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Abstract

In a continuum model of the solvation of charged molecules in an aqueous solvent,
the classical Poisson–Boltzmann (PB) theory is generalized to include the solute point
charges and the dielectric boundary that separates the high-dielectric solvent from the
low-dielectric solutes. With such a setting, we construct an effective electrostatic free-
energy functional of ionic concentrations, where the solute point charges are regularized
by a reaction field. We prove that such a functional admits a unique minimizer in a class
of admissible ionic concentrations and that the corresponding electrostatic potential
is the unique solution to the boundary-value problem of the dielectric-boundary PB
equation. The negative first variation of this minimum free energy with respect to
variations of the dielectric boundary defines the normal component of the dielectric
boundary force. Together with the solute-solvent interfacial tension and van der Waals
interaction forces, such boundary force drives an underlying charged molecular system to
a stable equilibrium, as described by a variational implicit-solvent model. We develop
an L2-theory for the continuity and differentiability of solutions to elliptic interface
problems with respect to boundary variations, and derive an explicit formula of the
dielectric boundary force. With a continuum description, our result of the dielectric
boundary force confirms a molecular-level prediction that the electrostatic force points
from the high-dielectric and polarizable aqueous solvent to the charged molecules. Our
method of analysis is general as it does not rely on any variational principles.
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1 Introduction

The classic Poisson–Boltzmann (PB) theory provides a continuum description of electrostatic
interactions in an ionic solution through the PB equation [2, 6, 17,23,27]

∇ · ε∇ψ −B′(ψ) = −ρ in Ω0, (1.1)

where Ω0 ⊆ R3 is the region of the ionic solution, ε is the dielectric coefficient, ρ : Ω0 → R
represents the density of fixed charges, and ψ : Ω0 → R is the electrostatic potential. In
(1.1), the function B : R→ R is defined by

B(s) = β−1

M∑
j=1

c∞j
(
e−βqjs − 1

)
∀s ∈ R, (1.2)

where β = (kBT )−1 with kB the Boltzmann constant and T the temperature, M is the total
number of ionic species, c∞j is the bulk ionic concentration of the jth ionic species, and
qj = zje is the charge of an ion of the jth species with zj the valence of such an ion and e
the elementary charge. The PB equation (1.1) is a combination of Poisson’s equation

∇ · ε∇ψ = −

(
ρ+

M∑
j=1

qjcj

)
in Ω0,
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where cj : Ω0 → [0,∞) is the ionic concentration of the jth ionic species, and the Boltzmann
distributions for the equilibrium ionic concentrations

cj(x) = c∞j e
−βqjψ(x), x ∈ Ω0, j = 1, . . . ,M.

In modeling charged molecules (such as proteins) in an aqueous solvent (i.e., water or
salted water) within an implicit-solvent (i.e., continuum-solvent) framework, the PB theory
is generalized to include the point charges of the charged molecules and a dielectric boundary
that separates the high-dielectric solvent region from the low-dielectric solute region [7, 14,
16, 34, 45, 48]. To be more specific, let us assume that the entire solvation system occupies
a region Ω ⊆ R3. It is the union of three disjoint parts: the region of solutes (i.e., charged
molecules) Ω−; the region of aqueous solvent Ω+; and the solute-solvent interface or dielectric
boundary Γ, which is a closed surface with possibly multiple components, that separates Ω−
and Ω+; cf. Figure 1. We denote by n the unit normal to the boundary Γ pointing from Ω−
to Ω+ and also the exterior unit normal to ∂Ω, the boundary of Ω. The solute region Ω−
contains all the solute atoms that are located at x1, . . . , xN and that carry partial charges
Q1, . . . , QN , respectively, where N ≥ 1 is a given integer. The solvent region Ω+ is the region
of ionic solution, similar to Ω0 in (1.1). As before, we assume that there are M species of
ions in the solvent region Ω+ with the valence zj, charge qj = zje, bulk concentration c∞j ,
and the local concentration cj : Ω+ → [0,∞) for the j ionic species (j = 1, . . . ,M). The
dielectric coefficients in the solute region Ω− and solvent region Ω+ are denoted by ε− and
ε+, respectively. Typically, ε− = 1 and ε+ = 76 ∼ 80 in the unit of vacuum permittivity.
Note that the density of fixed charges is now given by ρ =

∑N
i=1Qiδxi , where δxi is the Dirac

delta function at xi.

n

Γ

Ω+

Ω
−

xi
Qi

ε
−

ε+

Ω

n

∂Ω

Solute

Solvent

Figure 1: A schematic description of a solvation system with an implicit solvent.

We introduce the dielectric-boundary, electrostatic free-energy functional of the ionic con-
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centrations c = (c1, . . . , cM) in the solvent region Ω+ [7, 24,34,44]

FΓ[c] =
1

2

N∑
i=1

Qi(ψ − φ̂C)(xi) +
1

2

∫
Ω+

(
M∑
j=1

qjcj

)
ψ dx

+ β−1

M∑
j=1

∫
Ω+

{
cj
[
log(Λ3cj)− 1

]
+ c∞j

}
dx−

M∑
j=1

∫
Ω+

µjcj dx, (1.3)

where Λ is the thermal de Broglie wavelength, µj is the chemical potential for ions of the jth
species, and c∞j = Λ−3eβµj (j = 1, . . . ,M). In (1.3), ψ : Ω→ R is the electrostatic potential.
It is the unique weak solution to the boundary-value problem of Poisson’s equation

∇ · εΓ∇ψ = −

(
N∑
i=1

Qiδxi + χ+

M∑
j=1

qjcj

)
in Ω,

ψ = φ∞ on ∂Ω,

(1.4)

where the dielectric coefficient εΓ : Ω→ R is defined by

εΓ(x) =

{
ε− if x ∈ Ω−,

ε+ if x ∈ Ω+,
(1.5)

χ+ = χΩ+ is the characteristic function of Ω+, and φ∞ is a given function on the boundary

∂Ω. The function φ̂C in (1.3) is the Coulomb potential arising from the point charges Qi at
xi (i = 1, . . . , N) in the medium with the dielectric coefficient ε−, serving as a reference field.
It is given by

φ̂C(x) =
N∑
i=1

Qi

4πε−|x− xi|
∀x ∈ R3 \ {x1, . . . , xN}. (1.6)

We prove that the functional FΓ[c] has a unique minimizer cΓ = (cΓ,1, . . . , cΓ,M) in a class of
admissible concentrations, and derive the equilibrium conditions δcjFΓ[cΓ] = 0 (j = 1, . . . ,M),
which lead to the (modified) Botlzmann distributions

cΓ,j = c∞j e
−βqj(ψΓ−φΓ,∞/2) in Ω+, j = 1, . . . ,M,

where ψΓ is the corresponding electrostatic potential and φΓ,∞ : Ω → R is the unique weak
solution to the boundary-value problem{

∇ · εΓ∇φΓ,∞ = 0 in Ω,

φΓ,∞ = φ∞ on ∂Ω.
(1.7)

We also prove that ψΓ is the unique solution to the boundary-value problem of the dielectric-
boundary PB equation∇ · εΓ∇ψ − χ+B

′
(
ψ − φΓ,∞

2

)
= −

N∑
i=1

Qiδxi in Ω,

ψ = φ∞ on ∂Ω,

(1.8)
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where B is given in (1.2); cf. Theorem 2.1 and Theorem 2.2. With the Boltzmann distri-
butions, the minimum free energy minFΓ[·] = FΓ[cΓ] can be expressed via the electrostatic
potential ψΓ. We shall denote this minimum free energy by E[Γ], as ultimately it depends on
the dielectric boundary Γ.

We define the (normal component of the) dielectric boundary force to be −δΓE[Γ], the
negative first variation of the functional E[Γ] with respect to the variation of the boundary
Γ. The boundary variation is defined via a smooth vector field. Specifically, let V : R3 → R3

be a smooth map vanishing outside a small neighborhood of the dielectric boundary Γ. Let
x = x(t,X) be the solution map of the dynamical system defined by [3, 18,30,46]

dx(t,X)

dt
= V (x(t,X)) ∀ t ∈ R and x(0, X) = X ∀X ∈ R3.

Such solution maps define a family of transformations Tt : R3 → R3 (t ∈ R) by Tt(X) =
x(t,X) for any X ∈ R3. The variational derivative (i.e., the shape derivative) of the functional
E[Γ] in the direction of V : R3 → R3 is defined to be

δΓ,VE[Γ] =
d

dt
E[Γt(V )]

∣∣∣∣
t=0

,

if it exists, where Γt(V ) = {x(t,X) : X ∈ Γ} and E[Γt(V )] is defined similarly using Γt(V )
instead of Γ.

We prove that δΓ,VE[Γ] exists, and is an integral over Γ of the product of V · n and some
function that is independent of V , where n is the unit normal along Γ, pointing from Ω− to
Ω+. This function on Γ is identified as the variational derivative of E[Γ] and is denoted by
δΓE[Γ]. We obtain an explicit formula for δΓE[Γ]. If the boundary value φ∞ = 0 on Γ, then

δΓE[Γ] = −1

2

(
1

ε+

− 1

ε−

)
|εΓ∂nψΓ|2 +

1

2
(ε+ − ε−) |∇ΓψΓ|2 +B (ψΓ) , (1.9)

where ψΓ is the unique solution to (1.8), εΓ∂nψΓ is the common value from both sides of Γ,
and ∇Γ = (I−n⊗n)∇ (with I the 3×3 identity matrix) is the tangential derivative along Γ.
Additional terms arise from a general, inhomogeneous boundary value φ∞; cf. Theorem 3.2.

To describe the electrostatic free energy with point charges and to prove the main the-
orem, Theorem 3.2, we introduce various auxiliary functions that are weak solutions to the
boundary-value problems of the operator −∆ or −∇· εΓ∇, with or without the point charges∑N

i=1 Qiδxi and with homogeneous or inhomogeneous Dirichlet boundary conditions. We also
prove several lemmas, Lemmas 4.1–4.5, on the calculus of boundary variations. Lemma 4.1
is of its own interest. It states that if the vector field V satisfies V · n = 0 on the boundary
Γ, where n is the unit normal along Γ, then for |t| � 1 the set Γt = Γt(V ) is within an
O(t2)-neighborhood of the boundary Γ. Lemmas 4.2–4.5 are on the continuity and differ-
entiability of those functions with respect to boundary variations. Lemma 4.3 states that
the “Γ-derivative” of the function φΓ,∞ which is defined in (1.7) is the unique weak solution

5



ζΓ,V ∈ H1
0 (Ω) to the elliptic interface problem −∇ · εΓ∇ζΓ,V = f in Ω, where f involves φΓ,V

and V . Moreover,

φΓt(V ),∞ ◦ Tt − φΓ,∞

t
→ ζΓ,V in H1(Ω) as t→ 0.

Lemma 4.4 and Lemma 4.5 generalize the result to other Γ-dependent functions, including
the electrostatic potential ψΓ that is the unique soltuion to the boundary-value problem of
the dielectric-boundary PB equation (1.8).

We now make several remarks on our results. In our model, we use an inhomogeneous
Dirichlet boundary condition for the electrostatic potential (cf. (1.4) and (1.8)) that is com-
mon in modeling and analysis [7, 34, 53]. The nonzero Dirichlet boundary value leads to an
extra term φΓ,∞/2 in the Boltzmann distribution and hence in the PB equation (1.8). If
there are surface charges on the boundary ∂Ω, then one can also use the Neumann boundary
condition for the electrostatic potential on ∂Ω. In that case, the electrostatic energy should
include a boundary integral term involving the surface charge density; cf. [36, 41].

If we use the homogeneous Dirichlet boundary condition φ∞ = 0 for the electrostatic
potential, then the dielectric boundary force points from the high dielectric solvent region Ω+

to the low dielectric solute region Ω−; cf. (1.9). Such prediction of a macroscopic property
is consistent with a microscopic picture of molecular forces that charged solute molecules
polarize the surrounding aqueous solvent, which is otherwise electrically neutral, generating
an additional electric filed that attracts the solvent to the solutes [13]. In the limiting case
where the region Ω+ is conducting, i.e., the dielectric coefficient in Ω+ is infinity, then it
is expected that no bounded region Ω− will minimize the sum of the electrostatic energy
and the surface energy [42]. If a small, high-dielectric solvent region is surrounded by the
low-dielectric solute molecules (such as a few water molecules buried in a protein), then the
competition between the solute-solvent interfacial tension force and the dielectric boundary
force results an equilibrium solute-solvent interface which is however unstable with long-wave
perturbations, as shown in the stability analysis in [8]; cf. also [38]. Such analysis explains
partially why water molecules in proteins are metastable [51,52]. It remains open to confirm
if the dielectric boundary force still points from the high-dielectric solvent region to the
low-dielectric solute region for a general inhomogeneous Dirichlet boundary value φ∞.

In [4, 5, 50], the authors use the Maxwell stress tensor to define and derive the dielectric
boundary force given an electrostatic potential that is determined by the dielectric-boundary
PB equation. The existence of such a stress tensor in the presence of dielectric boundary
is implicitly assumed. The shape derivative approach seems first introduced in [35] to de-
fine and derive the dielectric boundary force. However, approximations of point charges by
smooth functions are made there, and the derivation of the boundary force utilizes heavily on
the underlying variational principle that the electrostatic potential extremizes the dielectric-
boundary PB free-energy functional. This approach is applied to the electrostatic force acting
on membranes [43]. Here, we use the direct calculations to derive the boundary force, which
is a more general approach.

Our study of the dielectric boundary force is closely related to the development of a
variational implicit-solvent model (VISM) for biomolecules [19,20] (cf. also [9–11,49,53,54]).
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Central in the VISM is an effective free-energy functional of all possible dielectric boundaries
that consists mainly of the surface energy of solute molecules, solute-solvent van der Waals
interaction energy, and continuum electrostatic free energy. Minimization of the free-energy
functional with respect to the dielectric boundary yields optimal solute-solvent interfaces, as
well as the solvation free energy. Numerical implementation of such minimization requires
a formula of the first variation of the VISM function, particularly, the dielectric boundary
force. In [37], the authors use the matched asymptotic analysis to derive the sharp-interface
limit of a phase-field VISM [47]. In [15], the authors prove the convergence of the free energy
and force in the phase-field VISM to their sharp-interface counterparts. In particular, they
prove the general result that the variation of the van der Waals–Cahn–Hilliard functional
converges to the mean curvature which is the variation of surface area. The recent work [26]
is a detailed analysis of the electrostatics in molecular solvation through different scaling
regimes arising from the large-number limit of solute particles.

The rest of the paper is organized as follows: In Section 2, we first state our assumptions
and introduce some auxiliary functions. We then prove the existence, uniqueness, and bounds
for the solution to the boundary-value problem of the dielectric-boundary PB equation. We
finally study the electrostatic free-energy functionals of ionic concentrations and electrostatic
potentials, respectively, with a given set of point charges and a dielectric boundary. In Sec-
tion 3, we reformulate the minimum electrostatic free energy, define the dielectric boundary
force, and present the main formula for such force. In Section 4, we prove several lemmas
on the calculus of boundary variations. These lemmas are needed for the proof of the main
theorem on the dielectric boundary force. Finally, in Section 5, we prove the main theorem
(Theorem 3.2) of the dielectric boundary force.

2 The Poisson–Boltzmann Equation and Free-Energy

Functional

2.1 Assumptions and Auxiliary Functions

Unless otherwise stated, we assume the following throughout the rest of the paper:
A1. The set Ω ⊂ R3 is non-empty, bounded, open, and connected. The sets Ω− ⊂ R3 and

Ω+ ⊂ R3 are non-empty, bounded, and open, and satisfy that Ω− ⊂ Ω and Ω+ = Ω\Ω−.
The interface Γ = ∂Ω− = Ω− ∩ Ω+ and the boundary ∂Ω are of the class C3 and C2,
respectively. The unit normal vector at the boundary Γ exterior to Ω− and that at ∂Ω
exterior to Ω are both denoted by n. The N points x1, . . . , xN for some integer N ≥ 1
belong to Ω−; cf. Figure 1. Moreover, there exists a constant s0 > 0 such that

dist (Γ, ∂Ω) ≥ s0; (2.1)

A2. All the integer M ≥ 2, and real numbers β > 0, Λ > 0, Qi ∈ R (1 ≤ i ≤ N), qj 6= 0
and µj ∈ R (1 ≤ j ≤ M), and ε− > 0 and ε+ > 0 are given. Moreover, ε− 6= ε+. The
parameter c∞j is defined by c∞j = Λ−3eβµj (j = 1, . . . ,M). The parameters qj and c∞j
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(1 ≤ j ≤M) satisfy the condition of charge neutrality

M∑
j=1

qjc
∞
j = 0; (2.2)

A3. The function B : R → R is defined in (1.2). The function εΓ ∈ L∞(Ω) is defined in
(1.5). The boundary data φ∞ is the trace of a given function, also denoted by φ∞, in
C2(Ω). (We use the standard notation for Sobolev spaces and other function spaces;
cf. [1, 22,25].)

