathematicians and physicists alike. In particular,
the prototype of graph geometry often considered is the star graph, namely, a metric graph with
N semi-infinite edges of the form (0,∞) connected at a single common vertex at ν = 0. The
analyses have focused on the characterization of ground states and standing waves. These works
pertain primarily to the nonlinear Schrödinger (NLS) equation (see Adami et al. [3–5], Angulo
and Goloschapova [9, 10] and Cacciapuoti et al. [26]; see also Noja [52] for a recent review), albeit
other nonlinear dispersive equations have been also studied, such as the Benjamin-Bona-Mahony
(BBM) equation for unidirectional shallow fluid flow on a Y-junction (see Bona and Cascaval [23]
and Mugnolo and Rault [46]), Airy-type equations (Mugnolo et al. [45]), nonlinear Klein-Gordon
equations (Goloschapova [33]) or the Korteweg-de Vries (KdV) equation on general metric graphs
(Angulo and Cavalcante [8]). All these model equations share one feature: the presence of solitary
wave solutions (solitons). The analysis of existence, stability and the overall role of solitons for
some PDE models on graphs, as well as the study of nonlinear equations on ramified structures,
constitute a very active field of research due to its potential of becoming a paradigm model for
topological effects of nonlinear wave propagation. The objective of this work is to contribute to this
on-going effort through the analysis of the well-known sine-Gordon equation on a metric graph of
Y-junction type.

1.1 The sine-Gordon equation on graphs

The sine-Gordon equation in one space dimension,

utt − c2uxx + sinu = 0, (1.1)

where c > 0 is a constant and x ∈ R, t > 0, appears in many models in mathematical physics,
such as the description of the magnetic flux in a Josephson line [16, 17, 59], crystal dislocations
[32], mechanical oscillations of a nonlinear pendulum [29], or even nonlinear oscillations in DNA
chains [37], among other applications. It is a nonlinear wave equation underlying many important
mathematical features, such as complete integrability [1, 2], a Hamiltonian structure [63] and the
existence of localized solutions (solitons) [57,58].

Posing the sine-Gordon equation on a metric graph comes out naturally from practical applica-
tions. For example, since the phase-difference in a long (infinite) Josephson junction obeys equation
(1.1), the coupling of two or more Josephson junctions forming a network can be effectively mod-
eled by the sine-Gordon model on a graph. The sine-Gordon equation was first conceived on a
Y-shaped Josephson junction by Nakajima et al. [49, 50] as a prototype for logic circuits. The au-
thors consider three long (semi-infinite) Josephson junctions coupled at one single common vertex, a
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(a) Y = (−∞, 0) ∪ (0,∞) ∪ (0,∞) (b) Y = (0,∞) ∪ (0,∞) ∪ (0,∞)

Figure 1: Panel (a) shows a Y-junction of the first type with E1 = (−∞, 0) and Ej = (0,∞), j = 2, 3,
whereas panel (b) shows a Y-junction of the second type (star graph) with Ej = (0,∞), 1 5 j 5 3.

structure known as a tricrystal junction. There exists two main types of Y-junctions. A Y-junction
of the first type (or type I) consists of one incoming (or parent) edge, E1 = (−∞, 0), meeting at one
single vertex at the origin, ν = 0, with other two outgoing (children) edges, Ej = (0,∞), j = 2, 3.
The second type (or Y-junction of type II) resembles more a starred structure and consists of three
identical edges of the form Ej = (0,∞), 1 5 j 5 3. See Figure 1 for an illustration. Junctions
of type I are more common in unidirectional fluid flow models (see, for example, [23]), whereas
graphs of type I or II are indistinctively used to describe Josephson tricrystal junctions; see, for
instance, [35, 61] (type I), or [39, 56, 62] (type II). In the present case of the sine-Gordon equation
(1.1), the choice of a junction of either type makes no difference in the stability analysis.

What is more crucial is the choice of boundary conditions, mainly because the transition rules at
the vertex completely determine the dynamics of the PDE model on the graph. For the sine-Gordon
equation in Y-junctions, previous studies have basically (and almost exclusively) considered two
types of boundary conditions: interactions of δ-type, and of δ′-type. The former refers to continuity
of the wave functions and a balance flux relation for the derivatives of the wave functions at the
vertex. The latter consists of continuity of the fluxes (derivatives) at the vertex (surface current
density is the same in all three thin films at the intersection), and a Kirchhoff-type rule for the
self-induced magnetic flux. Since Josephson models arise in the description of electromagnetic flux,
interactions of δ′-type have received more attention (see, for example, [35,39,62] for the description
and analysis of stationary kink-type solutions and, more recently, [61] for solutions of the breather
type). In both cases (δ- and δ′-types), rigorous studies of the well-posedness of the model, as well
as of the spectral and nonlinear stability properties of particular stationary solutions, are still under
development (the case of interactions of δ′-type at the vertex will be addressed in a companion
paper [14]).

1.2 Boundary conditions of δ-interaction type on a Y-junction

In this paper, we focus our attention to boundary conditions of δ-type. Previous works (see, e.g.,
[28, 30, 56]) have considered interactions consisting of two basic transition rules at the vertex. For
concreteness, we describe them in the context of a Y-junction of type I. The first boundary condition
is the wave function continuity at the intersection point, namely,

u1(0−) = u2(0+) = u3(0+). (1.2)
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In the context of Y-junctions for the sine-Gordon model, it was first proposed by Nakajima et al. [50]
(see equation (4) in that reference) to account for circuits with a trigger turning point. The second
boundary condition reads,

− c2
1∂xu1(0−) +

3∑
j=2

c2
j∂xuj(0+) = 0, (1.3)

and it is equivalent to the charge conservation property or conservation of the current flow (the
Kirchhoff law for electric currents in the case of a Josephson junction, for example) at the vertex.
This boundary condition, adopted from previous studies for (linear) Klein-Gordon equations (see,
e.g., [6, 21]), is a continuous analogue of the celebrated Kirchhoff’s circuit law in the sense that
it somehow expresses a flux balance across the vertex. Dutykh and Caputo [30] have shown that
(1.3) can be justified by transforming the Y-junction domain into a manifold Yε of small thickness
ε > 0. In this fashion, Yε becomes a tubular neighborhood of the graph, often referred to in the
literature as a fat graph (see [22], chapter 17). Henceforth, imposing Neumann boundary conditions
on ∂Yε and taking the limit when ε → 0 leads to (1.3). Another approach adopted by the same
authors in order to derive (1.3) is based on a conservation of energy argument (see [30] for further
information).

The sine-Gordon model on a Y-junction with this type of boundary conditions of δ-interaction
type has been studied only by Caputo and Dutykh [28, 30] and by Sabirov et al. [56], up to our
knowledge. In the latter reference, the authors consider the stationary sine-Gordon equation on a
Y-junction with finite edges, Ej = (0, Lj). They find exact analytical solutions under boundary
conditions of both the δ- and δ′-interaction types. Caputo and Dutykh [28, 30] formulate the
sine-Gordon model on a Y-junction under boundary conditions (1.2) and (1.3), and implement a
symplectic numerical scheme to solve it and, more precisely, to numerically study soliton collisions
at the vertex.

As far as we know, there is no analytical study of the stability of stationary solutions to the sine-
Gordon model on a graph with boundary conditions of δ-interaction type available in the literature.
The stability of these static configurations is an important property from both the mathematical
and the physical points of view. Stability can predict whether a particular state can be observed in
experiments or not. Unstable configurations are rapidly dominated by dispersion, drift, or by other
interactions depending on the dynamics, and they are practically undetectable in applications. In
the analysis of their stability, it is customary to linearize the equation around the profile solution
and to obtain useful information from the spectral properties of the linearized operator posed on
an appropriate function space. Upon linearization of the sine-Gordon equation (1.1) around a
stationary soliton solution, we end up with a Schrödinger type operator with a bounded potential
(see the form of the operator (1.11) below) that can be appropriately defined on a graph. Therefore,
motivated by the spectral analysis of the linearized model around the static profile solutions, we
adopt a quantum-graph approach in order to justify, interpret and extend the boundary conditions
that actually define the model.

According to custom in quantum graph theory [18,22], let us consider for simplicity the case of a
star graph G constituted by N semi-infinite edges of the form Ej = (0,∞), 1 5 j 5 N , attached at a
single vertex at ν = 0. A function on G is a vector u = (uj)

N
j=1, with scalar components, uj = uj(x)

on each edge Ej . Sobolev and Lebesgue spaces on G are defined as Hm(G) = ⊕Nj=1H
m(0,∞) and

Lp(G) = ⊕Nj=1L
p(0,∞), respectively. Schrödinger operators on quantum graphs have the form

L̃u =

{(
− d2

dx2
+ Vj(x)

)
uj

}N
j=1

,

defined on L2(G) with a domain being a subset of H2(G). If the potentials Vj are not too singular
then the coupling at the vertex does not depend on them and the self-adjoint extensions of the
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Laplace operator determine all the self-adjoint extensions of L̃. It is known (see, e.g., [22]) that all
self-adjoint extensions of the formal operator −∆ = {−u′′j }Nj=1 on the star graph are determined by
vertex conditions having the form

(U − I)u(0) + i(U + I)u′(0) = 0,

where U is a unitary matrix. A self-adjoint extension is of δ-interaction type in the particular case
where the matrix U is given by Ujk = 2(N + iZ)−1− δj,k, for 1 5 j, k 5 N , being δj,k the Kronecker
symbol and for an arbitrary parameter Z ∈ R. Upon substitution into the last equation we obtain
the so called δ-boundary conditions at the vertex with intensity Z,

u1(0) = u2(0) = . . . = uN (0),
n∑
j=1

u′j(0) = Zu1(0).

In such a case, the self-adjoint extension is defined as the formal operator, −∆Z ≡ −∆, on a
domain, D(−∆Z), which is a subspace of H2(G) that includes the δ-conditions at the vertex. The
parameter value Z is fundamental an determines the basic spectral properties of the operator. For
example, it can be shown that −∆Z has non-empty point spectrum only when Z < 0, yielding the
term “attractive” to characterize the δ-vertex with Z < 0, in contrast with a “repulsive” vertex when
Z ≥ 0. The former can be interpreted as an attractive potential well at the vertex. When Z = 0
the δ-condition at the vertex is said to be of Kirchhoff type. The quadratic form associated to −∆Z

is
Q[u] =

1

2
‖u′‖2L2(G) +

Z

2
|u1(0)|2,

with domain
D(Q) =

{
u ∈ H1(G) : u1(0) = . . . = uN (0)

}
=: E(G),

independent of Z and usually referred to as the energy domain (see [22, 52]).
For the sine-Gordon model on a graph, keeping the characteristic velocity on each edge is

important. Thus, we are concerned with all the self-adjoint extensions of the formal operator

Fu =

{(
− c2

j

d2

dx2

)
uj

}N
j=1

, u = (uj)
N
j=1,

on a star graph G. It is not hard to verify that self-adjoint extensions correspond to an interaction
of δ-type only when Ujk = 2c2

k(N + iZ)−1− δj,k, even though in this case the matrix U is no longer
unitary. For convenience of the reader, we provide a direct proof of this fact in Appendix §A for
the particular case of a Y-junction of type I, whereupon substitution of U yields the transition
conditions

u1(0−) = u2(0+) = u3(0+),

−c2
1u
′
1(0−) +

3∑
j=2

c2
ju
′
j(0+) = Zu1(0−),

(1.4)

recovering in this fashion the continuity condition (1.2) and the Kirchhoff boundary condition (1.3)
when Z = 0.

