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ABSTRACT. We study the periodic cubic derivative non-linear Schrödinger equation (dNLS) and
the (focussing) quintic non-linear Schrödinger equation (NLS). These are both L2 critical disper-
sive models, which exhibit threshold type behavior, when posed on the line R.

We describe the (three parameter) family of non-vanishing bell-shaped solutions for the pe-
riodic problem, in closed form. The main objective of the paper is to study their stability with
respect to co-periodic perturbations. We analyze these waves for stability in the framework of
the cubic DNLS. We provide a criteria for stability, depending on the sign of a scalar quantity. The
proof relies on an instability index count, which in turn critically depends on a detailed spec-
tral analysis of a self-adjoint matrix Hill operator. We exhibit a region in parameter space, which
produces spectrally stable waves.

We also provide an explicit description of the stability of all bell-shaped traveling waves for
the quintic NLS, which turns out to be a two parameter subfamily of the one exhibited for DNLS.
We give a complete description of their stability - as it turns out some are spectrally stable, while
other are spectrally unstable, with respect to co-periodic perturbations.

1. INTRODUCTION

We are interested in the cubic derivative non-linear Schrödinger equation (DNLS) in periodic
context. More specifically, we consider

(1.1) i qt +∂2
x q + i (|q|2q)x = 0.

where q is subject to the periodic boundary conditions, q(−T ) = q(T ), qx(−T ) = qx(T ). This
particular model (along with some variations), was derived to model polarized Alfven waves
in a magnetized plasma, under a constant magnetic field. As usual, the conserved quantities
provide an important threshold information with respect to the well-posedness. Let us state for
the record that, at least for smooth solutions, (1.1) conserves the mean, energy and mass. That
is,

∫ T
−T q(t , x)d x = const ., and

E =
∫ T

−T
|qx |2d x + 3

2
ℑ

∫ T

−T
|q |2qx q̄d x + 1

2

∫ T

−T
|q|6d x = const .(1.2)

M =
∫ T

−T
|u|2d x = const .(1.3)

The basic question, that one has got to be immediately interested in, is the well-posedness
of the Cauchy problems (1.1) and (1.6). For DNLS, posed on the real line, local well-posedness
is established , for data in H s(R), s ≥ 1

2 , in [27, 28]. This is sharp, in the sense that the data to
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solution map fails to be Lipschitz in H s , s < 1
2 , [3, 28]. Global solutions may also be constructed,

under a specific smallness condition on ‖u0‖L2 , [10, 11, 23]. There are however intriguing recent
results, which make use of the completely integrable structure of (1.1), [9, 17, 18, 25, 26] that es-
tablish global well-posedness for DNLS, under no smallness requirements, albeit for a.e. data
in weighted Sobolev spaces. Finally, very recently, it was shown in [1] that the DNLS is globally

well-posed for all data in H
1
2 (R), without any smallness restrictions. Turning to the existence

and the stability of solitary waves for DNLS, there has been quite a surge in activity in the last
twenty years. In [8], the authors have shown the stability of the cubic DNLS solitons, while [7]
has improved upon their results. Recently, [21] has established stability results for sum of two
solitary DNLS waves. At this point, we would like to draw the reader’s attention to the impor-
tant work [19]. In it, the authors have constructed solitary wave solutions on the line R for the
generalized DNLS (i.e. with general power |u|2σux in the non-linearity) and they have studied
their respective stability. The results obtained therein are about exhaustive and introduce some
new methods, that we use ourselves herein.

For the periodic problem, local well-posedness on the (almost) optimal space H s(T), s > 1
2

was established in [12]. It is immediate, due to conservation laws, that one can extend such
H 1(T) solutions to global, under a small L2 data assumption, but the question on whether large
global solutions persist remains open for the periodic cubic DNLS. There has been quite an
activity recently on the construction of new solutions to (1.1) in the periodic context, see for
example [6] for some new quasi-periodic solutions, using algebro-geometric methods. Also, in
[29], the authors use the complete integrability of (1.1) to study the spectrum of the linearized
operators by relating it to its Lax spectrum.

Next, we would like to explore a connection of (1.1) to a related non-linear Schrödinger equa-
tion, namely

(1.4) i ut +∂2
xu + i |u|2ux = 0, (t , x) ∈R+× [−T,T ]

It is well-known and easy to check fact is that q is a solution to (1.1) if and only if

(1.5) u(t , x) = q(t , x)e i 1
2

∫ x
−T |q(t ,y)|2d y

is a solution1 of (1.4). Note however that if q is periodic on [−T,T ], u is not necessarily pe-
riodic on [−T,T ]. In fact, there is no standard well-posedness theory for (1.4) in the periodic
context, other than the following - given initial data u0 for (1.4), one can translate to q0(x) =
u0(x)e−i 1

2

∫ x
−T |u0(y)|2d y and if q0 is periodic, then solve (1.1). That is, for the Cauchy problem of

(1.4), one can solve in the periodic setting for say H 1[−T,T ] initial data u0 :
∫ T
−T |u0(x)|2d x ∈

{0,±4π,±8π, . . .}, where the solution is recovered through (1.5). This is something we will need
to eventually address. On the other hand, the gauged equation (1.4) is better suited for our
purposes, as it yields better coordinates for our periodic wave solutions as well as the corre-
sponding linearized problem.

Another model of interest, which as is turns out is very much related to both (1.1) and (1.4),
is the quintic non-linear Schrödinger equation (NLS), which takes the form

(1.6)

{
i ut +uxx +b|u|4u = 0,−T < x < T,
u(0, x) = u0(x)

1It is important to observe that in the gauge relation (1.5), we have that |q | = |u|, so the phase function can be
written either with q or u inside of it
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subject to the same periodic boundary conditions. In addition, we consider only the focusing
case, so b > 0.

The question for local and global well-posedness for the quintic NLS, (1.6) is well-understood.
To summarize the classical by now results, the local well-posedness, holds under the assump-
tion u0 ∈ H s , s > 1

2 , both when the problem is posed on the line R or on the torus T. Such solu-
tions can be extended to global solutions, provided ‖u0‖L2 is small enough. On the other hand,
on the line, it is well-known that appropriately chosen initial data, close to the bell-shaped trav-
eling soliton, will produce a solution, which experience a finite time blow up, that is the soliton
experiences instability by blow-up. It is not at all clear however, whether or not blow up for large
L2 data, happens in the periodic case. That is, it is an interesting open problem, whether or not
solutions with large L2 data can persist globally. This applies to both DNLS and quintic NLS in
the periodic context.

This is actually one of the motivations behind our work. As is well-known, most of the dy-
namical properties of the system, can be inferred from its periodic waves and the behavior of
the Cauchy problem for data close to them. Therefore, to understand better the dynamics of
the problem, the natural place to start is data close to the periodic waves, in other words their
stability. In this work, our main goal is to investigate the stability of the corresponding waves
in the periodic case, which is an outstanding open question in the theory. We work only with
the case of cubic derivative non-linearity, which is physically best motivated, but also because
we need explicit formulas for our calculations2. We explicitly identify all bell-shaped traveling
waves, which turn out to be a rich, three parameter family of explicit solutions. For the analysis
of the matrix Hill operator, our approach mirrors the approach in [19], by relying on the spec-
tral properties of the scalar linearized operators L±. In addition, we use topological methods to
establish the expected spectral properties as they are difficult to obtain in a direct manner. Fi-
nally, we use the instability index counting theory (instead of the direct Grillakis-Shatah-Strauss
approach in [19], where it is somewhat easier to compute the necessary quantities), due to the
need to apply topological methods for the spectral problem (1.26) below.

Next, we give the description of the waves.

1.1. Description of the solutions for DNLS. We now construct the periodic wave solutions for
the DNLS, (1.1). We look instead for periodic wave solutions for the gauged equation (1.4),
which will then later translate into true DNLS waves via the gauge transformation (1.5).

More precisely, let u(x, t ) = Φ(x − ct )e iωt and plug it inside the model (1.4). We obtain the
equation

(1.7) −ωΦ− i cΦ′+Φ′′+ i |Φ|2Φ′ = 0

Further, we use the assignment

(1.8) Φ(y) =φ(y)e iθ(y), θ(y) = c

2
y − 1

4

∫ y

−T
φ2(η)dη+ const .,

to reduce the problem to one, where we look for a real-valued wave φ. In terms of φ, we obtain
the following equation

(1.9) −φ′′+ (ω− c2

4
)φ+ c

2
φ3 − 3

16
φ5 = 0 −T ≤ y ≤ T.

Here, it has to be noted that more general solutions are possible, and this has been done in [4].
More specifically, the authors have considered the most general case, by using the ansatz (1.8).

2In the work [19], the authors exhibit explicit sech type solutions for all powers σ
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This introduces a system of two second order ODE for θ and φ, see equations (5.1) and (5.2) in
[4]. Our case corresponds to the case a = 0 in their setup. On the other hand, it is argued in [4]
that the solutions with the additional term share the same stability/instability properties with
the solutions for which this term set to zero.

In our situation, we concentrate to the case (1.8), which forces the relation (1.9). Note that
we will be looking for periodic solutions φ of (1.9), but we should be aware that the resulting
function Φ(y) = φ(y)e iθ(y) may not be periodic. The point is that, we will need to translate
this back to true periodic waves for the original DNLS equation (1.1) in order to impose the
necessary periodic conditions, and we shall do so later on, see (1.17) below.

Turning back to the solution set of (1.9), it is the case that the set of solutions for (1.9) is fairly
rich as it depends on three independent parameters, see Proposition 1 below. Related to this,
the periodic waves were described in detail in some similarly general situations, see for example
[5] for the case of a quadratic nonlinearity. We will restrict our analysis to the set of bell-shaped
solutions, a notion which we introduce next.

To this end, we shall need the concept of a decreasing rearrangement of a function. More
precisely, introduce for α > 0, d f (α) = |{x ∈ (−T,T ) : | f (x)| > α}| and for each t ∈ (−T,T ), let

f ∗(t ) := inf{s > 0 : d f (s) < |t |
2 }. Note that f ∗ is positive, even, decreasing in [0,T ].