Note that the function B defined in (1.2) satisfies that B ∈ C∞(R). Since

B′(s) = −
M∑
j=1

qjc
∞
j e
−βqjs and B′′(s) =

M∑
j=1

βq2
j c
∞
j e
−βqjs > 0, ∀s ∈ R,

the function B is strictly convex, and the charge neutrality (2.2) implies that B′(0) = 0.
Hence, s = 0 is the unique minimum point for B with B(s) > B(0) = 0 for all s 6= 0. By the
fact that M ≥ 2 and the charge neutrality (2.2), there exist some qj > 0 and some qk < 0.
Hence, B(±∞) =∞. Similar arguments show that B′(∞) =∞ and B′(−∞) = −∞.

We now introduce several auxiliary functions to treat the point-charge singularities, the
dielectric discontinuity Γ, and the inhomogeneous boundary data φ∞ on ∂Ω. We first recall
that the Coulomb field φ̂C is defined in (1.6). Let φ̂ ∈ φ̂C +H1(Ω) be defined by∫

Ω

ε−∇φ̂ · ∇η dx =
N∑
i=1

Qiη(xi) ∀η ∈ C1
c (Ω), (2.3)

where C1
c (Ω) denotes the class of C1(Ω)-functions that are compactly supported in Ω. Clearly,

we can modify the value of φ̂ on a set of zero Lebesgue measure, if necessary, so that φ̂ is a
C∞-function in Ω \ {x1, . . . , xN}. Moreover, ∆φ̂ = 0 in Ω \ {x1, . . . , xN} and ∆(φ̂− φ̂C) = 0
in Ω. There are infinitely many such functions. We will only use three of them. One of them
is the Coulomb field φ̂ = φ̂C. The other two are φ̂ = φ̂0 and φ̂ = φ̂∞. They are uniquely
determined by the boundary conditions

φ̂0 = 0 on ∂Ω and φ̂∞ = φ∞ on ∂Ω, (2.4)

respectively. Since ∂Ω is C2 and φ∞ ∈ C2(Ω), we have φ̂− φ̂C ∈ H2(Ω); cf. Chapter 8 in [25].
Therefore, all these three functions belong to φ̂C +H2(Ω) ∩ C∞(Ω) ⊂ W 1,1(Ω).

We remark that η ∈ C1
c (Ω) in (2.3) can be replaced by η ∈ H1

0 (Ω) with η|Ω− ∈ C1(Ω−).

To see this, we first note that (2.3) holds true if φ̂ is replaced by φ̂C (cf. (1.6)). Thus,∫
Ω

ε−∇(φ̂− φ̂C) · ∇η dx = 0 ∀η ∈ H1
0 (Ω),

8



as φ̂− φ̂C ∈ H1(Ω) and C1
c (Ω) is dense in H1(Ω). If η ∈ H1

0 (Ω) also satisfies η|Ω− ∈ C1(Ω−),

then ∇φ̂C · ∇η, hence ∇φ̂ · ∇η, is integrable in Ω. Moreover,∫
Ω

ε−∇φ̂ · ∇η dx =

∫
Ω

ε−∇φ̂C · ∇η dx =
N∑
i=1

Qiη(xi),

where the second equality follows from straight forward calculations using the definition of
φ̂C (cf. (1.6)).

We recall that the function φΓ,∞ ∈ H1(Ω) is the unique weak solution to the boundary-
value problem (1.7), defined by φΓ,∞ = φ∞ on ∂Ω and∫

Ω

εΓ∇φΓ,∞ · ∇η dx = 0 ∀η ∈ H1
0 (Ω). (2.5)

By the regularity theory, we have, after modifying possibly the value of φΓ,∞ on a set of zero
Lebesgue measure, that

φΓ,∞ ∈ C(Ω) ∩W 1,∞(Ω) and φΓ,∞|Ωs ∈ C∞(Ωs) ∩H2(Ωs) for s = −,+. (2.6)

Moreover, there exists a constant C = C(Ω, ε+, ε−, φ∞) > 0, independent of Γ, such that

‖φΓ,∞‖W 1,∞(Ω) ≤ C. (2.7)

See [25] (Theorem 8.16) and [39] (Theorem 1.1 and the beginning part of proof of Theorem 1.1)
(also [12]) for the global C(Ω) and W 1,∞ regularities, and the W 1,∞(Ω) estimate, and [32]
(Section 16 of Chapter 3) and [28,29] for the piecewise H2-regularity. By (2.5), we have

∆φΓ,∞ = 0 in Ω− ∪ Ω+. (2.8)

This implies the piecewise C∞-regularity in (2.6). Moreover, since φΓ,∞ ∈ H1
0 (Ω), routine

calculations by (2.5) and the Divergence Theorem imply that [34]

JφΓ,∞KΓ = 0 and JεΓ∂nφΓ,∞KΓ = 0. (2.9)

Throughout, for any function u on Ω that has trace on Γ, we denote

u+ = u|Ω+ , u− = u|Ω− , and JuKΓ = u+ − u− on Γ. (2.10)

Let φ̂Γ,∞ ∈ φ̂C +H1(Ω) be the unique function such that φ̂Γ,∞ = φ∞ on ∂Ω and∫
Ω

εΓ∇φ̂Γ,∞ · ∇η dx =
N∑
i=1

Qiη(xi) ∀η ∈ C1
c (Ω); (2.11)

cf. [21, 40]. If φ̂ = φ̂C, or φ̂0, or φ̂∞, then (2.11) is equivalent to∫
Ω

εΓ∇(φ̂Γ,∞ − φ̂) · ∇η dx = −(ε+ − ε−)

∫
Ω+

∇φ̂ · ∇η dx

9



= (ε+ − ε−)

∫
Γ

∂nφ̂ η dS ∀η ∈ H1
0 (Ω), (2.12)

where the unit normal n at Γ points from Ω− to Ω+. If η ∈ H1
0 (Ω) satisfies η|Ω− ∈ C1(Ω−),

then it follows from (2.12) that∫
Ω

εΓ∇φ̂Γ,∞ · ∇η dx =

∫
Ω

εΓ∇φ̂ · ∇η dx− (ε+ − ε−)

∫
Ω+

∇φ̂ · ∇η dx

=

∫
Ω

ε−∇φ̂ · ∇η dx

=
N∑
i=1

Qiη(xi).

Therefore, we can replace η ∈ C1
c (Ω) in (2.11) by η ∈ H1

0 (Ω) that satisfies η|Ω− ∈ C1(Ω−).

By (2.11) and (2.12), we have, after possibly modifying the value of φ̂Γ,∞ on a set of zero
Lebesgue measure, that

∆(φ̂Γ,∞ − φ̂) = 0 in Ω− and ∆φ̂Γ,∞ = 0 in (Ω− \ {x1, . . . , xN}) ∪ Ω+, (2.13)

Jφ̂Γ,∞KΓ = 0 and JεΓ∂nφ̂Γ,∞KΓ = 0 on Γ. (2.14)

Moreover, it follows from the elliptic regularity theory [12,21,25,28,29,32,39,40] that

φ̂Γ,∞−φ̂ ∈ C(Ω)∩W 1,∞(Ω), (φ̂Γ,∞−φ̂)− ∈ C∞(Ω−)∩H2(Ω−), φ̂+
Γ,∞ ∈ C

∞(Ω+)∩H2(Ω+).
(2.15)

Further, then there exists a constant C > 0 that may depend on Ω, xi and Qi (1 ≤ i ≤ N),
ε+, ε−, φ∞, and φ̂, but does not depend on Γ, such that

‖φ̂Γ,∞ − φ̂‖W 1,∞(Ω) ≤ C. (2.16)

These results (2.15) and (2.16) follow from the same arguments used above (cf. the descrip-
tion below (2.7)) applied to (2.11) with η ∈ C1

c (Ω) so chosen that the support of η is in a
neighborhood of Γ that excluding the sigularities xi (i = 1, . . . , N).

For any g ∈ H−1(Ω), let LΓg ∈ H1
0 (Ω) be the unique weak solution (defined using test

functions in H1
0 (Ω)) to the boundary-value problem

∇ · εΓ∇LΓg = −g in Ω and LΓg = 0 on ∂Ω. (2.17)

This defines a linear, continuous, and self-adjoint operator LΓ : H−1(Ω)→ H1
0 (Ω). The map

g 7→ ‖g‖LΓ
:=
√
〈g, LΓg〉H−1(Ω),H1

0 (Ω) =

[∫
Ω

εΓ|∇(LΓg)|2dx
]1/2

(2.18)

defines a norm on H−1(Ω) which is equivalent to the H−1(Ω)-norm. If g ∈ L1(Ω), then we
define g ∈ L1(Ω) ∩H−1(Ω) if

sup

{∫
Ω

gu dx : u ∈ H1
0 (Ω) ∩ L∞(Ω) and ‖u‖H1(Ω) = 1

}
<∞. (2.19)
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In this case, the action of g on H1
0 (Ω) is defined first for any u ∈ H1

0 (Ω) ∩ L∞(Ω) by the
integral of gu over Ω and then extended for any u ∈ H1

0 (Ω) by (2.19) and the fact that
H1

0 (Ω) ∩ L∞(Ω) is dense in H1
0 (Ω).

2.2 The Poisson–Boltzmann Equation

We now study the well-posedness of the boundary-value problem of the Poisson–Boltzmann
(PB) equation (1.8) with a dielectric boundary and point charges.

Definition 2.1. A function ψ ∈ φ̂C +H1(Ω) is a weak solution to the boundary-value problem
of the dielectric-boundary PB equation (1.8), if ψ = φ∞ on ∂Ω, χ+B

′(ψ−φΓ,∞/2) ∈ L1(Ω)∩
H−1(Ω), and∫

Ω

[
εΓ∇ψ · ∇η + χ+B

′
(
ψ − φΓ,∞

2

)
η

]
dx =

N∑
i=1

Qiη(xi) ∀η ∈ C1
c (Ω). (2.20)

Note that we can replace η ∈ C1
c (Ω) in (2.20) by η ∈ H1

0 (Ω) that satisfies η− ∈ C1(Ω−);
cf. the remark below (2.12). The theorem below provides the existence and uniqueness of
the solution to the boundary-value problem of the dielectric-boundary PB equation, and an
equivalent formulation of such a boundary-value problem. These results are essentially proved
in [35]. Here we sketch the proof and add some points that are not included in the previous
proof due to some minor differences between the current and previous statements. Note that
φ̂C + H1(Ω) = φ̂Γ,∞ + H1(Ω). So, we can replace φ̂C by φ̂Γ,∞ in the above definition. Note
also that there is a variational principle for the PB equation; cf. Theorem 3.1.

Theorem 2.1. (1) There exists a unique weak solution ψΓ ∈ φ̂Γ,∞+H1
0 (Ω) of the boundary-

value problem of the dielectric-boundary PB equation (1.8). Moreover, after a possible
modification of ψΓ on a set of zero Lebesgue measure, ψΓ − φ̂Γ,∞ ∈ C(Ω) ∩W 1,∞(Ω),

(ψΓ − φ̂Γ,∞)− ∈ C∞(Ω−)∩H2(Ω−), and ψ+
Γ ∈ C∞(Ω+)∩H2(Ω+). Further, there exists

a constant C > 0 that may depend on Ω, xi and Qi (1 ≤ i ≤ N), ε+, ε−, φ∞, and B,
but does not depend on Γ, such that

‖ψΓ − φ̂Γ,∞‖W 1,∞(Ω) ≤ C. (2.21)

(2) A function ψ ∈ φ̂Γ,∞ + H1(Ω) with χ+B
′(ψ − φΓ,∞/2) ∈ L1(Ω) ∩ H−1(Ω) is the weak

solution to the boundary-value problem of the dielectric-boundary PB equation (1.8) if
and only if it is the unique solution to the following elliptic interface problem:

∆(ψ − φ̂Γ,∞) = 0 in Ω−,

ε+∆ψ −B′
(
ψ − φΓ,∞

2

)
= 0 in Ω+,

JψKΓ = 0 and JεΓ∂nψKΓ = 0 on Γ,

ψ = ψ∞ on ∂Ω.

(2.22)
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Proof. (1) With u = ψ − φ̂Γ,∞ and by (2.11) and (2.20), it is equivalent to show that there

exists a unique uΓ ∈ H1
0 (Ω) such that χ+B

′(uΓ + φ̂Γ,∞ − φΓ,∞/2) ∈ L1(Ω) ∩H−1(Ω), and∫
Ω

[
εΓ∇uΓ · ∇η + χ+B

′
(
uΓ + φ̂Γ,∞ −

φΓ,∞

2

)
η

]
dx = 0 ∀η ∈ H1

0 (Ω). (2.23)

Define

I[u] =

∫
Ω

[
εΓ

2
|∇u|2 + χ+B

(
u+ φ̂Γ,∞ −

φΓ,∞

2

)]
dx ∀u ∈ H1

0 (Ω).

Since B ≥ 0 and B is convex, we can use the direct method in the calculus of variations
to obtain a unique minimizer uΓ ∈ H1

0 (Ω) of the functional I : H1
0 (Ω) → [0,∞]. Moreover,

comparing the values I[uΓ] and I[uΓ,λ] for any constant λ > 0 large enough, where uΓ,λ = uΓ

if |uΓ| ≤ λ and uΓ,λ = λ sign (uΓ) otherwise, we have by the convexity of B that uΓ = uΓ,λ a.e.
Ω for some λ independent on Γ. Hence, uΓ ∈ L∞(Ω), and ‖uΓ‖L∞(Ω) ≤ C for some constant
C > 0 independent of Γ; cf. [35]. This allows the use of the Lebesgue Dominated Convergence
Theorem in the routine calculations of (d/dt)|t=0I[uΓ + tη] = 0 for any η ∈ C1

c (Ω) to obtain
the equation in (2.23). Since C1

c (Ω) is dense in H1
0 (Ω), (2.23) holds true. The convexity of B

now imiplies that uΓ is the unique solution as desired.
The regularity of the soluton ψΓ follows from the elliptic regularity theory [12,21,25,28,29,

32, 39], with the same argument above for the regularity of the function φ̂Γ,∞; cf. (2.15) and
(2.16). Note that the piecewise C∞ smoothness follows from a usual bootstrapping method.

(2) This part of the proof is the same as that given in [34].

2.3 Electrostatic Free-Energy Functional of Ionic Concentrations

We define

X =

{
(c1, . . . , cM) ∈ L1(Ω,RM) : cj = 0 a.e. Ω− for j = 1, . . . ,M and

M∑
j=1

qjcj ∈ H−1(Ω)

}
,

X+ =

{
(c1, . . . , cM) ∈ X : cj ≥ 0 a.e. Ω+ for j = 1, . . . ,M

}
.

Here, for any g ∈ L1(Ω), we define g ∈ L1(Ω) ∩H−1(Ω) by (2.19). The space X is a Banach
space equipped with the norm

‖c‖X =
M∑
j=1

‖cj‖L1(Ω) +

∥∥∥∥∥
M∑
j=1

qjcj

∥∥∥∥∥
H−1(Ω)

∀c = (c1, . . . , cM) ∈ X .

Moreover, X+ is a convex and closed subset of X . For any c = (c1, . . . , cM) ∈ X , stan-
dard arguments (cf. [21, 22, 25, 40]) imply that there exists a unique weak solution ψ to the
boundary-value problem (1.4), defined by ψ ∈ φ̂C +H1(Ω), ψ = φ∞ on ∂Ω, and∫

Ω

εΓ∇ψ · ∇η dx =
N∑
i=1

Qiη(xi) +

∫
Ω+

(
M∑
j=1

qjcj

)
η dx ∀η ∈ C1

c (Ω), (2.24)
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Equivalently, if φ̂ ∈ φ̂C +H1(Ω) satisfies (2.3), then∫
Ω

εΓ∇(ψ − φ̂) · ∇η dx =

∫
Ω+

[
(ε− − ε+)∇φ̂ · ∇η +

(
M∑
j=1

qjcj

)
η

]
dx ∀η ∈ H1

0 (Ω).

Clearly, ψ− φ̂ is harmonic in Ω−. Moreover, it follows from the definition of φ̂Γ,∞ (cf. (2.11))
and LΓ (cf. (2.17)) that

ψ = φ̂Γ,∞ + LΓ

(
M∑
j=1

qjcj

)
. (2.25)

Since the function s 7→ s log s (s ≥ 0) is bounded below and Ω is bounded, FΓ[c] > −∞
for any c ∈ X+, where FΓ[c] is defined in (1.3).

Theorem 2.2. Let ψΓ be the unique weak solution to the dielectric-boundary PB equation
(1.8). For each j ∈ {1, . . . ,M}, define cΓ,j : Ω→ [0,∞) by

cΓ,j(x) =

{
0 if x ∈ Ω−,

c∞j e
−βqj[ψΓ(x)−φΓ,∞(x)/2] if x ∈ Ω+.