Therefore, the main goal of this paper is to analyze the structural and stability properties of
stationary solutions to the sine-Gordon model defined on a Y-junction under boundary conditions of
δ-interaction type of the form (1.4) at the vertex. These conditions depend upon the parameter Z,
which ranges along the whole real line and determines the dynamics of the solutions. Therefore, the
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value Z ∈ R is part of the physical parameters that define the physical model (such as the speeds
cj , for instance). Instead of adopting ad hoc boundary conditions, we consider a parametrized
family of transition rules covering a wide range of applications and which, for the particular value
Z = 0, include the Kirchhoff condition (1.3) previously studied in the literature. Our analysis
focuses on a particular class of solutions of the sine-Gordon equation known as kinks (also referred
to as topological solitons [29, 57, 58]). For completeness, we also include the stability analysis for
static configurations of kink/anti-kink type.

1.3 Main results

In this paper we consider the sine-Gordon equation (1.1) on a metric graph with the shape of a
Y-junction with three semi-infinite edges and joined by a single vertex ν = 0. For concreteness,
in the sequel we assume that the Y-junction is of type I, where E1 = (−∞, 0) and Ej = (0,∞),
j = 2, 3. The results and observations of this paper can be easily extended to the case of a Y-
junction of type II at the expense of extra bookkeeping. The sine-Gordon model on the Y-junction
under consideration reads

∂2
t uj − c2

j∂
2
xuj + sinuj = 0, x ∈ Ej , t > 0, 1 5 j 5 3, (1.5)

where u = (u)3
j=1, uj = uj(x, t). It is assumed that the characteristic speed on each edge Ej is

constant and positive, cj > 0, without loss of generality. Clearly, one can recast the equations in
(1.5) as a first order system that reads{

∂tuj = vj

∂tvj = c2
j∂

2
xuj − sinuj ,

x ∈ Ej , t > 0, 1 5 j 5 3. (1.6)

The equations are endowed with boundary conditions of δ-type, having the the form (1.4) for all
t > 0 and for a given parameter Z ∈ R.

We are interested in the dynamics generated by the flow of the sine-Gordon model (1.5) around
solutions of stationary type,

uj(x, t) = φj(x), vj(x, t) = 0, (1.7)

for all j = 1, 2, 3, and x ∈ Ej , t > 0, where each of the profile functions φj satisfies the equation

− c2
jφ
′′
j + sinφj = 0, (1.8)

on each edge Ej and for all j, as well as the boundary conditions (1.4) at the vertex ν = 0. More
precisely, we consider the particular family of profiles determined by the well-known kink-soliton
profile solutions to the sine-Gordon equation on the full real line [29,58], having the form{

φ1(x) = 4 arctan
(
e(x−a1)/c1

)
, x ∈ (−∞, 0),

φj(x) = 4 arctan
(
e−(x−aj)/cj

)
, x ∈ (0,∞), j = 2, 3,

(1.9)

where each aj is a constant determined by the boundary conditions (1.4). Notice as well that this
family of stationary solutions (1.9) satisfies

φ1(−∞) = φj(+∞) = 0, j = 2, 3 (1.10)

(in other words, the constant of integration when solving (1.8) to arrive at (1.9) is zero on each edge
Ej). This decaying behavior at ±∞, for instance, guarantees that Φ = (φj)

3
j=1 ∈ H2(Y).
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In the forthcoming stability analysis, the family of linearized operators around the stationary
profiles plays a fundamental role. These operators are characterized by the following formal self-
adjoint diagonal matrix operators,

Lv =
((
− c2

j

d2

dx2
vj + cos(φj)vj

)
δj,k

)
, 1 5 j, k 5 3, v = (vj)

3
j=1, (1.11)

where δj,k denotes the Kronecker symbol, and defined on domains with δ-type interaction at the
vertex ν = 0,

D(LZ) =
{

v = (vj)
3
j=1 ∈ H2(Y) : v1(0−) = v2(0+) = v3(0+),

3∑
j=2

c2
jv
′
j(0+)−c2

1v
′
1(0−) = Zv1(0−)

}
,

(1.12)
with Z ∈ R. The operator is completely determined, (LZ , D(LZ)), LZ ≡ L, by each parameter
value Z ∈ R. It is to be observed that the particular family (1.9) of kink-profile stationary solutions
under consideration is such that Φ = (φj)

3
j=1 ∈ D(LZ).

Motivated by physical considerations, we also study static solutions to (1.5) on a Y-junction
of anti-kink type, which represent waves pinned at the vertex and are of interest in the studies of
impurities of the medium (modeled, in this case, by the vertex itself; see, e.g., [58] for an interpre-
tation of such impurities in the real line). Hence, we also consider one anti-kink on the parent edge,
E1 = (−∞, 0), coupled with two kinks on the remaining edges, Ej = (0,∞), j = 2, 3. Such static
solutions of kink/anti-kink type have the form{

φ1(x) = 4 arctan
(
e−(x−a1)/c1

)
, x ∈ (−∞, 0),

φj(x) = 4 arctan
(
e−(x−aj)/cj

)
, x ∈ (0,∞), j = 2, 3.

(1.13)

Notice that, in this case,

lim
x→−∞

φ1(x) = 2π, lim
x→+∞

φj(x) = 0, j = 2, 3,

and therefore the configuration Φ = (φj)
3
j=1 is not in H2(Y). Nonetheless, it is possible to linearize

the equation around this static solution and to define a suitable linear operator on the same domain
in the energy space endowed with the δ-coupling at the vertex. The spectral analysis of this operator
can be performed in a similar fashion.

Let us summarize the main contributions of this paper:

− First, we prove that the Cauchy problem associated to (1.6) is well-posed in the energy space
E(Y)× L2(Y) (section §2), where

E(Y) = {(vj)3
j=1 ∈ H1(Y) : v1(0−) = v2(0+) = v3(0+)}.

This is the content of Theorem 2.7. Even though the well-posedness result is not part of the
spectral stability analysis, it is fundamental to reach a nonlinear conclusion; see Remark 4.8
below.

− In section §3 we establish a general instability criterion for stationary solutions for the sine-
Gordon model (1.6) on a Y-junction. The reader can find this result in Theorem 3.2 below.
It essentially provides sufficient conditions on the flow of the semigroup generated by the
linearization around the stationary solutions, for the existence of a pair of positive/negative
real eigenvalues of the linearized operator based on its Morse index. It is to be observed that
this instability criterion applies to any type of stationary solutions (such as kinks or breathers,
for example) and for other self-adjoint extensions characterized by different interactions at the
vertex, such as the δ′-type (see [14]), making it potentially useful in applications.
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− We provide a complete characterization of the stationary kink-profile solutions (1.9) in terms
of the parameter Z ∈ R. It is shown that the family ΦZ = (φj)

3
j=1 belongs to the domain

space D(LZ) only for parameter values Z ∈ (−
∑3

j=1 cj , 0) (section §4.1). This implies, in
turn, that there does not exist a kink-profile solution of the form (1.9) (and hence, satisfying
the boundary condition at ±∞, (1.10)), compatible with the Kirchhoff condition (1.3) with
Z = 0.

− We show (see section §4.2) that the family of stationary kink-profiles, Z 7→ ΦZ , are spectrally
unstable under the flow of the sine-Gordon model for each Z ∈ (−

∑3
j=1 cj , 0). This is the

content of the main Theorem 4.1 below. The proof is divided into different steps (see Propo-
sitions 4.4 and 4.6), in order to show that the Morse index of the linearization is exactly equal
to one for the different parameter values of Z under consideration. As we mentioned above,
this result implies the nonlinear (orbital) instability of the kink-profiles (see Remark 4.8).

− Due to their importance in applications and in order to illustrate the range of applicability
of the linear instability criterion developed here, we also establish the spectral instability of
the kink/anti-kink profiles of the form (1.13) (see section §5). In view that the latter do not
belong to the energy space, in section 5.1 we verify the hypotheses of our linear instability
criterion with respect to the flow generated by finite energy perturbations of the static solutions
(for a similar analysis on the semigroup generated by perturbations of unbounded subluminal
rotations for the sine-Gordon model, see [13]). Whenceforth, the spectral analysis follows
similarly as in the previous kink configuration, yielding the spectral instability result for the
kink/anti-kink profiles as well (see Theorem 5.1).

− For completeness, in Appendix §A we prove that all self-adjoint extensions of the formal
operator (1.11) on a Y-junction are defined on domains of the form (1.12).

On notation

Let A be a closed densely defined symmetric operator in a Hilbert space H. The domain of A is
denoted by D(A). The deficiency indices of A are denoted by n±(A) := dim ker(A∗ ∓ iI), with A∗

denoting the adjoint operator of A. The number of negative eigenvalues counting multiplicities (or
Morse index) of A is denoted by n(A). For any −∞ ≤ a < b ≤ ∞, we denote by L2(a, b) the Hilbert
space equipped with the inner product

(u, v) =

ˆ b

a
u(x)v(x)dx.

By Hn(a, b) we denote the classical Sobolev spaces on (a, b) ⊆ R with the usual norm. We denote
by Y the junction parametrized by the edges E1 = (−∞, 0), Ej = (0,∞), j = 2, 3, attached to a
common vertex ν = 0. On the graph Y we define the classical spaces

Lp(Y) = Lp(−∞, 0)⊕ Lp(0,+∞)⊕ Lp(0,+∞), p > 1,

and
Hm(Y) = Hm(−∞, 0)⊕Hm(0,+∞)⊕Hm(0,+∞),

with the natural norms. Also, for u = (uj)
3
j=1, v = (vj)

3
j=1 ∈ L2(Y), the inner product is defined

by

〈u,v〉 =

ˆ 0

−∞
u1(x)v1(x) dx+

3∑
j=2

ˆ ∞
0

uj(x)vj(x) dx

8



Depending on the context we will use the following notations for different objects. By ‖·‖ we denote
the norm in L2(R) or in L2(Y). By ‖ · ‖p we denote the norm in Lp(R) or in Lp(Y). For the case of
Y being a junction of type II with Y = (0,+∞) ∪ (0,+∞) ∪ (0,+∞), similar definitions as above
can be given.

2 Local well-posedness theory for the sine-Gordon model in E(Y)×
L2(Y)

In this section we study the local well-posedness problem associated to (1.6) initially with a specific
framework. We recast system (1.6) in the vectorial form

wt = JEw + F (w) (2.1)

where w = (u, v)>, with u = (u1, u2, u3), v = (v1, v2, v3), u1, v1 : (−∞, 0) → R, uj , vj : (0,+∞) →
R, j = 2, 3,

J =

(
0 I3

−I3 0

)
, E =

(
F 0
0 I3

)
, F (w) =



0
0
0

− sin(u1)
− sin(u2)
− sin(u3)

 (2.2)

where I3 denotes the identity matrix of order 3 and F the diagonal-matrix linear operator

F =
((
− c2

j

d2

dx2

)
δj,k

)
, 1 5 j, k 5 3.

Here we will consider the operator FZ ≡ F defined on the δ-interaction domain D(FZ)

D(FZ) =
{

v = (vj)
3
j=1 ∈ H2(Y) : v1(0−) = v2(0+) = v3(0+),

3∑
j=2

c2
jv
′
j(0+)−c2

1v
′
1(0−) = Zv1(0−)

}
.