Definition 1. We say that a real-valued function f ∈ H 1
per.[−T,T ] is bell-shaped, if it coincides

with its decreasing rearrangement f ∗. Equivalently, f ∈ H 1
per.[−T,T ] is bell-shaped, if it is posi-

tive and it has a single maximum on [−T,T ].

Remark: Our results will apply equally well to waves φ, so that |φ| is bell-shaped (i.e. −φ is
bell-shaped), but we shall not dwell on this henceforth.

Going back to (1.9) - after multiplying by φ and integrating in the equation, we get,

(1.10) φ′2 =− 1

16
φ6 + c

4
φ4 +

(
ω− c2

4

)
φ2 +a,

where a is a constant of integration. We look for solution in the above equation in the form
ϕ=φ2. In particular, ϕ needs to be a positive function. We get the following equation for ϕ

(1.11) ϕ′2 = 1

4
ϕ

[
−ϕ3 +4cϕ2 +16

(
ω− c2

4

)
ϕ+a

]
=:

1

4
ϕ

[
a −R(ϕ)

]
,

where the cubic polynomial R is given by

R(z) = z3 −4cz2 −16

(
ω− c2

4

)
z.

Note that as we are looking for bell-shaped and non-vanishing solution ϕ, it must be that all
three roots of R, ϕ1 ≤ 0 < ϕ2 < ϕ3 are real, and at least two of them are positive. This is the
situation of interest.

We henceforth assume3 ω> 0.

Proposition 1. (Existence of non-vanishing bell-shaped waves)
Assume ω> 0. We have the following possibilities

(1) If ω− c2

4 > 0, and

16

27

(√
c2 +12ω+2c

)(
c2 −12ω− c

√
c2 +12ω

)
< a < 0,

3Even though, there are certainly interesting solutions for ω< 0 as well
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then the algebraic equation R(z) = a has three roots ϕ1 < 0 < ϕ2 < ϕ3, depending on
a,ω,c in a smooth manner. As a consequence, (1.11) has an unique bell-shaped solution
ϕ, which satisfies

ϕ(0) =ϕ3,ϕ(−T ) =ϕ(T ) =ϕ2.

Moreover, we have the explicit formula for the solution

(1.12) φ2(ξ) =ϕ(ξ) =
ϕ3(ϕ2 −ϕ1)+ϕ1(ϕ3 −ϕ2)sn2

(
ξ

2g ,κ
)

(ϕ2 −ϕ1)+ (ϕ3 −ϕ2)sn2
(
ξ

2g ,κ
) ,

where

(1.13) g = 2√
ϕ3(ϕ2 −ϕ1)

, κ2 = −ϕ1(ϕ3 −ϕ2)

ϕ3(ϕ2 −ϕ1)
∈ (0,1).

(2) If ω− c2

4 > 0, then for every a > 0, there is unique solution ϕ3 of a = R(ϕ), with ϕ3 > 0. As
a consequence, there is unique bell-shaped solution ϕ :ϕ(0) =ϕ3, ϕ(−T ) =ϕ(T ) = 0.

(3) If ω− c2

4 > 0 and

a ≤ 16

27

(√
c2 +12ω+2c

)(
c2 −12ω− c

√
c2 +12ω

)
,

there are no bell-shaped solutions of (1.11).

Assume now ω> 0,ω− c2

4 < 0. We have the following possibilities:

(1) Assume c > 0 and

16

27

(√
c2 +12ω+2c

)(
c2 −12ω− c

√
c2 +12ω

)
< a < 0,

then the algebraic equation R(z) = a has three rootsϕ1 < 0 <ϕ2 <ϕ3, depending on a,ω,c
in a smooth manner. There exists unique bell-shaped solution, so thatϕ(0) =ϕ3,ϕ(−T ) =
ϕ(T ) =ϕ2. The solution ϕ is given by the exact same formula (1.12) as above.

(2) Assume ω− c2

4 < 0. Then, for each a > 0, there is an unique positive root ϕ3. Thus, there is
unique bell-shaped solution of (1.11), which satisfies ϕ(0) =ϕ3,ϕ(−T ) =ϕ(T ) = 0.

(3) Assume c > 0 and

a ≤ 16

27

(√
c2 +12ω+2c

)(
c2 −12ω− c

√
c2 +12ω

)
,

then the equation R(ϕ) = a has no positive roots and hence, (1.11) has no bell-shaped
solutions.

(4) Assume ω− c2

4 < 0,c < 0 and a < 0. Then the equation R(ϕ) = a has no positive roots and
hence, (1.11) has no bell-shaped solutions.

Proof. We note first that the function R has a local minimum at z = 2
3

(p
c2 +12w +2c

)
and it is

the case that

R

(
2

3
(
√

c2 +12w +2c)

)
= 16

27

(√
c2 +12ω+2c

)(
c2 −12ω− c

√
c2 +12ω

)
.

This implies all the statements about the roots of the algebraic equation a = R(z). The existence
of solutions made in Proposition 1 follows from an elementary ordinary equations reasoning.
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In the cases of three different roots, it remains to establish the formula (1.12). Ifϕ1,ϕ2,ϕ3 are

nonzero roots of the polynomial 0 =−t 3 +4ct 2 +16
(
ω− c2

4

)
t +a, then the Viet’s formulas yield

then

(1.14)



ϕ1 +ϕ2 +ϕ3 = 4c

ϕ1ϕ2 +ϕ1ϕ3 +ϕ2ϕ3 =−16
(
ω− c2

4

)
ϕ1ϕ2ϕ3 = a.

If ϕ1 < 0 <ϕ2 <ϕ3 and ϕ2 <ϕ<ϕ3, we get∫ ϕ3

ϕ

d s√
s(s −ϕ1)(s −ϕ2)(ϕ3 − s)

= 1

2
(ξ−ξ0)

and the solution ϕ is given by (1.12). Finally, this solution is 2T periodic, with ϕ(0) =ϕ3, while
ϕ(T ) =ϕ2, where

(1.15) T = 2g K (κ).

�

Our next results details the translation to the periodic waves of the DNLS problem (1.1).

Proposition 2. Let φ be the wave constructed in Proposition 1, that is it is given by (1.12). Then,

(1.16) q(t , x) =φ(x − ct )e iωt e
i
(

c
2 (x−ct )− 3

4

∫ x−ct
−T φ2(y)d y+const .

)
,

is a periodic wave for (1.1), provided

(1.17) cT − 3

4

∫ T

−T
φ2(y)d y ∈ {0,±2π,±4π, . . .}.

Proof. We know thatΦ(x−ct )e iωt e iθ(x−ct ) is a solution of (1.4). We use the gauge transformation
to obtain

q(t , x) = u(t , x)e−i 1
2

∫ x
−T |u|2 =φ(x − ct )e iωt e

i
(

c
2 (x−ct )− 3

4

∫ x−ct
−T φ2(y)d y+const .

)
,

as specified. Finally, it can be easily checked that the function given in (1.16) is 2T periodic,
together with its derivative, exactly when (1.17) holds true. �

1.2. The linearized equations for DNLS. We need to derive the relevant linearized equations.
Our main interest is in the spectral stability of the periodic waves (1.16), constructed in Propo-
sition 2. If one tries directly the linearization ansatz suggested by the periodic wave solution
(1.16), the resulting linear equations are not in a very convenient form that could easily be ana-
lyzed, see the discussion after formula (4.3). So, it is better to argue in the framework suggested
by the waves for the gauged equation (1.4). We shall need an orthogonality relation, see (1.20),
which will make this possible. In accordance with the formula (1.16), we take the ansatz

(1.18) q = (φ(x − ct )+eλtη(x − ct ))e i (ωt+ c
2 (x−ct )− 3

4

∫ x−ct
−T φ2(y)d y).

We can now write the eigenvalue problem for η as follows - denotingσ(x) = c
2 x− 3

4

∫ x
−T φ

2d y and
plug it in (1.1). Ignoring O(η2) terms, we obtain

0 = i (λη− cηy + iη(ω− cσ′))+ (ηy y +2iηyσ
′+η(iσ′′− (σ′)2))+

+ i [φ2ηy +2φ2ℜη′+ z(2φφ′+ iσ′φ2)+ℜη(4φφ′+2φ2iσ′)].
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Taking into account

σ′ = c

2
− 3

4
φ2,σ′′ =−3

2
φφ′,

and splitting η= (ℜη,ℑη), we arrive at

(1.19) JL

( ℜη
ℑη

)
=λ

( ℜη
ℑη

)
,

where

J =
(

0 1
−1 0

)
,L =

(
L1 N
N∗ L2

)
,

L1 = −∂y y +
(
ω− c2

4

)
+ 3c

2
φ2 − 11

16
φ4

N = −3

2
φ2∂y + 3

2
φφ′, N∗ = 3

2
φ2∂y + 9

2
φφ′,

L2 = −∂y y +
(
ω− c2

4

)
+ c

2
φ2 − 3

16
φ4

By direct inspection, L

(
0
φ

)
= 0, whence

0 = 〈L
( ℜη
ℑη

)
,

(
0
φ

)
〉 =λ〈J−1

( ℜη
ℑη

)
,

(
0
φ

)
〉 =λ〈ℜη,φ〉.

It follows that for λ 6= 0, 〈ℜη,φ〉 = 0. Therefore, at least as far as the analysis of the linearized
problem is concerned, we might take η : ℜη ⊥ φ. That is, it suffices to consider the following
simplified reduced linearization

(1.20) q = (φ(x − ct )+η(t , x − ct ))e i (ωt+θ(x−ct )− 1
2

∫ x−ct
−T φ2(y)d y),ℜη⊥φ.