(2.26)

Then cΓ := (cΓ,1, . . . , cΓ,M) ∈ X+ and ψΓ is the electrostatic potential corresponding to cΓ,
i.e., the unique weak solution to (1.4) with cj replaced by cΓ,j (j = 1, . . . ,M). Moreover, cΓ

is the unique minimizer of the functional FΓ : X+ → (−∞,∞] defined in (1.3), and

FΓ[cΓ] =
1

2

N∑
i=1

Qi(ψΓ − φ̂C)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
−B

(
ψΓ −

φΓ,∞

2

)]
dx. (2.27)

Proof. By the properties of ψΓ (cf. Theorem 2.1) and φΓ,∞ (cf. (2.7)), we have cΓ ∈ X+. If we
replace cj in (1.4) by cΓ,j defined in (2.26) and note the definition of B in (1.2), we get exactly
the PB equation (1.8). Therefore, the unique solution ψΓ to the boundary-value problem of
the PB equation (1.8) is also the unique solution to the boundary-value problem of Poisson’s
equation (1.4) corresponding to cΓ.

We now prove that cΓ is the unique minimizer of FΓ : X+ → (−∞,∞]. To do so, we
first re-write the functional FΓ. Let c = (c1, . . . , cM) ∈ X+ and let ψ ∈ φ̂C + H1(Ω) be the
corresponding electrostatic potential, i.e., the weak solution to (1.4) defined in (2.24). Denote
f =

∑M
j=1 qjcj. Since f = 0 a.e. in Ω−, we have by the definition of LΓ (cf. (2.17)) that LΓf

is harmonic in Ω−. Moreover,

N∑
i=1

Qi (LΓf) (xi) =

∫
Ω+

(φ̂Γ,∞ − φΓ,∞)f dx;
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cf. Lemma 3.2 in [34] (where L/(4π) and G/(4π) are our LΓ and φ̂Γ,∞ − φΓ,∞ here, respec-

tively). This, together with (2.25) and the fact that all ψ − φ̂C, φ̂Γ,∞ − φ̂, and LΓf are
harmonic in Ω−, implies that

N∑
i=1

Qi(ψ − φ̂C)(xi) =
N∑
i=1

Qi(LΓf)(xi) +
N∑
i=1

Qi(φ̂Γ,∞ − φ̂C)(xi)

=

∫
Ω+

(φ̂Γ,∞ − φΓ,∞)

(
M∑
j=1

qjcj

)
dx+

N∑
i=1

Qi(φ̂Γ,∞ − φ̂C)(xi).

With this and (2.25), we can rewrite FΓ[c] (1.3) as

FΓ[c] =

∫
Ω+

[
1

2

(
M∑
j=1

qjcj

)
LΓ

(
M∑
j=1

qjcj

)
+

M∑
j=1

(
β−1cj log cj + αjcj

)]
dx+ E0,Γ, (2.28)

where all αj = αj(x) (j = 1, . . . ,M) and E0,Γ are independent of c, given by

αj(x) = qj

[
φ̂Γ,∞(x)− 1

2
φΓ,∞(x)

]
+ β−1 (3 log Λ− 1)− µj ∀x ∈ Ω, j = 1, . . . ,M, (2.29)

E0,Γ =
1

2

N∑
i=1

Qi(φ̂Γ,∞ − φ̂C)(xi) + β−1|Ω+|
M∑
j=1

c∞j .

Here and below, we denote by |A| the Lebesgue measure of A when no confusion arises.
We now compare FΓ[c] and FΓ[cΓ]. By Taylor’s expansion, we have for any s, t ∈ (0,∞)

that

s log s− t log t = (1 + log t)(s− t) +
1

2r
(s− t)2 ≥ (1 + log t)(s− t),

where r is in between s and t. Consequently, by (2.28) and the fact that LΓ is self-adjoint,
we have

FΓ[c]− FΓ[cΓ] =

∫
Ω

1

2

(
M∑
j=1

qj(cj − cΓ,j)

)
LΓ

(
M∑
j=1

qj(cj − cΓ,j)

)
dx

+

∫
Ω

(
M∑
j=1

qj(cj − cΓ,j)

)
LΓ

(
M∑
k=1

qkcΓ,k

)
dx

+ β−1

M∑
j=1

∫
Ω

(cj log cj − cΓ,j log cΓ,j) dx+
M∑
j=1

∫
Ω

(cj − cΓ,j)αj dx

≥
M∑
j=1

∫
Ω

(cj − cΓ,j)

[
qjLΓ

(
M∑
k=1

qkcΓ,k

)
+ β−1 (1 + log cΓ,j) + αj

]
dx.
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It follows from the fact that c∞j = Λ−3eβµj (cf. the assumption (A2)), (2.25), (2.26), and (2.29)
that the quantity inside the brackets in the above integral vanishes. Thus, F [c] ≥ F [cΓ].
Hence, cΓ is a minimizer of FΓ : X+ → (−∞,∞]. Since FΓ is convex, and in particular,
s 7→ s log s is strictly convex on (0,∞), the minimizer of FΓ is unique; cf. [34].

Finally, we obtain (2.27) from (1.3) with ψΓ and cΓ replacing ψ and c, respectively, (1.2),
and (2.26).

3 Dielectric Boundary Force

3.1 Electrostatic Free Energy of a Dielectric Boundary

Given any dielectric boundary Γ, we denote by

E[Γ] = min
c∈X+

FΓ[c], (3.1)

the minimum electrostatic free energy given in Theorem 2.2 (cf. (2.27)). We reformulate E[Γ]
to convert the discrete part of the energy into volume integrals that will be useful when we
calculate the variation of E[Γ] with respect to the boundary variation of Γ.

Lemma 3.1. Let Γ be a dielectric boundary satisfying the part of the assumption A1 on Γ
in Subsection 2.1. Let ψΓ ∈ φ̂C +H1(Ω) be the corresponding solution to the boundary-value
problem of PB equation (1.8). We have

E[Γ] = −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · ∇φ̂0 dx+
1

2

N∑
i=1

Qi(φ̂∞ − φ̂C)(xi), (3.2)

where all the functions φ̂C, φ̂0, φ̂∞, φΓ,∞, and φ̂Γ,∞ are defined in Subsection 2.1.

Proof. We first prove an elementary identity. Let u ∈ C2(Ω−)∩C1(Ω−) be such that ∆u = 0 in
Ω−. Let v ∈ φ̂C+H1(Ω−)∩C(Ω−), in particular, v = φ̂C, φ̂0, φ̂∞, or φ̂Γ,∞ (restricted onto Ω−).
Denote Bα = ∪Ni=1B(xi, α) for 0 < α � 1 and ν the unit normal at ∂B(α) = ∪Ni=1∂B(xi, α),
pointing toward xi (i = 1, . . . , N). Since the unit normal n at Γ points from Ω− to Ω+, and
since v = φ̂C + v̂ for some v̂ ∈ H1(Ω−) ∩ C(Ω−) and φ̂C is given in (1.6), we have∫

Ω−

∇u · ∇v dx = lim
α→0+

∫
Ω−\Bα

∇u · ∇v dx

=

∫
Γ

∂nu v dS + lim
α→0+

N∑
i=1

∫
∂B(xi,α)

∂νu v dS

=

∫
Γ

∂nu v dS. (3.3)
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Denoting now W = (1/2)
∑N

i=1Qi(φ̂∞ − φ̂C)(xi), we have by (3.1) and (2.27) that

E[Γ] =
1

2

N∑
i=1

Qi(φ̂Γ,∞ − φ̂∞)(xi) +
1

2

N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
−B

(
ψΓ −

φΓ,∞

2

)]
dx+W. (3.4)

We first consider the first term in (3.4). Note that the unit vector n normal to Γ points from
Ω− to Ω+. We have by Green’s formula that

1

2

N∑
i=1

Qi(φ̂Γ,∞ − φ̂∞)(xi)

=

∫
Ω

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx [by (2.3) with φ̂ = φ̂0 and η = φ̂Γ,∞ − φ̂∞]

=

∫
Ω−

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

=

∫
Γ

ε−
2
φ̂0∂n(φ̂−Γ,∞ − φ̂∞) dS +

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx [by (3.3)]

=

∫
Γ

ε+

2
φ̂0∂nφ̂

+
Γ,∞ dS −

∫
Γ

ε−
2
φ̂0∂nφ̂∞ dS [by (2.14)]

+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

= −
∫
∂Ω+

ε+

2
φ̂0∂nφ̂Γ,∞ dS +

∫
∂Ω+

ε−
2
φ̂0∂nφ̂∞ dS [since φ̂0 = 0 on ∂Ω]

+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

= −
∫

Ω+

ε+

2
∇φ̂0 · ∇φ̂Γ,∞ dx+

∫
Ω+

ε−
2
∇φ̂0 · ∇φ̂∞ dx

+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

=
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · ∇φ̂0 dx.

Considering now the second and third terms in (3.4), we have

1

2

N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
−B

(
ψΓ −

φΓ,∞

2

)]
dx
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=
N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)−
1

2

N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
−B

(
ψΓ −

φΓ,∞

2

)]
dx

=

∫
Ω

εΓ∇φ̂Γ,∞ · ∇(ψΓ − φ̂Γ,∞) dx [by (2.11)]

− 1

2

∫
Ω

[
εΓ∇ψΓ · ∇(ψΓ − φ̂Γ,∞) + χ+B

′
(
ψΓ −

φΓ,∞

2

)
(ψΓ − φ̂Γ,∞)

]
[by (2.20)]

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
−B

(
ψΓ −

φΓ,∞

2

)]
dx

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω

εΓ

2
∇(ψΓ − φ̂Γ,∞) · ∇φ̂Γ,∞ dx+

∫
Ω+

1

2
(φ̂Γ,∞ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
dx

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω

εΓ

2
∇(ψΓ − φ̂Γ,∞) · ∇φ̂Γ,∞ dx

+

∫
Ω+

ε+

2
(φ̂Γ,∞ − φΓ,∞)∆(ψΓ − φ̂Γ,∞) dx [by (2.22) and (2.13) ]

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω

εΓ

2
∇(ψΓ − φ̂Γ,∞) · ∇(φ̂Γ,∞ − φΓ,∞) dx [by (2.5)]

−
∫

Ω+

ε+

2
∇(φ̂Γ,∞ − φΓ,∞) · ∇(ψΓ − φ̂Γ,∞) dx

−
∫

Γ

ε+

2
∂n(ψ+

Γ − φ̂
+
Γ,∞)(φ̂Γ,∞ − φΓ,∞) dS [since φ̂Γ,∞ − φΓ,∞ = 0 on ∂Ω]

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω−

ε−
2
∇(ψΓ − φ̂Γ,∞) · ∇(φ̂Γ,∞ − φΓ,∞) dx

−
∫

Γ

ε−
2
∂n(ψ−Γ − φ̂

−
Γ,∞)(φ̂Γ,∞ − φΓ,∞) dS [by (2.22) with ψ = ψΓ and (2.14) ]

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx. [by (3.3)]

Now (3.2) follows directly from (3.4) and the above two expressions.
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We define GΓ : φ̂Γ,∞ +H1
0 (Ω)→ R ∪ {−∞} by

GΓ[ψ] = −
∫

Ω

εΓ

2
|∇(ψ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψ − φΓ,∞

2

)
dx+ gΓ,∞,

where

gΓ,∞ =
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · ∇φ̂0 dx+
1

2

N∑
i=1

Qi(φ̂∞ − φ̂C)(xi).

We shall call GΓ the PB energy functional. Note that by Lemma 3.1, E[Γ] = GΓ[ψΓ]. In fact,
we have the following variational principle for the PB energy functional.

Theorem 3.1. The Euler–Lagrange equation of the PB energy functional GΓ : φ̂Γ,∞ +
H1

0 (Ω)→ R∪{−∞} is exactly the dielectric-boundary PB equation. Moreover, the functional
GΓ[·] is uniquely maximized over φ̂Γ,∞ + H1

0 (Ω) by the solution ψΓ to the boundary-value
problem of the PB equation (1.8), and the maximum value is exactly E[Γ].

Proof. Direct calculations verify that the Euler–Lagrange equation for the PB energy func-
tional GΓ[·] is indeed the dielectric-boundary PB equation; cf. Definition 2.1. The exis-
tence of a unique maximizer can be proved exactly the same way as in the proof of Theo-
rem 2.1. These, together with Lemma 3.1, imply that the maximum value of the free energy
is GΓ[ψΓ] = E[Γ].

We remark that the PB functional GΓ[·] is maximized, not minimized, among all the
admissible electrostatic potentials. In general, for a charged system occupying a region D ⊆
R3 with the dielectric coefficient ε and charge density ρ ∈ L2(D), the commonly used energy
functional of electrostatic potentials ψ is given by

ψ 7→
∫
D

(
−ε

2
|∇ψ|2 + ρψ

)
dx.

With suitable boundary conditions, this functional is maximized by a unique electrostatic
potential. This maximizer is exactly the solution to Poisson’s equation, which is the Euler–
Lagrange equation of this functional. Moreover, the maximum value of the functional is
exactly the electrostatic energy corresponding to the potential determined by Poisson’s equa-
tion. See [7] for more related discussions.

3.2 Definition and Formula of the Dielectric Boundary Force

Let Γ be a dielectric boundary as given in the assumption A1 in Subsection 2.1. Let φ : R3 →
R be the signed distance function to Γ, negative in Ω− (inside Γ) and positive in R3 \ Ω−
(outside Γ). Then, n = ∇φ is exactly the unit normal along Γ, pointing from Ω− to Ω+.
Since Γ is assumed to be of the class C3, there exists d0 > 0 with

d0 <
1

2
min

(
dist (Γ, ∂Ω), min

1≤i≤N
dist (xi,Γ)

)
18



such that the signed distance function φ is a C3-function and ∇φ 6= 0 in the neighborhood

N0(Γ) = {x ∈ Ω : dist (x,Γ) < d0} (3.5)

in Ω of Γ; cf. [25] (Section 14.6) and [31]. Define

V = {V ∈ C2
c (R3,R3) : supp (V ) ⊂ N0(Γ)}. (3.6)

Let V ∈ V . For any X ∈ R3, let x = x(t,X) be the unique solution to the initial-value
problem

ẋ = V (x) (t ∈ R) and x(0, X) = X, (3.7)

where a dot denotes the derivative with respect to t. Define Tt(X) = x(t,X) for any X ∈ R3

and any t ∈ R. Then, {Tt}t∈R is a family of diffeomorphisms and C2-maps from R3 to R3

with T0 = I the identity map and T−t = T−1
t for any t ∈ R.

Let t ∈ R. Since supp (V ) ⊂ N0(Γ) ⊂ Ω, we have Tt(Ω) = Ω and Tt(∂Ω) = ∂Ω. Clearly,
Tt(Ω−) ⊂ Ω and Tt(Ω+) = Ω\Tt(Ω−). Moreover, Γt := Tt(Γ) = ∂Tt(Ω−) = Tt(Ω−)∩Tt(Ω+) is
of class C2. Note that xi ∈ Tt(Ω−) and Tt(xi) = xi for all i = 1, . . . , N. Analogous to (1.5), εΓt

is defined correspondingly with respect to Tt(Ω−) and Tt(Ω+). We shall denote Γt = Γt(V )
to indicate the dependence of Γt on V ∈ V . For each t ∈ R, the electrostatic free energy
E[Γt(V )] is defined in (3.1) (cf. also (3.2)) with Γt = Γt(V ) replacing Γ.

Definition 3.1. Let V ∈ V . The first variation of E[Γ] with respect to the perturbation of Γ
defined by V is

δΓ,VE[Γ] =
d

dt
E[Γt(V )]

∣∣∣∣
t=0

= lim
t→0+

E[Γt(V )]− E[Γ]

t
,

if the limit exists.

We recall that the tangential gradient along a dielectric boundary Γ is given by ∇Γ =
(I − n ⊗ n)∇, where I is the identity matrix. The following theorem provides an explicit
formula of the first variation δΓ,VE[Γ], and its proof is given in Section 5:

Theorem 3.2. Let Γ be a given dielectric boundary as described in the assumption A1 in
Subsection 2.1. Let ψΓ ∈ φ̂Γ,∞ + H1

0 (Ω) be the unique weak solution to the boundary-value
problem of the dielectric-boundary PB equation (1.8). Then, for any V ∈ V, the first variation
δΓ,VE[Γ] exists, and is given by

δΓ,VE[Γ] =

∫
Γ

qΓ(V · n) dS,

where

qΓ = −1

2

(
1

ε+

− 1

ε−

)(
|εΓ∂nψΓ|2 − εΓ∂nψΓεΓ∂nφΓ,∞

)
+
ε+ − ε−

2

(
|∇ΓψΓ|2 −∇ΓψΓ · ∇ΓφΓ,∞

)
+B

(
ψΓ −

φΓ,∞

2

)
. (3.8)

We identify qΓ in (3.8) as the first variation of E[Γ] and denote it as qΓ = δΓE[Γ]. We call
−δΓE[Γ] the (normal component of the) dielectric boundary force.
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4 Some Lemmas: The Calculus of Boundary Variations

4.1 Properties of the Transformation Tt

We first recall some properties of the family of transformations Tt : R3 → R3 (t ∈ R) defined
by (3.7) in Subsection 3.2 above via a vector field V ∈ C2

c (R3,R3). These properties hold
true if we change R3 to Rd with a general dimension d ≥ 2. They can be proved by direct
calculations; cf. [18] (Section 4 of Chapter 9).