(2.3)
Thus, the natural space to looking for a local well-posedness theory for (2.1) will be the space
E(Y)× L2(Y) where E(Y) represents the closed (continuous) subspace at zero of H1(Y),

E(Y) = {(vj)3
j=1 ∈ H1(Y) : v1(0−) = v2(0+) = v3(0+)}. (2.4)

The analysis of the initial value problem for the sine-Gordon vectorial model (2.1) on metric
star shaped graphs requires new tools to those usually used in the case of the model on spaces of
Rn-type.

We start our analysis by establishing the spectrum properties of the family of self-adjoint oper-
ator (FZ , D(FZ)).

Theorem 2.1. Let Z ∈ R. Then the essential spectrum of (FZ , D(FZ)) is purely absolutely continu-
ous and σess(FZ) = σac(FZ) = [0,+∞). If Z < 0, FZ has precisely one negative, simple eigenvalue,
i.e. its point spectrum σpt(FZ) is

σpt(FZ) =
{
− Z2

(
∑3

j=1 cj)
2

}
,

with ΦZ = (eαx, e−αx, e−αx) its “strictly positive” eigenfunction and α = −Z/
∑3

j=1 cj > 0. If
Z = 0, FZ has no eigenvalues, σpt(FZ) = ∅.
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Proof. By convenience of the reader, we present the main steps of the proof:

1) For every Z, the Morse index of FZ , n(FZ), satisfies n(FZ) 5 1: Indeed, from Proposition
A.6 we have immediately that the symmetric operator (M, D(M)) defined in (A.3) (see
Appendix A) is non-negative, 〈Mv,v〉 = 0 for every v ∈ D(M), and the deficiency indices
are n±(M) = 1. Therefore, from Proposition A.3 follows that n(FZ) 5 1.

2) For Z > 0, n(FZ) = 0: Indeed, for every v = (vj)
3
j=1 ∈ D(FZ) we have

〈FZv,v〉 =

ˆ 0

−∞
c2

1(v1)2dx+
3∑
j=2

ˆ ∞
0

c2
j (v
′
j)

2dx+ Z|v1(0)|2 = 0,

thus, since FZ is a self-adjoint operator and non-negative we need to have σ(FZ) ⊂ [0,+∞).
Therefore, n(FZ) = 0.

3) For Z < 0, n(FZ) = 1: From the definition of ΦZ above we have immediately that ΦZ ∈
D(FZ) and FZΦZ = −α2ΦZ . Therefore, from item 1) follows that n(FZ) = 1.

4) From classical Schrödinger theory on the half-line (0,+∞) for the operator A = −c2 d2

dx2
, with

c > 0 and Dirichlet-domain DDir = {f ∈ H2(0,+∞) : f(0) = 0} we have that σess(−c d
2

dx2
) =

σ(−c d2
dx2

) = [0,+∞). Thus by Weyl’s criterion (see Reed and Simon [55]) for all λ = 0, there
exists a sequence {ψn} ⊂ DDir orthogonal in L2(0,+∞) with ‖ψn‖L2(0,+∞) = 1 such that
‖(A− λI)ψn‖L2(0,+∞) → 0 as n→ +∞.

Next, we note that the self-adjoint operator FDir with homogeneous Dirichlet boundary con-
ditions

D(FDir) = {v ∈ H2(Y) : v1(0−) = v2(0+) = v3(0+) = 0},

belongs to the family of self-adjoint extensions of (M, D(M)) (see Proposition A.6). Since
(FDir, D(FDir)) posseses no point spectrum and it is positive definite we need to have σess(FDir) =
σ(FDir) ⊂ [0,+∞). Now, we see that [0,+∞) ⊂ σess(FDir). Indeed, for λ = 0 we have that
the sequence Ψn = (0, ψn, 0) satisfies {Ψn} ⊂ DDir, orthogonal in L2(Y), ‖Ψn‖L2(Y) = 1 and

‖(FDirΨn − λI)Ψn‖2L2(Y) = ‖(A− λI)ψn‖2L2(0,+∞) → 0, as n→ +∞,

therefore by the Weyl’s criterion follows that λ ∈ σess(FDir). Then, by Proposition A.5 we get
that all self-adjoint extensions for (M, D(M)) have continuous spectrum being [0,+∞). Now,
since the self-adjoint operators (FZ , D(FZ)) may have at most a finite collection of negative
eigenvalues, its continuous spectrum, σac(FZ), coincides with its essential spectrum σess(FZ)
and σ(FZ) = σac(FZ) ∪ σpt(FZ). This finishes the proof.

The following characterization of the resolvent of the operator A = JE will be sufficient for our
study here. The results in Theorem 2.1 will be the main points in the analysis.

Theorem 2.2. Let Z ∈ R. For λ ∈ C with −λ2 ∈ ρ(FZ), we have that λ belongs to the resolvent
set of A = JE with D(A) = Dδ,Z × L2(Y) and R(λ : A) = (λI −A)−1 : H1(Y) × L2(Y) → D(A)
has the representation for Ψ = (u,v)

R(λ : A)Ψ =

(
−R(−λ2 : FZ)(λu + v)

−λR(−λ2 : FZ)(λu + v)− u

)
, (2.5)

where R(−λ2 : FZ) = (−λ2I3 −FZ)−1 : L2(Y)→ D(FZ).
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Remark 2.3. In Remark 2.4 below we give a explicit formulation for the resolvent operator R(η : FZ)
for any η < 0 (without loss of generality) and Z 6= 0.

Proof. For Ψ = (u,v) ∈ H1(Y)× L2(Y), (A− λ)−1Ψ = (h, j) if and only if{
I3u = −λI3h + I3j

I3v = −FZh− λI3j,
(2.6)

then (−λ2I3−FZ)h = I3(λu+v). Therefore, by hypothesis we obtain I3h = (−λ2I3−FZ)−1(λu+v).
This finishes the proof.

Remark 2.4. For future reference in our study, we establish the resolvent operator R(−λ2 : FZ) and
Z 6= 0. Thus, we start with Z > 0. From Theorem 2.1 we obtain for every λ > 0 (without loss of
generality) that for u = (uj)

3
j=1 ∈ L2(Y) and (Φj)

3
j=1 = (FZ + λ2I3)−1u the following:

(a) for x < 0

Φ1(x) = (−c2
1

d2

dx2
+ λ2)−1(u1)(x) =

d1

c2
1

e
λ
c1
x

+
1

2c1λ

ˆ 0

−∞
u1(y)e

− λ
c1
|x−y|

dy (2.7)

(b) for x > 0 and j = 2, 3,

Φj(x) = (−c2
1

d2

dx2
+ λ2)−1(uj)(x) =

dj
c2
j

e
− λ
cj
x

+
1

2cjλ

ˆ ∞
0

uj(y)e
− λ
cj
|x−y|

dy, (2.8)

where the constants dj = dj(λ, (Φj)) are chosen such that (Φj) ∈ Dδ,Z . In the following we
determine these. So, define

t1(λ) =
1

2c1

ˆ 0

−∞
u1(y)e

λ
c1
y
dy

tj(λ) =
1

2cj

ˆ ∞
0

uj(y)e
− λ
cj
y
dy, j = 2, 3.

Then, from the relations for j = 2, 3,

Φ1(0−) =
d1

c2
1

+
1

λ
t1(λ), Φj(0+) =

dj
c2
j

+
1

λ
tj(λ),

Φ′1(0−) =
d1λ

c3
1

− 1

c1
t1(λ), Φ′j(0+) = −djλ

c3
j

+
1

cj
tj(λ),

we obtain the linear system

M

 d1

d2

d3

 ≡


1
c21

− 1
c22

0

0 1
c22

− 1
c23

1
c1

+ Z
c21λ

1
c2

1
c3


 d1

d2

d3

 =
1

λ

 t2(λ)− t1(λ)
t3(λ)− t2(λ)∑3

j=1 cjtj(λ)− Z
λ t1(λ)

 .

Thus, since det(M) = 1
(c1c2c3)2

[
∑3

j=1 cj + Z
λ ] and Z, λ > 0, we obtain the uniqueness of the

constants dj such that (Φj) ∈ Dδ,Z .

Now, for Z < 0, from Theorem 2.1 we obtain for every λ > 0 (without loss of generality) and
λ2 6= −λ0 with λ0 = −Z2/(

∑3
j=1 cj)

2 that for u = (uj)
3
j=1 ∈ L2(Y) and (Ψj)

3
j=1 = (FZ + λ2I3)−1u

the following:
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(c) for x < 0, α = −Z/
∑3

j=1 cj > 0, and from (2.7),

Ψ1(x) =
1

λ2 + λ0
e
α
c1
x〈u1, e

α
c1
x〉+ Φ1(x), (2.9)

(d) for x > 0 and from (2.8),

Ψj(x) =
1

λ2 + λ0
e
− α
cj
x〈uj , e

− α
cj
x〉+ Φj(x), j = 2, 3, (2.10)

here the constants (dj) in (2.7)-(2.8) (unique) are chosen such that (Φj) ∈ Dδ,Z .

From Theorem 2.1 we can define the following equivalent X1
Z-norm to H1(Y), for v = (vj)

3
j=1 ∈

H1(Y)
‖v‖2X1

Z
= ‖v′‖2L2(Y) + (β + 1)‖v‖2L2(Y) + Z|v1(0−)|2, (2.11)

where for Z < 0, β = Z2

9 = Z2

(
∑3
j=1 cj)

2
, and for Z = 0, β = 0. We will denote by H1

Z(Y) the space

H1(Y) with the norm ‖ · ‖X1
Z
. Moreover, the following well-defined inner product in H1

Z(Y),

〈u,v〉1,Z =

ˆ 0

−∞
u′1(x)v′1(x)dx+

3∑
j=2

ˆ ∞
0

u′j(x)v′j(x)dx+ (β + 1)〈u,v〉+ Zu1(0−)v1(0−), (2.12)

induces the X1
Z-norm above (here we are considering c2

j = 1, without loss of generality).
The following theorem shows that the operator A ≡ JE is indeed the infinitesimal generator of

a C0-semigroup. To that end, we apply the classical Lumer-Phillips theory.

Theorem 2.5. Let Z ∈ R and consider the linear operators J and E defined in (2.2). Then,
A ≡ JE with D(A) = Dδ,Z × E(Y) is the infinitesimal generator of a C0-semigroup {W (t)}t=0 on
H1(Y)× L2(Y). The initial value problem{

wt = Aw

w(0) = w0 ∈ D(A) = Dδ,Z × E(Y)
(2.13)

has a unique solution w ∈ C([0,+∞) : D(A)) ∩ C1([0,+∞) : H1(Y) × L2(Y)) given by w(t) =
W (t)w0, t = 0.

Moreover, for any Ψ ∈ H1(Y)×L2(Y) and θ > β+1, β = Z2

(
∑3
j=1 cj)

2
, we have the representation

formula

W (t)Ψ =
1

2πi

ˆ θ+i∞

θ−i∞
eλtR(λ : A)Ψdλ (2.14)

where λ ∈ ρ(A) with Reλ = θ and R(λ : A) = (λI − A)−1, and for every δ > 0, the integral
converges uniformly in t for every t ∈ [δ, 1/δ].