We would like to translate this particular form of the perturbation of q into the corresponding
problem for u in the gauged equation. According to the gauge transformation (1.5), we have
that

u(t , x) = q(t , x)e
i
2

∫ x
−T |q(t ,y)|2d y

Using the particular form of (1.18) and expanding in powers of η, we obtain

u(t , x) = (φ(x − ct )+eλtη(x − ct ))e iωt e
i
(

c
2 (x−ct )− 1

4

∫ x−ct
−T φ2(y)d y+∫ x−ct

−T φ(y)ℜη(y)d y
)
+O(η2)

=
(
φ(x − ct )+eλtη(x − ct )+ iφ(x − ct )

∫ x−ct

−T
φ(y)ℜη(y)d y

)
e iωt e

i
(

c
2 (x−ct )− 1

4

∫ x−ct
−T φ2(y)d y

)
+

+ O(η2) =: (φ(x − ct )+eλt z(x − ct ))e i (ωt+θ(x−ct )) +O(η2),

where we have made the assignment z := η+ iφ
∫ x
−T φ(y)ℜη(y)d y . Note that we still need to

address the periodicity of z, and we do this now. We have, by the periodicity of η and ℜη⊥φ,

(1.21) z(T ) = η(T )+ iφ〈φ,ℜη〉 = η(T ) = η(−T ) = z(−T ).

and similarly, z ′(T ) = z ′(−T ). We have, for the real and imaginary parts,

(1.22)

{ ℜz =ℜη
ℑz =ℑη+φ(x)

∫ x
−T φ(y)ℜη(y)d y
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or conversely

(1.23)

{ ℜη=ℜz
ℑη=ℑz −φ(x)

∫ x
−T φ(y)ℜz(y)d y

In other words, starting with the appropriate form (1.20), we have represented

(1.24) u(t , x) = (φ(x − ct )+eλt z(x − ct ))e i (ωt+θ(x−ct )) +O(z2)

where z is a periodic increment and incidentally, by virtue of (1.23), we also have ℜz ⊥φ.
Plug in the formula (1.24) in (1.4), and using that φ satisfies (1.9), and ignoring all terms in

the form O(z2), we arrive at the following linear equation for the increment z

i (λz − czy + i z(ω− cθ′))+ (zy y +2i zyθ
′+ z(iθ′′− (θ′)2))+ i [φ2(zy + i zθ′)+2φ(φ′+ iθ′φ)ℜz] = 0

Noting

θ′ = c

2
− φ2

4
, θ′′ =−1

2
φφ′,

we can write

iλz + zy y +
[
−ω+ c2

4
− i

1

2
φφ′− c

2
φ2 + 3

(16
φ4

]
z +

+ i zy
1

2
φ2 +2iφ

(
φ′+ i

c

2
φ− i

1

4
φ3

)
ℜz = 0

Split z in real and imaginary parts, namely z = v + i w . In terms of v, w , we have a linear system
that reads as follows

λv +wy y + 1

2
φ2vy + 3

2
φφ′v +

[
−ω+ c2

4
− c

2
φ2 + 3

(16
φ4

]
w = 0

−λw + vy y − 1

2
φ2wy +

[
−ω+ c2

4
− 3c

2
φ2 + 11

16
φ4

]
v + 1

2
φφ′w = 0

We can write the eigenvalue problem in the form

(1.25) JL

(
v
w

)
=λ

(
v
w

)
where

J =
(

0 1
−1 0

)
,L =

(
L1 M
M∗ L2

)
,

M = 1

2
φ2∂y − 1

2
φφ′, M∗ =−1

2
φ2∂y − 3

2
φφ′.

Here, we introduce the linearized operators associated with the profile equation (1.9), namely
the second order Schrödinger operators

L+ = −∂y y + (ω− c2

4
)+ 3c

2
φ2 − 15

16
φ4

L− =L2 = −∂y y + (ω− c2

4
)+ c

2
φ2 − 3

16
φ4.

They would be instrumental in the eigenvalue problem, associated with the periodic waves
under consideration. Record the eigenvalue problem (1.25) in the compact form

(1.26) JL~U=λ~U,~U ∈ H 2
per [−T,T ]×H 2

per [−T,T ].
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We note that the linearized problem (1.26) is in the standard Hamiltonian form JL ,J ∗ =−J ,
L ∗ =L . As we have mentioned above the corresponding linearized problem one obtains for η
in (1.20) is not as convenient, see the discussion after (4.3) below. However, our analysis shows
that as first order approximations, this problem is equivalent to (1.26), through the change of
variables (1.22). More precisely, starting with z, which solves (1.26) for any λ 6= 0, we see that

L z =λJ−1z, whence J−1z ⊥ K er (L ). It follows that ℜz = v ⊥φ, as

(
0
φ

)
∈ K er (L ). This can

be seen directly, but see also Proposition 7 below. Next, one substitutes η instead of z according
to (1.22) in (1.26), we obtain the linearized problem for η. Based on this analysis, we say that the
waves given in (1.16) are stable, if the eigenvalue problem (1.26) is stable. More formally,

Definition 2. We say that the waveΦ(x−ct )e iωt e− 3i
4

∫ x−ct
−T φ2(y)d y+const . is spectrally stable solution

of (1.1), if the eigenvalue problem (1.26) does not have non-trivial solution (λ,~U), with ℜλ> 0.

Remark: In principle, an instability for the waves would mean that there exists λ : ℜλ> 0, so
that λ ∈ σ(JL ). As all the potentials in L are periodic, it is a standard fact that all possible
solutions of (1.26) represent eigenvalues only4.

1.3. Main results: DNLS. Before we proceed with the statements, we shall need to introduce
an object that will play a role in the statement. First, it is established, see Proposition 7 below,
that

K er (L ) = span

{(
0
φ

)
,

(
φ′

−φ3

4

)}
,

whence L : K er (L )⊥ → K er (L )⊥ is well-defined unbounded operator. Given that, we con-
sider a symmetric 2×2 matrix D , with entries

D11 = 〈L −1
(
φ

0

)
,

(
φ

0

)
〉,

D12 = D21 = 〈L −1
(
φ

0

)
,

(
φ3

4
φ′

)
〉,

D22 = 〈L −1

(
φ3

4
φ′

)
,

(
φ3

4
φ′

)
〉,

Note that since

(
φ

0

)
,

(
φ3

4
φ′

)
∈ K er (L )⊥, the elements L −1

(
φ

0

)
,L −1

(
φ3

4
φ′

)
∈ K er (L )⊥ are

uniquely defined.

Theorem 1. Consider the waves constructed in Proposition 2, subject to the condition (1.17).
These waves represent all non-vanishing bell-shaped periodic waves for (1.4).

These waves are spectrally stable if and only if the matrix D defined above has exactly one
negative eigenvalue. Equivalently (since from general considerations, D has at most one negative
eigenvalue), the waves are stable, if and only if

(1.27) det(D) = 〈L −1
(
φ

0

)
,

(
φ

0

)
〉〈L −1

(
φ3

4
φ′

)
,

(
φ3

4
φ′

)
〉−〈L −1

(
φ

0

)
,

(
φ3

4
φ′

)
〉2 < 0.

4Indeed, as the resolvent operators (JL −λ)−1,λ ∈ R,λ>> 1 are smoothing of order two, this guarantees that
(JL −λ)−1 : L2[−T,T ]×L2[−T,T ] → L2[−T,T ]×L2[−T,T ] is compact, whence its spectrum consists entirely of
eigenvalues converging towards zero. It follows that σ(JL ) consists of eigenvalues only.
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We have the following corollary

Corollary 1. The non-vanishing bell-shaped periodic waves considered in Theorem 1 are stable,

provided 〈L −1
(
φ

0

)
,

(
φ

0

)
〉 < 0. Since, we also establish that

sg n(〈L −1
(
φ

0

)
,

(
φ

0

)
〉) = sg n(〈L −1

+ φ,φ〉),

an alternative stability criteria is 〈L −1+ φ,φ〉 < 0.

Remark: We have an explicit but long formula for 〈L −1+ φ,φ〉, depending on the alternative

parametrization of the waves in g ,κ,µ =ω− c2

4 as in Proposition 1. For example, we have pro-
duced several representative slices of the graphs of 〈L −1+ φ,φ〉 - see Figure 5 for µ= 1 and Figure
6 for µ=−1.

Related to this discussion, we observe from the graphs that 〈L −1+ φ,φ〉 changes sign over the
three dimensional domain of parameters. One might somehow conjecture that in line with the
Vakhitov-Kolokolov theory, the condition 〈L −1+ φ,φ〉 > 0 by itself, might imply instability. We
have a result, which shows that this is not the case.

Corollary 2. There are waves of the type described in Theorem 1, which are stable and at the same

time 〈L −1
(
φ

0

)
,

(
φ

0

)
〉 > 0.

For the proof, we mention first that we establish, see Section 5.3 below, that the quantities
D11 and D12 do not vanish simultaneously. Thus, consider a parameter point P0 for which

D11(P0) = 〈L −1
(
φ

0

)
,

(
φ

0

)
〉 = 0 and P0 ∈ ∂{P : D11(P ) < 0}. As D11(P0) = 0, it must be that

D12(P0) 6= 0. So,
det (D(P0)) = D11(P0)D22(P0)−D2

12(P0) =−D2
12(P0) < 0,

whence this particular periodic wave is still stable. In fact, by the continuity with respect to
parameters, det (D) < 0 in a neighborhood, so all of these waves are still stable. On the other
hand, as P0 is on the boundary of {P : D11(P ) < 0}, for some of them D11(P ) > 0. This completes
the proof.

1.4. Main results: quintic NLS. Starting with the quintic NLS, (1.6), after a change of variables
u(t , x) →αu(bt ,

p
bx) and α4 = 3

16 , we rescale to the following problem

(1.28) i ut +uxx + 3

16
|u|4u = 0,−T ≤ x ≤ T,

with a rescaled T , in comparison to (1.6). This transformation allows us to consider (1.28),
instead of the more general (1.6).

Evidently, plugging in the standing wave ansatz u = e iωtφ,φ> 0,ω> 0, we obtain the profile
equation for the wave

(1.29) −φ′′+ωφ− 3

16
φ5 = 0,−T ≤ x ≤ T.

Clearly, this is exactly the profile equation (1.9), with c = 0. Consequently, we have the bell-
shaped solutions described in Proposition 1. We state the existence result.