(1) Let X ∈ R3 and t ∈ R. Let ∇Tt(X) be the gradient matrix of Tt at X with its entries
(∇Tt(X))ij = ∂jT

i
t (X) (i, j = 1, 2, 3), where T it is the ith component of Tt. Let

Jt(X) = det∇Tt(X). (4.1)

Then for each X ∈ R3 the function t 7→ Jt(X) is a C2-function and

dJt
dt

= ((∇ · V ) ◦ Tt)Jt,

where ◦ denotes the composition of functions or maps. Clearly, ∇T0 = I, the identity
matrix, and J0 = 1. Moreover,

Jt(X) = 1 + t(∇ · V )(X) +H(t,X)t2 ∀t ∈ R ∀X ∈ R3, (4.2)

where H(t,X) satisfies

sup{|H(t,X)| : t ∈ R, X ∈ R3} <∞, (4.3)

since V is compactly supported.
(2) For each t ∈ R, we define AV (t) : R3 → R by

AV (t)(X) = Jt(X) (∇Tt(X))−1 (∇Tt(X))−T , (4.4)

where a superscript T denotes the matrix transpose. Clearly, A(t) ∈ C1(R3,R3×3), and
the t-derivative of AV (t) at each point in R3 is

A′V (t) =
[
((∇ · V ) ◦ Tt)− (∇Tt)−1((∇V ) ◦ Tt)∇Tt
−(∇Tt)−1((∇V ) ◦ Tt)T (∇Tt)

]
AV (t). (4.5)

In particular
A′V (0) = (∇ · V )I −∇V − (∇V )T . (4.6)

Moreover,

AV (t)(X) = I + tA′V (0)(X) +K(t,X)t2 ∀t ∈ R ∀X ∈ R3, (4.7)

where K(t,X) satisfies

sup{|K(t,X)| : t ∈ R, X ∈ R3} <∞. (4.8)
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(3) For any u ∈ L2(Ω) and t ∈ R, u ◦ Tt ∈ L2(Ω) and u ◦ T−1
t ∈ L2(Ω). Moreover,

lim
t→0

u ◦ Tt = u and lim
t→0

u ◦ T−1
t = u in L2(Ω). (4.9)

For any u ∈ H1(Ω) and t ∈ R, u ◦ Tt ∈ H1(Ω) and u ◦ T−1
t ∈ H1(Ω). Moreover,

∇(u ◦ T−1
t ) = (∇T−1

t )T
(
∇u ◦ T−1

t

)
and ∇(u ◦ Tt) = (∇Tt)T (∇u ◦ Tt) , (4.10)

lim
t→0

u ◦ Tt = u and lim
t→0

u ◦ T−1
t = u in H1(Ω). (4.11)

If u ∈ H2(Ω), then

lim
t→0

∥∥∥∥u ◦ Tt − ut
−∇u · V

∥∥∥∥
H1(Ω)

= 0. (4.12)

4.2 Tangential Force

This is a geometrical property on the effect of tangential component of a velocity vector field
to the motion of an interface. We shall state and prove it for a general d-dimensional space
Rd with d ≥ 2. We assume that Γ is a C3, closed, hypersurface in Rd. We denote as before
the interior and exterior of Γ by Ω− and Ω+, respectively. We also denote by n the unit
vector normal to the surface Γ at a point on Γ, pointing from the interior to exterior of Γ.
We assume that V ∈ C2

c (Rd,Rd) and define the transformation Tt : Rd → Rd (t ∈ R) by
Tt(X) = x(t,X) for any X ∈ Rd and t ∈ R, where x = x(t,X) is the unique solution to the
initial-value problem (3.7).

Lemma 4.1. If V · n = 0 on Γ, then there exist t0 > 0 and C > 0, depending on Γ and V ,
such that

dist (Tt(X),Γ) ≤ Ct2 ∀X ∈ Γ ∀t ∈ R with |t| ≤ t0, (4.13)∣∣{x ∈ Rd : χTt(Ωs)(x) 6= χΩs(x)
}∣∣ ≤ Ct2 if |t| ≤ t0, s = − or + . (4.14)

Proof. We first prove (4.13). Since Γ is of C3, there exist finitely many open balls in Rd

such that their union covers Γ and that the intersection of Γ with each of such open balls
is the graph of a C3 function in a local coordinate system. Let us fix one of such open
balls, B, and assume without loss of generality that the corresponding C3-function is given
by h :

∏d−1
j=1(aj − δ, bj + δ)→ R for some aj, bj ∈ R with aj < bj (j = 1, . . . , d− 1) and δ > 0,

where B ∩ Γ is the graph of h on
∏d−1

j=1(aj − δ, bj + δ). Here, we use the local coordinate
system depending on B with the notation

X = (X ′, Xd) ∈ Rd, X ′ = (X1, · · · , Xd−1) ∈ Rd−1, Xd ∈ R.

So, Xd = h(X ′) for all X ′ ∈
∏d−1

j=1(aj − δ, bj + δ). We shall assume that δ > 0 is small enough
so that the corresponding concentric balls with radius reduced by δ still cover Γ, and that
in particular the union of the graphs of h on

∏d−1
j=1(aj, bj) with all open balls B is still Γ.
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Moreover, since all Γ and Tt (t ∈ R) are smooth, there exists t′0 ∈ (0, 1) such that, for any
t ∈ R with |t| ≤ t′0 and for any X = (X ′, Xd) ∈ Γ with X ′ ∈

∏d−1
j=1(aj, bj), the coordinate

(Tt(X))′ of Tt(X) = ((Tt(X))′, (Tt(X))d) is still in
∏d−1

j=1(aj−δ, bj +δ), the domain of h. With
this setup, we shall prove that there exist t0 ∈ (0, t′0) and C > 0 such that

dist (Tt(X0),Γ) ≤ Ct2 if X0 = (X ′0, X0d) ∈ Γ with X ′0 ∈
d−1∏
j=1

(aj, bj) and |t| ≤ t0. (4.15)

This then implies (4.13).

X ′

Xd

Γ : Xd = h(X ′)

n(X0)

X0

X ′
0P ′

t

Pt

Qt

Tt(X0)

S0

Figure 2: A local graph representation of the surface Γ.

Let us fix an arbitrary point X0 = (X ′0, X0d) ∈ Γ with X ′0 ∈
∏d−1

j=1(aj, bj) and X0d = h(X ′0);
cf. Figure 2. The equation for the plane, S0, that is tangent to the surface Γ at X0 ∈ Γ is
given by

(X −X0) · n(X0) = 0 with X = (X ′, Xd) ∈ Rd,

where n(X0) is the unit vector normal to Γ at X0,

n(X0) =
(−∇X′h(X ′0), 1)√
1 + |∇X′h(X ′0)|2

. (4.16)

Let t ∈ R with |t| ≤ t′0. Denote by Pt = (P ′t , Ptd) ∈ S0 the point of the orthogonal projection
of the vector Tt(X0)−X0 on this tangent plane S0, given by

Pt = − [(Tt(X0)−X0) · n(X0)]n(X0) + Tt(X0). (4.17)

Denote
Qt = (Q′t, Qtd) = (P ′t , h(P ′t)) ∈ Γ. (4.18)

We show that
|Tt(X0)−Qt| ≤ Ct2 if |t| ≤ t0 (4.19)
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for some constants t0 ∈ (0, 1) and C > 0 independent of X0. This should imply (4.15) as

dist (Tt(X0),Γ) ≤ |Tt(X0)−Qt|.

To prove (4.19), it suffices by the triangle inequality to prove

|Tt(X0)− Pt| ≤ Ct2, (4.20)

|Pt −Qt| = |Ptd −Qtd| ≤ Ct2, (4.21)

for all t with |t| ≤ t0. Here and below in the proof, C denotes a generic constant independent
of X0 and t ∈ [−t0, t0]. Since V ∈ C2

c (R3,R3), we have by (3.7) that

∂ttTt(X) = ∂ttx(t,X) = ∂t(V (x(t,X))) = (∇V (x(t,X)))∂tx(t,X)

= (∇V (x(t,X)))V (x(t,X)) ≤ C ∀t ∈ R ∀X ∈ Rd.

Therefore, by Taylor’s expansion, (4.17), (3.7), the fact that |n(X0)| = 1, and the assumption
that V (X0) · n(X0) = 0, we have

|Tt(X0)− Pt| = |[x(t,X0)−X0] · n(X0)|
≤ |x(0, X0)−X0|+ |t∂tx(0, X0) · n(X0)|+ Ct2

= |tV (X0) · n(X0)|+ Ct2

= Ct2,

proving (4.20).
Since V is compactly supported, we have by (3.7) and Taylor’s expansion that

|Tt(X0)−X0| = |x(t,X0)−X0| = |t∂tx(ξt, X0)| = |t||V (x(ξt, X0))| ≤ C|t|,

where ξt is in between 0 and t. This and (4.20) imply

|P ′t −X ′0| ≤ |Pt −X0| ≤ |Pt − Tt(X0)|+ |Tt(X0)−X0| ≤ C|t| if |t| < t0. (4.22)

By (4.18) and Taylor’s expansion,

Qtd = h(P ′t)

= h(X ′0) +∇X′h(X ′0) · (P ′t −X ′0) +
1

2
∇2
X′h(Y ′t )(P

′
t −X ′0) · (P ′t −X ′0) (4.23)

for some Y ′t ∈
∏d−1

j=1(aj, bj). Since (Pt −X0) · n(X0) = 0, X0d = h(X ′0), and n(X0) is given by
(4.16), we have that

Ptd = h(X ′0) +∇X′h(X0) · (P ′t −X ′0).

This, together with (4.23) and (4.22), implies (4.21). The constant C depends on h and V ,
and hence on Γ and V only.
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We now prove (4.14). We only consider the case s = −, as the case s = + can be treated
similarly. Moreover, for t = 0, the inequality in (4.14) holds true obviously, since T0 is the
identity map. So, let t ∈ R be such that 0 < |t| ≤ t0. We further assume that 0 < t ≤ t0 as
the case −t0 ≤ t < 0 is similar.

We claim that

Ω−∆Tt(Ω−) := (Ω− \ Tt(Ω−)) ∪ (Tt(Ω−) \ Ω−) ⊆ {X ∈ Rd : dist (X,Γ) ≤ Ct2}, (4.24)

where the constant C is exactly the same as in (4.13). In fact, if X ∈ Ω− \ Tt(Ω−), then
X ∈ Ω− and T−t(X) ∈ Ω+. Hence, {Ts(T−t(X))}0≤s≤t is a C3-curve in Rd, connecting one
endpont T0(T−t(X)) = T−t(X) ∈ Ω+ to the other Tt(T−t(X)) = X ∈ Ω−. Since Γ is a closed
hypersurface in Rd, there must exist s0 ∈ (0, t) such that Ts0(T−t(X)) = Ts0−t(X) ∈ Γ. Hence,
by (4.13) with t− s0 and Ts0−t(X) replacing t and X, respectively,

dist (X,Γ) = dist (Tt−s0(Ts0−t(X)),Γ) ≤ C(t− s0)2 ≤ Ct2.

Similarly, if X ∈ Tt(Ω−) \ Ω−, then dist (X,Γ) ≤ Ct2. Hence, (4.24) holds true.
By (4.24), we have∣∣{X ∈ Rd : χΩ−(t) 6= χΩ−(X)}

∣∣ = |Ω−∆Tt(Ω−)| ≤
∣∣{X ∈ Rd : dist (X,Γ) ≤ Ct2}

∣∣ .
This implies (4.14) (for s = −), as the right-hand side of the above inequality is bounded by
Ct2 if |t| ≤ t0 with a possible smaller t0 (cf. Lemma 2.1 in [33]).

4.3 Continuity and Differentiability

Let Γ be a dielectric boundary satisfying the assumptions in A1 of Subsection 2.1 and V ∈ V
(cf. (3.6)). Let {Tt}t∈R be the corresponding family of diffeomorphisms defined by (3.7). Let
φ̂ ∈ W 1,1(Ω) satisfy (2.3). We consider the approximations φ̂ ◦ Tt. Note that φ̂ ◦ Tt − φ̂ and
∇φ̂ · V vanish in any small neighborhood of ∪Ni=1xi, as V (X) = 0 and Tt(X) = X for any X
in such a neighborhood and any t ∈ R.

Lemma 4.2. Let φ̂ ∈ φ̂C +H1(Ω) satisfy (2.3). We have

lim
t→0
‖φ̂ ◦ Tt − φ̂‖H1(Ω) = 0. (4.25)

Moreover, ∇φ̂ · V ∈ H1(Ω) and

lim
t→0

∥∥∥∥∥ φ̂ ◦ Tt − φ̂t
−∇φ̂ · V

∥∥∥∥∥
H1(Ω)

= 0. (4.26)

Proof. Let σ > 0 be such that Bσ := ∪Ni=1B(xi, σ) ⊂ Ω and V = 0 on Bσ. Then, there exists
φ̃ ∈ C∞(Ω) ∩ H2(Ω) such that φ̃ = 0 in Bσ/2 and φ̃ = φ̂ a.e. in Ω \ Bσ. These imply that
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φ̃◦Tt−φ̃ = φ̂◦Tt−φ̂, and ∇φ̃·V = ∇φ̂·V a.e. in Ω for all t. This implies that ∇φ̂·V ∈ H1(Ω).
Moreover, it follows from (4.11) that

lim
t→0
‖φ̂ ◦ Tt − φ̂‖H1(Ω) = lim

t→0
‖φ̃ ◦ Tt − φ̃‖H1(Ω) = 0,

implying (4.25), and from (4.12) that

lim
t→0

∥∥∥∥∥ φ̂ ◦ Tt − φ̂t
−∇φ̂ · V

∥∥∥∥∥
H1(Ω)

= lim
t→0

∥∥∥∥∥ φ̃ ◦ Tt − φ̃t
−∇φ̃ · V

∥∥∥∥∥
H1(Ω)

= 0,

implying (4.26).

We recall that φΓ,∞ ∈ H1(Ω) ∩ C(Ω) is the unique weak solution to the boundary-value
problem (1.7), defined in (2.5). Similarly, φΓt,∞ ∈ H1(Ω)∩C(Ω) for each t ∈ R is the unique
weak solution to the same boundary-value problem with Γt = Tt(Γ) replacing Γ.

Lemma 4.3. (1) There exists a unique ζΓ,V ∈ H1
0 (Ω) such that∫

Ω

εΓ∇ζΓ,V · ∇η dx = −
∫

Ω

εΓA
′
V (0)∇φΓ,∞ · ∇η dx ∀η ∈ H1

0 (Ω), (4.27)

where A′V (0) is defined in (4.6). Moreover, the mapping V 7→ ζΓ,V is linear in V , i.e.,

ζΓ,c1V1+c2V2 = c1ζΓ,V1 + c2ζΓ,V2 for all V1, V2 ∈ V and c1, c2 ∈ R.

(2) By modifying the value of ζΓ,V on a set of zero Lebesgue measure, we have that ζs
Γ,V ∈

H2(Ωs) ∩ C1(Ωs) for s = − or +. Moreover,

∆ζΓ,V = −∇ · [A′V (0)∇φΓ,∞] = ∆(∇φΓ,∞ · V ) in Ω− ∪ Ω+, (4.28)

JεΓ∂nζΓ,V KΓ = −JεΓA
′
V (0)∇φΓ,∞ · nKΓ on Γ. (4.29)

(3) We have

lim
t→0
‖φΓt,∞ ◦ Tt − φΓ,∞‖H1(Ω) = 0, (4.30)

lim
t→0

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
H1(Ω)

= 0. (4.31)

(4) If V · n = 0 on Γ, then ζΓ,V = ∇φΓ,∞ · V in Ω.