Proof. We divide the proof in several steps (without lost of generality we consider c2
j = 1):

1) We consider the Hilbert space XZ ≡ H1
Z(Y)× L2(Y) with inner product 〈·, ·〉XZ = 〈·, ·〉1,Z +

〈·, ·〉, with 〈·, ·〉1,Z defined in (2.12). Define B = A − γI, γ = β + 1 > 0, with β > 0 as in
(2.11). Then the following linear initial value problem{

ut = Bu

u(0) = u0 ∈ D(B) = Dδ,Z × E(Y)
(2.15)

has a unique solution u ∈ C([0,+∞) : D(B)) ∩ C1([0,+∞) : XZ) given by u(t) = U(t)u0,
t = 0, where {U(t)}t=0 is a C0-semigroup of contractions on XZ . Indeed, The idea is to use
the classical Lumer-Phillips Theorem (see, e.g., Pazy [53]):
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a) B is dissipative on XZ : for Φ = (u,v) ∈ D(B) with u = (uj)
3
j=1 ∈ D(B) and v =

(vj)
3
j=1 ∈ E(Y) (with uj , vj real-valued without lost of generality)

〈−BΦ,Φ〉XZ = 〈−v,u〉1,Z + 〈FZu,v〉+ γ‖u‖2X1
Z

+ γ‖v‖2L2(Y)

= −〈v,u〉1,Z − Zu1(0−)v1(0−) +

ˆ 0

−∞
u′1v
′
1dx+

3∑
j=2

ˆ ∞
0

u′jv
′
jdx+ γ‖u‖2X1

Z
+ γ‖v‖2L2(Y)

= (β + 1)
[
‖u‖2X1

Z
+ ‖v‖2L2(Y) − 〈u,v〉

]
= 0,

(2.16)
because of the Cauchy-Schwartz inequality and ‖u‖2L2(Y) 5 ‖u‖

2
X1
Z
by (2.11).

b) From Theorem 2.2 we can choose λ such that λ + γ > 0 and λ + γ ∈ ρ(A), then the
range, R(λI − B) = R((λ + γ)I − A), of λI − B is XZ . Thus we obtain that B is the
infinitesimal generator of a C0-semigroup of contractions {U(t)}t=0 on XZ . Therefore,
the solution of the linear problem in (2.15) is given by u(u) = U(t)u0.

2) Define W (t) = eγtU(t), then {W (t)}t=0 is a C0-semigroup on XZ with infinitesimal generator

W ′(0) = γI +A− γI = A.

Then, since the norm ‖ · ‖H1(Y) is equivalent to the norm ‖ · ‖X1
Z
on H1(Y), we obtain that

{W (t)}t=0 is a C0-semigroup on H1(Y) × L2(Y) and w(t) = W (t)w0 is the unique solution
for the linear problem (2.13).

3) From item 2) we have ‖W (t)‖H1(Y)×L2(Y) = eγt‖U(t)‖H1(Y)×L2(Y) 5 Meγt‖U(t)‖XZ 5 Meγt,
for M > 0, γ = β + 1 > 0 and t = 0. Therefore, from Theorem (2.2), the semigroup theory,
and the Laplace transform we obtain for θ > β + 1 the representation formula in (2.14). This
finishes the proof.

The following proposition simply states the (expected) invariance property of the energy space
under the action of the semigroup.

Proposition 2.6. The semigroup {W (t)}t=0 defined by formula (2.14) left invariance the subspace
E(Y)× L2(Y). Moreover, W (t)(E(Y)× L2(Y)) ⊂ E(Y)× C(Y), t > 0, where

C(Y) = {(vj)3
j=1 ∈ L2(Y) : v1(0−) = v2(0+) = v3(0+)}. (2.17)

Proof. By the representation of W (t) in (2.14) is sufficient to show that the resolvent operator
R(λ : A)Φ ∈ E(Y) × L2(Y) for Φ ∈ E(Y) × L2(Y). Indeed, for Ψ = (u,v) we have from (2.5)
that R(−λ2 : FZ)(λu + v) ∈ Dδ,Z ⊂ E(Y) and so R(λ : A)Φ ∈ E(Y) × E(Y) ⊂ E(Y) × C(Y) ⊂
E(Y)× L2(Y).

Our local well-posedness result for the sine-Gordon equation on a Y-junction with a δ-interaction
is the following.

Theorem 2.7. For any Ψ ∈ E(Y) × L2(Y) there exists T > 0 such that the sine-Gordon equation
(2.1) has a unique solution w ∈ C([0, T ]; E(Y)× L2(Y)) satisfying w(0) = Ψ. For each T0 ∈ (0, T )
the mapping

Ψ ∈ E(Y)× L2(Y)→ w ∈ C([0, T0]; E(Y)× L2(Y)), (2.18)

is at least of class C2. Moreover, for all t > 0, w(t) ∈ E(Y)× C(Y).
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Proof. Based on Theorem 2.5 and Proposition 2.6 the local well-posedness result in X(Y) ≡ E(Y)×
L2(Y) follows from standard arguments of the Banach fixed point theorem. We will give the sketch
of the proof for convenience of the reader. Consider the mapping JΨ : C([0, T ] : X(Y)) −→
C([0, T ];X(Y)) given by

JΨ[w](t) = etAΨ +

ˆ t

0
e(t−s)AF (w(s))ds,

where etA is the C0-semigroup {W (t)}t=0 defined in (2.14). One needs to show that the mapping
JΨ is well-defined. We note immediately that the nonlinearity satisfies for w = (u,v) ∈ X(Y) that
F (w) ∈ E(Y) × C(Y) ⊂ E(Y) × L2(Y) with ‖F (w)‖X(Y) 5 ‖u‖L2(Y) 5 ‖w‖X(Y). Thus we obtain
for t ∈ [0, T ]

‖JΨ[w](t)‖X(Y) ≤MeγT ‖Ψ‖X(Y) +
M

γ

(
eγT − 1

)
sup
s∈[0,T ]

‖w(s)‖X(Y),

where the positive constants M,γ do not depend on Ψ and are determined by the semigroup W (t)
(see Theorem 2.5 and its proof). The continuity and contraction property of JΨ are proved in a stan-
dard way. Therefore, we obtain the existence of a unique solution to the Cauchy problem associated
to (2.1) on E(Y)× L2(Y) and that the mapping data-solution in (2.18) is at least continuous.

Next, we recall that the argument based on the contraction mapping principle above has the
advantage that if F (w) has a specific regularity, then it is inherited by the mapping data-solution.
In particular, following the ideas in [9], we consider for (Ψ, z) ∈ B(Ψ; ε) × C([0, T ], X(Y)) the
mapping

Γ(Ψ, z)(t) = z(t)− JΨ[z](t), t ∈ [0, T ].

Then Γ(Ψ,w)(t) = 0 for all t ∈ [0, T ], and since F (z) is smooth we obtain that Γ is smooth.
Hence, using the arguments applied for obtaining the local well-posedness in X(Y) above, we can
show that the operator ∂zΓ(Ψ,w) is one-to-one and onto. Thus, by the Implicit Function Theorem
there exists a smooth mapping Λ : B(Ψ; δ) → C([0, T ], X(Y)) such that Γ(V0,Λ(V0)) = 0 for all
V0 ∈ B(Ψ; δ). This argument establishes the smoothness property of the mapping data-solution
associated to the sine-Gordon equation. Lastly, from the Proposition 2.6 and from the arguments
above we obtain that for all t > 0, w(t) ∈ E(Y)× C(Y). This finishes the proof.

3 Linear instability criterion for the sine-Gordon model on a Y-
junction

In this section we establish a linear instability criterion of stationary solutions for the sine-Gordon
model (1.6) on a Y-junction. The analytical criterion developed here applies to both the typical
Y-junction of type I , (see Figure 1(a)), and of type II (see Figure 1(b)). More importantly, the
criterion also applies to any type of stationary solutions independently of the boundary conditions
under consideration and can be therefore used to study configurations with boundary rules at the
vertex of δ′-interaction type, or with other types of stationary solutions to the sine-Gordon equation
such as breathers, for instance.

Let us suppose that JE on a domain D(JE) ⊂ L2(Y) is the infinitesimal generator of a C0-
semigroup on L2(Y) and the stationary solution Φ = (φ1(x), φ2(x), φ3(x), 0, 0, 0) ∈ D(JE). Thus,
every component satisfies the equation

− c2
jφ
′′
j + sin(φj) = 0, j = 1, 2, 3. (3.1)
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Now, we suppose that w satisfies formally equality in (2.1) and we define

v ≡ w − Φ, (3.2)

then, from (3.1) we obtain (by using the notation) the following linearized system for (2.1) around
Φ.

vt = JEv (3.3)

with E being the 6× 6 diagonal-matrix E =

(
L 0
0 I3

)
, and

L =
((
− c2

j

d2

dx2
+ cos(φj)

)
δj,k

)
, 1 5 j, k 5 3. (3.4)

We point out the equality JE = JE + T , with

T =

(
0 0(

− cos(φj) δj,k
)

0

)
being a bounded operator on H1(G) × L2(G). This implies that JE also generates a C0-semigroup
on H1(G)× L2(G) (see Pazy [53]).

In the sequel, our objective is to provide sufficient conditions for the trivial solution v ≡ 0 to
be unstable by the linear flow (3.3). More precisely, we are interested in finding a growing mode
solution of (3.3) with the form v = eλtΨ and Reλ > 0. In other words, we need to solve the formal
system

JEΨ = λΨ, (3.5)

with Ψ ∈ D(JE). If we denote by σ(JE) = σpt(JE) ∪ σess(JE) the spectrum of JE (namely,
λ ∈ σpt(JE) if λ is isolated and with finite multiplicity), the later discussion suggests the usefulness
of the following definition:

Definition 3.1. The stationary vector solution Φ ∈ D(E) is said to be spectrally stable for model
sine-Gordon if the spectrum of JE , σ(JE), satisfies σ(JE) ⊂ iR. Otherwise, the stationary solution
Φ ∈ D(E) is said to be spectrally unstable.

It is standard to show that σpt(JE) is symmetric with respect to both the real and imaginary axes
and σess(JE) ⊂ iR by supposing J skew-symmetric and E self-adjoint (by supposing, by instance,
Assumption (S3) below for L (see [34, Lemma 5.6 and Theorem 5.8]). These cases on J and E will
be considered in our theory. Hence it is equivalent to say that Φ ∈ D(JE) is spectrally stable if
σpt(JE) ⊂ iR, and it is spectrally unstable if σpt(JE) contains point λ with Reλ > 0.

From (3.5), our eigenvalue problem to solve is now reduced to,

JEΨ = λΨ, Reλ > 0, Ψ ∈ D(E). (3.6)

Next, we establish our theoretical framework and assumptions for obtaining a nontrivial solution to
problem in (3.6):

(S1) JE is the generator of a C0-semigroup {S(t)}t=0.

(S2) Let L be the matrix-operator in (3.4) defined on a domain D(L) ⊂ L2(G) on which L is
self-adjoint.

(S3) Suppose L : D(L) → L2(G) is invertible with Morse index n(L) = 1 and such that σ(L) =
{λ0} ∪ J0 with J0 ⊂ [r0,+∞), for r0 > 0, and λ0 < 0,
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Our linear instability criterion is the following.

Theorem 3.2. Suppose the assumptions (S1) - (S3) hold. Then the operator JE has a real positive
and a real negative eigenvalue.

The proof of Theorem 3.2 is based in ideas from Lopes [43] and from the following result on
closed convex cone (see Krasnoelskii [40], Chapter 2, section 2.2.6).