Proposition 3. Let ω> 0. Then, these are all bell-shaped solutions of (1.29):
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(1) If

−64
p

12

9
ω

3
2 < a < 0,

then, R(ϕ) = a has three roots ϕ1 < 0 < ϕ2 < ϕ3 and ϕ(0) = ϕ3,ϕ(−T ) = ϕ(T ) = ϕ2, de-
scribed by

(1.30)


ϕ1 +ϕ2 +ϕ3 = 0,

ϕ1ϕ2 +ϕ1ϕ3 +ϕ2ϕ3 =−16ω,

ϕ1ϕ2ϕ3 = a.

The solution is then given by

φ2(ξ) =ϕ(ξ) =
ϕ3(ϕ2 −ϕ1)+ϕ1(ϕ3 −ϕ2)sn2

(
ξ

2g ,κ
)

(ϕ2 −ϕ1)+ (ϕ3 −ϕ2)sn2
(
ξ

2g ,κ
) ,(1.31)

g = 2√
ϕ3(ϕ2 −ϕ1)

, κ2 =−ϕ1(ϕ3 −ϕ2)

ϕ3(ϕ2 −ϕ1)
∈ (0,1).(1.32)

(2) For every a > 0, there is unique solution ϕ3 of a = R(ϕ), with ϕ3 > 0. As a consequence,
there is unique bell-shaped solution ϕ :ϕ(0) =ϕ3, ϕ(−T ) =ϕ(T ) = 0.

Thus, we are interested in the solutions described in (1.31). Linearizing around the traveling
wave e iωtφ, u = e iωt (φ+ v), yields the eigenvalue problem for~v = eλt (ℜv,ℑv),

(1.33)

(
0 1
−1 0

)(
L+ 0

0 L−

)
~v =λ~v.

Theorem 2. Let ω> 0 and φ are the bell-shaped traveling wave of the quintic NLS, described in
(1.31), which alternatively can be parametrized by (1.32) and

g ∈ (0,∞), κ ∈ (0,1), ω=
p

1−k2 +k4

4g 2
.

Then, these solutions are stable, whenever 〈L −1+ φ,φ〉 < 0.

The plan of the paper is as follows - the main object of investigation, namely the DNLS prob-
lem is considered in all sections, but the last one. More specifically, in Section 2, we introduce
the basics of the instability index counting theory. In Section 2.2, we construct small waves via
a variational method. This is, on one hand standard, but we find it useful in the sequel, as it
provides an important piece of spectral information5, namely that the scalar linearized oper-
ator L+ has a single negative eigenvalue, for all points in the parameter space. This property
is then established for all linearized operators (about the waves of interest) via a topological
arguments, as eigenvalues of L+ are shown not to cross the zero eigenvalue, see Proposition
6 later on. In Section 3, we study the spectral properties of L± - first we need and present an
alternative parametrization of the waves, see Section 3.1, and then we describe the first few el-
ements of σ(L±), see Proposition 6. In Section 4, we use the spectral information from Section
3 to study the properties of the matrix Hill operator L , which arises in the linearized problem.
Namely, we show that its kernel is always two dimensional in Proposition 7. Note that this is

5which proved to be extremely non-trivial to obtain with the explicit waves under consideration
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the minimal dimension dictated by the Nöther’s theorem, as the Hamiltonian system has two
symmetries. It is at this point that we start introducing some concrete calculations, based on
the formulas for the waves6, see Section 4.2. In Section 5, we wrap up the proof of the stability
criteria for DNLS waves.

In Section 6, we study the stability of the quintic NLS waves. These turn out to be a two
parameter subfamily of the three parameter family of DNLS waves considered earlier. One can
compute the quantity 〈L −1+ φ,φ〉, but in this case, the index counting theory stipulates that the
spectral stability is exactly equivalent to 〈L −1+ φ,φ〉 < 0. We have an explicit, but long formula,
which shows the intervals of stability for each given point in the parameter space - some graphs
are given at the end of Section 6, which illustrate where this is the case.

2. SOME PRELIMINARIES

First, we introduce some notations. Let S be a self-adjoint operator, with domain D(S) ⊂ L2,
which is bounded from below, i.e. inf‖u∈D(S):‖u‖L2=1〈Su,u〉 > −∞. Very often, such operator
have only (real) eigenvalues in their spectrum, each with finite multiplicity. For example, this is
the case when (S −λI )−1 is a compact operator for some λ : λ >> 1, which would be the main
situation considered herein. In such case, we denote their real eigenvalues λ0(S) ≤ λ1(S) < . . ..
In particular, from the min-max characterizations, we have that

λ0(S) = inf
u∈D(S):‖u‖L2=1

〈Su,u〉, λ1(S) = sup
ζ 6=0

inf
u∈D(S)∩{ζ}⊥:‖u‖L2=1

〈Su,u〉

Next, we present some classical results about the instability index count theories. These allow
us to count the number of unstable eigenvalues for eigenvalue problems of the form (1.26),
based on the information about the self-adjoint portion L and some specific quantities, which
are also, in principle, computable.

2.1. Instability index theory. We use the instability index count theory, as developed in [24, 13,
14, 15], see also [16]. We present a corollary, which is enough for our purposes. For eigenvalue
problem in the form

(2.1) IH~U=λ~U.

we assume that H = H ∗ has di m(K er (H ) <∞, and also a finite number of negative eigen-
values, n(H ), a quantity sometimes referred to as Morse index of the operator H . In addition,
I ∗ =−I and we shall require that I−1 : K er [H ] → K er [H ]⊥. Let kr be the number of positive
eigenvalues of the spectral problem (2.1) (i.e. the number of real instabilities or real modes), kc

be the number of quartets of eigenvalues with non-zero real and imaginary parts, and k−
i , the

number of pairs of purely imaginary eigenvalues with negative Krein signature. For a simple

pair of imaginary eigenvalues ±iµ,µ 6= 0, and the corresponding eigenvector ~z =
(

z1

z2

)
, the

Krein signature is sg n(〈H~z,~z〉), see [13], p. 267.
The matrix D is introduced as follows - for K er [H ] = span{ζ1, . . . ,ζn}

(2.2) Di j := 〈H −1[I−1ζi ],I−1ζ j 〉.

6Interestingly, we need to resort to differentiation with respect to parameters. This is always tricky, as the period
generally depends on these parameters and one needs to appropriately prepare the problem by rescaling to a fixed
period, see Section 3.2 and Section 5.1 for specifics about these calculations
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Note that the last formula makes sense, since J−1ζi ∈ K er [H ]⊥. Thus H −1[J−1ζi ] ∈ K er [H ]⊥
is well-defined. The index counting theorem, see Theorem 1, [14] states that if det (D) 6= 0, then

(2.3) kH am := kr +2kc +2k−
i = n(H )−n(D).

Note that kH am = 0 guarantees spectral stability7. A particularly useful corollary of this result
occurs when n(H ) = 1, since then the stability is equivalent to kH am = 0, see (2.3). Clearly, the
stability is equivalent to n(D) = 1, whereas n(D) = 0 leads to kH am = 1 = kr , hence instability.

2.2. Variational construction of small waves. This section constructs variational solution for
the profile equation (1.9). This may seem redundant, given the fact that we are able to con-
struct, in a fairly explicit manner (i.e. with explicit dependence on the parameters), all solutions
of interest to it. This is all so, but the variational construction yields an important additional
property of these solutions that arise as constrained minimizer, which will be relevant later on.
Namely, they will have the important property that n(L+) = 1, which turns out hard to verify in
this context.

Proposition 4. Let T > 0, c ∈R. Then, there exists ε0 = ε0(T,c) > 0, so that the variational problem

(2.4)

{
J [v] = 1

2

∫ T
−T |v ′(x)|2 + c

8

∫ T
−T |v(x)|4d x − 1

32

∫ T
−T |v(x)|6d x → mi n∫ T

−T |v(x)|2d x = ε
has solution V for every 0 < ε < ε0. Moreover, it is a bell-shaped function, which satisfies the
Euler-Lagrange equation

(2.5) −V ′′+ζV + c

2
V 3 − 3

16
V 5 = 0,−T < x < T,

where ζ= ζ(c,ε,T ) is the Euler-Lagrange multiplier. In addition, the linearized operator

L+ :=−∂xx +ζ+ 3c

2
V 2 − 15

16
V 4

has exactly one negative eigenvalue.

Proof. We first need to check that the variational problem (2.4) is well-posed. That is, for suf-
ficiently small ε and under the constraint ‖v‖2

L2 = ε, the functional J is bounded from below.
Indeed, from the Gagliardo-Nirenberg-Sobolev (GNS) inequality, we have

‖v‖6
L6[−T,T ] ≤C‖v‖6

Ḣ
1
3 [−T,T ]

≤C‖v ′‖2
L2‖v‖4

L2 =Cε2‖v ′‖2
L2 .

Similarly, (with c 6= 0 as in the definition of J (v), if c = 0, just skip this step)

‖v‖4
L4[−T,T ] ≤C‖v ′‖L2‖v‖3

L2 =C‖v ′‖L2ε
3
2 ≤ 1

4c
‖v ′‖2

L2 +Cε3

This allows one to estimate J from below

(2.6) J [v] ≥
(

1

4
−Cε2

)
‖v ′‖2 −Cε3 >−Cε3

provided ε : Cε2 ≤ 1
4 . This shows the well-posedness.

Recall the Szegö inequality ‖vx‖L2[−T,T ] ≥ ‖v∗
x ‖L2[−T,T ], where v∗ is the decreasing rearrange-

ment of v as previously defined. Note that the equality holds only when v = v∗, i.e. if v is
bell-shaped. At the same time, for all 1 ≤ p ≤∞, there is ‖v‖Lp [−T,T ] = ‖v∗‖Lp [−T,T ]. This shows

7But note that this is not necessary. For example, one might have kH am = 2 = 2k−
i ,kr = k−

i = 0, which means
that no instabilities are present, but there is a pair of purely imaginary eigenvalues, with a negative Krein signature.
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that J [v] ≥ J [v∗], while ‖v∗‖2
L2 = ‖v‖2

L2 = ε. Thus, it suffices to restrict the variational problem
(2.4) to bell-shaped entries only.