Proof. (1) The existence and uniqueness of ζΓ,V ∈ H1
0 (Ω) that satisfies (4.27) follow from the

Lax–Milgram Lemma [22, 25]. By (4.6), A′V (0) is linear in V . Therefore, by the definition
(4.27) of ζΓ,V ∈ H1

0 (Ω), ζΓ,V is linear in V.
(2) Let s denote − or +. Note by (2.6), (3.6), and (4.6) that A′V (0)∇φΓ,∞ ∈ C1(Ωs) ∩

H1(Ωs). For any η ∈ C1
c (Ω) with supp (η) ⊂ Ωs, we have by (4.27) and the Divergence

Theorem that ∫
Ωs

εs∇ζΓ,V · ∇η dx =

∫
Ωs

εs∇ · [A′V (0)∇φΓ,∞] η dx.
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Hence, −∆ζΓ,V = ∇ · [A′V (0)∇φΓ,∞] in Ωs. Since the right-hand side is in L2(Ωs) ∩ C(Ωs),
it follows from the elliptic regularity theory [25, 32] that ζs

Γ,V ∈ H2(Ωs) ∩ C1(Ωs), after a
possible modification of the value of ζΓ,V on a set of zero Lebesgue measure. Moreover, the
first equality in (4.28) follows.

Let us denote by V i (i = 1, 2, 3) the components of V. With the conventional summation
notation (i.e., repeated indices are summed), we have by (4.6), (2.6), and (2.8) that

−∇ · (A′V (0)∇φΓ,∞)

= ∇ ·
[
∇V + (∇V )T − (∇ · V )I

]
∇φΓ,∞

= ∂i
(
∂jV

i∂jφΓ,∞ + ∂iV
j∂jφΓ,∞ − ∂kV k∂iφΓ,∞

)
= 2∂ijφΓ,∞∂iV

j + ∂iiV
j∂jφΓ,∞

= ∂ii∂jφΓ,∞V
j + 2∂ijφΓ,∞∂iV

j + ∂iiV
j∂jφΓ,∞ [since ∂iiφΓ,∞ = 0]

= ∂ii
(
∂jφΓ,∞V

j
)

= ∆(∇φΓ,∞ · V ) in Ω− ∪ Ω+, (4.32)

implying the second equation in (4.28).
Since ζΓ,V ∈ H1

0 (Ω) and ∆ζΓ,V ∈ L2(Ωs) for s being − or +, and since the unit normal n
at the Γ points from Ω− to Ω+, we have by the Divergence Theorem that both sides of the
equation in (4.27) are∫

Ω

εΓ∇ζΓ,V · ∇η dx =

∫
Ω−

ε−∇ζΓ,V · ∇η dx+

∫
Ω+

ε+∇ζΓ,V · ∇η dx

= −
∫

Ω−

ε−∆ζΓ,V η dx−
∫

Ω+

ε+∆ζΓ,V η dx−
∫

Γ

JεΓ∂nζΓ,V KΓη dS,

and

−
∫

Ω

εΓA
′
V (0)∇φΓ,∞ · ∇η dx

= −
∫

Ω−

ε−A
′
V (0)∇φΓ,∞ · ∇η dx−

∫
Ω+

ε+A
′
V (0)∇φΓ,∞ · ∇η dx

=

∫
Ω−

ε−∇ · (A′V (0)∇φΓ,∞)η dx+

∫
Ω+

ε+∇ · (A′V (0)∇φΓ,∞)η dx

+

∫
Γ

JεΓA
′
V (0)∇φΓ,∞ · nKΓη dS,

respectively. These, together with and (4.28), imply (4.29).
(3) Replacing Γ, φΓ,∞, and η by Γt, φΓt,∞, and η ◦T−1

t for t ∈ R, respectively, in the weak
formulation (2.5), we get by the change of variable x = Tt(X) that∫

Ω

εΓAV (t)∇(φΓt,∞ ◦ Tt) · ∇η dX = 0 ∀η ∈ H1
0 (Ω).
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This and (2.5) imply for any η ∈ H1
0 (Ω) that∫

Ω

εΓ∇(φΓt,∞ ◦ Tt − φΓ,∞) · ∇η dX =

∫
Ω

εΓ[I − AV (t)]∇(φΓt,∞ ◦ Tt) · ∇η dX. (4.33)

It follows from a change of variable, (4.2), (4.3), (4.7), and (4.8) that ‖∇(φΓt,∞ ◦ Tt)‖L2(Ω)

is bounded uniformly in t. Setting η = φΓt,∞ ◦ Tt − φΓ,∞ ∈ H1
0 (Ω) in (4.33), we then obtain

(4.30) by (4.7), (4.8), and the Cauchy–Schwarz and Poincaré inequalities.
Dividing both sides of (4.33) by t 6= 0 and setting now η = (φΓt,∞ ◦ Tt− φΓ,∞)/t− ζΓ,V in

the resulting equation and also in (4.27), we have by the Cauchy–Schwarz inequality that∫
Ω

εΓ

∣∣∣∣∇(φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

)∣∣∣∣2 dX
=

∫
Ω

εΓ

[
I − AV (t)

t
+ A′V (0)

]
∇(φΓt,∞ ◦ Tt) · ∇

(
φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

)
dX

+

∫
Ω

εΓA
′
V (0)∇ [φΓ,∞ − φΓt,∞ ◦ Tt)] · ∇

(
φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

)
dX

≤ C

∥∥∥∥AV (t)− I − tA′V (0)

t

∥∥∥∥
L∞(Ω)

‖φΓt,∞ ◦ Tt‖H1(Ω)

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
H1(Ω)

+ C‖φΓ,∞ − φΓt,∞ ◦ Tt‖H1(Ω)

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
H1(Ω)

.

This, together with Poincaré’s inequality, (4.7), (4.8), and (4.30), leads to (4.31).
(4) Assume now V ·n = 0 on Γ. Recall from subsection 3.2 that the signed distance to Γ,

φ : R3 → R, which is negative in Ω− and positive outside Γ, is in fact a C3-function and also
∇φ 6= 0 in N0(Γ), a neighborhood of Γ in Ω; cf. (3.5). Moreover, n = ∇φ on Γ. We define
n = ∇φ on N0(Γ). Now, since V ·n = 0 on Γ, by Lemma 4.1, there exists t0 = t0(V ) > 0 and
a constant C0 > 0 which may depend on Γ, such that dist (x,Γ) ≤ C0t

2 for all x ∈ Γt and all
t ∈ [−t0, t0]. Let D(t) = {x ∈ Ω : dist (x,Γ) ≤ C0t

2}. Then Γt ⊂ D(t), and hence εΓt = εΓ

on Ω \D(t), for all |t| ≤ t0. Moreover, the measure |D(t)| = O(t2) as t → 0; cf. Lemma 2.1
in [33].

Let ht = (φΓt,∞ − φΓ,∞)/t with |t| ≤ t0. We have now by (1.7) and that with Γt replacing
Γ that ∫

Ω

εΓt∇ht · ∇η dx = −
∫

Ω

εΓt − εΓ

t
∇φΓ,∞ · ∇η dx ∀η ∈ H1

0 (Ω). (4.34)

Setting η = ht ∈ H1
0 (Ω), we have by the uniform boundedness of ∇φΓt,∞ (cf. (2.7)), the

Poincaré and Cauchy–Schwarz inequalities, and the fact that |D(t)| = O(t2) as t→ 0 that

‖ht‖H1(Ω) ≤ C

(∫
D(t)

∣∣∣∣εΓt − εΓ

t

∣∣∣∣2 dx
)1/2

≤ C,

where C > 0 is a generic constant, independent of t. Thus, there exists a subsequence of ht
(|t| ≤ t0), not relabeled, and some h ∈ H1

0 (Ω), such that ht → h weakly in H1(Ω) as t→ 0.
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Working on this subsequence, we have by (2.5) (with φΓt,∞ replacing φΓ,∞), (4.34), (2.7),
and the fact that the measure |D(t)| = O(t2)→ 0 as t→ 0 that for any η ∈ H1

0 (Ω)∣∣∣∣∫
Ω

εΓ∇ht · ∇η dx
∣∣∣∣ =

∣∣∣∣∫
Ω

(εΓ − εΓt)∇ht · ∇η dx−
∫

Ω

εΓt − εΓ

t
∇φΓ,∞ · ∇η dx

∣∣∣∣
≤
∣∣∣∣∫
D(t)

(εΓt − εΓ)∇ht · ∇η dx
∣∣∣∣+

∣∣∣∣∫
D(t)

εΓt − εΓ

t
∇φΓ,∞ · ∇η dx

∣∣∣∣
≤ C

[
‖ht‖H1(Ω) +

1

|t|
|D(t)|1/2

](∫
D(t)

|∇η|2dx
)1/2

≤ C

(∫
D(t)

|∇η|2dx
)1/2

→ 0 as t→ 0.

Since ht → h weakly in H1(Ω), we have∫
Ω

εΓ∇h · ∇η dx = 0 ∀η ∈ H1
0 (Ω).

Setting η = h ∈ H1
0 (Ω), we see that h = 0 in H1

0 (Ω).
We now show that ζΓ = ∇φΓ,∞ · V in Ω. Let η ∈ L2(Ω) and t 6= 0. Since ht → h = 0

weakly in H1(Ω), we have by the properties of the transformations Tt (t ∈ R) (4.9), (4.12),
and (4.1)–(4.3) that∫

Ω

φΓt,∞ ◦ Tt − φΓ,∞

t
η dX

=

∫
Ω

φΓt,∞ ◦ Tt − φΓ,∞ ◦ Tt
t

η dX +

∫
Ω

φΓ,∞ ◦ Tt
t

η dX −
∫

Ω

φΓ,∞η

t
dX

=

∫
Ω

ht
(
η ◦ T−1

t

)
det∇T−1

t dx+

∫
Ω

φΓ,∞

t

(
η ◦ T−1

t

)
det∇T−1

t dx−
∫

Ω

φΓ,∞η

t
dx

=

∫
Ω

ht
(
η ◦ T−1

t

)
det∇T−1

t dx

+

∫
Ω

φΓ,∞

(
η ◦ T−1

t − η
t

det∇T−1
t + η

det∇T−1
t − 1

t

)
dx

→ −
∫

Ω

φΓ,∞∇η · V dx−
∫

Ω

φΓ,∞η(∇ · V ) dx

=

∫
Ω

(∇φΓ,∞ · V )η dx as t→ 0.

This and (4.31), together with the arbitrariness of η ∈ L2(Ω), imply that ζΓ,V = ∇φΓ,∞ · V
in Ω.
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We recall that φ̂Γ,∞ is determined by (2.11) and the boundary condition φ̂Γ,∞ = φ∞
on ∂Ω. For each t ∈ R, we denote by φ̂Γt,∞ the unique function that is defined by (2.11)

with Γt replacing Γ and the same boundary condition φ̂Γt,∞ = φ∞ on ∂Ω. Note that all the
singularities xi (i = 1, . . . , N) are outside the support of the vector field V.

Lemma 4.4. (1) There exists a unique ξΓ,V ∈ H1
0 (Ω) such that∫

Ω

εΓ∇ξΓ,V · ∇η dx = −
∫

Ω

εΓA
′
V (0)∇φ̂Γ,∞ · ∇η dx ∀η ∈ H1

0 (Ω). (4.35)

(2) By modifying the value of ξΓ,V on a set of zero Lebesgue measure, we have that ξs
Γ,V ∈

H2(Ωs) ∩ C1(Ωs) for s = − or +. Moreover,

∆ξΓ,V = −∇ · A′V (0)∇φ̂Γ,∞ = ∆(∇φ̂Γ,∞ · V ) in Ω− ∪ Ω+, (4.36)

JεΓ∂nξΓ,V KΓ = −JεΓA
′
V (0)∂nφ̂Γ,∞KΓ on Γ.

(3) We have

lim
t→0
‖φ̂Γt,∞ ◦ Tt − φ̂Γ,∞‖H1(Ω) = 0,

lim
t→0

∥∥∥∥∥ φ̂Γt,∞ ◦ Tt − φ̂Γ,∞

t
− ξΓ,V

∥∥∥∥∥
H1(Ω)

= 0.

Proof. The proof is the same as and simpler than that of the next lemma, Lemma 4.5, as
there is an extra term B there, which can be set to 0 here. The only exception is the second
equality in (4.36) which can be obtained by the calculations same as in (4.32).

We recall that ψΓ ∈ φ̂C + H1(Ω) ∩ C(Ω) = φ̂Γ,∞ + H1(Ω) ∩ C(Ω) is the unique weak
solution to the boundary-value problem of the dielectric-boundary PB equation (1.8); cf.
Definition 2.1. For each t ∈ R, we denote by ψΓt ∈ φ̂C + H1(Ω) ∩ C(Ω) the unique solution
to the same boundary-value problem with Γt replacing Γ.

Lemma 4.5. (1) There exists a unique ωΓ,V ∈ H1
0 (Ω) such that∫

Ω

[
εΓ∇ωΓ,V · ∇η + χ+B

′′
(
ψΓ −

φΓ,∞

2

)
ωΓ,V η

]
dx

= −
∫

Ω

εΓA
′
V (0)∇ψΓ · ∇η dx

−
∫

Ω+

[
(∇ · V )B′

(
ψΓ −

φΓ,∞

2

)
− ζΓ,V

2
B′′
(
ψΓ −

φΓ,∞

2

)]
η dx ∀η ∈ H1

0 (Ω).

(4.37)

(2) By modifying the value of ωΓ,V on a set of zero Lebesgue measure, we have that ωs
Γ,V ∈

H2(Ωs) ∩ C1(Ωs) for s = − or +. Moreover,

∆ωΓ,V = −∇ · A′V (0)∇ψΓ = ∆(∇ψΓ · V ) in Ω−, (4.38)
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ε+∆ωΓ,V −B′′
(
ψΓ −

φΓ,∞

2

)
ωΓ,V = −ε+∇ · A′V (0)∇ψΓ

+ (∇ · V )B′
(
ψΓ −

φΓ,∞

2

)
− ζΓ,V

2
B′′
(
ψΓ −

φΓ,∞

2

)
in Ω+, (4.39)

JεΓ∂nωΓ,V KΓ = −JεΓA
′
V (0)∂nψΓKΓ on Γ. (4.40)

(3) We have

lim
t→0
‖ψΓt ◦ Tt − ψΓ‖H1(Ω) = 0, (4.41)

lim
t→0

∥∥∥∥ψΓt ◦ Tt − ψΓ

t
− ωΓ,V

∥∥∥∥
H1(Ω)

= 0. (4.42)

Proof. (1) Since B′′ > 0, the support of V does not contain any of the singularities xi
(i = 1, . . . , N), and ψΓ and φΓ,∞ are uniformly bounded on the union of the support of V
and Ω+ (cf. (2.16) and (2.21)), the existence and uniqueness of ωΓ,V ∈ H1

0 (Ω) that satisfies
(4.37) follows from the Lax–Milgram Lemma [22,25].

(2) Choosing η ∈ C1
c (Ω) in (4.37) with supp (η) ⊂ Ω− and applying the Divergence

Theorem, we obtain the first equation of (4.38) in a.e. Ω−. Since the right-hand side of
this first equation is in L2(Ω−) ∩ C(Ω−), it follows from the regularity theory [25, 32] that,
with a possible modification of the value of ωΓ,V on a set of zero Lebesgue measure, ω−Γ,V ∈
H2(Ω−) ∩ C1(Ω−). Now, the first equation in (4.38) holds for each point in Ω−. The second
equation is similar to that in (4.28) (cf. (4.32)). By similar arguments, we obtain that
ω+

Γ,V ∈ H2(Ω+) ∩ C1(Ω+) and (4.39). By splitting each of those two integrals in (4.37) that
has the term ∇η into integrals over Ω− and Ω+, respectively, using the Divergence Theorem,
and using (4.38) and (4.39), we obtain (4.40).

(3) Let φ̂C be given as in (1.6) and t ∈ R. Denote

ψr = ψΓ − φ̂C and ψr,t = ψΓt − φ̂C.