Theorem 3.3. Let K be a closed convex cone of a Hilbert space (X, ‖ · ‖) such that there are a
continuous linear functional Π and a constant a > 0 such that Π(u) = a‖u‖ for any u ∈ K. If
T : X → X is a bounded linear operator that leaves K invariant, then T has an eigenvector in K
associated to a nonnegative eigenvalue.

Proof of Theorem 3.2. From assumption (S1) we have that JE is the infinitesimal generator of a
C0-semigroup {S(t)}t=0. For ψ0 ∈ D(J ), ‖ψ0‖ = 1 and λ0 < 0 such that Lψ0 = λ0ψ0, we consider
Ψ0 = (ψ0, 0, 0, 0)> and the following nonempty closed convex cone

K0 = {z ∈ D(E) : 〈Ez, z〉 5 0, and 〈z,Ψ0〉 = 0}.

Next, we see that K0 is invariant by the semigroup S(t). Indeed, we will use a density argument
based in the existence of a core for A ≡ JE . Thus, from semi-group theory follows that the space

D(A∞) =
⋂
n∈N

D(An)

with D(An) = {f ∈ D(An−1) : An−1f ∈ D(A)}, result to be dense in L2(G) and it is a {S(t)}t=0-
invariant subspace of D(A). Thus, D(A∞) is a core for A. Therefore is enough to consider the case
f ∈ K0 ∩D(A∞) and so the Hamiltonian equation{

ż = Az
z(0) = f

(3.7)

has solution z(t) = S(t)f ∈ D(A∞) and therefore from the self-adjoint property of E and the
skew-symmetric property of J we obtain

d

dt
〈Ez(t), z(t)〉 = 〈EJEz(t), z(t)〉+ 〈Ez(t), JEz(t)〉 = 0,

then for all t, 〈Ez(t), z(t)〉 = 〈Ef, f〉 5 0. Next, we suppose 〈f,Ψ0〉 > 0 and that there is t0 such that
〈S(t0)f,Ψ0〉 < 0. Then by continuity of the flow t→ S(t)f there is τ ∈ (0, t0) with 〈S(τ)f,Ψ0〉 = 0.
Now, from assumption (S4) we have from the spectral theorem applied to the self-adjoint operator
E (more specifically to L), the orthogonal decomposition for fτ = S(τ)f,

fτ =
m∑
i=1

aihi + g, g⊥hi, for all i,

where Ehi = λihi, ‖hi‖ = 1, λi ∈ σpt(E) with λi = η, and 〈Eg, g〉 = θ‖g‖2, θ > 0. Therefore,

0 = 〈Efτ , fτ 〉 =
m∑
i=1

a2
iλi + θ‖g‖2 = η

m∑
i=1

a2
i + θ‖g‖2 = 0.

Thus, it follows g = 0 and ai = 0 for i. Therefore, S(τ)f = 0 and since S(t) is a semigroup we
obtain f = 0 and so 〈f,Ψ0〉 = 0 which is a contradiction. Now we suppose 〈f,Ψ0〉 = 0, then the
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former analysis shows f = 0 and so S(t)f ≡ 0 for all t. It shows the invariance of K0 by S(t).
Then, for µ large we obtain from semigroup’s theory the integral representation of the resolvent

Tz = (µI −A)−1(z) =

ˆ ∞
0

e−µtS(t)zdt (3.8)

and it also leaves K0 invariant. Next, for Π : L2(G)→ R defined by Π(z) = 〈z,Ψ0〉 we will see that
there is a > 0 such that Π(z) = a‖z‖ for any z ∈ K0. Indeed, suppose for ‖g‖ = 1, 〈g,Ψ0〉 = γ > 0
and 〈Eg, g〉 5 0. Since ker(Π) is a hyperplane we obtain g = z + γΨ0 with 〈z,Ψ0〉 = 0. So,
−λ0γ

2 = 〈Ez, z〉. Now, from the orthogonal decomposition z =
∑m

i=1〈z, hi〉hi+g, g⊥hi, for all i,
follows for η, θ > 0, 〈Ez, z〉 = min{η, θ}(1− γ2). Then,

〈g,Ψ0〉 = γ =

√
min{η, θ}

−λ0 + min{η, θ}
≡ a.

Therefore, by the analysis above and Theorem 3.3, we conclude that there exist an α = 0 and a
nonzero element ω0 ∈ K0 such that (µI − A)−1(ω0) = αω0. It is immediate that α > 0 and so
JEω0 = ζω0 with ζ = µα−1

α . Next we see that ζ 6= 0. Suppose that ζ = 0, then the injectivity of J
and E implies ω0 = 0, which is a contradiction. Then, JE has a nonzero real eigenvalue ζ.

Now, we have σ(JE) = σ((JE)∗) = −σ(EJ) = −σ(EJEE−1) = −σ(JE) and so −ζ also belongs
to σ(JE). Thus from Theorem 5.8 of [34], the essential spectrum of JE lies on the imaginary axis
and therefore −ζ is an eigenvalue of JE and this finishes the proof.

4 Instability of stationary solutions of kink type for the sine-Gordon
equation with δ-interaction

In this section apply the linear instability criterion (Theorem 3.2 above) to the case of stationary
solutions of kink type determined by a δ-interaction type at the vertex ν = 0. First we examine the
structure of such stationary wave solutions.

4.1 Stationary solutions for the sine-Gordon equation with δ-interaction

Next we consider the sine-Gordon model (1.6) on a Y-junction type of the form Y = (−∞, 0) ∪
(0,+∞) ∪ (0,+∞). The stationary solutions will be of the type in (1.7) and satisfying the system
in (1.9). Suppose that the profile Φ = (φj)

3
j=1 belongs to the domain D(LZ) of δ-type defined in

(1.12). Let us rewrite the family of stationary profiles (1.9) here for convenience:

φ1(x) = 4 arctan
(
e

1
c1

(x−a1)
)
, x < 0,

φi(x) = 4 arctan
(
e
− 1
ci

(x−ai)
)
, x > 0, i = 2, 3.

(4.1)

Then, clearly, from the continuity condition at the vertex ν = 0 we obtain 1
c1
a1 = − 1

c2
a2 = − 1

c3
a3.

The Kirchhoff-type condition in (1.12) implies the following relation for a1,

− e
−a1
c1

1 + e
− 2a1

c1

3∑
j=1

cj = Z arctan
(
e
−a1
c1

)
. (4.2)

From (4.2) we deduce that Z < 0. Next, from the behavior of the function

f(y) =
1 + y2

y
arctan(y), y = 0 (4.3)

17



(a) Z ∈ (−
∑3
j=1 cj ,−

2
π

∑3
j=1 cj) (b) Z ∈ (− 2

π

∑3
j=1 cj , 0) (c) Z = − 2

π

∑3
j=1 cj

Figure 2: Plots of stationary solutions (4.1) in the case where cj = 1 for all j = 1, 2, 3, for different values
of Z ∈ (−

∑3
j=1 cj , 0) = (−3, 0). Panel (a) shows the stationary profile solution (“tail” configuration) for

the value Z = −5/2 ∈ (−3,−6/π). Panel (b) shows the profile of “bump” type for the value Z = −1/6 ∈
(−6/π, 0). Panel (c) shows the “smooth” profile solution when Z = −6/π (color online).

we obtain that Z ∈ (−
∑3

j=1 cj , 0). Moreover, we have the following specific behavior of the profiles
φi:

1) for Z ∈ (−
∑3

j=1 cj ,−
2
π

∑3
j=1 cj) we obtain a1 > 0; therefore a2, a3 < 0, φ′′i > 0 for every i,

and φ′1 > 0, φ′j < 0 (j = 1, 2). Thus, the profile of (φj)
3
j=1 should look similar to Figure 2(a)

above (tail-profile). Moreover, φi ∈ (0, π), i = 1, 2, 3.

2) for Z ∈ (− 2
π

∑3
j=1 cj , 0) we obtain a1 < 0; therefore a2, a3 > 0, and φ′′i (ai) = 0, i = 1, 2, 3. We

also have φ′1 > 0, φ′i < 0 (i = 1, 2). Thus, the profile of (φj)
3
j=1 should look similar to Figure

2(b) below (bump-profile). Moreover, φi ∈ (0, η0), i = 1, 2, 3, η0 = 4 arctan
(
e
− 1
c1
a1
)
> π,

3) the case Z = − 2
π

∑3
j=1 cj implies a1 = 0 = a2 = a3; therefore, φi(0) = π and φ′′i (0) = 0,

i = 1, 2, 3. In this case, we have a “smooth” profile around the vertex ν = 0 (see Figure 2(c)
below).

We shall see that the stability study of the profiles given in (4.1) will require exactly the three
cases considered above. The main stability result for the stationary profiles ΦZ = (φ1, φ2, φ3, 0, 0, 0)
with φj defined in (4.1)-(4.2) is the following.

Theorem 4.1. Let Z ∈ (−
∑3

j=1 cj , 0) and the smooth family of stationary profiles Z → ΦZ defined
in (4.1)-(4.2). Then ΦZ is spectrally unstable for the sine-Gordon model (2.1).

The proof of spectral instability result in Theorem 4.1 will be a consequence of Theorem 3.2.
Thus by Theorem 2.5 we only need to verify the assumptions (S1), (S2) and (S3) associated to
the operator in (3.4) with domain D(LZ) of δ-type defined in (2.3). That will be the focus of the
following subsection.

It is widely known that the spectral instability of a specific traveling wave solution of an evolution
type model is a key prerequisite to show their nonlinear instability property (see [34, 43, 60] and
references therein). Thus we have the following definition.
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Definition 4.2. A stationary vector solution Φ ∈ D(E) is said to be nonlinearly unstable in X ≡
H1(Y)× L2(Y)-norm for model sine-Gordon if there is ε > 0, such that for every δ > 0 there exist
an initial datum w0 with ‖Φ−w0‖X < δ and an instant t0 = t0(w0) such that ‖w(t0)− Φ‖X > ε,
where w = w(t) is the solution of the sine-Gordon model with w(0) = w0.

Therefore, the nonlinear instability property of ΦZ will be a consequence of Theorem 2.7 and
the approach by Henry et al. in [36] (see Remark 4.8 below).

4.2 Spectral study in the case of a δ-interaction

In this section we study the structure of the kernel and Morse index of the following diagonal-matrix
Schrödinger operator

LZ =
((
− c2

j

d2

dx2
+ cos(φj)

)
δj,k

)
, 1 5 j, k 5 3 (4.4)

with domain D(LZ) defined in (2.3) and φj given by (4.1)-(4.2). From Proposition A.6 in Appendix
we have that (LZ , D(LZ)) represents a family of self-adjoint operators.

Proposition 4.3. Let Z ∈ (−
∑3

j=1 cj , 0). Then ker(LZ) = {0}.

Proof. Let u = (u1, u2, u3) ∈ D(LZ) and LZu = 0. Since −c2
j
d2

dx2
φ′j + cos(φj)φ

′
j = 0, j = 1, 2, 3, we

obtain from Sturm-Liouville theory on half-lines that

u1(x) = α1φ
′
1(x), x < 0, uj(x) = αjφ

′
j(x), x > 0, j = 2, 3, (4.5)

with αj ∈ R. Therefore, since φ′j(0+) = −φ′1(0−) c1cj , j = 2, 3, we obtain from the conditions given
by elements of D(LZ) that

α1 = −α2
c1

c2
= −α3

c1

c3
,

3∑
j=2

αjc
2
jφ
′′
j (0+)− α1c

2
1φ
′′
1(0−) = Zα1φ

′
1(0−). (4.6)

Next, we consider the following cases:

1) Let Z = − 2
π

∑3
j=1 cj . Then, from φ′′j (0) = 0 for all i we obtain α1φ

′
1(0−) = 0. Since

φ′1(0−) 6= 0 we have α1 = 0 and so α2 = α3 = 0. Hence u = 0.

