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Abstract
Normal form stability estimates are a basic tool of Celestial Mechanics for charac-
terizing the long-term stability of the orbits of natural and artificial bodies. Using
high-order normal form constructions, we provide three different estimates for the
orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate
the long-term stability of the semimajor axis within the framework of the J2 prob-
lem, by a normal form construction eliminating the fast angle in the corresponding
Hamiltonian and obtaining HJ2 . (ii) We demonstrate the stability of the eccentricity
and inclination in a secular Hamiltonian model including lunisolar perturbations (the
‘geolunisolar’ HamiltonianHgls), after a suitable reduction of the Hamiltonian to the
Laplace plane. (iii) We numerically examine the convexity and steepness properties
of the integrable part of the secular Hamiltonian in both the HJ2 and Hgls models,
which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the
exponential stability of the orbits. We find that theHJ2 model is non-convex, but sat-
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isfies a ‘three-jet’ condition, while theHgls model restores quasi-convexity by adding
lunisolar terms in the Hamiltonian’s integrable part.

Keywords Stability · Normal forms · Orbital lifetime · Satellite dynamics · Space
debris

Mathematics Subject Classification 70F15 · 37N05 · 34C60

1 Introduction

One of the major goals of Celestial Mechanics is the analysis of the stability of the
dynamics of celestial bodies. Knowing the behavior in time of the orbital elements of
an object allows one to predict its future, in particular whether it will cross the orbit
of other celestial bodies and eventually undergo collisions. When applied to artificial
spacecraft and space debris orbiting around the Earth, the question of the stability
becomes of crucial importance, especially in view of the problem of estimating the
orbital survival times of operating satellites or space debris. It is therefore crucial to
devise methods that allow to study the orbital stability of objects moving around our
planet.

In this work we will not consider the complex dynamics of an artificial spacecraft,
which should include the analysis of its shape, composition as well its rotational
motion. We will rather consider a point-mass body around the Earth that we can
identify with one of the several millions of space debris orbiting our planet. In fact,
the proliferation of artificial satellites in the last decades has led to the generation of an
enormous amount of space debris with different sizes, from meters down to microns,
and at different altitudes. Space debris is remnants of non-operational satellites or the
result of break-up events, either collisions or explosions. Since the altitude determines
the contribution of the different forces acting on the object (the gravitational attraction
of the Earth, its geopotential perturbation, the influence of Sun and Moon, the Solar
radiation pressure, etc.), it is convenient to make a distinction in terms of the altitude.
To this end, the space in the surrounding of the Earth is commonly split into three main
regions: LEO (‘Low Earth Orbit’) denotes the region up to about 2000 km of altitude
in which the Earth’s attraction, the geopotential and the atmospheric drag are the terms
which greatly affect the dynamics of an Earth’s satellite;MEO (‘MediumEarth Orbit’)
refers to the region between 2000 and 30000 km in which the effects of Moon, Sun
and Solar radiation pressure become important; GEO (‘Geosynchronous Earth Orbit’)
refers to a thin (∼ 200km) zone around the geostationary orbits (at 42164 km from
Earth’s center), where the satellites are in synchronous resonance with the 24-hour
rotation of the Earth around its spin axis.

The huge amount of objects (up to millions) in LEO, MEO, GEO needs a careful
control of their orbits and the analysis of their dynamical stability (Celletti and Galeş
2014; Celletti et al. 2017; Celletti and Galeş 2018; Celletti et al. 2020; Gkolias and
Colombo 2019; Schettino et al. 2019), also in view of devising appropriate mitigation
measures (see, e.g., Jenkin et al. 2019; Park et al. 2018; Choi et al. 2015). For objects
in LEO, it is of crucial importance to evaluate the orbital lifetime, which is strongly
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affected by the atmospheric drag which provokes a decay of the orbits (King-Hele
and Walker 1988; Krag et al. 2013; Liu and Wang 2000; Shute and Chiville 1966;
Westerman 1963). In this work we focus on objects in MEO, GEO and beyond, thus
not taking into account the dissipative effect of the atmosphere. Instead of using
a propagation of the orbits to predict the stability time of the orbital elements, we
propose a procedure based on analytical perturbative methods (see also Gachet et al.
2017). More precisely, via a suitably defined sequence of canonical transformations,
we construct a normal form of the Hamiltonian function, which enjoys the property
that one or more of the Hamiltonian’s Delaunay actions define quasi-integrals of
motion (namely, integrals of the integrable part of the new Hamiltonian). Once the
transformed Hamiltonian is obtained, the size of its remainder (which gives a control
on the goodness of the approximation) can then be used to provide bounds on the
time variations and hence the stability time of the orbital elements (semimajor axis,
eccentricity, inclination) as a function of the distance of the object from the Earth.
We refer to this procedure as semi-analytical, which means that it uses an analytical
method, precisely normal forms,whose coefficients are calculatednumerically, namely
with the aid of a computer.

We consider two different models to describe the motion of the debris around the
Earth. The firstmodel takes into account only the influence of the geopotential up to the
term J2 of its expansion in spherical harmonics;we refer to this problemas the J2 model
and denote the corresponding Hamiltonian as HJ2 , which results from truncating to
a suitable power of the coordinates around reference values, and normalizing up to a
suitable order, as described in Sect. 4.1. The second model, referred to as the secular
‘geolunisolar’ model (Hamiltonian Hgls, truncated and normalized similarly to HJ2 ,
see Sects. 2.2 and 5.1 ), includes also the effects of the Moon and the Sun, placing, for
simplicity, theMoon strictly on the ecliptic; this last restriction means to omit from the
Hamiltonian terms corresponding to lunisolar resonances other than the ‘inclination-
dependent’ ones. The latter resonances, on the other hand, are those producing the
most important effects as regards orbital stability (see Celletti et al. 2020, 2017 for
a review). Furthermore, instead of formally eliminating the fast angle via canonical
transformations (as we do in the pure J2 problem), in Hgls we just take the average
of the Hamiltonian with respect to all fast angles, namely, the mean anomaly of the
satellite as well as the fast angles of the Moon and Sun: this averaged model allows us
to focus on the satellite’s long-term dynamics (i.e., the secular one). The averaging
is done in closed form and leads to formulas equivalent to those described in Kaula
(1966). Furthermore, we reduce this last Hamiltonian to action-angle variables around
each forced equilibrium point, which corresponds to a nonzero inclination defining
the so-called Laplace plane (see Sect. 2.2).

In summary, our stability estimates are obtained according to the procedure (i)–(iii)
outlined below:

(i) Within the J2 model, we make a formal elimination in the Hamiltonian of the
fast angle (mean longitude); as a consequence, we get the preservation of the
conjugate action variable corresponding to the semimajor axis. This allows us to
compute the stability time for the semimajor axis at different altitudes, yielding
stability times that increase with the altitude.
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(ii) Using Hgls, instead, the semimajor axis becomes a parameter (with a priori
constant value), while we proceed to analyze the behavior of eccentricity and
inclination. The latter is obtained using a quasi-resonant normal form, which
reflects the 1:1 near-resonance of the integrable part of Hgls between the fre-
quencies of the longitude of the ascending node and the sum of the argument of
perigee and the longitude of the ascending node (see Sect. 2.2.1). This means
that, close to the Laplace plane, the quasi-preserved secular quantities cannot be
defined neither as the eccentricity e nor the inclination i alone, but rather by the
Kozai–Lidov combination I = 1−√

1 − e2 cos i ≈ (e2 + i2)/2 (for e, i small).
We then explore the dependence of the stability time of I on the altitude of the
orbit. Our results show that the J2 and lunisolar terms have an opposite effect
on the time of stability as the distance from the Earth increases. As a by-product
of this analysis, we also compute the so-called forced inclination (that is, the
inclination of the Laplace plane), which corresponds to the shift of the secular
equilibrium from a strictly equatorial orbit to an orbit with small positive initial
inclination, an effect caused by the fact that the perturbing bodies (Moon and
Sun) are in orbits inclined with respect to the Earth’s equator.

(iii) Finally, as a first step toward obtaining exponential stability estimates à la
Nekhoroshev (Nekhoroshev 1977), we check whether some so-called steepness
conditions are satisfied for the integrable part of both Hamiltonians HJ2 and
Hgls, namely whether the integrable parts are convex, quasi-convex, or satisfy
the three-jet condition (see Chierchia et al. 2018 and references therein). The
results show that the J2 model is three-jet non-convex, while the contribution of
the lunisolar terms removes the intrinsic degeneracy of the J2 part and allows us
to conclude that the geolunisolar model is quasi-convex. A detailed application
of the non-resonant form of Nekhoroshev’s theorem in the Hamiltonian Hgls is
the subject of an independent paper (see Celletti et al. 2021).

Summarizing, the previous strategy allows us to obtain three different stability
results: one for the semimajor axis in the J2 model, a second for the stability of the
eccentricity and inclination in the geolunisolar model, and a third on the holding, alto-
gether, of necessary conditions for Nekhoroshev-type stability of the satellite orbits.
All three results point toward the same direction, i.e., that, at least far from exact reso-
nances, orbital stability can be ensured at MEO, GEO and beyond for quite long times
(104 − 106 orbital periods, 102 − 104 years). Besides these general numbers, one may
remark that the calculation of the size of the remainder of the normal form actually
provides an estimate of the rate of drift of the orbits in element space, an information
required in orbital diffusion studies for defunct satellites and space debris.

This work is organized as follows. In Sect. 2 we present the J2 and geolunisolar
models. Section 3 briefly presents the method of the composition of Lie series, used
in the computation of all our normal forms, along with some general estimates on
the convergence of the normalizing transformation and the size of the normal form’s
remainder. Section 4 focuses on the stability estimates with the HJ2 model, while
Sect. 5 deals with the stability in the framework of theHgls model. Finally, the analysis
of the steepness conditions for the HamiltoniansHJ2 andHgls is presented in Sect. 6.
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2 The J2 and Geolunisolar Models

Bodies orbiting around the Earth are primarily affected by the Keplerian attraction
with our planet. However, for an accurate description of the dynamics it is mandatory
to assume that the Earth is non-spherical. Beside the Earth, the satellite dynamics
is subject to the gravitational influence of Sun and Moon. Section 2.1 describes the
Hamiltonian model HJ2kep, which includes the Earth’s Keplerian term and the first
non-trivial term in the expansion of the geopotential. Section 2.2 presents the Hamil-
tonian model Hgls,sec, which includes J2 and lunisolar terms, averaged over the fast
angles.