We first prove (4.41). By (4.25) (with φ̂ = φ̂C) in Lemma 4.2, it suffices to prove that

lim
t→0
‖ψr,t ◦ Tt − ψr‖H1(Ω) = 0. (4.43)

By Definition 2.1 and (2.3) (cf. also (2.12)), we have∫
Ω

[
εΓ∇ψr · ∇η + χ+B

′
(
ψr + φ̂C −

φΓ,∞

2

)
η

]
dx

= −(ε+ − ε−)

∫
Ω+

∇φ̂C · ∇η dx ∀η ∈ H1
0 (Ω). (4.44)

Replacing Γ, Ω+, ψ, and η in (4.44) by Γt = Tt(Γ), Tt(Ω+), ψΓt , and η = η ◦T−1
t , respectively,

we obtain by the change of variable x = Tt(X) and (4.4) that∫
Ω

[
εΓAV (t)∇(ψr,t ◦ Tt) · ∇η + χ+B

′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
Jt η

]
dX
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= −(ε+ − ε−)

∫
Ω+

AV (t)∇(φ̂C ◦ Tt) · ∇η dX ∀η ∈ H1
0 (Ω). (4.45)

Subtracting (4.44) from (4.45) and rearranging terms, we get∫
Ω

εΓ [∇(ψr,t ◦ Tt)−∇ψr] · ∇η dX

= −
∫

Ω

εΓ[AV (t)− I]∇(ψr,t ◦ Tt) · ∇η dX

−
∫

Ω+

B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
(Jt − 1)η dX

−
∫

Ω+

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)]
η dX

− (ε+ − ε−)

∫
Ω+

[∇(φ̂C ◦ Tt)−∇φ̂C] · ∇η dX

− (ε+ − ε−)

∫
Ω+

[AV (t)− I]∇(φ̂C ◦ Tt) · ∇η dX ∀η ∈ H1
0 (Ω). (4.46)

Setting η = ψr,t ◦ Tt − ψr, we have by the uniform bound of all ψr,t and φΓt,∞ (cf. (2.21) and
(2.7)), the Mean-Value Theorem, and the convexity of B that

−
[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)]
η

= −B′′(λt)
(
ψr,t ◦ Tt − ψr + φ̂C ◦ Tt − φ̂C +

1

2
φΓt,∞ ◦ Tt −

1

2
φΓ,∞

)
(ψr,t ◦ Tt − ψr)

= −B′′(λt)(ψr,t ◦ Tt − ψr)
2

−B′′(λt)
(
φ̂C ◦ Tt − φ̂C +

1

2
φΓt,∞ ◦ Tt −

1

2
φΓ,∞

)
(ψr,t ◦ Tt − ψr)

≤ C|(φ̂C ◦ Tt − φ̂C)(ψr,t ◦ Tt − ψr)|+ C |(φΓt,∞ ◦ Tt − φΓ,∞)(ψr,t ◦ Tt − ψr)| , (4.47)

where λt is in between
(
ψr,t + φ̂C − φΓt,∞/2

)
◦ Tt and ψr + φ̂C− φΓ,∞/2 at each point in Ω+,

and the constant C > 0 is independent of t and Γ. Now, the combination of (4.46) with
η = ψr,t ◦ Tt − ψr and (4.47), together with the uniform bounds for ψr,t and φΓt,∞, and the
Cauchy–Schwarz and Poincaré inequalities, leads to

‖ψr,t ◦ Tt − ψr‖H1(Ω) ≤ C‖AV (t)− I‖L∞(Ω)‖ψr,t ◦ Tt‖H1(Ω) + C‖Jt − 1‖L∞(Ω)

+ C‖φ̂C ◦ Tt − φ̂C‖H1(Ω+) + C ‖φΓt,∞ ◦ Tt − φΓ,∞‖H1(Ω)

+ C ‖AV (t)− I‖L∞(Ω+) ‖φ̂C ◦ Tt‖H1(Ω+).

Now the convergence (4.43) follows from (4.2), (4.3), (4.7), (4.8), the uniform bound of ψr,t,

Lemma 4.2 (with φ̂ = φ̂C), and Lemma 4.3.
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We now prove (4.42). Let us denote ω̂Γ,V = ωΓ,V − ∇φ̂C · V. By Lemma 4.2 (cf. (4.26)

with φ̂ = φ̂C), we need only to prove that

lim
t→0

∥∥∥∥ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∥∥∥∥
H1(Ω)

= 0. (4.48)

We first note that the Divergence Theorem and the calculations in (4.32) imply that∫
Ω

[A′V (0)∇φ̂C +∇(∇φ̂C · V )] · ∇η dx

= −
∫

Ω

[∇ · (A′V (0)∇φ̂C) + ∆(∇φ̂C · V )] η dx

= 0 ∀η ∈ H1
0 (Ω).

This allows us to rewrite (4.37) into the following equation for ω̂Γ,V :∫
Ω

[
εΓ∇ω̂Γ,V · ∇η + χ+B

′′
(
ψr + φ̂C −

φΓ,∞

2

)
ω̂Γ,V η

]
dX

= −
∫

Ω

εΓA
′
V (0)∇(ψΓ − φ̂C) · ∇η dX

−
∫

Ω+

[
B′
(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

+B′′
(
ψr + φ̂C −

φΓ,∞

2

)(
∇φ̂C · V −

ζΓ,V

2

)]
η dX

− (ε+ − ε−)

∫
Ω+

[A′V (0)∇φ̂C +∇(∇φ̂C · V )] · ∇η dX ∀η ∈ H1
0 (Ω). (4.49)

Multiplying both sides of (4.46) by 1/t and combining the resulting equation with (4.49),
we obtain by rearranging terms that∫

Ω

εΓ∇
(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
· ∇η dX

= −
∫

Ω

εΓ

[(
AV (t)− I

t

)
∇(ψr,t ◦ Tt)− A′V (0)∇ψr

]
· ∇η dX

−
∫

Ω+

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

]
η dX

−
∫

Ω+

{
1

t

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)]
−B′′

(
ψr + φ̂C −

φΓ,∞

2

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)}
η dX
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− (ε+ − ε−)

∫
Ω+

[(
AV (t)− I

t

)
∇(φ̂C ◦ Tt)− A′V (0)∇φ̂C

]
· ∇η dX

− (ε+ − ε−)

∫
Ω+

∇

(
φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

)
· ∇η dX ∀η ∈ H1

0 (Ω). (4.50)

Specifying η = (ψr,t ◦ Tt − ψr)/t − ω̂Γ,V ∈ H1
0 (Ω), we have by the fact that B′′ > 0, the

Mean-Value Theorem, the uniform bound for all the functions ψr,t, ζΓ,V , and ωΓ,V (cf. (2.7),
(2.16), (2.21)) that in Ω+

−
{

1

t

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)]
−B′′

(
ψr + φ̂C −

φΓ,∞

2

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)}(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
= −B′′ (ξt)

(
ψr,t ◦ Tt − ψr

t
+
φ̂C ◦ Tt − φ̂C

t
− φΓt,∞ ◦ Tt − φΓ,∞

2t

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+B′′

(
ψr + φ̂C −

φΓ,∞

2

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
= −B′′ (ξt)

(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)2

−B′′ (ξt)

(
ω̂Γ,V +

φ̂C ◦ Tt − φ̂C

t
− φΓt,∞ ◦ Tt − φΓ,∞

2t

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+

[
B′′
(
ψr + φ̂C −

φΓ,∞

2

)
−B′′(ξt)

](
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+B′′(ξt)

(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
≤ −B′′ (ξt)

(
φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V −

φΓt,∞ ◦ Tt − φΓ,∞

2t
+
ζΓ,V

2

)

·
(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+B′′′(σt)

(
ψr + φ̂C −

φΓ,∞

2
− ξt

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
≤ C

(∣∣∣∣∣ φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

∣∣∣∣∣+

∣∣∣∣φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∣∣∣∣
) ∣∣∣∣ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∣∣∣∣
+ C

(
|ψr,t ◦ Tt − ψr|+

∣∣∣φ̂C ◦ Tt − φ̂C

∣∣∣+ |φΓt,∞ ◦ Tt − φΓ,∞|
) ∣∣∣∣ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∣∣∣∣ ,
where ξt and σt are in between (ψr,t+ φ̂C−φΓt,∞/2)◦Tt and ψr + φ̂C−φΓ,∞/2 at each point in
Ω+. Now, combining this inequality and the identity (4.50) with η = (ψr,t◦Tt−ψr)/t− ω̂Γ,V ∈
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H1
0 (Ω), we obtain by the Poincaré and Cauchy–Schwarz inequalities and rearranging terms

that ∥∥∥∥ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∥∥∥∥2

H1(Ω)

≤ C

∫
Ω

∣∣∣∣(AV (t)− I
t

)
∇(ψr,t ◦ Tt)− A′V (0)∇ψr

∣∣∣∣2 dX
+ C

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

∣∣∣∣2 dX
+ C

(∥∥∥∥∥ φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

∥∥∥∥∥
2

H1(Ω+)

+

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥2

L2(Ω+)

+ ‖ψr,t ◦ Tt − ψr‖2
L2(Ω+) + ‖φ̂C ◦ Tt − φ̂C‖2

L2(Ω+) + ‖φΓt,∞ ◦ Tt − φΓ,∞‖2
L2(Ω+)

)
+ C

∫
Ω+

∣∣∣∣(AV (t)− I
t

)
∇(φ̂C ◦ Tt)− A′V (0)∇φ̂C

∣∣∣∣2 dX
= C [S1(t) + S2(t) + S3(t) + S4(t)] . (4.51)

It follows from (4.6)–(4.8), Lemma 4.2 (with φ̂ = φ̂C), and (4.41) that

S1(t) =

∫
Ω

∣∣∣∣[AV (t)− I
t

]
∇(ψr,t ◦ Tt)− A′V (0)∇ψr

∣∣∣∣2 dX
≤ 2

∫
Ω

∣∣∣∣[AV (t)− I
t

− A′V (0)

]
∇(ψr,t ◦ Tt)

∣∣∣∣2 dX + 2

∫
Ω

|A′V (0)∇(ψr,t ◦ Tt − ψr)|2 dX

→ 0 as t→ 0. (4.52)

By the uniform boundedness of ψr,t and φΓt,∞ (cf. (2.7), (2.16), (2.21)) the Mean-Value
Theorem, (4.2) and (4.3), Lemmas 4.2 and 4.3, and (4.41), we have

S2(t) =

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

∣∣∣∣2 dX
≤ 2

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t
−∇ · V

)∣∣∣∣2 dX
+ 2

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)∣∣∣∣2 |∇ · V |2dX
≤ C

∫
Ω+

∣∣∣∣Jt − 1

t
−∇ · V

∣∣∣∣2 dX
34



+ C

∫
Ω+

(|ψr,t ◦ Tt − ψr|2 + |φ̂C ◦ Tt − φ̂C|2 + |φΓt,∞ ◦ Tt − φΓ,∞|2) dX

→ 0 as t→ 0. (4.53)

By Lemma 4.2 (with φ̂ = φ̂C), Lemma 4.3, and (4.41), we have

S3(t) =

∥∥∥∥∥ φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

∥∥∥∥∥
2

H1(Ω+)

+

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
L2(Ω+)

+ ‖ψr,t ◦ Tt − ψr‖L2(Ω+) + ‖φ̂C ◦ Tt − φ̂C‖2
L2(Ω+) + ‖φΓt,∞ ◦ Tt − φΓ,∞‖2

L2(Ω+)

→ 0 as t→ 0. (4.54)

It follows from (4.6)–(4.8) and Lemma 4.2 (with φ̂ = φ̂C) that

S4(t) =

∫
Ω+

∣∣∣∣[AV (t)− I
t

]
∇(φ̂C ◦ Tt)− A′V (0)∇φ̂C

∣∣∣∣2 dX
≤ C

∫
Ω+

∣∣∣∣[AV (t)− I
t

− A′V (0)

]
∇(φ̂C ◦ Tt)

∣∣∣∣2 + C

∫
Ω+

|∇(φ̂C ◦ Tt − φ̂C)|2dX

→ 0 as t→ 0. (4.55)

Now the desired convergence (4.48) follows from (4.51)–(4.55).

5 Proof of Theorem 3.2

Proof of Theorem 3.2. Fix V ∈ V (cf. (3.6)). Let {Tt}t∈R be the family of diffeomorphisms
from R3 to R3 defined by Tt(X) = x(t,X) as the solution to the initial-value problem (3.7).
We proceed in five steps. In Step 1, we calculate the limit as t→ 0 that defines the variation
δΓ,VE[Γ]; cf. Definition 3.1. In Step 2, we simplify the expression of δΓ,VE[Γ]. In Step 3, we
convert all the volume integrals in δΓ,VE[Γ] into surface integrals on the boundary Γ, except
one volume integral that involves the B′ term. In Step 4, we rewrite the surface integrals to
have the desired form (i.e., with a factor V · n in the integrand). Finally, in Step 5, we treat
the only volume integral term that involves B′ to get the desired formula.

Step 1. Let t ∈ R. We recall that φΓt,∞, φ̂Γt,∞, and ψΓt are the solutions to (2.5), (2.11),
and (2.20) with Γt = Tt(Γ) replacing Γ, respectively, and that all these functions have the
boundary value φ∞ on ∂Ω. Recall that φ̂0 and φ̂∞ are defined by (2.3) and (2.4). We denote
in this proof

ψr = ψΓ − φ̂Γ,∞ and ψr,t = ψΓt − φ̂Γt,∞. (5.1)

By (3.1) and (3.2) with Γt replacing Γ, the definition of AV (t) (4.4) and Jt (4.1), and the
change of variable x = Tt(X), we have

E[Γt] = −
∫

Ω

εΓt

2
|∇ψr,t|2dx−

∫
Tt(Ω+)

B

(
ψΓt −

φΓt,∞

2

)
dx
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+
ε− − ε+

2

∫
Tt(Ω+)

∇φ̂Γt,∞ · ∇φ̂0 dx+W

= −
∫

Ω

εΓ

2
[AV (t)∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt)] dX

−
∫

Ω+

B

((
ψΓt −

φΓt,∞

2

)
◦ Tt

)
Jt dX

+
ε− − ε+

2

∫
Ω+

AV (t)∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt) dX +W,

where W = (1/2)
∑N

i=1Qi(φ̂∞ − φ̂0)(xi) is independent of Γ. Consequently,

E[Γt]− E[Γ]

t
= −

∫
Ω

εΓ

2t
[AV (t)∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt)−∇ψr · ∇ψr] dX

−
∫

Ω+

1

t

[
B

((
ψΓt −

φΓt,∞

2

)
◦ Tt

)
Jt −B

(
ψΓ −

φΓ,∞

2

)]
dX

+
ε− − ε+

2

∫
Ω+

1

t

[
AV (t)∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt)−∇φ̂Γ,∞ · ∇φ̂0

]
dX

= −δ1(t)− δ2(t) +
ε− − ε+

2
δ3(t). (5.2)

By rearranging the terms, we obtain that

δ1(t) =

∫
Ω

εΓ

2

[
AV (t)− I − tA′V (0)

t

]
∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt) dX

+

∫
Ω

εΓ

2
A′V (0)∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt) dX

+

∫
Ω

εΓ

2
[∇(ψr,t ◦ Tt) +∇ψr] · ∇

(
ψr,t ◦ Tt − ψr

t

)
dX.

It thus follows from (4.7), (4.8), Lemma 4.4, and Lemma 4.5 that

lim
t→0

δ1(t) =

∫
Ω

εΓ

[
1

2
A′V (0)∇ψr · ∇ψr +∇ψr · ∇(ωΓ,V − ξΓ,V )

]
dX, (5.3)

where ξΓ,V and ωΓ,V are defined in (4.35) in Lemma 4.4 and (4.37) in Lemma 4.5, respectively.
Denote q = ψΓ− φΓ,∞/2 and qt = (ψΓt − φΓt,∞/2) ◦ Tt. The second term δ2(t) in (5.2) can

be written as

δ2(t) =

∫
Ω+

Jt − 1

t
B(qt) dX +

∫
Ω+

B(qt)−B(q)

t
dX, (5.4)

Since the L∞(Ω)-norm of qt is bounded uniformly in t ∈ R (cf. (2.15) and (2.21)), it follows
from Lemma 4.3 and Lemma 4.5 that qt → q in L2(Ω). Hence, B(qt) → B(q) in L2(Ω+) as
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t→ 0. This, together with (4.2) and (4.3), implies that

lim
t→0

∫
Ω+

Jt − 1

t
B(qt) dX =

∫
Ω+

(∇ · V )B(q) dX. (5.5)

Now Taylor’s expansion implies that

B(qt(X))−B(q(X))

t

= B′(q(X))
qt(X)− q(X)

t
+

1

2
B′′(ηt(X))[qt(X)− q(X)]

qt(X)− q(X)

t
, a.e. X ∈ Ω+,

where ηt(X) is in between q(X) and qt(X), and its L∞(Ω)-norm is bounded uniformly in t.
It then follows from Lemma 4.3 and Lemma 4.5 that∣∣∣∣∫

Ω+

B′′(ηt)(qt − q)
qt − q
t

dX

∣∣∣∣ ≤ C‖qt − q‖L2(Ω+)

∥∥∥∥qt − qt
∥∥∥∥
L2(Ω+)

→ 0 as t→ 0,

where C is a constant independent of t. Consequently, by Lemma 4.3 and Lemma 4.5 that

lim
t→0

∫
Ω+

B(qt)−B(q)

t
dX = lim

t→0

∫
Ω+

B′(q)
qt − q
t

dX =

∫
Ω+

B′(q)

(
ωΓ,V −

ζΓ,V

2

)
dX,

where ωΓ,V and ζΓ,V are given in (4.37) and (4.27), respectively. This, together with (5.4)
and (5.5), and our definition of q and qt, implies that

lim
t→0

δ2(t) =

∫
Ω+

[
(∇ · V )B

(
ψΓ −

φΓ,∞

2

)
+B′

(
ψΓ −

φΓ,∞

2

)(
ωΓ,V −

ζΓ,V

2

)]
dX. (5.6)

Rearranging the terms, we have

δ3(t) =

∫
Ω+

AV (t)− I − tA′V (0)

t
∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt) dX

+

∫
Ω+

∇(φ̂Γt,∞ ◦ Tt)−∇φ̂Γ,∞

t
· ∇(φ̂0 ◦ Tt) dx

+

∫
Ω+

∇φ̂Γ,∞ ·
∇(φ̂0 ◦ Tt)−∇φ̂0

t
dX

+

∫
Ω+

A′V (0)∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt) dX.