2) Let Z ∈ (− 2
π

∑3
j=1 cj , 0). From equation (1.8) and continuity we have−c2

jφ
′′
j (0+) = − sin(φj(0+)) =

− sin(φ1(0−)) = −c2
1φ
′′
1(0−). Then from (4.6) there follows

− α1c1φ
′′
1(0−)

3∑
j=1

cj = Zα1φ
′
1(0−). (4.7)

Suppose α1 6= 0. Then, since φ′′1(0−) < 0 and φ′1(0−) > 0 we obtain a contradiction from
(4.7). Hence, α1 = α2 = α3 = 0.

3) Let Z ∈ (−
∑3

j=1 cj ,−
2
π

∑3
j=1 cj). Suppose α1 6= 0. Then, since

φ′′1(0) = 4
e
−a1
c1 − e−

3a1
c1

[1 + e
− 2a1

c1 ]2c2
1

, φ′1(0) =
4e
−a1
c1

[1 + e
− 2a1

c1 ]c1

,
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we obtain from (4.2) and (4.7) the relation

(1− y2) arctan y = y, y = e
−a1
c1 . (4.8)

Since a1 > 0 we obtain y ∈ (0, 1) and so the function h(x) = (1− x2) arctanx − x has a zero
for x ∈ (0, 1). Since h(0) = 0, h(1) = −1 and h′(x) < 0 on (0, 1), we obtain a contradiction.
Hence, α1 = α2 = α3 = 0.

Proposition 4.4. Let Z ∈
(
−
∑3

j=1 cj ,−
2
π

∑3
j=1 cj

]
. Then n(LZ) = 1.

Proof. We will use the extension theory for symmetric operator. In fact, from Proposition A.6 in
Appendix we obtain that the family (LZ , D(LZ)) represents all the self-adjoint extensions of the
closed symmetric operator (M0, D(M0)) where

M0 =
((
− c2

j

d2

dx2
+ cos(φj)

)
δj,k

)
, 1 5 j, k 5 3,

D(M0) =
{

(vj)
3
j=1 ∈ H2(G) : v1(0−) = v2(0+) = v3(0+) = 0,

3∑
j=2

c2
jv
′
j(0+)− c2

1v
′
1(0−) = 0

}
,

(4.9)

where n±(M0) = 1. Next, we show thatM0 = 0. Let Lj = −c2
j
d2

dx2
+ cos(φj), then from (1.8) we

obtain
Ljψ = − 1

φ′j

d

dx

[
c2
j (φ
′
j)

2 d

dx

( ψ
φ′j

)]
. (4.10)

We note that always we have φ′j 6= 0. Thus for Ψ = (ψj) ∈ D(M0) we obtain

〈M0Ψ,Ψ〉 =

ˆ 0

−∞
c2

1(φ′1)2
∣∣∣ d
dx

(ψ1

φ′1

)∣∣∣2dx+
3∑
j=2

ˆ +∞

0
c2
j (φ
′
j)

2
∣∣∣ d
dx

(ψj
φ′j

)∣∣∣2dx
− c2

1ψ1(0)
[ψ′1(0)φ′1(0)− ψ1(0)φ′′1(0)

φ′1(0)

]
+

3∑
j=2

c2
jψj(0)

[ψ′j(0)φ′j(0)− ψj(0)φ′′j (0)

φ′j(0)

] (4.11)

The integral terms in (4.11) are non-negative and equal zero if and only if Ψ ≡ 0. Due to the
conditions ψ1(0−) = ψ2(0+) = ψ3(0+) = 0 non-integral term vanishes, and we getM0 = 0.

Due to Proposition A.3 (see Appendix §A), we have all the self-adjoint extensions LZ of M0

satisfies n(LZ) 5 1. Next, for Φ = (φ1, φ2, φ3) ∈ D(LZ), it follows from the relations Ljφj =
− sin(φj) + cos(φj)φj that

〈LZΦ,Φ〉 =

ˆ 0

−∞
[− sin(φ1) + cos(φ1)φ1]φ1dx+

3∑
j=2

ˆ +∞

0
[− sin(φj) + cos(φj)φj ]φjdx < 0,

because of 0 < φj(x) 5 π for every Z ∈
(
−
∑3

j=1 cj ,−
2
π

∑3
j=1 cj

]
and θ cos θ 5 sin θ for all θ ∈ [0, π].

Then from minimax principle we arrive at n(LZ) = 1. This finishes the proof.

Remark 4.5. For the case Z ∈
(
− 2

π

∑3
j=1 cj , 0

)
in Proposition 4.4, it is no clear for us if the

extension theory approach can give us the exact value of the Morse-index of LZ for every Z.
Indeed, the nonnegative property for F0 is still right from (4.11), but the quadratic form 〈LZΦ,Φ〉
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may have an undefined sign because of φi ∈ (0, η0), η0 = 4 arctan(e
− 1
c1
a1) > π. We note here that

the inequality θ cos θ 5 sin θ still is true for all θ ∈ [0, θ0] where θ0 ≈ 4.4934 is the unique zero for
h(x) = tanx− x in the interval (π, 2π). Thus, it is not difficult to see that for specific intervals of
a1 < 0 we have either η0 < θ0 or η0 > θ0. As we will see in the following proposition the property
n(LZ) = 1 is still true.

Proposition 4.6. Let Z ∈
(
− 2

π

∑3
j=1 cj , 0

)
. Then n(LZ) = 1.

Proof. We will use analytic perturbation theory. Initially, from Proposition 4.4 we have for Z∗ =
− 2
π

∑3
j=1 cj that n(LZ∗) = 1. Now, from (4.2)-(4.3) we have the continuous mapping function

Z ∈
(
−
∑3

j=1 cj , 0
)
→ a1(Z) such that

a1(Z) =


< 0, for Z∗ < Z < 0,

= 0, for Z = Z∗,

> 0, for −
3∑
j=1

cj < Z < Z∗.

(4.12)

Thus, by denoting the stationary profiles in (4.1) as a function of Z, Φa1(Z) = (φj,a1(Z)) we obtain
the convergence Φa1(Z) → Φ0 as Z → Z∗ in H1(G). Here Φ0 = (φj,0).

Next, we obtain that LZ converges to LZ∗ as Z → Z∗ in the generalized sense. Indeed, denoting

WZ =
(

cos(φj,a1(Z))δj,k

)
we obtain

δ̂(LZ ,LZ∗) = δ̂(LZ∗ + (WZ −WZ∗),LZ∗) 5 ‖WZ −WZ∗‖L2(G) → 0, as Z → Z∗,

where δ̂ is the gap metric (see [38, Chapter IV]).
Now, from Proposition 4.3 and from Morse-index for LZ∗ being one, we can separate the spec-

trum σ(LZ∗) of LZ∗ into two parts σ0 = {λ∗} (λ∗ < 0) and σ1 by a closed curve Γ belongs to the
resolvent set of LZ∗ with 0 ∈ Γ and such that σ0 belongs to the inner domain of Γ and σ1 to the
outer domain of Γ. Moreover, σ1 ⊂ [θZ∗ ,+∞) with θZ∗ = inf{λ : λ ∈ σ(LZ∗), λ > 0} > 0. Then,
by [38, Theorem 3.16, Chapter IV], we have Γ ⊂ ρ(LZ) for Z ∈ [Z∗ − δ1, Z

∗ + δ1] and δ1 > 0 small
enough. Moreover, σ(LZ) is likewise separated by Γ into two parts so that the part of σ(LZ) inside
Γ (negative eigenvalues) will consist exactly of a unique negative eigenvalue with total multiplicity
(algebraic) one. Therefore, n(LZ) = 1 for Z ∈ [Z∗ − δ1, Z

∗ + δ1].
Next, we use a classical continuation argument based on the Riesz-projection for showing that

n(LZ) = 1 for all Z ∈ (Z∗, 0). Indeed, define ω by

ω = sup {η : η ∈ (Z∗, 0) s.t. n(LZ) = 1 for all Z ∈ (Z∗, η)} .

Analysis above implies that ω is well defined, and ω ∈ (Z∗, 0). We claim that ω = 0. Suppose that
ω < 0. Let N = n(Lω), and Γ be a closed curve such that 0 ∈ Γ ⊂ ρ(Lω), and all the negative
eigenvalues of Lω belong to the inner domain of Γ. Next, using that as a function of Z, (LZ) is a real-
analytic family of self-adjoint operators of type (B) in the sense of Kato (see [38]) we deduce that
there is ε > 0 such that for Z ∈ [ω− ε, ω+ ε] we have Γ ⊂ ρ(LZ), and the mapping Z → (LZ − ξ)−1

is analytic for ξ ∈ Γ. Therefore, the existence of an analytic family of Riesz-projections Z → P (Z)
given by

P (Z) = − 1

2πi

‰
Γ
(LZ − ξ)−1dξ
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implies that dim(rangeP (Z)) = dim(rangeP (ω)) = N for all Z ∈ [ω − ε, ω + ε]. Further, by
definition of ω, there is η0 ∈ (ω− ε, ω) and LZ has n(LZ) = 1 for all Z ∈ (Z∗, η0). Therefore, N = 1
and Lω+ε has exactly one negative eigenvalue, hence LZ has n(LZ) = 1 for Z ∈ (Z∗, ω + ε), which
contradicts with the definition of ω. Thus, ω = 0. This finishes the proof.

Remark 4.7. It is immediate from the proof of Proposition 4.6 that we recover the result of n(LZ) = 1
for Z ∈ (−

∑3
j=1 cj ,−

2
π

∑3
j=1 cj) in Proposition 4.4. Moreover, we do not know another approach

(other than extension theory) for showing that n(LZ∗) = 1.

Proof of Theorem 4.1. The spectral (linear) instability of the stationary profiles ΦZ follows from a
direct application of Propositions 4.3, 4.4, 4.6, and Theorem 3.2. This finishes the proof.

Remark 4.8. Since the mapping data-solution for the sine-Gordon model on E(Y)×L2(Y) is at least
of class C2 (in fact, it is smooth), by Theorem 2.7 and from the approach by Henry et al. [36] (see
also Angulo and Natali [12], Angulo et al. [11]) it follows that the linear instability property of ΦZ is
actually of nonlinear type in theH1(Y)×L2(Y)-norm by the flow of the sine-Gordon model. In other
words, the spectral (linear) stability result presented here implies the orbital (nonlinear) stability
of the static solutions of kink-type. The well-posedness of the Cauchy problem is an essential
ingredient to reach this conclusion. The reader is referred to [11,12,36] for further information.