2.1 The J2 Model

We consider a model describing the motion of a point-mass body, say a satellite S,
under the effect of the Earth’s gravitational attraction, including an approximation of
the geopotential due to the oblateness of the Earth. Let r ≡ (x, y, z) be the position
vector of S in a geocentric reference frame, with the plane (x, y) coinciding with the
equatorial plane, and x pointing toward a fixed celestial point (e.g., the equinox). We
consider the Hamiltonian describing the motion of S under the geopotential as the sum
of two terms

HJ2kep = Hkep + VJ2 , (1)

where

Hkep = p2

2
− μE

r
(2)

is the Keplerian part (r = |r |), and

VJ2 = −J2
μE R2

E

r3

(
1

2
− 3z2

2r2

)
(3)

is the J2 potential term, arising from expanding the geopotential in spherical harmonics
and retaining only the largest coefficient (see, e.g., Kaula 1966). The constants are the
Earth’s mass parameter μE = GME (G = Newton’s constant, ME = Earth’s mass),
RE is the mean Earth’s radius, and J2 is a dimensionless coefficient describing the
oblate shape of the Earth. The numerical values are:

• μE = 1.52984 × 109 R3
E/yr2;

• RE = 6378.14km;
• J2 = −1082.6261 × 10−6.

Hamiltonian (1) is expressed in Cartesian coordinates. However, by a standard
procedure, it can be transformed to an expression in the following set of modified
Delaunay canonical action-angle variables

⎧⎪⎨
⎪⎩

L = √
μE a

P = √
μE a(1 − √

1 − e2)

Q = √
μE a

√
1 − e2(1 − cos i)

⎧⎪⎨
⎪⎩

λ = M + ω + �

p = −ω − �

q = −� ,

(4)
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where (a, e, i, M, ω,�) are the orbital elements of the satellite (semimajor axis,
eccentricity, inclination, mean anomaly, argument of the perigee, longitude of the
nodes). The passage is done by first expressing Hamiltonian (1) in elements via the
relations (see e.g., Murray and Stanley 1999)

x = 1

2
r(1 + cos i) cos( f + ω + �) + 1

2
r(1 − cos i) cos( f + ω − �)

y = 1

2
r(1 + cos i) sin( f + ω + �) − 1

2
r(1 − cos i) sin( f + ω − �)

z = r sin i sin( f + ω), (5)

where f is the true anomaly and r , cos f , and sin f are given by the series

r = a

[
1 + e2

2
− 2e

∞∑
ν=1

(Jν−1(νe) − Jν+1(νe)) cos(νM)

2ν

]

cos f = 2(1 − e2)

e

∞∑
ν=1

Jν(νe) cos(νM) − e

sin f = 2
√
1 − e2

∞∑
ν=1

1

2
(Jν−1(νe) − Jν+1(νe)) sin(νM) . (6)

In the actual calculations, all series are truncated to order N = 15 in the eccentricity
e. Finally, we pass from the elements (a, e, i, M, ω,�) to the canonical variables
(L, P, Q, λ, p, q) by inverting Eq. (4).

To perform the high-order normal form computations described in Sect. 4, using
computer algebra, it is convenient that the dependence of the Hamiltonian on the
action-angle variables can be expressed as a trigonometric polynomial. To this end,
we first make a shift transformation L → δL around a reference value a∗, with

δL = L − L∗ = √
μE a − √

μE a∗ . (7)

This means that the Hamiltonian found after expanding in powers of the quantity δL
refers to the local dynamics of orbits with semimajor axis a ≈ a∗. Every time when
we change the reference value a∗ (i.e., the ‘altitude’ or ‘distance’ of the orbit from
the Earth’s center), we then perform the Hamiltonian expansion anew around L∗ and
obtain the stability estimates corresponding to that reference value. One may also note
that P = O(e2/2) and Q = O(i2/2); thus, all three quantities δL , P , and Q are small
quantities for orbits not very far from the equator and not very far from circular. We
then expand HJ2kep(δL, P, Q, λ, p, q) in powers of

√
δL ,

√
P , and

√
Q up to the

same order N = 15 as the original expansion in the eccentricity (this ensures missing
no term in P, Q in the Hamiltonian up to the order N ). After this change, the truncated
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Hamiltonian takes the form (apart from a constant):

H≤N
J2kep = n∗δL + ω1∗ P + ω2∗Q +

2N∑
s=1
s 
=2

Zs(δL, P, Q)

+
2N∑
s=1

∑
k1,k2,k3∈Z

0<|k1|+|k2|+|k3|≤s

Ps,k1,k2,k3(δL, P, Q) cos(k1λ + k2 p + k3q). (8)

The functionsZs andPs,k1,k2,k3(δL, P, Q) are polynomials of degree s/2 in the action
variables (δL, P, Q). Finally, the frequencies n∗, ω1∗, ω2∗ are equal to:

n∗ =
√

μE

a3∗
+ J2

3μ1/2
E R2

E

a7/2∗
, ω1∗ = −J2

3μ1/2
E R2

E

2a7/2∗
, ω2∗ = J2

3μ1/2
E R2

E

2a7/2∗
. (9)

Hamiltonian (8) is the point of departure for the stability estimates on the orbits’
semimajor axes; one notices thatω1∗ = −ω2∗ = O (J2), a fact implying that both these
frequencies are way smaller than n∗ � (μE/a3∗)1/2 (third Kepler’s law). Accordingly,
for all orbits the angle λ circulates at a rate which is O(1/J2) faster than the rate of
circulation of the angles p, q. Hence, λ constitutes the ‘fast angle’ of the Hamiltonian
H≤N

J2kep. Its elimination through a suitable sequence of canonical transformations leads
to the approximate constancy of the value of the semimajor axis, as detailed in Sect. 4.

2.2 The Geolunisolar Hamiltonian

While stability estimates for the semimajor axis depend mostly on the Earth’s J2 term,
the question of the long-term stability as regards secular variations in eccentricity and
inclination requires considering the effects of the Lunar and Solar gravitational tides.
Let us consider a celestial body B (either Moon or Sun) with mass Mb moving around
the Earth and whose orbit is exterior to that of the satellite. Let r = (x, y, z) and
rb = (xb, yb, zb) be the position vectors of S and B in a geocentric reference frame,
with r = |r | and rb = |rb|. The tidal disturbance caused by B on S is described by
the potential

Vb(r , t) = −μb

(
1

|r − rb(t)|
− r · rb(t)

r3b (t)

)
=− μb

rb(t)
+ μb

2r3b (t)
r2+ 3

2

μb(r · rb(t))
2

r5b (t)

+O
((

r

rb

)3
)

, (10)

whereμb = GMb. The first term−μb/rb inmultipolar expansion (10) does not depend
on the coordinates of S; therefore, it can be omitted from the Hamiltonian of motion
of S. Thus, the tidal (or ‘third body’) perturbation terms in the Hamiltonian takes the
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form:

H3B = μm

(
1

2

r2

r3m(t)
− 3

2

(r · rm(t))2

r5m(t)

)

+μs

(
1

2

r2

r3s (t)
− 3

2

(r · rs(t))
2

r5s (t)

)
+ O3 = Hm + Hs, (11)

whereμm, rm andμs, rs are the mass and geocentric position vectors of theMoon and
Sun, respectively, and O3 denotes octupolar or higher-order terms in the expansion of
the third body potentials. The exact form of the termH3B depends now on the model
adopted for the geocentric orbits of the Sun andMoon. In the framework of the present
paper, we adopt the following models for Sun and Moon:

(1) we suppose that the Sun’s geocentric orbit is an ellipse lying in the Earth’s ecliptic
plane (i.e., with inclination is0 = 23.43◦ with respect to the equatorial plane),
�s = 0◦, as = 1.496 · 108 km and es = 0.0167;

(2) we assume the Lunar orbit as elliptic and also lying on the ecliptic plane, with
am = 384748km, em = 0.065, and im0 = is0. Note that this assumption ignores
the precession of the Lunar node (with period � 18.6y) associated with the
inclination of the Moon’s orbit with respect to the ecliptic (by 5◦15′). While the
precession of the Lunar node is important near secular lunisolar resonances,1 it
only has aminimal effect far from these resonances, as substantiated by numerical
studies (e.g., Gkolias et al. 2016; Rosengren et al. 2019). Thus, we ignore this
effect in our present estimates (Sect. 6).

Under the above approximations, the satellite HamiltonianHJ2ls takes the form

HJ2ls = HJ2kep + H3B . (12)

This is a Hamiltonian depending on three degrees of freedom (the coordinates and
momenta of the satellite) as well as on time (through the vectors rm(t) and rs(t)).
However, contrary to the case of the Hamiltonian HJ2kep, in which we are interested
in establishing the long-term stability of the semimajor axis over short-period oscil-
lations, here we are interested in the question of the stability of the eccentricity and
inclination of the satellite over secular timescales. Thus, as customary (see Kaula
1966; Celletti et al. 2017), we averageHJ2ls with respect to the mean anomalies of the
satellite, Moon and Sun. The averaging can be done in closed form (see, for example,
Kaula 1966) and leads to:

H(av)
J2

= 1

2π

∫ 2π

0
HJ2kepd M =

∫ 2π

0
HJ2kep

r2

a2
√
1 − e2

d f

H(av)
m = 1

4π2

∫ 2π

0

∫ 2π

0
Vmd Md Mm =

1 By secular lunisolar resonances we mean resonances of the form k1ω̇ + k2�̇ + k3�̇M = 0, with
(k1, k2, k3) ∈ Z

3\{0}, thus involving the rate of variation of the longitude of the ascending node of
the Moon.
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∫ 2π

0

∫ 2π

0
Vm(1 − e cos E)

r2m
a2

m

√
1 − e2m

d Ed fm

H(av)
s = 1

4π2

∫ 2π

0

∫ 2π

0
Vsd Md Ms =

∫ 2π

0

∫ 2π

0
Vs(1 − e cos E)

r2s
a2

s

√
1 − e2s

d Ed fs .

Here, f , E are the satellite’s true and eccentric anomaly, while fm, fs are the Moon’s
and Sun’s true anomaly along their geocentric orbits. The averaged J2 term takes the
form (apart from constant terms):

H(av)
J2

(e, i, ω,�) = −J2
μE R2

E

a3(1 − e2)3/2

(
1

2
− 3

4
sin2 i

)
. (13)

The terms H(av)
m (e, i, ω,�) and H(av)

s (e, i, ω,�), instead, turn out to be identical
to those given in equations (3.6) and (3.7) of Celletti et al. (2017), setting iM = 0.
Then, the Hamiltonian averaged over all short period terms, hereafter referred to as
the secular geolunisolar Hamiltonian, takes the form

Hgls,sec(e, i, ω,�) = H(av)
J2

+ H(av)
s + H(av)

m , (14)

which, in terms of the Delaunay modified variables, has two degrees of freedom.