Therefore, we have by (4.7), (4.8), Lemma 4.2 (with φ̂ = φ̂C), and Lemma 4.4 that

lim
t→0

δ3(t) =

∫
Ω+

[
∇ξΓ,V · ∇φ̂0 +∇φ̂Γ,∞ · ∇(∇φ̂0 · V ) + A′V (0)∇φ̂Γ,∞ · ∇φ̂0

]
dX. (5.7)
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It now follows from Definition 3.1, (5.2), (5.3), (5.6), and (5.7) that the first variation
δΓE[Γ] exists and is given by

δΓ,VE[Γ] = −
∫

Ω

εΓ

2
A′V (0)∇ψr · ∇ψr dX +

∫
Ω

εΓ∇ψr · ∇ξΓ,V dX −
∫

Ω

εΓ∇ψr · ∇ωΓ,V dX

−
∫

Ω+

[
(∇ · V )B

(
ψΓ −

φΓ,∞

2

)
+B′

(
ψΓ −

φΓ,∞

2

)(
ωΓ,V −

ζΓ,V

2

)]
dX

+
ε− − ε+

2

∫
Ω+

∇ξΓ,V · ∇φ̂0 dX

+
ε− − ε+

2

∫
Ω+

[
∇φ̂Γ,∞ · ∇(∇φ̂0 · V ) + A′V (0)∇φ̂Γ,∞ · ∇φ̂0

]
dX

= M1 +M2 +M3 +M4 +M5 +M6. (5.8)

Step 2. We now simplify this expression. By Lemma 4.4 and our notation ψr = ψΓ− φ̂Γ,∞,
we can express the sum of the first two integrals above as

M1 +M2 = −
∫

Ω

εΓ

2
A′V (0)∇(ψΓ − φ̂Γ,∞) · ∇(ψΓ − φ̂Γ,∞) dX

−
∫

Ω

εΓA
′
V (0)∇φ̂Γ,∞ · ∇(ψΓ − φ̂Γ,∞) dX

= −
∫

Ω

εΓ

2
A′V (0)∇ψΓ · ∇ψΓ dX +

∫
Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇φ̂Γ,∞ dX. (5.9)

Note that the last two integrals exist as the singularities xi (1 ≤ i ≤ N) of ψΓ and φ̂Γ,∞ are
outside the support of V and A′V (0) is given in (4.6). By (2.20) in Definition 2.1 and (2.11)
we have ∫

Ω

[
εΓ∇ψr · ∇η + χ+B

′
(
ψΓ −

φΓ,∞

2

)
η

]
dX = 0

for all η ∈ C1
c (Ω) and hence all η ∈ H1

0 (Ω). Setting η = ωΓ,V , we get the two-ωΓ,V terms in
(5.8) (one is M3 and the other is part of M4) cancelled:∫

Ω

[
εΓ∇ψr · ∇ωΓ,V + χ+B

′
(
ψΓ −

φΓ,∞

2

)
ωΓ,V

]
dX = 0. (5.10)

To simplify M5, we note that we can replace η in (2.3) (with φ̂ = φ̂0) and (2.11) by
ξΓ,V ∈ H1

0 (Ω), as ξΓ,V |Ω− ∈ C2(Ω−); cf. the remark below (2.4) and that below (2.12). It then
follows that

M5 =
ε−
2

∫
Ω+

∇ξΓ,V · ∇φ̂0 dX −
ε+

2

∫
Ω+

∇ξΓ,V · ∇φ̂0 dX

= −
∫

Ω

εΓ

2
∇ξΓ,V · ∇φ̂0 dX +

1

2

N∑
i=1

QiξΓ,V (xi) [by (2.3) with φ̂ = φ̂0]
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= −
∫

Ω

εΓ

2
∇ξΓ,V · ∇φ̂0 dX +

∫
Ω

εΓ

2
∇φ̂Γ,∞ · ∇ξΓ,V dX [by (2.11)]

=

∫
Ω

εΓ

2
∇ξΓ,V · ∇(φ̂Γ,∞ − φ̂0 − φΓ,∞) dX [by (2.5)]

= −
∫

Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇(φ̂Γ,∞ − φ̂0 − φΓ,∞) dX. [by Lemma 4.4] (5.11)

Since φ̂0 is harmonic in the support of V that excludes all xi (i = 1, . . . , N), we have by
the same calculations as in (4.32) that

∇ ·
[
∇(∇φ̂0 · V ) + A′V (0)∇φ̂0

]
= 0 in Ω.

Thus, since the normal n along Γ points from Ω− to Ω+, we have by the Divergence Theorem
that

ε−
2

∫
Ω+

∇φ̂Γ,∞ · [∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] dX

= −ε−
2

∫
Γ

φ̂Γ,∞[∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] · n dS

= −ε−
2

∫
Ω−

∇φ̂Γ,∞ · [∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] dX.

Therefore, since A′V (0) (cf. (4.6)) is symmetric,

M6 =
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · [∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] dX

= −
∫

Ω

εΓ

2
[∇φ̂Γ,∞ · ∇(∇φ̂0 · V ) + A′V (0)∇φ̂Γ,∞ · ∇φ̂0] dX

= −
∫

Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇φ̂0 dX. [by (2.11)] (5.12)

It now follows from (5.8)–(5.12) that

δΓ,VE[Γ] = −
∫

Ω

εΓ

2
A′V (0)∇ψΓ · ∇ψΓ dX +

∫
Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇φΓ,∞ dX

+

∫
Ω+

[
ζΓ,V

2
B′
(
ψΓ −

φΓ,∞

2

)
− (∇ · V )B

(
ψΓ −

φΓ,∞

2

)]
dX

= P1 + P2 + P3. (5.13)

Step 3. We convert most of these volume integrals into surface integrals on Γ. We shall
use the following identities that can be verified by using the Divergence Theorem and ap-
proximations by smooth functions:∫

D

(∇ · U)∇a · ∇b dx = −
∫
D

U · (∇2a∇b+∇2b∇a) dx+

∫
∂D

(∇a · ∇b)(U · ν) dx, (5.14)
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∫
D

(∇U)∇a · ∇b dx = −
∫
D

U · (∆a∇b+∇2b∇a) dx+

∫
∂D

(∇a · ν)(∇b · U) dx. (5.15)

Here, D ⊂ R3 is a bounded open set with a C1 boundary ∂D, U ∈ H1(D,R3), a, b ∈ H2(D),
∇2a is the Hessian matrix of a, and ν is the unit exterior normal at the boundary ∂D. If in
addition ∆a = ∆b = 0 in D, then we have by (5.14) and (5.15) that∫

D

(∇U + (∇U)T − (∇ · U)I)∇a · ∇b dx

=

∫
∂D

[(∇a · U) · (∇b · ν) + (∇b · U) · (∇a · ν)− (∇a · ∇b) · (U · ν)] dS. (5.16)

Note that V = 0 in a neighborhood of all xi (1 ≤ i ≤ N) and V = 0 on ∂Ω and that the
unit normal vector n on Γ points from Ω− to Ω+. By Theorem 2.1, ∆ψΓ = 0 on Ω−∩supp (V )
and ε+∆ψΓ = B′(ψΓ − φΓ,∞/2) on Ω+. Therefore, we have by (4.6), (5.14), and (5.15) that

P1 =

∫
Ω

εΓ

2
[∇V + (∇V )T − (∇ · V )I]∇ψΓ · ∇ψΓ dX

=

∫
Ω−

ε−(∇V )∇ψΓ · ∇ψΓ dX +

∫
Ω+

ε+(∇V )∇ψΓ · ∇ψΓ dX

−
∫

Ω−

ε−
2

(∇ · V )∇ψΓ · ∇ψΓ dX −
∫

Ω+

ε+

2
(∇ · V )∇ψΓ · ∇ψΓ dX

= −
∫

Ω−

ε−V · (∆ψΓ∇ψΓ +∇2ψΓ∇ψΓ) dX +

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS

−
∫

Ω+

ε+V · (∆ψΓ∇ψΓ +∇2ψΓ∇ψΓ) dX −
∫

Γ

ε+(∇ψ+
Γ · V )(ψ+

Γ · n) dS

+

∫
Ω−

ε−V · ∇2ψΓ∇ψΓ dX −
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS

+

∫
Ω+

ε+V · ∇2ψΓ∇ψΓ dX +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

= −
∫

Ω−

ε−∆ψΓ(∇ψΓ · V ) dX +

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS

−
∫

Ω+

ε+∆ψΓ(∇ψΓ · V ) dX −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

=

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS

−
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

−
∫

Ω+

B′
(
ψΓ −

φΓ,∞

2

)
(∇ψΓ · V ) dX, (5.17)
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where a superscript − or + denotes the restriction from Ω− or Ω+, respectively.
Since φ̂Γ,∞ and φΓ,∞ are harmonic in Ω−∩supp (V ) and Ω+, and since the normal n points

from Ω− to Ω+, we have by (4.6), (5.16), and the notation of jumps (2.10) that

P2 =

∫
Ω−

ε−
2

[(∇ · V )I −∇V − (∇V )T ]∇φ̂Γ,∞ · ∇φΓ,∞ dX

+

∫
Ω+

ε+

2
[(∇ · V )I −∇V − (∇V )T ]∇φ̂Γ,∞ · ∇φΓ,∞ dX

=
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · V )(∇φΓ,∞ · n) + εΓ(∇φ̂Γ,∞ · n)(∇φΓ,∞ · V )

− εΓ(∇φ̂Γ,∞ · ∇φΓ,∞)(V · n)KΓ dS. (5.18)

Using the Divergence Theorem and noting again that the normal n at Γ points from Ω−
to Ω+, we obtain

P3 =

∫
Ω+

ζΓ,V

2
B′
(
ψΓ −

φΓ,∞

2

)
dX +

∫
Ω+

V ·B′
(
ψΓ −

φΓ,∞

2

)(
∇ψΓ −

∇φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS

=

∫
Ω+

[
1

2
(ζΓ,V −∇φΓ,∞ · V ) +∇ψΓ · V

]
B′
(
ψΓ −

φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS. (5.19)

It now follows from (5.13) and (5.17)–(5.19) that

δΓ,VE[Γ] =

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS

−
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

+
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · V )(∇φΓ,∞ · n)KΓ dS

+
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · n)(∇φΓ,∞ · V )KΓ dS

− 1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · ∇φΓ,∞)(V · n)KΓ dS

+

∫
Ω+

1

2
(ζΓ,V −∇φΓ,∞ · V )B′

(
ψΓ −

φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS. (5.20)
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Step 4. We express the surface integrals into those with the factor V · n in the integrand.
Note that on each side of Γ, we can write

∇ψΓ = (∇ψΓ · n)n+∇ΓψΓ = ∂nψΓn+∇ΓψΓ on Γ,

where ∇ΓψΓ = (I − n⊗ n)∇ψΓ is the tangential derivative. Clearly n · ∇ΓψΓ = 0. Moreover,
∇Γψ

+
Γ = ∇Γψ

−
Γ on Γ. Thus,

∇ψ+
Γ −∇ψ

−
Γ = (∂nψ

+
Γ − ∂nψ

−
Γ )n on Γ.

By Theorem 2.1, we have also ε+∇ψ+
Γ ·n = ε−∇ψ−Γ ·n = εΓ∇ψΓ ·n on Γ. Therefore, the first

four terms in (5.20) are∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS

−
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

= −
∫

Γ

εΓ∂nψΓ(∂nψ
+
Γ − ∂nψ

−
Γ )(V · n) dS

+

∫
Γ

ε+

2
|∂nψ+

Γ |
2(V · n) dS +

∫
Γ

ε+

2
|∇ΓψΓ|2(V · n) dS

−
∫

Γ

ε−
2
|∂nψ−Γ |

2(V · n) dS −
∫

Γ

ε−
2
|∇ΓψΓ|2(V · n) dS

= −
∫

Γ

ε+|∂nψ+
Γ |

2(V · n) dS +

∫
Γ

ε−|∂nψ−Γ |
2(V · n) dS

+

∫
Γ

ε+

2
|∂nψ+

Γ |
2(V · n) dS +

∫
Γ

ε+

2
|∇ΓψΓ|2(V · n) dS

−
∫

Γ

ε−
2
|∂nψ−Γ |

2(V · n) dS −
∫

Γ

ε−
2
|∇ΓψΓ|2(V · n) dS

= −1

2

(
1

ε+

− 1

ε−

)∫
Γ

|εΓ∂nψΓ|2(V · n) dS +
ε+ − ε−

2

∫
Γ

|∇ΓψΓ|2(V · n) dS. (5.21)

Similarly, on each side of Γ, we have with uΓ = φΓ,∞ or φ̂Γ,∞ that

∇uΓ · V = (∂nuΓn+∇ΓuΓ) · ((V · n)n+ (I − n⊗ n)V )

= ∂nuΓ(V · n) +∇ΓuΓ(I − n⊗ n)V.

Moreover, ε+∂nu
+
Γ = ε−∂nu

−
Γ and ∂Γu

+
Γ = ∂Γu

−
Γ on Γ. Therefore, the next three terms in

(5.20) become

1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · V )(∇φΓ,∞ · n)KΓ dS +
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · n)(∇φΓ,∞ · V )KΓ dS

− 1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · ∇φΓ,∞)(V · n)KΓ dS
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=

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS

− 1

2

∫
Γ

JεΓ(∂nφ̂Γ,∞∂nφΓ,∞ +∇Γφ̂Γ,∞ · ∇ΓφΓ,∞)KΓ(V · n) dS

=
1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS. (5.22)

It now follows from (5.20)–(5.22) that

δΓ,VE[Γ] = −1

2

(
1

ε+

− 1

ε−

)∫
Γ

|εΓ∂nψΓ|2(V · n) dS +
ε+ − ε−

2

∫
Γ

|∇ΓψΓ|2(V · n) dS

+
1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS

+

∫
Ω+

1

2
(ζΓ,V −∇φΓ,∞ · V )B′

(
ψΓ −

φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS. (5.23)

Step 5. We finally rewrite the volume integral above into a surface integral on the
boundary Γ. Recall from the beginning of Subsection 3.2 that the signed distance function
φ : R3 → R with respect to Γ is a C3-function and ∇φ 6= 0 in the neighborhood N0(Γ) of Γ.
We extend n = ∇φ on Γ to N0(Γ), i.e., we define n = ∇φ at every point in N0(Γ). Note that
n ∈ C2(N0(Γ)). Since V ∈ V vanishes outside N0(Γ), both the normal component (V · n)n
and the tangential component V − (V · n)n = (I − n ⊗ n)V of V are in the class of vector
fields V ; cf. (3.6). Since

V = (V · n)n+ (I − n⊗ n)V and (I − n⊗ n)V · n = 0,

we have by Lemma 4.3 that

ζΓ,V −∇φΓ,∞ · V = ζΓ,(V ·n)n+(I−n⊗n)V −∇φΓ,∞ · [(V · n)n+ (I − n⊗ n)V ]

= ζΓ,(V ·n)n −∇φΓ,∞ · (V · n)n+ ζΓ,(I−n⊗n)V −∇φΓ,∞ · (I − n⊗ n)V

= ζΓ,(V ·n)n −∇φΓ,∞ · (V · n)n in Ω.