5 Instability of stationary solutions of kink and anti-kink type for
the sine-Gordon equation with δ-interaction

In this section apply the linear instability criterion (Theorem 3.2 above) to the case of stationary
solutions of kink and anti-kink type of the form (1.13), determined by a δ-interaction type at the
vertex ν = 0. For concreteness and without loss of generality, we consider cj = 1, j = 1, 2, 3, in
(1.6)-(1.8). Hence, the structure of such stationary wave solutions, Φ = (φj)

3
j=1, are given in this

case by

φ1(x) = 4 arctan
(
e−(x−a1)

)
, x < 0, lim

x→−∞
φ1(x) = 2π

φi(x) = 4 arctan
(
e−(x−ai)

)
, x > 0, lim

x→+∞
φi(x) = 0, i = 2, 3,

(5.1)

and the conditions φ1(0−) = φ2(0+) = φ3(0+) and
∑3

i=2 φ
′
i(0+) − φ′1(0−) = Zφ1(0−). Thus we

obtain immediately the “same shift property", a1 = a2 = a3, and from the equality

− ea1

1 + e2a1
= Z arctan

(
ea1
)
, (5.2)

the condition Z ∈ (−1, 0). Moreover, we have the following specific behavior of the profiles φi:

1) for Z ∈ (−1,− 2
π ) we obtain a1 < 0; therefore φ′′i > 0 for every i = 2, 3, and φ′′1(a1) = 0. Thus,

the profile of (φj)
3
j=1 should look similar to Figure 3(a) below, namely, two left-translated

anti-kink on all the line. Moreover, φi(0) ∈ (η, π), i = 1, 2, 3, η > 0,

2) for Z ∈ (− 2
π , 0) we obtain a1 > 0; therefore φ′′i (a1) = 0, i = 2, 3. Thus, the profile of (φj)

3
j=1

should look similar to Figure 3(b) below, namely, two right-translated anti-kink on all the
line. Moreover, φi(0) ∈ (π, 2π), i = 1, 2, 3,
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(a) Z ∈ (−1,−2/π) (b) Z ∈ (−2/π, 0) (c) Z = −2/π

Figure 3: Plots of stationary solutions of anti-kink/kink type of the form (5.1), in the case where cj = 1
for all j = 1, 2, 3, for different values of Z ∈ (−1, 0). Panel (a) shows the stationary profile solutions
(left-translated anti-kink configuration) for the value Z = −0.9 ∈ (−1,−2/π). Panel (b) shows the profile
(right-translated anti-kink) for the value Z = −0.25 ∈ (−2/π, 0). Panel (c) shows the profile solution for the
parameter value Z = −2/π (color online).

3) the case Z = − 2
π implies a1 = a2 = a3 = 0; therefore, φi(0) = π and φ′′i (0) = 0, i = 1, 2, 3.

In this case, we have two-classical anti-kink profile around the vertex ν = 0 (see Figure 3(c)
below).

The main stability result for the stationary profiles ΠZ = (φ1, φ2, φ3, 0, 0, 0) with φj defined in
(5.1) is the following.

Theorem 5.1. Let Z ∈ (−1, 0) and the smooth family of stationary profiles Z → ΠZ defined in
(5.1). Then ΠZ is spectrally unstable for the sine-Gordon model (2.1).

It is to be noticed that the kink/anti-kink stationary profiles (5.1) do not belong to the energy
space H2(Y). Therefore, in order to be able to apply the linear instability criterion of section §3, we
need to verify hypotheses (S1)−(S3) with respect to the flow generated by finite energy perturbations
of these static solutions. A similar analysis on the well-posedness of perturbed solutions around
unbounded periodic wave solutions of subluminal librational type for the sine-Gordon equation
can be found in [13]. In the sequel we establish the appropriate framework for the application of
Theorem 3.2.

5.1 Functional space for stability properties of the kink/anti-kink profile

The natural framework space for studying stability properties of the kink/anti-kink profile Φ = (φj)
for the sine-Gordon model is X (Y) = H1

loc(−∞, 0)
⊕
H1(0,∞)

⊕
H1(0,∞). Thus we say that a

flow t→ (u(t), v(t)) ∈ X (Y)×L2(Y) is called a perturbed solution for the anti-kink profile Φ ∈ X (Y)
if for (P (t), Q(t)) ≡ (u(t) − Φ, v(t)) we have that (P (t), Q(t)) ∈ H1(Y) × L2(Y) and z = (P,Q)>

satisfies the following vectorial perturbed sine-Gordon model
zt = JEz + F1(z)

P (0) = u(0)− Φ ∈ H1(Y),

Q(0) = v(0) ∈ L2(Y),

(5.3)
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where for P = (p1, p2, p3) we have

F1(z) =



0
0
0

sin(φ1)− sin(p1 + φ1)
sin(φ2)− sin(p2 + φ2)
sin(φ3)− sin(p3 + φ3)

 . (5.4)

Then, by studying stability linear properties of the anti-kink profile ΠZ by the sine-Gordon model
on X (Y) × L2(Y) is reduced to study stability properties of the trivial solution (P,Q) = (0, 0)
for the linearized model (5.3) around (P,Q) = (0, 0). Thus, via Taylor’s Theorem we obtain the
linearized system in (3.3) but with the Schrödinger diagonal operator L in (3.4) now determined
by the anti-kink profile Φ = (φj). We will denote this operator by Lak,Z , with domain D(Lak,Z)
determined by the Kirchhoff’s boundary conditions defined in (1.12) with cj = 1. In this way, we
can apply ipsis litteris the semi-group theory results in section §2 to the operator JE and to the
local well-posedness problem in E(Y)×L2(Y) for the vectorial perturbed sine-Gordon model (5.3).
We note that the anti-kink profile Φ ∈ X (Y) but Φ′ ∈ H2(Y).

5.2 Spectral study

Next we determine the assumptions (S1) − (S3) required by Theorem 3.2 for obtaining that the
eigenvalue problem JEΨ = λΨ has a non-trivial solution with Reλ > 0. Assumptions (S1) − (S2)
are verified similarly as in section §3. The spectral conditions required by assumption (S3) are given
in the following propositions.

Proposition 5.2. Let Z ∈ (−1, 0). Then ker(Lak,Z) = {0} and σess(Lak,Z) = [1,+∞).

Proof. The proof is ipsis litteris as in the case of Proposition 4.3. Indeed, since Φ′ ∈ H2(Y)
the Sturm-Liouville theory on half-lines can be applied and so for u = (u1, u2, u3) ∈ D(Lak,Z)
and Lak,Zu = 0, it implies uj = αφ′j for some α ∈ R (here we also use that φ′j(0+) = φ′1(0−)
for j = 2, 3). Moreover, the Kirchhoff’s condition implies also αφ′′1(0−) = αZφ′1(0−). Thus by
considering the cases Z ∈ (−1,− 2

π ), Z ∈ (− 2
π , 0) and Z = − 2

π we obtain α = 0. Then by Weyl’s
theorem and the calculations limx→−∞ cos(φ1(x)) = 1 and limx→+∞ cos(φj(x)) = 1, j = 2, 2, we
conclude that σess(Lak,Z) = [1,+∞).

Proposition 5.3. Let Z ∈
[
− 2

π , 0). Then n(Lak,Z) = 1.

Proof. The idea of the proof is to use the extension theory for symmetric operators as in Proposition
4.4. Thus„ since φ′j 6= 0 for all j we have n(Lak,Z) 5 1. In order to show that n(Lak,Z) = 1
we consider the following quadratic form Q associated to (Lak,Z , D(Lak,Z)) on the space E(Y) =
{(uj)3

j=1 ∈ H1(Y) : u1(0−) = u2(0+) = u3(0+)}, defined as

Q(u) =

ˆ 0

−∞
(u′1(x))2 + cos(φ1(x))u2

1(x)dx+
3∑
j=2

ˆ +∞

0
(u′j(x))2 + cos(φj(x))u2

j (x)dx+ Z[u1(0)]2,

(5.5)
for each u = (uj) ∈ E(Y). Next, since Φ′ = (φ′j) ∈ E(Y) we get via integration by parts and from
the equality φ′′j = sin(φj) the relation

Q(Φ′) = Z[φ′1(0)]2 − φ′1(0)φ′′1(0). (5.6)

Lastly, since for all Z ∈
[
− 2

π , 0) we have φ′1(0)φ′′1(0) = 0 we get Q(Φ′) < 0 and so via the minimax
principle n(Lak,Z) = 1. This finishes the proof.

24



Now, similarly as in the stability study in section §4, we have that for Z ∈ (−1,− 2
π ) is not clear

if the extension theory approach can give us the relation n(Lak,Z) = 1. Thus we will use again
analytic perturbation theory.

Proposition 5.4. Let Z ∈
(
− 1,− 2

π

)
. Then n(Lak,Z) = 1.

Proof. The proof is ipsis litteris as in the case of Proposition 4.6. Indeed, we only need to note that
in this case we have the continuous mapping function Z ∈

(
− 1, 0

)
→ a1(Z) such that

a1(Z) =


> 0, for − 2

π
< Z < 0,

= 0, for Z = − 2

π
,

< 0, for − 1 < Z < − 2

π
,

(5.7)

and so we obtain that
lim

Z→− 2
π

‖φ1,a1(Z) − φ1,a1(− 2
π

)‖H1(−∞,0) = 0.

which implies immediately that Lak,Z converges to Lak,− 2
π
as Z → − 2

π in the generalized sense.
This finishes the proof.

Proof of Theorem 5.1. The spectral (linear) instability of the stationary profiles ΠZ follows from
Propositions 5.2, 5.3, 5.4, and a direct application of Theorem 3.2 applied to the linearized vectorial
perturbed sine-Gordon model (5.3) around the trivial solution (0, 0). This finishes the proof.

6 Discussion and open problems

In this paper, we have established the linear instability of static wave solutions to the sine-Gordon
equation posed on a Y-junction with boundary conditions of δ-type at the vertex (equations (1.4)).
These conditions are characterized by a parameter Z ∈ R and represent continuity of the wave func-
tions at the vertex and a flux balance of intensity Z. The static wave solutions under consideration
are of kink (1.9), or kink/anti-kink (1.13) type. To that end, we have established a general linear
instability criterion which essentially provides the sufficient conditions for the linearized operator
around any static solution, LZ , to have a pair of positive/negative real eigenvalues. Consequently,
the linear stability analysis depends upon of the spectral study of the linearized operator and of
its Morse index. The extension theory of symmetric operators, Sturm-Liouville oscillation results
and analytic perturbation theory of operators are fundamental ingredients in this endeavor. The
linear instability criterion introduced in this work has prospects for the study of other types of
stationary wave solutions (such as breathers or anti-kinks), and/or of other types of interactions
at the vertex. For example and up to our knowledge, there are no rigorous results on the stability
of solutions of breather type in the literature (see the recent work [61] for a numerical study of
this problem). The stability properties of kink and kink/anti-kink soliton profile solutions for the
sine-Gordon equation on a Y-junction, but with boundary conditions of δ′-type, will be addressed
in a companion paper [14].
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A Appendix

For convenience of the reader, and because of the use of non-standard techniques along the manuscript,
in this section we formulate the extension theory of symmetric operators suitable for our needs
(see [47, 48] for further information). The following result is classical and can be found in [54], p.
138.

Theorem A.1 (von-Neumann decomposition). Let A be a closed, symmetric operator, then

D(A∗) = D(A)⊕N−i ⊕N+i. (A.1)

with N±i = ker(A∗ ∓ iI). Therefore, for u ∈ D(A∗) and u = x+ y + z ∈ D(A)⊕N−i ⊕N+i,

A∗u = Ax+ (−i)y + iz. (A.2)

Remark A.2. The direct sum in (A.1) is not necessarily orthogonal.
The following propositions provide a strategy for estimating the Morse-index of the self-adjoint

extensions (see Reed and Simon, vol. 2, [54], chapter X).