2.2.1 Expansion Around the Forced Inclination

As it was done in the case of the J2 model [Eq. (8)], normal form computations for
Hamiltonian (14), expressed in Delaunay action-angle variables, require a polynomial
expansion in the action variables around some preselected values. In the case of secular
geolunisolar Hamiltonian (14), a natural choice of the origin for such expansions is
the forced element values: writing Hgls,sec as a function of the Delaunay variables,
say, Hgls,sec(P, Q, p, q; a) (where the semimajor axis a is now a priori constant
and, hence, can be considered as a parameter), a forced equilibrium is defined as an
equilibrium point of the secular Hamiltonian, i.e., a point (Q(eq), P(eq), q(eq), p(eq))

for which the following relations hold:

(
∂Hgls,sec

∂ P

)
eq

=
(

∂Hgls,sec

∂ Q

)
eq

=
(

∂Hgls,sec

∂ p

)
eq

=
(

∂Hgls,sec

∂q

)
eq

= 0, (15)

where the subscript ‘eq’ denotes the condition Q = Q(eq), P = P(eq), q = q(eq), p =
p(eq). In the case of Hamiltonian (14), a forced equilibrium solution can be computed
by writing first Hgls,sec in terms of the Poincaré variables as

{
X1 = √

2Q sin q , X2 = √
2P sin p ,

Y1 = √
2Q cos q , Y2 = √

2P cos p .
(16)
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Expanding up to quadratic terms in the Poincaré variables, the truncated secularHamil-
tonian has the form

H̃(Y1, Y2, X1, X2) = A1Y1 + B1(X2
1 + Y 2

1 ) + B2(X2
2 + Y 2

2 ), (17)

where the coefficients A1, B1 are given by:

A1 = −3R2
E a7/4 sin (2is0)

8(GME )1/4

(GMm

a3
m

+ GMs

a3
s

)
,

B1 = 3

4

√GME R2
E J2

a7/2 + 3GMm(2 − 3 sin2 is0)

16
√

GME
a3

a3
m

+ 3GMs(2 − 3 sin2 is0)

16
√

GME
a3

a3
s

.

(18)

Hamiltonian (17) corresponds to two decoupled harmonic oscillators in the variables
(X1, Y1) and (X2, Y2). The second harmonic oscillator (corresponding to the action-
angle pair (P, p), hence, to the orbit’s eccentricity vector) has an equilibrium point

at
(

X (eq)
2 , Y (eq)

2

)
= (0, 0), implying P(eq) = 0 and any value 0 ≤ p(eq) < 2π . This

implies that the sub-manifold of circular orbits e = 0 (corresponding to P = 0) is
invariant under the flow of the secular geolunisolar Hamiltonian. On the other hand,
as regards the pair (X1, Y1), Hamilton’s equations for Hamiltonian (17) yield:

{
Ẋ1 = A1 + 2B1Y1

Ẏ1 = −2B1X1.
(19)

For is0 
= 0, the equilibrium point of (19) is given by

X (eq)
1 = 0 , Y (eq)

1 = − A1

2B1

= 0.

Setting Q(eq) =
((

X (eq)
1

)2 +
(

Y (eq)
1

)2)
/2, ieq � (2Q(eq)/

√
μE a)1/2 (for Q(eq)

small), we arrive at

i (eq) � − A1

2B1

1

(μE a)1/4
, q(eq) = −�(eq) = 0. (20)

More accurate expressions for the forced inclination i (eq) can be obtained by introduc-
ing (20) along with the remaining equilibrium values in the derivatives of full secular
Hamiltonian (14) and finding the roots of Hamilton’s equations. One can readily verify
that q(eq) = 0 at all orders, while i (eq) is subject to small corrections with respect to
expression (20). In physical terms, the forced inclination i (eq) defines the inclination
of the Laplace plane: since the perturbing bodies (Moon and Sun) are in orbits inclined
with respect to the equator, a satellite orbit can maintain its inclination constant when
the latter has the value i (eq). Inspecting the form of coefficients (18), we find that
i (eq) → 0 as a → 0, while it can be shown that i (eq) → is0 for values of a greater
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than the GEO one (see for example Rosengren et al. 2014), reflecting the fact that the
Laplace plane tends to coincide with the equator for satellite orbits close to the Earth
(as imposed by the oblateness of the Earth), while it tends to coincide with the ecliptic
at large distances from the Earth (where the Lunar and Solar tides dominate).

Returning to the expansion of the secular geolunisolar Hamiltonian, making the
shift transformation δY1 = Y1 − Y (eq)

1 allows us to express the Hamiltonian as a
polynomial in the variables (X1, δY1) and (X2, Y2). The Hamiltonian Hgls,sec starts
now with terms of second degree which we regroup in H2:

H2 = b1 + ε1

2
X2
1 + b1 + ε2

2
δY 2

1 + b1 + ε3

2
X2
2 + b1 + ε4

2
Y 2
2 , (21)

where b1 = 2B1 and ε1, ε2, ε3, ε4 are corrections of orderO(μba3/2/(μ
1/2
E a3

b)), with
the index b referring to the Moon or Sun. All these corrections turn to be rather small,
with relative size ∼ 10−3B10 at semimajor axis a ∼ 104 km, where

B10 = 3

4

√GME R2
E J2

a7/2 .

Thus, after a canonical rescaling X1 = c12 X̃1, δY1 = Ỹ1/c12, X2 = c34 X̃2, Y2 =
Ỹ2/c34, with (c12)4 = (b1+ε2)/(b1+ε1) = 1+O(μba3/2/(B10μ

1/2
E a3

b) and (c34)4 =
(b1 + ε4)/(b1 + ε3) = 1+O(μba3/2/(B10μ

1/2
E a3

b), the secular lunisolar Hamiltonian
resumes the form:

Hgls,sec = ν1

2

(
X̃2
1 + Ỹ 2

1

)
+ ν2

2

(
X̃2
2 + Ỹ 2

2

)

+
∞∑

s=3

∑
k1,k2,l1,l2∈N

k1+k2+l1+l2=s

hk1,k2,l1,l2 X̃ k1
1 X̃ k2

2 Ỹ l1
1 Ỹ l2

2 . (22)

This is the typical form of a secular Hamiltonian, consisting of linear oscillators
(with frequencies ν1, ν2) coupled with nonlinear terms. However, we have ν1 =
ν2 + O(μba3/2/μ

1/2
E a3

b), implying that the two frequencies are nearly equal

ν1 � ν2 � 3

2

√GME R2
E J2

a7/2 .

This is a consequence of the axisymmetry of the J2 model, implying that the secular
frequencies q̇ = −�̇ and ṗ = −ω̇ − �̇ are equal for nearly equatorial orbits in
this model. As we will see in Sect. 5, this near-equality implies that with the present
normal form estimates one cannot establish independently the long-term stability of
the eccentricity and the inclination, but only the long-term stability of the Kozai–Lidov
integral I = X̃2

1 + Ỹ 2
1 + X̃2

2 + Ỹ 2
2 , which couples oscillations between the eccentricity

and the proper inclination of the satellite.
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Finally, Hamiltonian (22) can be written in action-angle variables X̃1 =√
2I1 sin φ1, Ỹ1 = √

2I1 cosφ1, X̃2 = √
2I2 sin φ2, Ỹ2 = √

2I2 cosφ2 as

Hgls,sec = ν1 I1 + ν2 I2

+
∞∑

s=3

∑
s1,s2∈N
s1+s2=s

∑
k1,k2∈Z|k1|+|k2|≤s

(|k|1+|k|2)≡s(mod 2)

h̃s1,s2,k1,k2 I s1/2
1 I s2/2

2 cos(k1φ1 + k2φ2). (23)

Hamiltonian (23) is the starting point for all normal form calculations in Sect. 5.
For computational reasons, the expansion in (23) is truncated up to a maximal order
N = 15, leading to the truncated form

H≤N
gls,sec(I1, I2, φ1, φ2) = ν1 I1 + ν2 I2

+
N∑

s=3

∑
s1,s2∈N
s1+s2=s

∑
k1,k2∈Z|k1|+|k2|≤s

(|k|1+|k|2)≡s(mod 2)

h̃s1,s2,k1,k2 I s1/2
1 I s2/2

2 cos(k1φ1 + k2φ2). (24)

3 Hamiltonian Normalization

In this section we briefly recall some basic definitions related to normal form theory
and its use in obtaining stability estimates based on the size of the normal form’s
remainder. In Sects. 4 and 5wewill discuss the particular normalizations implemented
on Hamiltonians (8) and (24), respectively.

3.1 Normal Form and Remainder

Consider a Hamiltonian function of the form

H(A, ϕ) = Z0(A) + H1(A, ϕ) = ω · A + H1(A, ϕ), (25)

where ω j are real constants, and (A, ϕ) ∈ R
n × T

n are action-angle variables. We
assume that H1 is analytic in the complex domain (A, ϕ) ∈ Dρ,σ (U ) = BρU × Sσ

(or simply Dρ,σ ), where U is an open domain ofRn , BρU is a complex neighborhood
of U of size ρ:

BρU = {A ∈ C
n : dist(A, U ) < ρ} , (26)

Sσ is the complex strip

Sσ = {ϕ ∈ C
n : Re(ϕ j ) ∈ T, |I m(ϕ j )| < σ, j = 1, . . . , n} (27)
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for ρ, σ > 0. On Dρ,σ (U ) we define the norm of a function f = f (A, ϕ) as

‖ f ‖ρ,σ = sup
(A,ϕ)∈Dρ,σ

| f (A, ϕ)| . (28)

The aim of normalization theory is to introduce a near to identity canonical transfor-
mation � : (A, ϕ) → (A′, ϕ′), so that in the new variables (A′, ϕ′) Hamiltonian (25)
takes the form

H
(

A(A′, ϕ′), ϕ(A′, ϕ′)
)

= Z(A′, ϕ′) + R(A′, ϕ′) (29)

with the following properties:

i) the transformation � is analytic in a domain Dρ′,σ ′(U ) with 0 < ρ′ < ρ,
0 < σ ′ < σ ,

ii) the dynamics under Z(A′, ϕ′), called the normal form, has some desired prop-
erties (see below), and

iii) under norm definition (28) one has ‖R‖ρ′,σ ′ � ‖Z‖ρ′,σ ′ implying that the
function R(A′, ϕ′), called the remainder, introduces only a small correction
with respect to the flow under the normal form term Z(A′, ϕ′).