We now show that (2.4) has solutions. Let J∗ = inf‖v‖2=ε J [v] and pick a minimizing sequence
of bell-shaped functions, vn : ‖vn‖2 = ε, J [vn] → J∗. It follows from (2.6) that

limsup
n

‖vn‖H 1[−T,T ] <
Cε3 + J∗
1
4 −Cε2

<∞.

Thus, {vn}n is a bounded sequence in H 1[−T,T ], hence a precompact in L2[−T,T ]. Thus, we
may extract a subsequence, which converges weakly in H 1 and strongly in L2. Without loss
of generality, the subsequence is vn , say limn ‖vn −V ‖L2 = 0. By the GNS inequality and the
supn ‖vn‖H 1 <∞, it follows that limn ‖vn −V ‖Lp [−T,T ] = 0,1 < p <∞. In particular, vn → V in
L4,L6. At the same time, by the lower semi-continuity of the H 1 norm, with respect to weak
convergence, liminfn ‖vn‖H 1 ≥ ‖V ‖H 1 . It follows that

J∗ = liminf
n

J [vn] ≥ J [V ].

while ‖V ‖2
L2 = ε. Thus, V is a solution of (2.4) and it is a bell-shaped as a limit of bell-shaped

functions. It now remains to establish the Euler-Lagrange equation (2.5) and n(L+) = 1. This is
all very standard. Fix h : 〈h,V 〉 = 0 and consider

f (δ) := J

[p
ε

V +δh

‖V +δh‖2

]
Since V is a minimizer of (2.4), it follows that f has a minimum at δ= 0. Thus, f ′(0) = 0, which
yields exactly (2.5). Furthermore, f ′′(0) ≥ 0, which amounts to

〈L+h,h〉 ≥ 0,h ⊥V

Thus, n(L+) ≤ 1. On the other hand, by direct inspection, L+[V ′] = 0 and the function V ′ has
two zeros, at zero and at T . Thus, this is not the ground state, which needs to be positive, hence
there is a negative eigenvalue, whence n(L+) = 1. �

3. SPECTRAL PROPERTIES OF L±

We need to establish some useful spectral properties for the scalar Schrödinger operators
L±, such as (3.12). In addition, we shall also need to compute various quantities involving
L −1+ φ. This requires explicit calculations involving the waves, so we start with an alternative
parametrization, which will be useful in the actual computations.

3.1. An alternative parametrization of the waves. As we shall see, it is possible to obtain for-
mulas in terms of the rootsϕ1,ϕ2,ϕ3. These are not necessarily good variables to work with. We

introduce a new set of parameters. Namely, we shall use g ,κ and µ= 16(ω− c2

4 ). Based on that
and the types of solutions that we consider, it is convenient to further distinguish between the
cases, µ> 0 and µ< 0.
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3.1.1. The caseµ> 0. In terms of this variables, (see (1.13) for the formulas connecting the roots
to g ,κ), we can express the roots as follows

ϕ1ϕ2 = 1

3

(
− 4

g 2
+ 8κ2

g 2
−µ

)
=: −A(g ,κ,µ)(3.1)

ϕ2ϕ3 = 1

3

(
8

g 2
− 4κ2

g 2
−µ

)
=: B(g ,κ,µ)(3.2)

ϕ1ϕ3 = 1

3

(
− 4

g 2
− 4κ2

g 2
−µ

)
=: −C (g ,κ,µ).(3.3)

Recall that we are interested in a case, where ϕ1,ϕ2,ϕ3 are all real and ϕ1 < 0 < ϕ2 < ϕ3. The

assumption ω− c2

4 > 0 ensures ϕ3 > 0. It is easy to see that the rest is equivalent to ϕ1ϕ2 < 0
and ϕ2ϕ3 > 0. Indeed, ϕ1ϕ2 < 0 rules out complex eigenvalues (since then ϕ1ϕ2 = ϕ1ϕ̄1 >
0). Additionally, ϕ2ϕ3 > 0 rules out the possibility ϕ1 < ϕ2 < 0 < ϕ3. Thus, in the case under
consideration, namely µ> 0,

ϕ1 < 0 <ϕ2 <ϕ3 ⇐⇒−A =ϕ1ϕ2 < 0 & B =ϕ2ϕ3 > 0.

Working out these inequalities leads to the following conditions on the new parameters

(3.4) µ> 0 & 0 < g 2 < 8

µ
& 0 < κ2 < min

(
4+µg 2

8
,

8−µg 2

4

)
.

Note that min
(

4+µg 2

8 , 8−µg 2

4

)
≤ 1, so the standard restriction for κ ∈ (0,1) is not violated. In fact,

for the case µ> 0,

(3.5) ϕ1 < 0 <ϕ2 <ϕ3 ⇐⇒ 0 < g <
√

8

µ
& 0 < κ2 < min

(
4+µg 2

8
,

8−µg 2

4

)
.

For future reference, we need the formula forϕ1,ϕ2,ϕ3,c in terms of the new variables. We have
from Viet’s formulas and (3.1), (3.2), (3.3),

ϕ1 = −
√

AC

B
,ϕ2 =

√
AB

C
,ϕ3 =

√
BC

A
,(3.6)

c = AB +BC − AC

4
p

ABC
(3.7)

3.1.2. The case µ ≤ 0. This case, µ ≤ 0 is very similar to the case µ > 0 - all the formulas stay
unchanged, while the regions of validity, such as (3.4) change. More specifically, (3.1), (3.2),
(3.3) remain unchanged, but now, we have to find new constraints corresponding thatϕ1,ϕ2,ϕ3

are real and ϕ1 < 0 < ϕ2 < ϕ3. So, we need to enforce A > 0,B > 0,C > 0. Note that B > 0 is
automatic, due to the inequalities κ < 1 and µ ≤ 0. Also, note that since A < C , it is enough to
enforce A > 0. This gives rise to the new constraints, similar to (3.5), namely - for µ< 0,

(3.8) ϕ1 < 0 <ϕ2 <ϕ3 ⇐⇒ 0 < g <
√
− 4

µ
& 0 < κ2 < 4+µg 2

8
.

The case µ= 0 can be naturally considered as part of (3.8), so we get

ϕ1 < 0 <ϕ2 <ϕ3 ⇐⇒ 0 < g <+∞ & 0 < κ2 < 1

2
.
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Combining the results from the cases µ > 0, µ ≤ 0, we can formulate the new parametrization
in the following proposition.

Proposition 5. Let

(3.9) µ ∈R & 0 < g <
√

max

(
8

µ
,− 4

µ

)
& κ2 ≤ min

(
4+µg 2

8
,

8−µg 2

4

)
.

Then, the formulas (3.6) and (1.12) describe all non-vanishing bell-shaped solutions, with

ϕ(0) =ϕ3 >ϕ(T ) =ϕ(−T ) =ϕ2 > 0,

constructed in Proposition 1.

Now that we have the alternative description of the waves, it is time to establish some further
structural facts about the first few eigenvalues in the spectrums of L±.

3.2. Description of the spectrum of L±.

Proposition 6. For all bell-shaped waves constructed in Proposition 1, the scalar linearized Schrödinger
operators L±, with D(L±) = H 2

per (−T,T ) have the properties

(1) L− ≥ 0, λ0(L−) = 0, with K er [L−] = span[φ], λ1(L−) > 0.
(2) L+ has exactly one simple negative eigenvalue λ0(L+) < 0 (say with a ground state χ0), it

has a simple eigenvalue at zero, λ1(L+) = 0, with K er [L+] = span[φ′], and λ2(L+) > 0.
In particular, there exists δ> 0, so that

(3.10) inf
u⊥χ0,u⊥φ′〈L+u,u〉 ≥ δ‖u‖2

L2 .

Proof. The statement for L− is straightforward. Indeed, by a direct check L−φ = 0, whence 0
is an eigenvalue. Since φ does not change sign, it means that 0 is a simple eigenvalue at the
bottom of σ(L−). Hence, λ0(L−) = 0 <λ1(L−) and L−|span[φ]⊥ ≥ δ> 0.

We now turn our attention to the spectral properties of L+. One issue complicating matters is
the dependence of the period on the variables g ,κ, which makes differentiation with respect to
them problematic. In order to avoid this dependence, we introduce a scaling transformation.

Namely, a new function Q : φ(ξ) = Q
(
ξ
T

)
is introduced, which is 2 periodic. Then, the new

equation that we need to consider is

(3.11) −Q ′′+ T 2µ

16
Q + cT 2

2
Q3 − 3T 2

16
Q5 = 0,−1 < η< 1.

Then, the new linearized operator relevant to this problem is

L̃+ :=−∂ηη+ T 2µ

16
+ 3cT 2

2
Q2 − 15T 2

16
Q4,

with D(L̃+) = H 2
per.[−1,1]. One can also see that L̃+[Q ′] = 0 by differentiating (3.11).

It is clear now that the results we want to establish are equivalent to

(3.12) λ0(L̃+) <λ1(L̃+) = 0 <λ2(L̃+); K er [L̃+] = span[Q ′].

So, our goal is to show (3.12). Since, L̃+[Q ′] = 0, Q ′, zero is an eigenvalue and Q ′ is an eigen-
function. It is also clear thatλ0(L̃+) < 0, since Q ′ is an eigenfunction at zero and it changes sign.
Thus, one conclude that the ground state eigenvalue is negative.

Our plan for the rest of the proof is as follows - we need to show that

(1) K er [L̃+] = span[Q ′] for all values of the parameters (g ,κ,µ) described in (3.9).
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(2) n(L̃+(µ0, g0,κ0) = 1 for some value (µ0, g0,κ0) in the parameter space.