Proposition A.3. Let A be a densely defined lower semi-bounded symmetric operator (that is,
A ≥ mI) with finite deficiency indices, n±(A) = k < ∞, in the Hilbert space H, and let Â be a
self-adjoint extension of A. Then the spectrum of Â in (−∞,m) is discrete and consists of, at most,
k eigenvalues counting multiplicities.

Proposition A.4. Let A be a densely defined, closed, symmetric operator in some Hilbert space H
with deficiency indices equal n±(A) = 1. All self-adjoint extensions Aθ of A may be parametrized
by a real parameter θ ∈ [0, 2π) where

D(Aθ) = {x+ cφ+ + ζeiθφ− : x ∈ D(A), ζ ∈ C},
Aθ(x+ ζφ+ + ζeiθφ−) = Ax+ iζφ+ − iζeiθφ−,

with A∗φ± = ±iφ±, and ‖φ+‖ = ‖φ−‖.

Next Proposition can be found in Naimark [48] (see Theorem 9, p. 38).

Proposition A.5. All self-adjoint extensions of a closed, symmetric operator which has equal and
finite deficiency indices have one and the same continuous spectrum.

The following proposition is the main result of this Appendix and characterizes all self-adjoint
extensions of the symmetric operator under consideration. It plays a key role in the proof of
Proposition 4.4.

Proposition A.6. Consider the closed symmetric operator densely defined on L2(Y), (M, D(M)),
by

M =
((
− c2

j

d2

dx2

)
δj,k

)
, 1 5 j, k 5 3,

D(M) =
{

(vj)
3
j=1 ∈ H2(Y) : v1(0−) = v2(0+) = v3(0+) = 0,

3∑
j=2

c2
jv
′
j(0+)− c2

1v
′
1(0−) = 0

}
,

(A.3)
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with δj,k being the Kronecker symbol. Then, the deficiency indices are n±(M) = 1. Therefore, we
have that all the self-adjoint extensions of (M, D(M)), namely, (JZ , D(JZ)), Z ∈ R, are defined
by JZ ≡M and D(JZ) by (1.12).

Proof. We show initially that the adjoint operator (M∗, D(M∗)) of (M, D(M)) is given by

M∗ =M, D(M∗) = {u ∈ H2(Y) : u1(0−) = u2(0+) = u3(0+)}. (A.4)

Indeed, formally for u = (u1, u2, u3),v = (v1, v2, v3) ∈ H2(Y) we have

〈Mv,u〉 = −c2
1v
′
1(0−)u1(0−) + c2

1v1(0−)u′1(0−) +
3∑
j=2

c2
jv
′
j(0+)uj(0+)−

3∑
j=2

c2
jvj(0+)u′j(0+)

+ 〈v,Mu〉.
(A.5)

From (A.5), we obtain immediately for u = (u1, u2, u3),v = (v1, v2, v3) ∈ D(M) the symmetric
property of M. Next, we denote by D∗ = {u ∈ H2(G) : u1(0−) = u2(0+) = u3(0+)} and
we will show D∗ = D(M∗). Indeed, from (A.5) we obtain for u ∈ D∗ and v ∈ D(M) that
〈Mv,u〉 = 〈v,Mu〉 and so u ∈ D(M∗) with M∗u = Mu. Let us show the inverse inclusion
D∗ ⊇ D(M∗). Take u = (u1, u2, u3) ∈ D(M∗), then for any v = (v1, v2, v3) ∈ D(M) we have from
(A.5)

〈Mv,u〉 = −c2
1v
′
1(0−)u1(0−) +

3∑
j=2

c2
jv
′
j(0+)uj(0+) + 〈v,Mu〉 = 〈v,M∗u〉 = 〈v,Mu〉. (A.6)

Thus, we arrive for any v ∈ D(M) at the equality

3∑
j=2

c2
jv
′
j(0+)uj(0+)− c2

1v
′
1(0−)u1(0−) = 0 (A.7)

Next, it consider v = (v1, 0, v3) ∈ D(M) then c2
1v
′
1(0−) = c2

3v
′
3(0+). Then, from (A.7) we obtain

[u3(0+)− u1(0−)]c2
1v
′
1(0−) = 0.

So, by choosing v′1(0−) 6= 0 we obtain u1(0−) = u3(0+). Then (A.7) is reduced to [u2(0+) −
u1(0−)]c2

2v
′
2(0+) = 0. Therefore, by choosing v = (v1, v2, v3) ∈ D(M) with v′2(0+) 6= 0 we

conclude that u ∈ D∗. This shows relations in (A.4).
From (A.4) we obtain that the deficiency indices for (M, D(M)) are n±(M) = 1. Indeed,

ker(M∗ ± iI) = [Ψ±] with Ψ± defined by

Ψ± =
(
e
ik∓
c1

x

x<0
, e

−ik∓
c2

x

x>0
, e

−ik∓
c3

x

x>0

)
, (A.8)

k2
∓ = ∓i, Im (k−) < 0 and Im (k+) < 0. Moreover, ‖Ψ−‖L2(Y) = ‖Ψ+‖L2(Y).

Next, let us show that the domain of any self-adjoint extension M̂ of the operator (M, D(M))

in (A.3) (and acting on complex-valued functions) is given by D(M̂) = D(JZ) in (1.11). Indeed,
we recall from extension theory for symmetric operator that D(M̂) is a restriction of D(M∗) (von-
Neumann decomposition above), so D(M̂) ⊂ D(M∗) (continuity at the vertex ν = 0). Next, due
to Proposition A.4 follows

D(M̂) =
{

u ∈ H2(Y), u = u0 + ζΨ− + ζeiθΨ+ : u0 ∈ D(M), ζ ∈ C, θ ∈ [0, 2π)
}
,
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Thus, it is easily seen that for u = (u1, u2, u3) ∈ D(M̂), we have

3∑
j=2

c2
ju
′
j(0+)− c2

1u
′
1(0−) = −ζ

3∑
j=1

cj

(
ei
π
4 + ei(θ−

π
4

)
)
, u1(0−) = ζ(1 + eiθ). (A.9)

From the last equalities it follows that

3∑
j=2

c2
ju
′
j(0+)− c2

1u
′
1(0−) = Zu1(0−), where Z = Z(θ) = −

3∑
j=1

cj
ei
π
4 + ei(θ−

π
4

)

1 + eiθ
∈ R, (A.10)

with θ ∈ [0, 2π)−{π}. Thus, the set of self-adjoint extensions (M̂, D(M̂)) of the symmetric operator
(M, D(M)) can be seen as one-parametrized family (JZ , D(JZ)) defined by (1.12). This finishes
the proof.
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[40] M. A. Krasnosel′skĭı, Positive solutions of operator equations, Translated from the Russian
by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. 16

[41] P. Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004),
no. 1, pp. S107–S128. Special section on quantum graphs. 2

[42] P. Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial
graphs, J. Phys. A 38 (2005), no. 22, pp. 4887–4900. 2

[43] O. Lopes, A linearized instability result for solitary waves, Discrete Contin. Dyn. Syst. 8
(2002), no. 1, pp. 115–119. 16, 18

[44] D. Mugnolo, ed., Mathematical technology of networks, vol. 128 of Springer Proceedings in
Mathematics & Statistics, Springer, Cham, 2015. 2

30



[45] D. Mugnolo, D. Noja, and C. Seifert, Airy-type evolution equations on star graphs, Anal.
PDE 11 (2018), no. 7, pp. 1625–1652. 2

[46] D. Mugnolo and J.-F. Rault, Construction of exact travelling waves for the Benjamin-
Bona-Mahony equation on networks, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 3,
pp. 415–436. 2

[47] M. A. Naimark, Linear differential operators. Part I: Elementary theory of linear differential
operators, Frederick Ungar Publishing Co., New York, 1967. 26

[48] M. A. Naimark, Linear differential operators. Part II: Linear differential operators in Hilbert
space, Frederick Ungar Publishing Co., New York, 1968. 26

[49] K. Nakajima and Y. Onodera, Logic design of Josephson network. II, J. Appl. Phys. 49
(1978), no. 5, pp. 2958–2963. 2

[50] K. Nakajima, Y. Onodera, and Y. Ogawa, Logic design of Josephson network, J. Appl.
Phys. 47 (1976), no. 4, pp. 1620–1627. 2, 4

[51] W. M. Nichols, M. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arter-
ies: Theoretical, Experimental and Clinical Principles, CRC Press, Boca Raton, FL, sixth ed.,
2011. 2

[52] D. Noja, Nonlinear Schrödinger equation on graphs: recent results and open problems, Philos.
Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), no. 2007, pp. 20130002, 20. 2,
5

[53] A. Pazy, Semigroups of linear operators and applications to partial differential equations,
vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. 12, 15

[54] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-
adjointness, Academic Press – Harcourt Brace Jovanovich, Publishers, New York - London,
1975. 26

[55] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators,
Academic Press – Harcourt Brace Jovanovich, Publishers, New York - London, 1978. 10

[56] K. Sabirov, S. Rakhmanov, D. Matrasulov, and H. Susanto, The stationary sine-
Gordon equation on metric graphs: Exact analytical solutions for simple topologies, Phys. Lett.
A 382 (2018), no. 16, pp. 1092 – 1099. 3, 4

[57] A. C. Scott, Nonlinear science, Emergence and dynamics of coherent structures, vol. 8 of
Oxford Texts in Applied and Engineering Mathematics, Oxford University Press, Oxford, sec-
ond ed., 2003. 2, 6

[58] A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, The soliton: a new concept in
applied science, Proc. IEEE 61 (1973), no. 10, pp. 1443–1483. 2, 6, 7

[59] A. C. Scott, F. Y. F. Chu, and S. A. Reible, Magnetic-flux propagation on a Josephson
transmission line, J. Appl. Phys. 47 (1976), no. 7, pp. 3272–3286. 2

[60] J. Shatah and W. Strauss, Spectral condition for instability, in Nonlinear PDE’s, dynamics
and continuum physics (South Hadley, MA, 1998), J. Bona, K. Saxton, and R. Saxton, eds.,
vol. 255 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2000, pp. 189–198. 18

31



[61] H. Susanto, N. Karjanto, Zulkarnain, T. Nusantara, and T. Widjanarko, Soliton
and breather splitting on star graphs from tricrystal Josephson junctions, Symmetry 11 (2019),
pp. 271–280. 3, 25

[62] H. Susanto and S. van Gils, Existence and stability analysis of solitary waves in a tricrystal
junction, Phys. Lett. A 338 (2005), no. 3, pp. 239 – 246. 3

[63] L. A. Tahtadžjan and L. D. Faddeev, The Hamiltonian system connected with the equation
uξη + sin u = 0, Trudy Mat. Inst. Steklov. 142 (1976), pp. 254–266, 271. 2

32


	1 Introduction
	1.1 The sine-Gordon equation on graphs
	1.2 Boundary conditions of -interaction type on a Y-junction
	1.3 Main results

	2 Local well-posedness theory for the sine-Gordon model in E(Y)L2(Y)
	3 Linear instability criterion for the sine-Gordon model on a Y-junction
	4 Instability of stationary solutions of kink type for the sine-Gordon equation with -interaction
	4.1 Stationary solutions for the sine-Gordon equation with -interaction
	4.2 Spectral study in the case of a -interaction

	5 Instability of stationary solutions of kink and anti-kink type for the sine-Gordon equation with -interaction
	5.1 Functional space for stability properties of the kink/anti-kink profile
	5.2 Spectral study

	6 Discussion and open problems
	A Appendix