Regarding point ii) above, see, e.g., Efthymiopoulos (2011) for a definition of the
properties of the normal form term in various contexts of perturbation theory (e.g.,
in the Kolmogorov-Arnold-Moser or Nekhoroshev theories). Here we mention three
cases of particular interest, pertinent to our present work:

Case 1: Birkhoff normal form. The function Z is independent of the angles ϕ′. This
kind of normalization allows us to prove the near-constancy of the action variables A.
Case 2: elimination of short-period terms. The real constants ω j in (25), called
the unperturbed frequencies, are divided in two groups, ‘fast’ {ω1, . . . , ωK f },
1 ≤ K f < n, and ‘slow’ {ωK f +1, . . . , ωn}, such that min{|ω1|, . . . , |ωK f |} �
max{|ωK f +1|, . . . , |ωn|}. In this case, it turns convenient to introduce a normaliz-
ing transformation � such that the normal form Z becomes independent of the ‘fast
angles’ {ϕ′

1, . . . , ϕ
′
K f

}. Such is the case of the normal form encountered in Sect. 4,
leading to estimates on the stability of the semimajor axis in the J2 problem. The
corresponding Hamiltonian is of form (25), with n = 3, A1 = δL , A2 = P , A3 = Q,
ϕ1 = λ, ϕ2 = p, ϕ3 = q.
Case 3: resonant normal form. The frequencies ω j satisfy one or more quasi-
commensurability relations of the form m · ω � 0, with m ∈ Z

n, |m| 
= 0.
The maximum number of linearly independent and irreducible integer vectors ml ,
1 ≤ l ≤ lmax , yielding exact commensurabilities for a given set of frequencies ω j ,
satisfies 0 ≤ lmax ≤ n. SinceH1 is analytic in Dρ,σ (U ) and periodic in ϕ,H1 admits
the Fourier decomposition

H1(A, ϕ) =
∑
k∈Zn

h1,k(A)eik·ϕ, (30)
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where, according to Fourier theorem, the coefficients |h1,k(A)| are bounded by expo-
nentially decaying quantitiesO(e−|k|σ ). Then, it turns out that the appropriate normal
form Z has the resonant form:

Z(A′, ϕ′) =
∑

k∈M
ζk(A′)eik·ϕ′

, (31)

for some Fourier coefficients ζk(A′) and where

M := {k ∈ Z
n : k · ml = 0 for all l = 1, . . . , lmax }

is the ‘resonant module.’ A normal form of form (31) implies the existence of n − lmax

quasi-integrals of the form Ii = K i · A, i = 1, . . . , n − lmax , where the vectors K i
satisfy the equations K i · ml = 0 for all l with 1 ≤ l ≤ lmax . The quantities Ii are
called the resonant integrals of Hamiltonian (31).

As an example, whenever ν1 = ν2 secular geolunisolar Hamiltonian (24) admits a
resonant normal form. We have n = 2, lmax = 1, m1 = (1,−1), A1 = I1, A2 = I2,
ϕ1 = φ1, ϕ2 = φ2. Therefore, the normal form contains terms independent of the
angles or depending on the angles through trigonometric terms of the form cos(k(φ′

1−
φ′
2)), k = 1, 2, . . .. The associated resonant integral corresponds to the ‘Kozai–Lidov’

integral I = I1 + I2 (see Lidov 1962).

Definition 1 A r -th step Hamiltonian normalization process is a composition of near-
identity transformations

�(r) = �r ◦ �r−1 ◦ . . . ◦ �1 (32)

mapping the initial action-angle variables to the r-th step normalized action-angle
variables via the successive transformations (A(s), φ(s)) = �(s)(A(s−1), φ(s−1)), s =
1, 2, , . . . , r , (A(0), ϕ(0)) ≡ (A, ϕ), defined so that the compositions

�(s) = �s ◦ �s−1 ◦ . . . ◦ �1

for all s = 1, . . . , r are analytic and with inverse analytic within non-null domains
Dρ(s),σ (s) 
= ∅, and the rth-step Hamiltonian takes the form:

H(r)
(

A(A(r), ϕ(r)), ϕ(A(r), ϕ(r))
)

= Z (r)(A(r), ϕ(r)) + R(r)(A(r), ϕ(r)) (33)

with ‖R(r)‖ρ(r),σ (r) � ‖Z (r)‖ρ(r),σ (r) .

The semi-analytical estimates of stability that we will develop in the next sec-
tions are based on defining a suitable r -step sequence of canonical transformations
�1,�2, . . . , �r reducing the size of the remainder ‖R(r)‖ρ(r),σ (r) as much as possible
given the initial Hamiltonian model considered. The appropriate sequence is found
using the method of Lie series (see Sect. 4). The obtained times of stability are of
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order ‖R(ropt )‖−1
ρ(ropt),σ (ropt) , where ropt is the normalization order yielding the smallest

possible remainder norm. The value of ropt can be obtained via theoretical estimates
(see Efthymiopoulos et al. 2004), but in practice, it is also limited by the maximum
order in which our computer-algebra normal form calculations can proceed. Theo-
retical estimates imply that the size of the remainder norm is exponentially small in
the inverse of the size of the perturbation ‖H1‖ρ,σ in Eq. (25). For example, in the
simplest case of the Birkhoff normal form, we have the following theorem (see Fassò
and Benettin 1989 for full details).

Theorem 2 Consider the Hamiltonian expressed in action-angle variablesH(A, ϕ) =
ω · A + f (A, ϕ), where ω ∈ R

n satisfies the following Diophantine condition: there
exist τ, γ > 0 such that

|k · ω| ≥ γ

|k|τ ∀k ∈ Z
n\{0} (34)

and f is real analytic on Dρ,σ for some ρ, σ > 0. Consider two positive parameters
δ < ρ/2 and ξ < σ/2, and for r ≥ 1, let

ε∗
1 = γ δξτ+1

2n−τ+4
√

(2τ + 2)! ‖ f ‖ρ,σ

, ε∗
r = ε∗

1

r τ+2 . (35)

Then, for any

r <

(
γ δξτ+1

2n−τ+4
√

(2τ + 2)!
)1/τ+2

1

‖ f ‖1/τ+2
ρ,σ

, (36)

there exists a real analytic canonical transformation � : Dρ−2δ,σ−2ξ �→ Dρ,σ such
that the transformed Hamiltonian has the form

H ◦ � = h(A) +
r∑

s=1

Zs(A) + R(r+1)(A, ϕ) , (37)

where the remainder R(r+1) can be bounded as

‖R(r+1)‖ρ−2δ,σ−2ξ ≤ ‖ f ‖ρ,σ

4r τ+2

(
1

ε∗
r

)r
ε∗

r

ε∗
r − 1

. (38)

Casting together (35) and (38), one readily sees that the remainder grows more
rapidly than any power of r , namely as (r τ+2)r−1. Consequently, this procedure does
not converge for r → ∞. In any case, we remark that, as the threshold value for the
normalization order r is proportional to the inverse of ‖ f ‖1/(τ+2)

ρ,σ , if we manage to
reduce the size of the initial remainder function, then we can increase the maximum
value of r for which Theorem 2 is satisfied.

Similar estimates hold in the case of the resonant normal form constructions (see
Efthymiopoulos et al. 2004). The behavior of the size of the remainder as a func-
tion of the normalization order r will be examined in detail in our semi-analytical
computations in Sects. 4 and 5.
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3.2 Book-keeping and Construction of the Normal Form

Both Hamiltonians (8) and (24) are of form (25); therefore, the above results on
Hamiltonian normalization apply. In order to compute the composition of canonical
transformations required in Eq. (32), we implement the method of composition of
Lie series, after introducing a suitable book-keeping (see Efthymiopoulos 2011) to
separate terms in the Hamiltonian according to estimates of their order of smallness.

Definition 3 Consider a ‘book-keeping symbol’ ε, with numerical value ε = 1. A
book-keeping rule is a splitting of the initial Hamiltonian H(A, ϕ) in the form

H(A, ϕ) = ω · A +
∞∑

s=1

εsHs(A, ϕ). (39)

Remark 4 The splitting can in principle be arbitrary. However, the sequence of
remainders ‖R(r)‖ρ(r),σ (r) found by Hamiltonian normalization behaves well, i.e.,
‖R(s)‖ρ(s),σ (s) < ‖R(s−1)‖ρ(s−1),σ (s−1) for s = 1, . . . , ropt when splitting (39) is done
so as to reflect the order of smallness of different terms in the Hamiltonian. Roughly
speaking, one must have ‖Hs‖ρ,σ = O (‖H1‖s

ρ,σ

)
(see Efthymiopoulos 2011).

Proposition 5 Lie series:Letχ(A, ϕ), called the Lie generating function, be a function
analytic in the domain Dρ,σ (U ), and Lχ denote the Poisson bracket operator Lχ · =
{·, χ}. Given positive numbers δ < ρ and ξ < σ , assume that

min

(
δ‖∂χ

∂q
‖−1
ρ−δ,σ−ξ , ξ‖∂χ

∂ p
‖−1
ρ−δ,σ−ξ

)
> 1.

Then, the mapping

(A′, ϕ′) = exp(Lχ )(A, ϕ) =
∞∑
j=0

1

j !L
j
χ (A, ϕ) (40)

is an analytic canonical transformation of the domain Dρ−δ,σ−ξ (U ) onto itself.

The proof consists in implementing Proposition 1 of Fassò and Benettin (1989)
with r = 1.

Proposition 6 Exchange theorem: Let f be a real analytic function f : U ×T
n → R

extended to the domain Dρ,σ (U ). The equality

f (A′, ϕ′) =
(
exp(Lχ ) f (A, ϕ)

)
A=A′,ϕ=ϕ′ (41)

holds, where (A′, ϕ′) are given by transformation (40) and (A′, ϕ′) ∈ Dρ−δ,σ−ξ (U ).
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See Giorgilli (2002) for the proof. In simple words, the exchange theorem implies
that the result of a Lie series canonical transformation onto a function depending
on (A, ϕ) can be found by implementing the sequence of Poisson brackets of the
exponential operator exp(Lχ ) directly on the function f , and substituting, after this
operation, the arguments (A, ϕ) with (A′, ϕ′).