We claim that this will be enough to establish (3.12). Note first, that the set

A :=
{
µ ∈R & 0 < g <

√
max

(
8

µ
,− 4

µ

)
& κ2 ≤ min

(
4+µg 2

8
,

8−µg 2

4

)}
.

is an open and connected set in R3, and the maps (µ, g ,κ) → λ j (L̃+(µ, g ,κ)), j = 0,1,2, . . . are
continuous in µ, g ,κ. Since

(3.13) λ0(L̃+(µ0, g0,κ0)) <λ1(L̃+(µ0, g0,κ0)) = 0 <λ2(L̃+(µ0, g0,κ0)),

such inequality must persist for all (µ, g ,κ) ∈ A . Indeed, assume for a contradiction that for
some other value (µ1, g1,κ1) ∈A ,

λ0(L̃+(µ1, g1,κ1)) <λ1(L̃+(µ1, g1,κ1)) <λ2(L̃+(µ1, g1,κ1)) = 0.

Arguing by continuity, an eigenvalue crosses from being positive to being negative, implying
that in some intermediate point, there is a multiplicity two eigenvalue at zero, which is a con-
tradiction with K er [L̃+] = span[Q ′] for all values of the parameters (g ,κ,µ).

3.2.1. Proof of K er [L̃+] = span[Q ′]. Given what we have established already, the only remain-
ing fact that we need to establish is that there is no eigenfunctionψ ∉ span[χ0,Q ′], correspond-
ing to zero eigenvalue. Assuming that such an eigenfunction does exist (and without loss of
generality orthogonal to χ0,Q ′), we will reach a contradiction. First, by Sturm oscillation the-
ory, ψ should have two zeros in [−1,1) Since it is orthogonal to Q ′, the function ψ must be
even, with zeros at ±x0 : 0 < x0 < 1. Without loss of generality ψ(x) > 0 : x ∈ (−x0, x0), while
ψ(x) < 0, x ∈ (−1, x0)∪ (x0,1).

Our approach is as follows. We construct elements in K er (L̃+)⊥ and then we use them to
contradict the existence of such ψ. To that end, a relation that is immediately useful is

(3.14) L̃+[Q] =−T 2[−cQ3 + 3

4
Q5].

Another one is to take a derivative with respect to µ in (3.11). Recall, see (1.15), that T = 2g K (κ),
so it is independent on µ. We obtain

(3.15) L̃+[∂µQ] =−T 2[
1

16
Q + ∂µc

2
Q3].

Finally, we take a derivative with respect to κ. We get

L̃+[∂κQ] = 2T Tκ[− µ

16
Q − c

2
Q3 + 3

16
Q5]−T 2 cκ

2
Q3 =(3.16)

= −T 2
[
µK ′(κ)

8K (κ)
Q + (

cK ′(κ)

K (κ)
+ cκ

2
)Q3 − 3K ′(κ)

8K (κ)
Q5

]
.

Formulas (3.14), (3.15), (3.16) allow us to solve for Q,Q3, provided

(3.17) c + cκ
K (κ)

K ′(κ)
−2µcµ 6= 0.

More precisely, isolating Q,Q3, we obtain the system

(3.18)

(
µ
4 c + cκK (κ)

K ′(κ)
1

16
cµ
2

)(
Q
Q3

)
=−T −2

(
L̃+(Q +2 K (κ)

K ′(κ)Qκ

L̃+(Qµ)

)
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FIGURE 1. Graph of c(g ,κ,µ)+ cκ(g ,κ,µ) K (κ)
K ′(κ) −2µcµ(g ,κ,µ) , for µ= 1

We obtain

(3.19) L̃ −1
+ (Q) = 16T −2

cµ
2 Q + cµ

K (κ)
K ′(κ)Qκ−

(
c + cκ

K (κ)
K ′(κ)

)
Qµ

c + cκ
K (κ)
K ′(κ) −2µcµ

and there is a similar formula for L̃ −1+ (Q3), with the same denominator. Clearly, (3.17) is then
a solvability condition that ensures that Q,Q3 ∈ Ran(L̃+) ⊂ K er [L̃+]⊥. We have computed and
plotted the function in (3.17), see Figure 1, Figure 2 that confirm the solvability condition (3.17).

Recall that both Q,Q3 ⊂ K er [L̃+]⊥ are bell-shaped, hence the function

ζ(x) :=Q(x)(Q2(x)−Q2(x0)) ⊥ K er [L̃+].

satisfies ζ(x) > 0, x ∈ (−x0, x0), ζ(x) < 0, x ∈ (−1,−x0)∪(x0,1). Thus, 〈ζ,ψ〉 > 0, while ζ⊥ K er [L̃+].
A contradiction is reached.

3.2.2. Proof of n(L̃+) = 1. In this section, we show the remaining claim in (3.12), namely that
L̃+ has exactly one negative eigenvalue. Note that it suffices to prove n(L+) = 1, as the opera-
tors L+,L̃+ have the same Morse index.

To that end, note that Proposition 4 provides bell-shaped solutions for the profile equation
(1.9), with the property n(L+) = 1. We claim that at least one of the constrained minimizers in
Proposition 4 is actually in the form of one of the solutions in Proposition 4. Going back to the
full description of all possible bell-shaped solutions of (1.9), in Proposition 1, we see that the
only other bell-shaped solutions are in the form ϕ(0) =ϕ3,ϕ(−T ) =ϕ(T ) = 0 and ϕ2 = ϕ̄1,ϕ3 >
0.
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FIGURE 2. Graph of c(g ,κ,µ)+ cκ(g ,κ,µ) K (κ)
K ′(κ) −2µcµ(g ,κ,µ) , for µ=−1

Now, fix c < 0. Also, select and fix sufficiently large half-period T > 1
2|c|

∫ 1
0

d xp
x(1−x)

d x and suf-

ficiently small L2 norm ε = ‖v‖L2 << 1. Then, Proposition 4 guarantees a bell-shaped solution
V , which in particular satisfies the Euler-Lagrange equation (2.5). We claim that V is not of the
form V (0) = ϕ3,V (T ) = V (−T ) = 0. Once this is proven, we are done, since V is then necessarily
in the form of Proposition 5 and moreover, the corresponding linearized operator L+ has exactly
one negative eigenvalue.

Assume for a contradiction, that V is of the form V (0) =ϕ3,V (−T ) =V (T ) = 0. The difficulty
with generating the solutions as constrained minimizers, as we just did is that we have no good
control of the Lagrange multiplier ζ, nor of the integration constant a. Instead, we have the
parameters T and ‖V ‖2

L2[−T,T ]
to work with. Let us write the relations for the roots that we know.

By the Viet’s formulas we have for ϕ1,ϕ2 = ϕ̄1,

ϕ1 +ϕ2 = 4c −ϕ3

Thus, we may compute

T =
∫ T

0
dϕ=

∫ ϕ3

0

1√
ϕ(ϕ3 −ϕ)(ϕ−ϕ1)(ϕ− ϕ̄1)

dϕ.(3.20)

But since the roots ϕ1,ϕ2 are complex-conjugate and ϕ≥ 0

(ϕ−ϕ1)(ϕ− ϕ̄1) ≥ (ϕ− ϕ1 + ϕ̄1

2
)2 = (ϕ− 4c −ϕ3

2
)2 ≥ 4c2.

It follows that

T ≤ 1

2|c|
∫ ϕ3

0

1√
ϕ(ϕ3 −ϕ)

dϕ= 1

2c

∫ 1

0

1p
x(1−x)

d x.
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This is a contradiction with the choice of T ≥ 1
2c

∫ 1
0

1p
x(1−x)

d x.. It follows that V is of the form of

Proposition 5 and n(L+) = 1. �

4. SPECTRAL PROPERTIES OF L

In this section, we tackle the spectral properties of the self-adjoint operator L . This operator,
due to its matrix structure is naturally harder to analyze than its scalar counterparts, L+,L−. It
turns out that it is possible to extract all the necessary spectral information, from the property

(4.1) λ0(L+) <λ1(L+) = 0 <λ2(L+); K er (L+) = span[φ′],

which was established in Proposition 6.
For U = (u1,u2), where u1 and u2 are periodic functions with fundamental period 2T , we

have

(4.2) 〈LU ,U 〉 = 〈L1u1,u1〉+〈Mu2,u1〉+〈M∗u1,u2〉+〈L2u2,u2〉
Let u2 =φũ2. After integrating by parts, we obtain

〈L2u2,u2〉 = 〈φ∂y ũ2,φ∂y ũ2〉
〈Mu2,u1〉+〈M∗u1,u2〉 = 〈φ3∂y ũ2,u1〉

Note that L1 =L++ 1
4φ

4. Hence,

(4.3) 〈LU ,U 〉 = 〈L+u1,u1〉+
∫ T

−T

[
1

2
φ2u1 +φ(φ−1u2)y

]2

d y.

This particular nice structure of the bilinear form 〈LU ,U 〉, is not present, if one considers the
linearized operator in the form (1.19). More specifically, there is an extra, sign-indefinite term
in (4.3), namely const .〈φ3∂y ũ2,u1〉 which complicates the analysis of L . This is why we needed
to convert to the form (1.25). Concerning the kernel of L , we have the following result.

4.1. Description of K er (L ).

Proposition 7. The operator L has at most one negative eigenvalue, i.e. n(L ) ≤ 1. Next,
di m(K er (L )) = 2. In fact,

K er (L ) = span{Ψ1,Ψ2},Ψ1 =
(

0
φ

)
,Ψ2 =

(
φ′

−1
4φ

3

)
.

Remark: We will show later that, as expected, n(L ) = 1. Unfortunately, this cannot be done
directly and requires some implicit analysis later on, see Section 5.2 below.

Proof. Based on the formula (4.3) and (4.1), we see that if u1 ⊥ χ0 (where χ0 is the ground state
for L+), then L |{χ0}⊥ ≥ 0. Thus,

inf

U⊥
(
χ0

0

)〈LU ,U 〉 ≥ inf
u1⊥χ0

〈L+u1,u1〉 ≥ 0.

This implies that n(L ) ≤ 1, as announced. We now discuss the structure of K er (L ).
It is convenient to split L2 ×L2 = L2

even ×L2
odd ⊕L2

odd ×L2
even =: Xe,o ⊕ Xo,e and since L acts

invariantly on those subspaces, it suffices to determine K er (L ) on each.
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Let us first show that Xo,e = span[Ψ1,Ψ2]. Indeed, for u1 ∈ L2
odd ,u2 ∈ L2

even , we have that

u1 ⊥χ0, whence by the argument above, for U =
(

u1

u2

)
∈ Xo,e ∩K er (L ),

0 = 〈LU ,U 〉 ≥ 〈L+u1,u1〉 ≥ 0.

