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Abstract

In a continuum model of the solvation of charged molecules in an aqueous solvent,
the classical Poisson-Boltzmann (PB) theory is generalized to include the solute point
charges and the dielectric boundary that separates the high-dielectric solvent from the
low-dielectric solutes. With such a setting, we construct an effective electrostatic free-
energy functional of ionic concentrations, where the solute point charges are regularized
by a reaction field. We prove that such a functional admits a unique minimizer in a class
of admissible ionic concentrations and that the corresponding electrostatic potential
is the unique solution to the boundary-value problem of the dielectric-boundary PB
equation. The negative first variation of this minimum free energy with respect to
variations of the dielectric boundary defines the normal component of the dielectric
boundary force. Together with the solute-solvent interfacial tension and van der Waals
interaction forces, such boundary force drives an underlying charged molecular system to
a stable equilibrium, as described by a variational implicit-solvent model. We develop
an L2-theory for the continuity and differentiability of solutions to elliptic interface
problems with respect to boundary variations, and derive an explicit formula of the
dielectric boundary force. With a continuum description, our result of the dielectric
boundary force confirms a molecular-level prediction that the electrostatic force points
from the high-dielectric and polarizable aqueous solvent to the charged molecules. Our
method of analysis is general as it does not rely on any variational principles.
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1 Introduction

The classic Poisson-Boltzmann (PB) theory provides a continuum description of electrostatic
interactions in an ionic solution through the PB equation [2,6}17]23,27]

V-eVy— B W) =—p  inQ, (1.1)

where Qg C R3 is the region of the ionic solution, ¢ is the dielectric coefficient, p : Qy — R
represents the density of fixed charges, and ¢ : 3 — R is the electrostatic potential. In
(1.1), the function B : R — R is defined by

M
B(s) = p~* Zc}’o (e P — 1) Vs € R, (1.2)
j=1

where 8 = (kgT)~! with kg the Boltzmann constant and 7' the temperature, M is the total
number of ionic species, ¢;° is the bulk ionic concentration of the jth ionic species, and
q; = z;e is the charge of an ion of the jth species with z; the valence of such an ion and e
the elementary charge. The PB equation is a combination of Poisson’s equation

M
V.eVip =— (p + quc]) in Q,
j=1
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where ¢; : Qg — [0, 00) is the ionic concentration of the jth ionic species, and the Boltzmann
distributions for the equilibrium ionic concentrations

cj(z) = c;oe_ﬁqfw(‘”), x€Qy, j=1,..., M.

In modeling charged molecules (such as proteins) in an aqueous solvent (i.e., water or
salted water) within an implicit-solvent (i.e., continuum-solvent) framework, the PB theory
is generalized to include the point charges of the charged molecules and a dielectric boundary
that separates the high-dielectric solvent region from the low-dielectric solute region |7,/14,
16,134,45,148]. To be more specific, let us assume that the entire solvation system occupies
a region © C R3. It is the union of three disjoint parts: the region of solutes (i.e., charged
molecules) €2_; the region of aqueous solvent €2 ; and the solute-solvent interface or dielectric
boundary I', which is a closed surface with possibly multiple components, that separates €2_
and € ; cf. Figure 1. We denote by n the unit normal to the boundary I' pointing from €2_
to €2, and also the exterior unit normal to 0€), the boundary of €. The solute region 2_
contains all the solute atoms that are located at xy,...,zy and that carry partial charges
@1, ..., QnN, respectively, where N > 1 is a given integer. The solvent region €1, is the region
of ionic solution, similar to €2y in . As before, we assume that there are M species of
ions in the solvent region {2, with the valence z;, charge q; = z;e, bulk concentration ¢,

and the local concentration ¢; : Q4 — [0,00) for the j ionic species (j = 1,...,M). The
dielectric coefficients in the solute region €2 and solvent region €2, are denoted by ¢_ and
€4, respectively. Typically, e. = 1 and ¢, = 76 ~ 80 in the unit of vacuum permittivity.