Normal form algorithm: The above definitions allow us to establish an algorithm
for the calculation of the sequence of canonical transformations (32) using Lie series.
The algorithm is obtained recursively by defining the r -th step as follows. Assume the
Hamiltonian after r − 1 normalization steps, denoted byH(r−1), is in normal form up
to the book-keeping order r − 1:

H(r−1) = Z0 + εZ1 + . . . + εr−1Zr−1 + εr R(r−1)
r + εr+1R(r−1)

r+1 + εr+2R(r−1)
r+2 + . . .

(42)
Then, the r -th step Lie generating function χr and HamiltonianH(r) are computed as
follows:

(i) split R(r−1)
r as R(r−1)

r = Z (r−1)
r +h(r−1)

r , where Z (r−1)
r denotes the part of R(r−1)

r
being in normal form;

(ii) compute χr as the solution of the homological equation

{ω · A, χr } + εr h(r−1)
r = 0; (43)

(iii) compute the r -th step normalized Hamiltonian asH(r) = exp(Lχr )H(r−1). This
yields the Hamiltonian

H(r) = Z0 + εZ1 + . . .+ εr−1Zr−1 + εr Zr + εr+1R(r)
r+1 + εr+2R(r)

r+2 + . . . (44)

where Zr = Z (r−1)
r .

Remark 7 In the above algorithm, the notation f (r) implies a function depending on the
canonical variables (A(r), ϕ(r)), which are connected to the original variables (A, ϕ)

via the composition of Lie series transformations

(A, ϕ) = exp(Lχr ) ◦ exp(Lχr−1) ◦ . . . ◦ exp(Lχ1)(A(r), ϕ(r)). (45)

For simplicity of notation, unless explicitly required in the sequel we do not write the
superscripts in the canonical variables defined in every step, but only in the functions
in which these variables are arguments of.

Remark 8 In the computer-algebraic implementation of the normalization algorithm,
all functions are truncated up to a maximum book-keeping order, specified by com-
putational restrictions.
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Remark 9 The solution of homological Eq. (43) is trivial when the functions h(r−1)
r

are written in the Fourier representation

h(r−1)
r =

∑
k∈Zn

h̃(r−1)
r ,k (A) exp(ik · ϕ),

which gives

χr = εr
∑
k∈Zn

i h̃(r−1)
r ,k (A)

k · ω
exp(ik · ϕ).

4 Stability of the Semimajor Axis in the J2 Model

We will now implement the Hamiltonian normalization discussed in Sect. 3 to elimi-
nate the short period terms (depending on the mean longitude λ) in Hamiltonian (8),
leading to estimates on the long-term stability of the orbits’ semimajor axis.

4.1 Normal Form

We express the Hamiltonian function in form (39), choosing the book-keeping power
equal to s − 2, where s is the index in Hamiltonian expansion (8), that is, collecting
together at book-keeping order s all polynomials Zs−2 and Ps−2,k1,k2,k3 . Then

H(0)
J2

(δL, P, Q, λ, p, q) =
= H0(δL, P, Q) + εH1(δL, P, Q, λ, p, q) + · · · + εNHN (δL, P, Q, λ, p, q)

(46)
withH0 = n∗δL+ω1∗ P+ω2∗Q. The truncation order (in eccentricity and inclination)
is N = 15.

With reference to the algorithmof Sect. 3.2, normal form terms are specified as those
non-depending on the mean longitude λ. That is, the Fourier harmonics cos(k1λ +
k2 p+k3q) to survive in normal form are selected by the choice of resonantmodule (see
Sect. 3.1) defined by the relation lmax = 1, m1 = (1, 0, 0). Following the choice of
book-keeping as described above, the normal form and remainder computations where
done using a program written by the authors in the symbolic package Mathematica©.
The symbolic program performs M = 12 normalization steps, implementing steps (i)
to (iii) of the normalization algorithm discussed at the end of Sect. 3. The operation
H (r) = exp(Lχr )H (r−1) is truncated in book-keeping up to the order N = 15. The
symbolic program performs this truncation automatically, since every term in both the
Hamiltonians H (r−1) and the generating functions χr , r = 1, . . . , M carries the book-
keeping symbol ε raised to some power. Mild memory requirements (of the order of
100 Mb) are required for the whole process. We also note that for given book-keeping
rule, this process takes automatically care of theminimumandmaximumpowers in the
action variables, as well as the minimum and maximum Fourier harmonics associated
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with every book-keeping order (see Efthymiopoulos (2011) for a detailed description
of this process).

After M normalization steps, the Hamiltonian takes the form

HJ2 ≡ H(M)
J2

(δL, P, Q, λ, p, q)

= H(M)
J2,sec(δL, P, Q, p, q) + R(M)

J2
(δL, P, Q, λ, p, q) , (47)

where (setting the book-keeping ε = 1)

H(M)
J2,sec = Z0 + . . . + Z M ,

R(M)
J2

= R(M)
M+1 + . . . + R(M)

N

with Z0 = H0.
The term H(M)

J2,sec will be referred to as the ‘secular Hamiltonian’ (not depending

on the fast angle λ). On the other hand, the remainder R(M)
J2

quantifies the difference

between the true evolution of all canonical variables and the one induced by H(M)
J2,sec.

Since in (47) we can only compute a truncated remainder, we probe numerically that
the finite sum of the leading terms in the remainder (up to order N ) yields a remainder
norm close to the limiting one (which corresponds to the limit N → ∞). To this end,
we take as maximum normalization order M = N − 3, ensuring that at least the three
first leading terms are included in the remainder (see Steichen and Giorgilli 1997).
Also, in estimating the size of the remainder through a suitable definition of the norm,
we compute the sup norm on a closed and bounded domain D ⊂ R

2:

‖ f ‖∞,D = sup
(e,i)∈D

(λ,p,q)∈T3

| f (e, i, λ, p, q)| . (48)

The calculation of the sup norm in a fixed domain (e, i) ∈ D, (λ, p, q) ∈ T
3

can only be done approximately, by taking a grid of values for all variables involved
in this domain, and computing the maximum of the absolute value of the function
involved on this grid. Since this process can lead to quite strong fluctuations in the
norm estimate, for practical purposes we substitute the sup norm calculation with one
based on majorization: consider a function of the form

f (e, i, λ, p, q) =
∑

k1,k2,k3

fk1,k2,k3(e, i) cos(k1λ + k2 p + k3q), (49)

where the sum is over an arbitrary (finite) number of harmonics (k1, k2, k3) ∈ Z
3 with

|k1| + |k2| + |k3| 
= 0, and the functions fk1,k2,k3(e, i) are sums of polynomials

fk1,k2,k3(e, i) =
∑

s1

∑
s2

gk1,k2,k3,s1,s2 Ps1/2(e)Qs2/2(i) (50)
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over a finite set of integer pairs s1, s2. Define the domainD∗(e∗, i∗) in the action space
(P, Q) via the relation: D∗(e∗, i∗) = {0 ≤ P ≤ P(e∗), 0 ≤ Q ≤ Q(e∗, i∗)}. Then,
one has:

sup
(e,i)∈D∗

(λ,p,q)∈T3

| f (e, i, λ, p, q)| ≤ || f ||∞,D∗

=
∑

k1,k2,k3

∑
s1,s2

|gk1,k2,k3,s1,s2 |Ps1/2(e∗)Qs2/2(e∗, i∗). (51)

We can then use norm (51) as an estimate substituting the sup norm in all actual
calculations.

4.2 Numerical Results: Stability of the Semimajor Axis

Having fixed the procedure for the normal form and remainder computations, we
proceed in deriving stability estimates based on the time variations of the value of the
semimajor axis in the J2 problem. Fixing a reference value a∗ of the semimajor axis,
we assume that, at the time t = 0, we have L = L∗ = √

μa∗, i.e., δL = 0. Our aim
is to estimate the fluctuations of L as functions of the orbital parameters e and i .

The first question to settle is that, for every value of the reference parameter a∗
we have to specify the range of values of the variables (e, i) for which the remainder
R(M)

J2
is small enough to represent only a perturbation with respect to the dynamics

determined by the secular part. In applications, we compute the value of ‖R(M)
J2

‖∞,D∗
in the domain (e, i) ∈ D = [0, 0.15] × [0, π/2], so that the inclination can take all
possible values; the eccentricity is instead taken in a reasonable interval, where we
can find almost all main Earth’s satellites.

With reference to Hamiltonian (47), if we consider the dynamics induced only by
the secular part, we obtain that

d

dt
δL = −∂H(M)

J2,sec

∂λ
= 0 ,

which implies that δL (hence L) is a constant of motion. We remind that δL is not the
original Delaunay variable, but rather the one obtained after M normalization steps.
If we denote by δL(0) the original variable, then we have

δL = exp(−Lχ(1) (. . . (exp(−Lχ(M) (δL(0)))))) . (52)

To obtain δL(0) as a function of the new variable δL , we need to invert transformation
(52); we observe that

(
exp(Lχ )

)−1 = exp(−Lχ ) ,
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implying

δL(0) = exp(Lχ(M) (. . . (exp(Lχ(1) (δL))))) .

Since we are dealing with near-identity canonical transformations, we realize that
δL(0) is the sum of δL and short period (small) variations which do not affect its
stability.

If we consider the full Hamiltonian in (47), then L is not constant anymore because
of the dependence of R(M)

J2
on λ. Using again Hamilton’s equations, we see that

d

dt
L = d

dt
(δL + L∗) = d

dt
δL = −∂HJ2

∂λ
= −∂R(M)

J2

∂λ
.

Then, for every set of values, say (e∗, i∗, λ∗, p∗, q∗) ∈ D × T
3, we obtain

∣∣∣∣ d

dt
L(e∗, i∗, λ∗, p∗, q∗)

∣∣∣∣ ≤ sup
(e,i)∈D

(λ,p,q)∈T3

∣∣∣∣ d

dt
L(e, i, λ, p, q)

∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣
∂R(M)

J2

∂λ

∣∣∣∣
∣∣∣∣∞,D∗

.

Let L(e, i, λ, p, q; T ) be the value at time t = T . To estimate its distance from the
equilibrium point L∗, we can use the mean value theorem which gives

|L(e, i, λ, p, q; T )− L∗| ≤ ‖L(e, i, λ, p, q; T )− L∗‖∞,D∗ ≤
∣∣∣∣
∣∣∣∣d L

dt

∣∣∣∣
∣∣∣∣∞,D∗

T . (53)

Requiring that the right-hand side of (53) is of order of unity, then the stability time T
becomes order of O

(
1/‖d L/dt‖∞,D∗

)
. Let us fix a constant value �L and sup-

pose that we want to estimate the minimal time T1 up to which the variation of
L(e, i, λ, p, q; T ) stays bounded by �L:

‖L(e, i, λ, p, q; T ) − L∗‖∞,D∗ ≤ �L .