Recalling again that u1 ⊥ χ0, this implies that u1 = 0 or u1 = cφ′. From (4.3), we have that
the integral is zero as well, whence either u2 = const .φ, when u1 = 0 or else u2 = − c

4φ
3, when

u1 = cφ′. This completes the analysis on Xo,e .

Next, we show that K er (L )∩ Xe,o = {0}. This is a bit more complicated. Let U =
(

f
g

)
∈

Xe,0 ∩K er (L ). We set

(4.4)

∣∣∣∣∣∣
L1 f +M g = 0

M∗ f +L2g = 0.

Not that 〈M∗ f ,φ〉 = 〈 f , Mφ〉 = 0 and K er [L2] = K er [L−] = span[φ], so the second equation in
(4.4) is solvable and in fact

(4.5) g =−L −1
2 M∗ f .

Next, we will be constructing Green function for the operator L −1
2 = L −1− . We have L2[φ] = 0.

The normalized function

ψ(x) =φ(x)
∫ x

0

1

φ2(s)
d s,

∣∣∣∣ φ ψ

φ′ ψ′
∣∣∣∣= 1

also solves L2ψ= 0. The Green function, for an even function f is represented by

L −1
2 M∗ f (x) =φ(x)

∫ x

0
ψ(s)M∗ f (s)d s −ψ(x)

∫ x

0
φ(s)M∗ f (s)d s +CM∗ f ψ(x),

where CM∗ f is a constant to be selected, so that L −1
2 f is periodic with same period as φ. Inte-

grating by parts yields

(4.6)
∫ x

0
φ(s)M∗ f (s)d s =−1

2
φ3 f + 1

2
φ3(0) f (0)

and

(4.7)
∫ x

0
ψ(s)M∗ f (s)d s =−1

2
φ2ψ f + 1

2

∫ x

0
φ f .

Also,

CM∗ f = −φ(T )

ψ(T )

∫ T

0
ψM∗ f +

∫ T

0
φM∗ f =−1

2

1∫ T
0

1
φ2 d x

∫ T

0
φ f + 1

2
φ3(0) f (0)

= − d f

2d1
+ 1

2
φ3(0) f (0).

where

d1 = 1∫ T
0

1
φ2 d x

, d f =
∫ T

0
φ f .
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All in all,

(4.8) g = d f

2d1
ψ− φ

2

∫ x

0
φ f

Clearly, the formula for g cannot be complete, without finding f , so we take this on now. Plug-
ging (4.5) in the first equation of (4.4) results in

(4.9) L1 f −ML −1
2 M∗ f = 0

After some algebraic manipulations, we obtain

ML −1
2 M∗ f = 1

4
φ4 f − 1

4
φ3(0) f (0)φ(x)+ 1

2
CM∗ f φ(x)

= φ4

4
f − d1d f

4
φ.

Finally, the left-hand side of (4.9) is now in the form

L1 f −ML −1
2 M∗ f =L+ f + 1

4
d1d f φ,

so, the equation to be solved is L+ f =−1
4 d1d f φ. This equation has a solution, since K er (L+) =

span[φ′]. We obtain,

(4.10) f =−d1d f

4
L −1

+ [φ].

This still does not mean that we have found an element in K er (L )∩ Xe,o , it simply means that
if there is one, it must be in the form (4.10). There is still a consistency condition to be satisfied,

namely about d f . We take dot product with φ. We obtain 2d f = 〈 f ,φ〉 = −d1d f

4 〈L −1+ φ,φ〉, a
relation that must be satisfied, in order to have a non-trivial element in K er (L )∩ Xe,o . This
solvability condition amounts to

(4.11) d f (8+d1〈L −1
+ φ,φ〉) = 0.

Clearly, if d f = 0, f is trivial and this is not a new element of K er (L ). So, it remains that

8+d1〈L −1+ φ,φ〉 = 0. Equivalently, it must be that 4
∫ T
−T

1
φ2 +〈L −1+ φ,φ〉 = 0. We however need

this quantity later on, so we have computed it: see (5.1) for 〈L −1+ φ,φ〉 as well as the formula∫ T

−T

1

φ2
= 2g

∫ K (κ)

−K (κ)

1

ϕ(2gξ)
dξ= 4g

ϕ1ϕ3

(
ϕ3K (κ)+ (ϕ1 −ϕ3)Π

[
ϕ1(ϕ3 −ϕ2)

ϕ3(ϕ1 −ϕ2)
,κ

])
,

which we have done symbolically in MATHEMATICA. As a result, we can display the following
pictures, Figure 3 and Figure 4, which show that 4

∫ T
−T

1
φ2 + 〈L −1+ φ,φ〉 > 0, This finishes the

verification that K er (L )∩Xe,o = {0}. �

4.2. Preliminary calculations for the matrix D. According to the setup described in (2.2), we
setup the matrix D as follows

D =
( 〈L −1JΨ1,JΨ1〉 〈L −1JΨ1,JΨ2〉
〈L −1JΨ2,JΨ1〉 〈L −1JΨ2,JΨ2〉

)
,
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FIGURE 3. Graph of 4
∫ T
−T

1
φ2 +〈L −1+ φ,φ〉 , for µ= 1

FIGURE 4. Graph of 4
∫ T
−T

1
φ2 +〈L −1+ φ,φ〉 , for µ=−1
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whereΨ1,Ψ2 span K er (L ), they are described in Proposition 7. More explicitly,

D11 = 〈L −1JΨ1,JΨ1〉 = 〈L −1
(
φ

0

)
,

(
φ

0

)
〉,

D12 = D21 = 〈L −1JΨ1,JΨ2〉 = 〈L −1JΨ2,JΨ1〉 = 〈L −1
(
φ

0

)
,

(
φ3

4
φ′

)
〉,

D22 = 〈L −1JΨ2,JΨ2〉 = 〈L −1

(
φ3

4 ,
φ′

)
,

(
φ3

4
φ′

)
〉,

where the normalization constant satisfies k
∫ L

0 φ
2 = 1

4

∫ L
0 φ

4. We observe that since(
φ

0

)
,

(
φ3

4
φ′

)
⊥ span[Ψ1,Ψ2] = K er [L ]

we have that J : K er (L ) → K er (L )⊥, so it is justified to take L −1 in the above formulas.
As one can imagine, these quantities are quite hard to compute in general, especially with the

involvement of the matrix Schrödinger operator L . In fact, we have the following proposition,
which establishes a reduced sufficient condition for stability of the waves φ.

Proposition 8. Assume (4.1). If

D11 = 〈L −1
(
φ

0

)
,

(
φ

0

)
〉 < 0,

then n(D) = 1 and the corresponding wave φ is stable. In fact, we have the formula

(4.12) D11 =
4
∫ T
−T

1
φ2

4
∫ T
−T

1
φ2 +〈L −1+ [φ],φ〉

〈L −1
+ [φ],φ〉

Remark: Note that the quantity in the denominator is positive, as established in the course
of the proof of Proposition 7, see also Figures 3 and 4, which graphically confirm this. Thus, for
all parameter values

sg n(D11) = sg n(〈L −1
+ [φ],φ〉)

Proof. First, if 〈L −1
(
φ

0

)
,

(
φ

0

)
〉 < 0, it follows from the min-max principle that L −1 has a

negative eigenvalue, which implies that L has one too, hence n(L ) ≥ 1. Since, we have already
established, in Proposition 7, that n(L ) ≤ 1, it would follows that n(L ) = 1. Furthermore, for
the matrix D ∈ M2,2, we have D11 = 〈De1,e1〉 < 0 means that D too has a negative eigenvalue.
Thus, n(D) ≥ 1. Since we already know that n(L ) = 1, formula (1.7) implies that n(D) ≤ 1, so
n(D) = 1 and hence, we have stability, from (2.3). Thus, D11 < 0 is sufficient for stability.

We now take on the question for the actual computation of D11. Despite being arguably the
easiest entry in the matrix D to calculate, it is not an easy task to actually compute it. Its analysis
is related to the analysis of K er (L ) in Proposition 7. Let

(4.13) L

(
f
g

)
=

(
φ

0

)
,
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which as we have observed is solvable in Xe,o , due to the fact that

(
φ

0

)
⊥ K er [L ]. We note that

such a solution comes with the property

(
f
g

)
∈ K er (L )⊥. So, (4.13) is equivalent to

(4.14)

∣∣∣∣∣∣
L1 f +M g =φ

M∗ f +L2g = 0.

Proceeding as in the proof of Proposition 7,

(4.15) L1 f −ML −1
2 M∗ f =φ.

resulting in

(4.16) L+ f + 1

4
d1d f φ=φ,

where

d1 = 1∫ T
0

1
φ2 d x

, d f =
∫ T

0
φ f .

We obtain,

(4.17) f = (1− d1d f

4
)L −1

+ [φ].

Next, we determine d f . We simply take dot product of (4.17) with φ. We obtain the equation

2d f = (1− d1d f

4
)〈L −1

+ φ,φ〉.
Let us note that this equation must have solutions as (4.4) does have a solution. In particular,

(4.18) d f =
〈L −1+ φ,φ〉

2+ d1
4 〈L −1+ φ,φ〉

,

Since by definition, D11 = 2d f , we arrive at the formula (4.12). �

It becomes clear that in order to check for the stability, we need to be able to calculate various
quantities like 〈L −1+ φ,φ〉. We have already computed that, subject to rescaling, see (3.19).

5. ANALYSIS OF THE SPECTRAL STABILITY FOR THE BELL-SHAPED WAVES OF DNLS

In this section, we use our preliminary calculations, which allow us to compute the various
quantities involved in the matrix D .

5.1. Computing 〈L −1+ φ,φ〉. In the calculations for D11, see (4.12), a major role is played by
〈L −1+ φ,φ〉. In order to compute that, we use the formula (3.19), which gives L̃−1Q, in the
rescaled framework of Section 3.2.