Therefore, we may assume that

V = (V · n)n in N0(Γ). (5.24)

By Lemma 4.3, ζs
Γ,V ∈ H2(Ωs) for s = − or +. Thus, by (4.28), ∆(∇φΓ,∞ · V ) ∈ L2(Ωs)

for s = − or +. Therefore,

∇φΓ,∞ · V ∈ H2(Ωs) for s = − or + . (5.25)

Recall from (5.1) that ψr = ψΓ−φ̂Γ,∞ ∈ H1
0 (Ω). Note by Theorem 2.1 that ∆ψr = 0 in Ω− and

ε+∆ψr = B′(ψΓ−φΓ,∞/2) in Ω+. Note also by (4.28) in Lemma 4.3 that ∆(ζΓ,V −∇φΓ,∞ ·V ) =
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0 in Ω−∪Ω+. We then obtain by Green’s second identity with our convention that the normal
n at Γ pointing from Ω− to Ω+ and the fact that JεΓζΓ,V ∂nψrKΓ = 0 which follows from the
third equation in (2.22) that twice of the volume term in (5.23) is

Q :=

∫
Ω+

(ζΓ,V −∇φΓ,∞ · V )B′
(
ψΓ −

φΓ,∞

2

)
dX

=

∫
Ω+

ε+ [(ζΓ,V −∇φΓ,∞ · V ) ∆ψr − ψr∆ (ζΓ,V −∇φΓ,∞ · V )] dX

+

∫
Ω−

ε− [(ζΓ,V −∇φΓ,∞ · V ) ∆ψr − ψr∆ (ζΓ,V −∇φΓ,∞ · V )] dX

= −
∫

Γ

JεΓ [(ζΓ,V −∇φΓ,∞ · V ) ∂nψr − ψr∂n (ζΓ,V −∇φΓ,∞ · V )]KΓ dS

=

∫
Γ

JεΓ(∇φΓ,∞ · V )∂nψrKΓ dS +

∫
Γ

JεΓψr∂nζΓ,V KΓ dS −
∫

Γ

JεΓψr∂n(∇φΓ,∞ · V )KΓ dS

= Q1 +Q2 −Q3. (5.26)

It follows from (5.24) that

Q1 =

∫
Γ

JεΓ(∇φΓ,∞ · V )∂nψrKΓ dS =

∫
Γ

JεΓ∂nφΓ,∞∂nψrKΓ(V · n)dS. (5.27)

Since JφrKΓ = 0 and JεΓ∂nφΓ,∞KΓ = 0, we have by Lemma 4.3 (cf. (4.29)) that

Q2 =

∫
Γ

JεΓψr∂nζΓ,V KΓ dS

= −
∫

Γ

JεΓψrA
′
V (0)∇φΓ,∞ · nKΓ dS

=

∫
Γ

JεΓψr

[
∇V + (∇V )T − (∇ · V )I

]
∇φΓ,∞ · nKΓ dS

=

∫
Γ

JεΓψr

[
∇V + (∇V )T

]
∇φΓ,∞ · nKΓ dS

=

∫
Γ

JεΓψr∇φΓ,∞ ·
[
∇V + (∇V )T

]
nKΓ dS. (5.28)

Denoting by nj the jth component of n and noting that ∂in
jnj = (1/2)∂i‖n‖2 = 0, we obtain

on each side of Γ (i.e., on N0(Γ) ∪ Ω− and N0(Γ) ∪ Ω+) that

∇φΓ,∞ · (∇V + (∇V )T )n

= ∂iφΓ,∞
(
∂jV

i + ∂iV
j
)
nj

= ∂iφΓ,∞∂j((V · n)ni)nj + ∂iφΓ,∞∂i((V · n)nj)nj [by (5.24)]

= ∂iφΓ,∞∂j(V · n)ninj + ∂iφΓ,∞(V · n)∂jn
inj
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+ ∂iφΓ,∞∂i(V · n)njnj + ∂iφΓ,∞(V · n)∂in
jnj

= (∇φΓ,∞ · n)∇(V · n) · n+∇φΓ,∞ · ((∇n)n)(V · n) +∇φΓ,∞ · ∇(V · n).

This and (5.28), together with the fact that JεΓ∇φΓ,∞ · nKΓ = 0 on Γ, lead to

Q2 =

∫
Γ

JεΓψr∇φΓ,∞ · (∇n)nKΓ(V · n) dS +

∫
Γ

JεΓψr∇φΓ,∞ · ∇(V · n)KΓ dS

= Q2,1 +Q2,2. (5.29)

To further simplify these terms, let us recall the surface divergence ∇Γv for a vector field
v along the boundary Γ and its integral on Γ

∇Γ · v = ∇ · v − (∇v)n · n, (5.30)∫
Γ

∇Γ · v dS = 2

∫
Γ

H(v · n) dS, (5.31)

where H is the mean curvature; cf. [18] (Section 5 of Chapter 9).
Consider the term Q2,1 in (5.29). Since n = ∇φ is a unit vector field, we have n · (∇n)n =

ni∂jn
inj = (1/2)nj∂j(n

ini) = 0. Hence, on each side of Γ, we have

∇φΓ,∞ · (∇n)n = ∇ΓφΓ,∞ · (∇n)n. (5.32)

Let us denote αΓ = ψr∇ΓφΓ,∞ and note that JαΓKΓ = 0. Hence αΓ ∈ H1(N0(Γ),R3). Note
also that αΓ · n = 0. Thus,

(∇αΓ)n · n+ αΓ · (∇n)n = [(∇αΓ)Tn+ (∇n)TαΓ] · n
= ∇(αΓ · n) · n
= 0 in N0(Γ). (5.33)

This implies that
(∇αΓn) · n = −αΓ · (∇n)n ∈ H1(N0(Γ)). (5.34)

By (5.24), we have for s = − or + that

∇(∇φΓ,∞ · V ) · n = ∇((∇φΓ,∞ · n)(V · n)) · n
= (∇(∇φΓ,∞ · n) · n)(V · n) + (∇φΓ,∞ · n)∇(V · n) · n in Ωs ∩N0(Γ).

This, together with (2.6) and (5.25), implies for s = − or + that

(∇(∇φΓ,∞ · n) · n)(V · n) ∈ H1(Ωs ∩N0(Γ)). (5.35)

Therefore, since ∇ΓφΓ,∞ = ∇φΓ,∞− (∇φΓ,∞ ·n)n, ∆φΓ,∞ = 0 in Ω− and Ω+, and ψr and φΓ,∞
are in W 1,∞ on each side of Γ, we can verify that for s = − or +

(∇ · αΓ)(V · n) = (∇ψr · ∇φΓ,∞)(V · n)− (∇ψr · n)(∇φΓ,∞ · n)(V · n)
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− ψr(∇(∇φΓ,∞ · n) · n)(V · n)− ψr(∇φΓ,∞ · n)(∇ · n)(V · n) ∈ H1(Ωs ∩N0(Γ)). (5.36)

By (5.34), (5.36), and (5.30) (with αΓ replacing v), we have for s = − or + that

(∇Γ · αΓ)(V · n) = (∇ · αΓ)(V · n)− (∇αΓn · n)(V · n) ∈ H1(Ωs ∩N0(Γ)). (5.37)

With all the regularity results (5.34), (5.36), and (5.37), we have now by (5.32), (5.33), and
(5.30) (with αΓ replacing v) that

Q2,1 =

∫
Γ

JεΓαΓ · (∇n)nKΓ(V · n) dS

= −
∫

Γ

JεΓ(∇αΓ)n · nKΓ(V · n) dS

=

∫
Γ

JεΓ(∇Γ · αΓ −∇ · αΓ)KΓ(V · n) dS. (5.38)

Consider now the term Q2,2 in (5.29). On each side of Γ,

∇φΓ,∞ · ∇(V · n) = [(∇φΓ,∞ · n)n+∇ΓφΓ,∞] · [(∇(V · n) · n)n+∇Γ(V · n)]

= (∇φΓ,∞ · n)(∇(V · n) · n) +∇ΓφΓ,∞ · ∇Γ(V · n).

Since JψrKΓ = 0 and JεΓ∇φΓ,∞ · nKΓ = 0, we thus have

JεΓψr∇φΓ,∞ · ∇(V · n)KΓ

= JεΓψr(∇φΓ,∞ · n)(∇(V · n) · n)KΓ + JεΓψr∇ΓφΓ,∞ · ∇Γ(V · n)KΓ

= JεΓαΓ · ∇Γ(V · n)KΓ. (5.39)

One can verify that on both side of Γ

∇Γ · ((V · n)αΓ) = (V · n)∇Γ · αΓ + αΓ · ∇Γ(V · n).

Consequently, we have by (5.29), (5.39), (5.31), and the fact that ∇ΓφΓ,∞ ·n = 0 on each side
of Γ that

Q2,2 =

∫
Γ

JεΓαΓ · ∇Γ(V · n)KΓ dS

=

∫
Γ

JεΓ∇Γ · ((V · n)αΓ)KΓ dS −
∫

Γ

JεΓ(V · n)∇Γ · αΓKΓ dS

=

∫
Γ

J2εΓH((V · n)αΓ · n)KΓ dS −
∫

Γ

JεΓ∇Γ · αΓKΓ(V · n) dS

= −
∫

Γ

JεΓ∇Γ · αΓKΓ(V · n) dS.

This, together with (5.29), (5.38), and the notation αΓ = ψr∇ΓφΓ,∞, implies that

Q2 = −
∫

Γ

JεΓ∇ · αΓKΓ(V · n) dS = −
∫

Γ

JεΓ∇ · (ψr∇ΓφΓ,∞)KΓ(V · n) dS. (5.40)
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Now, let us calculate the term Q3 in (5.26). Since V = (V ·n)n (cf. (5.24)), we have from
both sides of Γ that

∇(∇φΓ,∞ · V ) · n = ∇ ((∇φΓ,∞ · n)(V · n)) · n
= ∇(∇φΓ,∞ · n) · n(V · n) + (∇φΓ,∞ · n)∇(V · n) · n.

Since JεΓ∇φΓ,∞ · nKΓ = 0, we have by (5.26) and (5.35) that

Q3 =

∫
Γ

JεΓψr∇(∇φΓ,∞ · V ) · nKΓ dS =

∫
Γ

JεΓψr∇(∇φΓ,∞ · n) · nKΓ(V · n) dS. (5.41)

It now follows from (5.26), (5.27), (5.40), and (5.41) that

Q =

∫
Γ

JεΓ[∂nφΓ,∞∂nψr −∇ · (ψr∇ΓφΓ,∞)− ψr∇(∇φΓ,∞ · n) · n]KΓ(V · n) dS. (5.42)

By the definition of the tangential gradient, the fact that ∆φΓ,∞ = 0 on both sides of Γ (cf.
(2.8)), and ∇ · n = 2H on Γ, we can simplify the terms inside the pair of brackets in (5.42).
On both sides of Γ, we have

∂nφΓ,∞∂nψr −∇ · (ψr∇ΓφΓ,∞)− ψr∇(∇φΓ,∞ · n) · n
= ∂nφΓ,∞∂nψr −∇ · [ψr∇φΓ,∞ − ψr(∇φΓ,∞ · n)n]− ψr∇(∇φΓ,∞ · n) · n
= ∂nφΓ,∞∂nψr −∇ψr · ∇φΓ,∞ − ψr∆φΓ,∞

+∇(ψr(∇φΓ,∞ · n)) · n+ ψr(∇φΓ,∞ · n)(∇ · n)− ψr∇(∇φΓ,∞ · n) · n
= ∂nφΓ,∞∂nψr −∇ψr · ∇φΓ,∞ + (∇φΓ,∞ · n)(∇ψr · n) + ψr(∇φΓ,∞ · n)(∇ · n)

= 2∂nφΓ,∞∂nψr − [(∇ψr · n)n+∇Γψr] [(∇φΓ,∞ · n)n+∇ΓφΓ,∞] + 2Hψr∂nφΓ,∞

= ∂nφΓ,∞∂nψr −∇ΓφΓ,∞ · ∇Γψr + 2Hψr∂nφΓ,∞.

Plug this into (5.42). Noting that ψr = ψΓ−φ̂Γ,∞ and that all∇Γψr,∇ΓφΓ,∞, εΓ∂n(ψΓ−φ̂Γ,∞),
and εΓ∂nφΓ,∞ are continuous across the boundary Γ, we obtain that

Q =

∫
Γ

JεΓ(∂nψr∂nφΓ,∞ −∇Γψr · ∇ΓφΓ,∞)KΓ(V · n) dS

=

∫
Γ

JεΓ[∂n(ψΓ − φ̂Γ,∞)∂nφΓ,∞ −∇Γ(ψΓ − φ̂Γ,∞) · ∇ΓφΓ,∞]KΓ(V · n) dS. (5.43)

Finally, we obtain by (5.23), (5.26), and (5.43) that some of the terms in δΓ,VE[Γ] (5.23)
are simplified into

1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS

+

∫
Ω+

1

2
(ζΓ,V −∇φΓ,∞ · V )B′

(
ψΓ −

φΓ,∞

2

)
dX
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=
1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS +
1

2
Q

=
1

2

∫
Γ

JεΓ(∂nψΓ∂nφΓ,∞ −∇ΓψΓ · ∇ΓφΓ,∞)KΓ(V · n) dS

=
1

2

∫
Γ

ε+∂nψ
+
Γ ∂nφ

+
Γ,∞(V · n)dS − 1

2

∫
Γ

ε−∂nψ
−
Γ ∂nφ

−
Γ,∞(V · n)dS

− ε+

2

∫
Γ

∇ΓψΓ · ∇ΓφΓ,∞(V · n) dS +
ε−
2

∫
Γ

∇ΓψΓ · ∇ΓφΓ,∞(V · n) dS

=
1

2

(
1

ε+

− 1

ε−

)∫
Γ

εΓ∂nψΓεΓ∂nφΓ,∞(V · n)dS − ε+ − ε−
2

∫
Γ

∇ΓψΓ · ∇ΓφΓ,∞(V · n) dS.

This and (5.23) imply the desired formula (3.8). The proof is complete.

Acknowledgments. BL was supported in part by the US National Science Foundation
through the grant DMS-1913144, the US National Institutes of Health through the grant
R01GM132106, and a 2019–2020 Lattimer Research Fellowship, Division of Physical Sci-
ences, University of California, San Diego. ZZ was supported in part by the Natural Science
Foundation of Zhejiang Province, China, through the grant LY17A010029. SZ was supported
in part by the National Natural Science Foundation of China (NSFC) through the grant
NSFC 21773165, the Natural Science Foundation of Jiangsu Province, China, through the
grant BK20160302, and the Young Elite Scientist Sponsorship Program, Jiangsu Association
for Science and Technology, China.

References

[1] R. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] D. Andelman. Electrostatic properties of membranes: The Poisson–Boltzmann theory.
In R. Lipowsky and E. Sackmann, editors, Handbook of Biological Physics, volume 1,
pages 603–642. Elsevier, 1995.

[3] D. Bucur and G. Buttazzo. Variational Methods in Shape Optimization Problems.
Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston,
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Weizsäcker model. Commun. Pure Appl. Math., 67(10):1605–1617, 2014.

[43] M. Mikucki and Y. C. Zhou. Electrostatic forces on charged surfaces of bilayer lipid
membranes. SIAM J. Applied Math, 74:1–21, 2014.

[44] E. S. Reiner and C. J. Radke. Variational approach to the electrostatic free energy in
charged colloidal suspensions: general theory for open systems. J. Chem. Soc. Faraday
Trans., 86:3901–3912, 1990.

[45] K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and
applications. Annu. Rev. Biophys. Biophys. Chem., 19:301–332, 1990.

[46] J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization: Shape Sensitivity
Analysis. Springer Series in Computational Mathematics. Springer, 1992.

[47] H. Sun, J. Wen, Y. Zhao, B. Li, and J. A. McCammon. A self-consistent phase-field ap-
proach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics.
J. Chem. Phys., 143:243110, 2015.

[48] J. Tomasi and M. Persico. Molecular interactions in solution: An overview of methods
based on continuous distributions of the solvent. Chem. Rev., 94:2027–2094, 1994.

[49] Z. Wang, J. Che, L.-T. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. Level-set
variational implicit solvation with the Coulomb-field approximation. J. Chem. Theory
Comput., 8:386–397, 2012.

51



[50] L. Xiao, Q. Cai, X. Ye, J. Wang, and R. Luo. Electrostatic forces in the Poisson–
Boltzmann systems. J. Chem. Phys., 139:094106, 2013.

[51] H. Yin, G. Feng, G. M. Clore, G. Hummer, and J. C. Rasaiah. Water in the polar and
nonpolar cavities of the protein interleukin-1β. J. Phys. Chem. B, 114:16290–16297,
2010.

[52] H. Yin, G. Hummer, and J. C. Rasaiah. Metastable water clusters in the nonpolar cavities
of the thermostable protein tetrabrachion. J. Amer. Chem. Soc., 129:7369–7377, 2007.

[53] S. Zhou, L.-T. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. Variational implicit
solvation with Poisson–Boltzmann theory. J. Chem. Theory Comput., 10:1454–1467,
2014.

[54] S. Zhou, R. G. Weiß, L.-T. Cheng, J. Dzubiella, J. A. McCammon, and B. Li. Varia-
tional implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor
binding and unbinding kinetics. Proc. Natl Acad. Sci. USA, 116(30):14989–14994, 2019.

52


	1 Introduction
	2 The Poisson–Boltzmann Equation and Free-Energy Functional
	2.1 Assumptions and Auxiliary Functions
	2.2 The Poisson–Boltzmann Equation
	2.3 Electrostatic Free-Energy Functional of Ionic Concentrations

	3 Dielectric Boundary Force
	3.1 Electrostatic Free Energy of a Dielectric Boundary
	3.2 Definition and Formula of the Dielectric Boundary Force

	4 Some Lemmas: The Calculus of Boundary Variations
	4.1 Properties of the Transformation Tt
	4.2 Tangential Force
	4.3 Continuity and Differentiability

	5 Proof of Theorem 3.2