Using (53) we obtain that T1 is given by

T1 ≥ �L

‖d L/dt‖∞,D∗
. (54)

Equation (54) can be used to derive the stability time of the semimajor axis a: recalling
that, in general, L = √

μa, one has that �L = �a/2
√

μ/a, which allows to obtain a
lower bound for the stability time of a given by

T2 = 1

2

√
μ

a∗
�a

‖d L/dt‖∞,D∗
. (55)

This estimate will be used in Sect. 5.3 to obtain results on the stability time at different
altitudes; in particular, �a is set to be equal to 0.1 RE .
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Table 1 Estimates of
‖R(M)

J2
‖∞,D∗ for different

values of a∗ in the J2 model

Semimajor axis a∗ ‖R(M)
J2

‖∞,D∗

42164 km 6.6107 2.03365 · 10−10

26560 km 4.16422 1.78552 · 10−9

8524.75 km 1.33656 5.99718 · 10−7

7258.69 km 1.13806 1.45442 · 10−6

Table 2 Estimates of
‖d L/dt‖∞,D∗ for different
values of a∗ in the J2 model

Semimajor axis a∗ ‖d L/dt‖∞,D∗

42164 km 6.6107 1.31051 · 10−9

26560 km 4.16422 1.04198 · 10−8

8524.75 km 1.33656 3.10705 · 10−6

7258.69 km 1.13806 7.41578 · 10−6

To check that the norm ‖R(M)
J2

‖∞,D∗ is small in the domain D = [0, 0.15] ×
[0, π/2], we compute its value by taking a set of samples for the reference value of
the semimajor axis a∗ that correspond to different distances from the Earth’s center
(the radius of the Earth is RE = 6378.14 km). Precisely, we consider the following
semimajor axes:

• a(1)∗ = (42164 km)/RE : the reference value for GEO satellites;
• a(2)∗ = (26560 km)/RE : the reference value for GPS satellites;
• a(3)∗ = (8524.75 km)/RE : an intermediate value in terms of the altitude;
• a(4)∗ = (7258.69 km)/RE : very close to the Earth’s surface. We remark that in
this case the results obtained are not very relevant from a practical point of view,
because the effect of the atmosphere becomes important.

Table 1 shows the values of ‖R(M)
J2

‖∞,D∗ computed for the above values of a∗ and
for J2 = 1.084 · 10−3, namely the real value of the coefficient for the Earth. As we
can see, ‖R(M)

J2
‖∞,D∗ is typically very small for all values of a∗: this confirms that

for the J2 problem it is reasonable to take the domain in eccentricity and inclination
as D = [0, 0.15] × [0, π/2].

Table 2 provides the results for the estimate of ‖d L/dt‖∞,D∗ , which show that,
using (54) with �L equal for all the considered distances a∗, the stability time for L
increases with the altitude.

Figure 1 shows the logarithmic plot of ‖R(M)
J2

‖∞,D∗ in the limit cases a∗ = a(1)∗
and a∗ = a(4)∗ . The plots show that the remainder decreases as one gets farther from
the Earth and it becomes larger when increasing the eccentricity and inclination.

Figures 2 and 3 refer, respectively, to a = a(1)∗ and a = a(4)∗ ; the left plots provide
the graph of ||d L/dt ||∞,D∗ as a function of the eccentricity for fixed values of the
inclination, while the right plots give the norm as a function of the inclination for
fixed values of the eccentricity. We notice that the norms tend to decrease when the
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Fig. 1 Plots of ‖R(M)
J2

‖∞,D∗ for (e, i) ∈ D: a∗ = a(1)∗ (left) and a∗ = a(4)∗ (right) in the J2 model
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Fig. 2 Stability estimates for the GEO case (with a = a(1)∗ ) in the J2 model. Left: plot of ||d L/dt ||∞,D∗
as a function of e for fixed values of i . Right: plot of ||d L/dt ||∞,D∗ as a function of i for fixed values of e
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Fig. 3 Stability estimates for the near-Earth case (with a = a(4)∗ ) in the J2 model. Left: plot of
||d L/dt ||∞,D∗ as a function of e for fixed values of i . Right: plot of ||d L/dt ||∞,D∗ as a function of
i for fixed values of e

eccentricity and the inclination are smaller, although the effect is more evident in the
GEO region than closer to the Earth.

We now examine how the stability time changes as a function of the semima-
jor axis a∗: in this case, we consider 1000 values for a∗ uniformly distributed from
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Fig. 4 Stability time in the J2
model for a ∈ [ain , a f ] (see the
text for the definition of ain , a f )
allowing a variation of 0.1 RE
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ain = 1.15679 (corresponding to an altitude of 1000 km, which we take as the first
reference value, although in this region weak dissipative effects are possibly affecting
the dynamics) to a f = 16.6786 (corresponding to an altitude of 105 km), using Eq.
(55) with �a = 0.1 RE . Figure 4 confirms that the stability time increases with the
altitude also in the case of the semimajor axis. Indeed, while for a∗ = ain we can
ensure the stability of the semimajor axis for a period of the order of one year, in the
case a∗ = a f we have a stability time of the order of 103 years. From an analytical
point of view, this behavior of the stability time can be explained by the fact that, for
higher distances, our model can be approximated by Kepler’s problem in which the
semimajor axis is constant.

5 Secular Stability in the Geolunisolar Model

Using the J2 model, we have demonstrated how the stability of the semimajor axis can
be established against short-period perturbations (depending on the satellite’s mean
anomaly). In this section, we focus, instead, on the long-term variations in the eccen-
tricity and inclination of the satellite’s orbit, for orbits close to circular (e < 0.1 rad)
and with small inclination (|i | < 0.1). One can easily verify that, within the geolu-
nisolar problem (HamiltonianH≤N

gls,sec, see Eq. (24)), the phase-space manifold e = 0,
corresponding to I2 = 0, constitutes an invariant manifold of the flow, implying that
circular orbits remain so for infinitely long times independently of their variations in
inclination and longitude of the node. On the other hand, for e small, but nonzero, long-
term variations of both the eccentricity and inclination can occur on timescales given

by the inverse of the frequencies ν1 and ν2 [Eq. (22)]. Since ν1 � ν2 � 3
2

√GME R2
E J2

a7/2
,

the secular timescale is of order of Tsec = O
(
(a/RE )2 J−1

2

)
Tshort, where Tshort is the

characteristic time of the frequency associated to the fast angle. Since J2 ≈ 10−3, the
short and long periods are separated by three orders of magnitudes, a fact which justi-
fies altogether the simple averaging over mean anomalies which leads to the model of
departureH≤N

gls,sec for the analysis of the secular stability.On the other hand, the fact that
ν1 � ν2 implies that, near the equator (or, more precisely, for orbits near the Laplace
plane, see Sect. 2.2.1), the eccentricity and inclination have coupled variations (the
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so-called Kozai–Lidov mechanism). This fact implies that, close to the Laplace plane,
the term ‘secular stability’ cannot mean the long-term preservation of the eccentricity
and inclination one independently of the other, but only the approximate preservation
of the combination I ≈ e2+ i2 (see below for exact expressions) known as the Kozai–
Lidov integral. The normal form construction and remainder estimates in the present
section reflect these basic properties of the dynamics.

5.1 Normal Form

Starting with the modelH≤N
gls,sec given in Eq. (24), the construction of the normal form

proceeds with the algorithm described in Sect. 3 and the following settings:

i) The book-keeping rule (exponent s in Eq. (39)) is set as s = s1 + s2 − 2, where
s1 and s2 are the exponents appearing in Eq. (24).

ii) The resonant module [Eq. (31], case 3 of Subsection 3.1) is set as:

M := {(k1, k2) ∈ Z
2 : k1 + k2 = 0}

where k1, k2 are the integers specifying each Fourier harmonic in Eq. (24).
iii) The maximum truncation order is set to N = 15, while the maximum normal-

ization order is set to M = 12.

Here, as well, we use a symbolic program to perform all normalizations, which
works in essentially the same way as described in Sect. 4.1 for the case of the normal
form of the J2 problem.

With the following settings, the Hamiltonian after r normalization steps, where r
can take the values r = 1, 2, ...M , resumes the form:

H(r)
gls,sec(I1, I2, φ1, φ2) = Z(r)

gls,sec(I1, I2) + Z(r)
gls,res(I1, I2, φ1 − φ2)

+ R(r)
gls(I1, I2, φ1, φ2) . (56)

The termZ(r)
gls,sec(I1, I2), hereafter called the secular part, contains all terms indepen-

dent of the angles (corresponding to the choice k1 = k2 = 0 in the resonant module).
The dynamics of this term implies separate preservation of the eccentricity and incli-
nation (the latter around the Laplace plane). Instead, Z(r)

gls,res(I1, I2, φ1 − φ2), called
the resonant part of the normal form, collects all normal form terms depending on
the resonant angle φ1 − φ2. Finally,R(r)

gls(I1, I2, φ1, φ2) is the remainder term, which
contains non-normalized terms of book-keeping orders s = r + 1, . . . , N . After M
normalization steps, we obtain the final geolunisolar Hamiltonian Hgls ≡ H(M)

gls,sec.
We now look at the dynamics induced by the sum of secular and resonant parts:

Hnorm(I1, I2, φ1, φ2) = Z(M)
gls,sec(I1, I2) + Z(M)

gls,res(I1, I2, φ1 − φ2),

called, altogether, the resonant normal form Hnorm (for simplicity, we drop the depen-
dence on the normalization order r from the notation). The quantity I1 + I2 is a first
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integral for the dynamics induced by Hnorm , which implies that the vertical compo-
nent of the angular momentum, which coincides with �, is preserved.2 Given that L
is constant, say L = L∗ = √

μE a∗, the quantity

I1 + I2 = L∗ − L∗
√
1 − e2(1 − cos i) (57)

is a first integral and, as a consequence, the quantity

I(e, i) = 1 −
√
1 − e2(1 − cos i) (58)

is constant for the dynamics induced by the normal form. This means that e and i can
change only in such a way that the value of I(e, i) remains constant.

The fact that the presence of resonant first integrals determines a locking in the
values of e and i is at the basis of the so-called Kozai–Lidov effect (Lidov 1962; Kozai
1962), which is common, in a wide range of resonant combinations, in many models
of Celestial Mechanics.