So, let us continue to use the setup introduced in Section 3.2 and more precisely in the equa-
tion (3.11). By taking dot product of (3.19) with Q, we obtain

〈L̃ −1
+ Q,Q〉 = 16T −2

cµ
2 〈Q,Q〉+ cµ

K (κ)
K ′(κ)〈Qκ,Q〉−

(
c + cκ

K (κ)
K ′(κ)

)
〈Qµ,Q〉

c + cκ
K (κ)
K ′(κ) −2µcµ

,
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where recall that the function c = c(A,B ,C ) is given explicitly in (3.7), while the quantities
A,B ,C , all in terms of g ,κ,µ are explicitly in (3.1), (3.2), (3.3).

We have, 〈Q,Q〉 = T −1‖φ‖2. Also, since T = T (g ,κ) is independent on µ,

〈Qµ,Q〉 =
∫ 1

−1
Qµ(ξ)Q(ξ)dξ= 1

2
∂µ

∫ 1

−1
Q2(ξ)dξ= 1

2
∂µT −1‖φ‖2 = T −1

2
∂µ‖φ‖2

On the other hand,

〈Qκ,Q〉 =
∫ 1

−1
Qκ(ξ)Q(ξ)dξ= 1

2
∂κ

∫ 1

−1
Q2(ξ)dξ= 1

2
∂κ[T −1‖φ‖2] = T −1

2
∂κ‖φ‖2 − T −2Tκ

2
‖φ‖2.

Thus, we have reduced matters to computing the following formula

〈L̃ −1
+ Q,Q〉 = 16T −2

cµ
2 T −1‖φ‖2 + cµ

K (κ)
K ′(κ) ( T −1

2 ∂κ‖φ‖2 − T −2Tκ
2 ‖φ‖2)−

(
c + cκ

K (κ)
K ′(κ)

)
T −1

2 ∂µ‖φ‖2

c + cκ
K (κ)
K ′(κ) −2µcµ

= 16T −3

cµ
2 ‖φ‖2 + cµ

K (κ)
K ′(κ) ( 1

2∂κ‖φ‖2 − K ′(κ)
2K (κ)‖φ‖2)−

(
c + cκ

K (κ)
K ′(κ)

)
1
2∂µ‖φ‖2

c + cκ
K (κ)
K ′(κ) −2µcµ

=

= 8T −3
cµ

K (κ)
K ′(κ)∂κ‖φ‖2 −

(
c + cκ

K (κ)
K ′(κ)

)
∂µ‖φ‖2

c + cκ
K (κ)
K ′(κ) −2µcµ

.

Since 〈L̃ −1+ Q,Q〉 = T −3〈L −1+ φ,φ〉, we arrive at the formula

(5.1) 〈L −1
+ φ,φ〉 = 8

cµ
K (κ)
K ′(κ)∂κ‖φ‖2 −

(
c + cκ

K (κ)
K ′(κ)

)
∂µ‖φ‖2

c + cκ
K (κ)
K ′(κ) −2µcµ

.

As we saw earlier, the denominator is never zero, per explicit calculations done earlier, see Fig-
ure 1 and Figure 2 for a particular slices at µ= 1, µ=−1 respectively.

Thus, we need to evaluate ‖φ‖2
L2 in terms of g ,κ,µ. Using MATHEMATICA, we computed

‖φ‖2
L2 = 2g

∫ K (κ)

−K (κ)
ϕ(2gξ)dξ= 4g

(
ϕ1K (κ)+ (ϕ3 −ϕ1)Π

[
ϕ3 −ϕ2

ϕ1 −ϕ2
,κ

])
,

whereΠ is the ellipticΠ function.
With this formula in hand, we compute the quantities in (5.1) using MATHEMATICA. The re-

sults can be seen in the slices of the graphs for 〈L −1+ φ,φ〉, in Figure 5, for µ = 1 and Figure 6
for µ = −1. From these images (and this is the case for all values of µ that we have tried), the
expression 〈L −1+ φ,φ〉 always changes sign over the domain. In particular, there is a always a
region Ω̃, where it takes negative values. It follows that D11 vanishes on a curve in the domains,
and it takes positive and negative values as well.

5.2. n(L ) = 1 and the waves with 〈L −1+ φ,φ〉 < 0 are spectrally stable. In this section, we finally
confirm that n(L ) = 1. This is achieved by piecing together several conclusions established in
the previous sections.

We have already seen that n(L ) ≤ 1 in Proposition 7. We have argued in the previous section
that that the quantity 〈L −1+ φ,φ〉 is always negative, somewhere in the parameter domain, see
also Figures 5, 6. Thus, according to (4.12), sg n(D11) = sg n(〈L −1+ φ,φ〉) = −1 on a portion of
the domain. Thus, it follows that n(D) ≥ 1, somewhere in the parameter domain. On the other
hand, from the instability index theory, see (2.3), we always have the inequality n(L ) ≥ n(D),
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FIGURE 5. Graph of 〈L −1+ φ,φ〉 , for µ= 1

FIGURE 6. Graph of 〈L −1+ φ,φ〉 , for µ=−1
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so n(L ) ≥ 1 somewhere on the parameter domain. We claim that n(L ) = 1 for all values in the
parameter domain. Indeed, if n(L ) = 1 somewhere on it, a potential transition to n(L ) = 0,
due to the continuous dependence on the parameters, happens only if the negative eigenvalue
crosses the zero en route to becoming a positive one. This would require, at least for some value
of the parameters to have three vectors in K er (L ). According to Proposition 7, this is not the
case. Thus, n(L ) = 1 for all parameters described in Proposition 5. Hence, as discussed after
(2.3), the stability of the waves is equivalent to n(D) = 1 or equivalently, det (D) < 0.

In particular, since n(D) ≥ 1, whenever 〈L −1+ φ,φ〉 < 0, we have that kH am = n(L )−n(D) = 0,
hence spectral stability holds for these values.

5.3. D12 and D11 do not vanish simultaneously: conclusion of the proof. We need to establish
that

D12 = 〈 f ,
φ3

4
〉+〈g ,φ′〉,

with f , g as introduced in (4.13) does not vanish simultaneously with D11. Let us consider the
expression for D12, exactly on the set where D11 = 0. Clearly D11 = 0 exactly when 〈L −1+ φ,φ〉 = 0
and since f = const .L −1+ φ, precisely when 〈 f ,φ〉 = 0. Thus, on this set, we can check that

g =−φ
2

∫ x
0 f φ. But, on the set {D11 = 0}, an integration by parts shows

D12 = 〈 f ,
φ3

4
〉+〈g ,φ′〉 = 1

2
〈 f ,φ3〉 = const .〈L −1

+ φ,φ3〉.

Thus, it suffices to check 〈L −1+ φ,φ〉,〈L −1+ φ,φ3〉do not vanish simultaneously. To this end, recall
that n(L+) = 1,K er [L+) = span[φ′], and denote its positive ground state of L+ byΨ0. Clearly,
〈φ,Ψ0〉 > 0,〈φ3,Ψ0〉 > 0. This, there is a scalar c0 > 0, so that 〈φ− c0φ

3,Ψ0〉 = 0. It follows that

(5.2) 〈L −1
+ φ,φ〉− c0〈L −1

+ φ,φ3〉 = 〈L −1
+ φ,φ− c0φ

3〉 = 〈L −1
+ P{Ψ0,φ′}⊥φ,P{Ψ0,φ′}⊥(φ− c0φ

3)〉 > 0,

because P{Ψ0,φ′}⊥ restricts to the positive subspace of L −1+ . This last inequality (5.2) shows that

〈L −1+ φ,φ〉,〈L −1+ φ,φ3〉 cannot not vanish simultaneously.

6. STABILITY ANALYSIS FOR THE QUINTIC NLS WAVES

The spectral problem (1.33) is easy to analyze, with the tools that we have prepared so far. In-
deed, by Proposition (6), we have seen that n(L+) = 1, while n(L−) = 0. In addition, K er (L+) =
span[φ′], while K er (L−) = span[φ]. Applying index counting theory (and more specifically
(2.3)), we see that the matrix D is one dimensional, namely D11 = 〈L −1+ φ,φ〉. In addition,
kH am = 0 (and hence the waves are stable) exactly when 〈L −1+ φ,φ〉 < 0 and unstable, if
〈L −1+ φ,φ〉 > 0, with a change of instability (and an additional element in the generalized ker-
nel in the Hamiltonian linearized operator (1.33) for 〈L −1+ φ,φ〉 = 0. Thus, we need to find
〈L −1+ φ,φ〉, for this new restricted set of parameters. We set on to describe the waves in the
style of Proposition 5.

Proposition 9. Let

(6.1) 0 < g <∞ & κ ∈ (0,1) & µ= 4
p

1−k2 +k4

g 2

Let the roots ϕ1,ϕ2,ϕ3 are as described in (3.6). Then, the two family of waves (corresponding
to ± values of µ) described in (1.31) are parametrized by g ,κ are all non-vanishing bell-shaped
waves of the quintic NLS.



STABILITY OF PERIODIC WAVES IN THE CUBIC DERIVATIVE NLS AND QUINTIC NLS 29

FIGURE 7. Graph of 〈L −1+ φ,φ〉 for quintic NLS waves

Proof. Recall that the waves (1.31) correspond to those of (1.12), with the condition c = 0. Solv-
ing in the formula for c from (3.7), c = 0, we end up with the relation AB +BC − AC = 0, which

is solved in terms of µ to exactly µ = 4
p

1−k2+k4

g 2 . Finally, note that the constraint for µ ensures

that the inequalities required in (3.9), namely g <
√

8
µ . is satisfied. This completes the proof of

Proposition 9. �

Our next task is to determine the sign of the quantity 〈L −1+ φ,φ〉, on the set of parameters
outlined in the constraint (6.1). We have plotted the graph of the relevant graph in Figure 7. It
shows almost perfect stability result for 0 < κ< 0.54 and instability for κ ∈ (0.54,1).
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