5.2 Remainder and Stability Estimates

As already mentioned in Sect. 4.2, we need to guarantee that the remainder is small
with respect to the normal part; we denote again byD the domain over which the norm
‖R(M)

gls ‖∞,D∗ is computed. For a function f = f (e, i, φ1, φ2) of the form:

f (e, i, φ1, φ2) =
∑
k1,k2

∑
s1,s2

fk1,k2,s1,s2 I1(e, i)s1/2 I2(e, i)s2/2, (59)

where the sums are over a finite number of terms, we have

sup
(e,i)∈D,(φ1,φ2)∈T2

| f (e, i, φ1, φ2) ≤ ‖ f ‖∞,D∗ ,

where, recalling the definition in (51), the norm of f is defined as

‖ f ‖∞,D∗ =
∑
k1,k2

∑
s1,s2

| fk1,k2,s1,s2 |I1(e∗, i∗)s1/2 I2(e∗, i∗)s2/2. (60)

There exists an optimal value of M that minimizes the estimate of the remainder’s
norm, as shown in Sect. 5.3 for GEO orbits.

Since I1 + I2 is a first integral for Hnorm , we have that

{I1 + I2,Hnorm} = 0.

2 For the J2 model the preservation of the vertical component of the angular momentum is a direct conse-
quence of the axisymmetry of the truncated geopotential. For the geolunisolar model, the addition of the
external attractions breaks this symmetry. However, the preservation of this quantity turns to be still true
for the Hamiltonian Hnorm .
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To evaluate the stability of I(e, i), we use the relation:

d

dt
(I1 + I2) = {I1 + I2,Hgls} = {I1 + I2,R(M)

gls };

then, for every (e∗, i∗, φ∗
1 , φ

∗
2 ) ∈ D × T

2, we have the following estimate:

∣∣∣∣ d

dt
(I1 + I2)(e

∗, i∗, φ∗
1 , φ

∗
2 )

∣∣∣∣ ≤ sup
(e,i)∈D

(φ1,φ2)∈T2

∣∣∣∣ d

dt
(I1 + I2)(e, i, φ1, φ2)

∣∣∣∣

≤ ‖{I1 + I2,R(M)
gls }‖∞,D∗ .

Let us now consider an orbit with initial point (I1,0, I2,0) such that the corresponding
eccentricity and inclination belong toD; consider its evolution up to t = T . Using the
mean value theorem, we have that

‖(I1(T ) + I2(T )) − (I1,0 + I2,0)‖ ≤ ‖{I1 + I2,R(M)
gls }‖∞,D∗ T . (61)

Setting � to be the maximum value for the variation of I1 + I2 in time, let us denote
by T̃ the minimum time such that for every T ≤ T̃

‖(I1(T ) + I2(T )) − (I1,0 + I2,0)‖ ≤ � .

From (61), we have

T̃ ≥ �

‖{I1 + I2,R(M)
gls }‖∞,D∗

;

then we can use the value of T as T = �/‖{I1 + I2,R(M)
gls }‖∞,D∗ , which gives an

estimate for the stability time of I1 + I2 and, consequently, of I(e, i). The stability
results for the quantity I can be translated in terms of the orbital elements (e, i) as
follows: in view of (58), for small values of e and i we find

I � L∗
e2 + i2

2
, (62)

hence, if we consider the variations of I, e and i , they are connected by the relation

�I
I � 2

e�e + i�i

e2 + i2
. (63)

For the limit case of e or i fixed and small, one finds

�I
I � 2

�e

e
� 2

�i

i
; (64)
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Table 3 Estimate of
‖R(M)

gls ‖∞,D∗ , with M = 12, in
the geolunisolar model with
D = [0, 0.1] × [0, 0.1] for
different altitudes

Altitude ‖R(M)‖∞,D∗

3000 km 2.13276 · 10−14

20000 km 3.22704 · 10−13

35790 km 1.3774 · 10−11

50000 km 5.39185 · 10−9

100000 km 1.80878 · 10−5

then the relative variation of I (and, as a consequence, of I1 + I2) is proportional to
the relative variations of the orbital elements by a factor 2.
To make the stability results for the geolunisolar model consistent with the ones
obtained in Sect. 4.2 for the J2 model, in Sect. 5.3 we set

� = 0.05

√
μ

a∗
, (65)

namely, recalling that �L = �a/2
√

μ/a and �a = 0.1, the maximal variation of
I1 + I2 in the geolunisolar model is equal to the maximal variation allowed for the
action L in the J2 model.

5.3 Numerical Results for the Geolunisolar Model

For the geolunisolar model, we take the domain (e, i) ∈ D = [0, 0.1] × [0, 0.1]
around the forced eccentricity (which is always zero) and the forced inclination (which
depends on the chosen altitude).

Since the stability results strongly depend on the distance from the Earth, we select
five different altitudes that correspond to cases of interest for the satellite’s problem:

• h(1) = 3000 km, above the atmosphere;
• h(2) = 20000 km, that is in MEO region;
• h(3) = 35786 km, the altitude of GEO orbits;
• h(4) = 50000 km, corresponding to far objects;
• h(5) = 100000 km, that corresponds to objects which are very far from the Earth’s
surface.

The value of the remainder’s norm depends on the altitude of the orbit: in particular,
we can state that the stability time decreases as the altitude increases.

Table 3 provides the value of ‖R(M)
gls ‖∞,D∗ as a function of the altitude, showing a

significant worsening for altitudes after the GEO region.
Figure 5 shows the behavior of the remainder’s norm as a function of (e, i) in

the bigger domain D′ = [0, 0.1] × [0, π/2]: as we can see, in all cases the domain
D′ is too large to ensure the smallness of ‖R(M)

gls ‖∞,D′∗ . Moreover, the magnitude of

‖R(M)
gls ‖∞,D′∗ increases significantly with the altitude. We can easily notice that the

value of ‖R(M)
gls ‖∞,D′∗ is strongly dependent on the inclination: using this fact, we can
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Fig. 5 Remainder’s norm for the geolunisolar model in the domain D′ = [0, 0.1] × [0, π/2] for h(i),
i = 1, . . . , 5 (see the text for the definition of h(i))
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Table 4 Value of icri t as a
function of different values of
the altitude for the geolunisolar
model

Altitude icri t (deg)

3000 km 67.1◦
20000 km 57.89◦
35790 km 58.43◦
50000 km 37.95◦
100000 km 16.93◦

Fig. 6 Estimate of

‖R(M)
gls ‖∞,D∗ as a function of

the normalization order M for
h = h(3) (GEO distance) in the
domain D = [0, 0.1] × [0, 0.1]
for the geolunisolar model

detect a value of i , denoted by icri t , which is the minimum value of the inclination for
which ‖R(M)

gls ‖∞,D′∗ is of the order of unity. Table 4 shows the computed values of icri t

(converted in degrees) for the considered altitudes: we can notice that the smallness
domain shrinks substantially between 50000 km and 100000 km; in any case, we can
see that for every value of the considered altitudes the domainD = [0, 0.1]× [0, 0.1]
is contained in the smallness domain ofR(M)

gls .
As mentioned in Sect. 5, the remainder’s norm depends on the normalization order

M . Although the norm does not converge to zero if M tends to infinity, there is a value
of M , called the optimal normalization order, say Mopt , for which the norm of the
remainder is minimal. Typically, this optimal value is greater than the order of the
Taylor expansions of the numerically computed functions, and the estimates for the
remainder are so good that there is no reason to push further the order of the expansion;
for example, this is the case for the normalized Hamiltonian function which describes
the geolunisolar problem computed for the GEO altitude.

As we can see from Fig. 6, the optimal normalization order is greater than or equal
to 12, that is the order at which we make our estimates.

Once obtained the smallness of ‖R(M)
gls ‖∞,D∗ in D, we proceed to compute the

stability time for the quantity I(e, i) = 1 − √
1 − e2(1 − cos i).

As we can see from Table 5, the stability times are extremely long: this fact depends
on the model we considered, with the Lunar orbit in the ecliptic plane without pre-
cession effects. However, we can notice a relevant decrease in the stability time for
distances greater than GEO. This behavior is opposite to that of the J2 model where
the stability time was increasing with the altitude (see Fig. 4). In fact, at low altitudes
the J2 model is strongly affected by the Keplerian part and the geopotential, while the
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Table 5 Stability times in years
for different altitudes in the
domain
(e, i) ∈ D = [0, 0.1] × [0, 0.1]
for the geolunisolar model

Altitude Stability time in D

3000 km 4.61551 · 1013
20000 km 2.20144 · 1012
35790 km 3.51266 · 1010
50000 km 1.07263 · 108
100000 km 3.36609 · 104

geolunisolar model takes into account both the inner effect due to the Earth and the
outer effect due to Moon and Sun.

As a final remark, to show the importance of taking the right domain in eccentricity
and inclination, let us assume h = h(5) and consider the domain (e, i) ∈ B =
[0, 0.1] × [0, 0.5], which is larger than the convergence domain [0, 0.1] × [0, icri t ]
(see Table 4). If we compute the stability time in the enlarged domain B, we obtain
just the value T = 0.00085 years.

6 Non-degeneracy Conditions

In the previous sections, we examined the question of the long-term stability of the
elements (a, e, i) in the case of the Earth’s satellite orbits using a semi-analytical
computation based on the size of the remainder of the Birkhoff normal form, computed
as described in Sects. 4 and 5. While providing stability times quite long with respect
to any application of practical interests, such estimates cannot probe the question of
the dependence of the optimal remainder on the small parameters of the problem (the
value of J2, as well as the values of (e, i) for non-resonant satellite orbits). Also, it was
stressed before that we have no guarantee of the optimality of the estimates themselves
with respect to the normalization order, which, in theory, should scale as a power of
the inverse of the small parameters of the problem (see Efthymiopoulos 2011 for a
tutorial introduction).
All such scalings can be examined, instead, in the framework of the outstanding the-
orem developed by Nekhoroshev (1977). Under suitable assumptions, the theorem
gives a confinement of the action variables for exponentially long times. In particu-
lar, the Hamiltonian must satisfy a non-degeneracy condition which, in the original
formulation, is called steepness condition. The definition of the steepness condition
is quite technical and typically not trivial to verify for a specific Hamiltonian system.
However, there are some sufficient conditions which imply steepness, whose verifi-
cation requires the resolution of algebraic equalities and inequalities. This motivates
the introduction of the following definition (see Knezevic and Pavlovic 2008; Pöschel
1993).

Definition 10 Consider the Hamiltonian h = h(J ) for J ∈ B where B ⊂ R
n is an

open connected set. Denote by ω(J ) the gradient of h and byQ(J ) its Hessian matrix.
Then:
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(1) h(J ) is convex in J ∈ B if

∀u ∈ R
n Q(J )u · u = 0 ⇔ u = 0;

(2) h(J ) is quasi-convex in J ∈ B if ω(J ) 
= 0 and

∀u ∈ R
n

{
ω(J ) · u = 0

Q(J )u · u = 0
⇔ u = 0;

(3) h(J ) is three-jet non-degenerate in J ∈ B if ω(J ) 
= 0 and

∀u ∈ R
n

⎧⎪⎨
⎪⎩

ω(J ) · u = 0

Q(J )u · u = 0∑n
i, j,k=1

∂3h
∂ Ji ∂ J j ∂ Jk

(J )ui u j uk = 0

⇔ u = 0.

We remark that the convexity condition is equivalent to require that the Hessian matrix
Q(J ) is positive (or negative) definite in J . We add also the following definition of
isoenergetically non-degenerate which, for Hamiltonian systems with 2 degrees of
freedom, implies quasi-convexity.

Definition 11 The Hamiltonian h = h(J ) is called isoenergetically non-degenerate
in J ∈ B with B ⊂ R

n open, if

det

⎛
⎝

∂2h
∂ J 2 (J )

∂h(J )

∂ J(
∂h(J )

∂ J

)T
0

⎞
⎠ 
= 0.

One can prove (see Bambusi and Fusé 2017) that, for every Hamiltonian system
with n degrees of freedom, quasi-convexity implies isoenergetically non-degeneracy:
as a consequence, for two-dimensional Hamiltonian systems, the two conditions are
equivalent.

6.1 Numerical Verification of the Non-degeneracy Conditions

We now apply the above definitions to the Hamiltonian functions introduced in Sect. 2.
We consider the following cases:

• the Hamiltonian function related to the J2 problemHJ2 , in form of Taylor expan-
sion up to order 15 in eccentricity and inclination, normalized up to order 12 with
respect to the fast angle λ; we denote the resulting Hamiltonian including the
normalized part H(M)

J2,sec and the remainder R(M)
J2

[see Eq. (47)], as

HJ2(δL, P, Q, λ, p, q) = H(M)
J2,sec(δL, P, Q, p, q) + R(M)

J2
(δL, P, Q, λ, p, q) .

Given the practical stability of the semimajor axis established in Sect. 4.2, in our
computations we set L = L∗, i.e., δL = 0;
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• the Hamiltonian function related to the geolunisolar problem Hgls,sec in (14),
expanded around the forced values of inclination and eccentricity (see Sect. 2.2.1)
up to order 15 in eccentricity and inclination, see (24). The HamiltonianHgls,sec is
averaged over the fast angle λ and put in resonant normal form with respect to the
angles φ1 and φ2 up to order 12 in eccentricity and inclination. As a consequence,
the resulting Hamiltonian Hgls = H(M)

gls,sec, including the normalized part Z(M)
gls,sec,

the resonant part Z(M)
gls,res and the remainderR(M)

gls [see Eq. (56)], has two degrees
of freedom and it is the sum of three terms:

Hgls(I1, I2, φ1, φ2) = Hgls,sec(I1, I2) + Hgls,res(I1, I2, φ1, φ2)

+Rgls(I1, I2, φ1, φ2),

where Hgls,res depends only on the quasi-resonant combination φ1 − φ2.

To analyze the non-degeneracy conditions, we write the Hamiltonian as the sum of
two terms, namely an integrableHamiltonian h and a perturbing function f . For the J2-
Hamiltonian, we set h(P, Q) to contain all the terms ofHJ2 that are independent on all
angles, while the perturbing function f contains all other terms. For the geolunisolar
case, we choose h(I1, I2) to be the angle-independent part of the truncation up to order
2 of Hgls: in this way, the Hessian matrix of h is independent of the actions, and the
computations are easier.3

Since the Hamiltonian functions depend on the parameter L∗ = √
μa∗, we select

four reference values for the altitudes that correspond to distances of interest in satellite
dynamics:

• 3000 km, for near-Earth objects;
• 20000 km, for distance of the order of MEO;
• 35790 km, for GEO orbits;
• 50000 km, for far objects.

For each of these values, we check the non-degeneracy conditions of convexity, quasi-
convexity and three-jet, for both the case of the J2-problemand the geolunisolarmodels
in the domain4 (e, i) ∈ D = [0, 0.1] × [0, 0.1], which corresponds to a domain in the
actionsD′′ = [0, Pmax ]×[0, Qmax ] ⊂ R

2, where Pmax , Qmax correspond to e = 0.1,
i = 0.1 and can be computed numerically.

Remark 12 We notice that a Hamiltonian h = h(P, Q) (or, equivalently, h(I1, I2) in
the geolunisolar case) is convex in D′′ ∈ R

2, if the product of the eigenvalues of the
Hessian matrix of h is greater than zero for every (P, Q) ∈ D′′. Moreover, h(P, Q)

is quasi-convex in D′′ ∈ R
2, if for every (P, Q) ∈ D′′ the determinant of the matrix

A =
⎛
⎝h11(P, Q) h12(P, Q) h1(P, Q)

h21(P, Q) h22(P, Q) h2(P, Q)

h1(P, Q) h2(P, Q) 0

⎞
⎠ (66)

3 We made this particular choice after verifying that, in the chosen domain in the actions, there are no sub-
stantial differences between taking all the normalized terms up to order 12 or only the quadratic truncation.
4 From now on, unless otherwise specified, the angles are expressed in radians.
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Table 6 Values of λ1 λ2 for the
J2 model for different altitudes
and (P, Q) ∈ D′′

Altitudes λ1 λ2 intervals

3000 km [−1.53606 · 10−6,−1.44844 · 10−6]
20000 km [−3.9009 · 10−10,−3.67893 · 10−10]
35790 km [−3.00586 · 10−16, −3.19895 · 10−42]
50000 km [−4.3889 · 10−32,−1, 30545 · 10−47]

is nonzero.

If the convexity and quasi-convexity tests fail, one can control the three-jet non-
degeneracy condition, that we compute, again, numerically, checking that the system

⎧⎪⎨
⎪⎩

ω(P, Q) · u = 0

(∂2h(P, Q)u) · u = 0

((∂3h(P, Q)u)u) · u = 0

(67)

evaluatedon agrid of values (P, Q) ∈ D′′ admits only the trivial solutionu = (0, 0, 0).
Since convexity implies quasi-convexity and quasi-convexity implies three-jet non-
degeneracy, to identifywhich of the conditions is satisfied, we proceed in the following
way:

• we begin with the convexity test on the product of the eigenvalues: if the product
is positive for every value of (P, Q) ∈ D′′, then h(P, Q) is convex;

• if the convexity test fails, we pass to the quasi-convexity condition, checking the
criteria given in Definition 10 and Remark 12;

• if the quasi-convexity test fails, we check the three-jet non-degeneracy through the
numerical test based on Definition 10.

6.2 Non-degeneracy of the J2 Hamiltonian

We start from the convexity test; we denote by λ1, λ2 the eigenvalues of the Hessian
matrix of h.

Table 6 gives the numerical values of λ1λ2 for different altitudes and (P, Q) in the
domainD′′ (we recall that, since the values in the Hessian matrix depend on P and Q,
we have an interval for λ1λ2 instead of a single value). As one can see, the product of
the eigenvalues is always negative or zero within numerical precision level, leading
to the conclusion that the Hamiltonian HJ2 is not convex in D′′ for the considered
altitudes.

We can then pass to the quasi-convexity test. We consider the determinant of the
matrix A defined in (66) for (P, Q) ∈ D′′. As we can see from Table 7, for every
considered altitude the values of det A are equal to zero within the numerical precision
level, leading to the conclusion that the J2 Hamiltonian is not quasi-convex in D′′.

The failure of the quasi-convexity for the J2 problem is a relevant fact: as we will
see in Sect. 6.3, the effects of the lunisolar attraction will eliminate such degeneracy,
making the total Hamiltonian quasi-convex.
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Table 7 Values of det A, with A
as in (66) for the J2 model for
different altitudes and
(P, Q) ∈ D′′

Altitudes det A intervals

3000 km [−1.99418 · 10−10, −1.82748 · 10−10]
20000 km [−2.27575 · 10−15, −2.08271 · 10−15]
35790 km [−1.30574 · 10−17, −1.19784 · 10−17]
50000 km [−5.34517 · 10−19,−4.9035 · 10−19]

Table 8 Values of λ1 and λ2 for
different altitudes in the
geolunisolar model

Altitudes λ1 λ2

3000 km −11.6416 3.046

20000 km −0.185307 0.0479062

35790 km −0.0294666 0.00703346

50000 km −0.0188881 0.00508227

Table 9 Values of det A, with A
in (66) in the geolunisolar case
for different altitudes and
(I1, I2) ∈ D′′

Altitudes det A intervals

3000 km [2206.82, 2335.21]
20000 km [0.0271813, 0.0287145]
35790 km [0.000309172, 0.000323288]
50000 km [0.000113523, 0.000118622]

We conclude with the test on the three-jet non-degeneracy condition. To make the
computations quantitative, we solved system (67) for values (Pi , Q j ) on a mesh of
10000 points in D′′. For every pair of values (Pi , Q j ) the only solution of the system
is the trivial one u = (0, 0), leading to conclude that the Hamiltonian of the J2 model
is three-jet non-degenerate in D′′. This fact is not unexpected as for systems up to 3
degrees of freedom the three-jet condition is generically satisfied (see Schirinzi and
Guzzo 2015).

6.3 Quasi-convexity of the Geolunisolar Hamiltonian

As for the J2 model, we start from the convexity test. In this case, the unperturbed
Hamiltonian is a polynomial of degree 2 in the actions; then, the Hessian matrix
of h(I1, I2) does not depend on the values of I1 and I2, and the same holds for its
eigenvalues. This makes the test on the convexity of the Hamiltonian easier.

Table 8 shows the values of λ1 and λ2 for different altitudes. As we can see, in every
case the eigenvalues of the Hessian have opposite sign, showing that the geolunisolar
unperturbed Hamiltonian is not convex in R

2, and hence in D′′.
As for the quasi-convexity, we check whether the matrix A defined in (66) is non-

degenerate for every value (I1, I2) ∈ D′′.
From Table 9 we can see that the determinant of A is strictly positive for every

value of the selected altitudes and every (I1, I2) ∈ D′′. Hence, we conclude that
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the Hamiltonian for the geolunisolar case is quasi-convex. As observed at the end of
Sect. 6.2, this fact is highly non-trivial, since it means that the lunisolar perturbation
of the J2 model removes the degeneracy.
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