Note that the density of fixed charges is now given by p = Zfil Q;04,, where ¢,, is the Dirac
delta function at x;.
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Figure 1: A schematic description of a solvation system with an implicit solvent.

We introduce the dielectric-boundary, electrostatic free-energy functional of the ionic con-



centrations ¢ = (c1, ..., cy) in the solvent region 2 [7,24]34,44]

ZQz w ¢C)<xl / (Z QJCJ) wdw

+ B8 Z {cj log(A%c;) — 1] —l—coo}dx—Z/ picjdex, (1.3)

where A is the thermal de Broghe wavelength, i, is the chemical potential for ions of the jth
species, and ¢* = A% (j =1,...,M). In (L.3), ¢ : Q@ — R is the electrostatic potential.
It is the unique weak solution to the boundary-value problem of Poisson’s equation

N M
V- {:T[‘V’Lb = — (Z Qzéxl + X+ Z qjcj) in Q, (1 4)
j=1 '

i=1
Y= 0o on 0f),
where the dielectric coefficient er : 2 — R is defined by
€_ ifexeQ_,
_ 1.5
er() {g+ ifreQ,, (1.5)

X+ = Xq, is the characteristic function of 1, and ¢, is a given function on the boundary
0f). The function (5(3 in is the Coulomb potential arising from the point charges Q); at
x; (i=1,...,N) in the medium with the dielectric coefficient _, serving as a reference field.
It is given by

N
n Qz 3
xr) = e Vr e R T1,..., TN} 1.6
bol) =3 Vo) (1.6
We prove that the functional F1[c] has a unique minimizer ¢p = (cpy, .. ., cra) in a class of
admissible concentrations, and derive the equilibrium conditions é., Fr[cr] =0 (j = 1,..., M),

which lead to the (modified) Botlzmann distributions
crj = c]‘?oe_ﬁqur_‘bn“m inQy, g=1,..., M,

where 9r is the corresponding electrostatic potential and ¢r o : 2 — R is the unique weak
solution to the boundary-value problem

A &Trvgﬁr’oo =0 n Q,
Prco = Poo on 0.

We also prove that r is the unique solution to the boundary-value problem of the dielectric-
boundary PB equation

(1.7)

V-erVo — x. B’ (¢—¢F°°> ZQ 0y, in €,

Y= 0 on 0f),

(1.8)



where B is given in ; cf. Theorem and Theorem . With the Boltzmann distri-
butions, the minimum free energy min F[-| = Fr[cr] can be expressed via the electrostatic
potential ¢)r. We shall denote this minimum free energy by E[['], as ultimately it depends on
the dielectric boundary I'.

We define the (normal component of the) dielectric boundary force to be —érE[I'], the
negative first variation of the functional E[I'] with respect to the variation of the boundary
I'. The boundary variation is defined via a smooth vector field. Specifically, let V : R3 — R?
be a smooth map vanishing outside a small neighborhood of the dielectric boundary I'. Let
x = z(t, X) be the solution map of the dynamical system defined by [3,18,/30446]

dx(t, X)

o =V(z(t,X)) VteR and  z(0,X)=X VX cR>

Such solution maps define a family of transformations 7; : R® — R3 (t € R) by Ty(X) =

z(t, X) for any X € R3. The variational derivative (i.e., the shape derivative) of the functional
E[I] in the direction of V' : R* — R3 is defined to be

v EIN = GECV))

if it exists, where I'y(V) = {z(t,X) : X € I'} and E[I';(V)] is defined similarly using I';(V)
instead of T

We prove that or v E[I'] exists, and is an integral over I' of the product of V' - n and some
function that is independent of V', where n is the unit normal along I, pointing from €2_ to
;. This function on I' is identified as the variational derivative of E[I'] and is denoted by
drE[I']. We obtain an explicit formula for op E'[I']. If the boundary value ¢o, = 0 on I', then

SrEl) = 3 (i - i) erdutrl + <(e4 — e ) [Vrvrl + B (ur), (1.9)

€y €_ 2
where 9 is the unique solution to , erOptr is the common value from both sides of I,
and Vr = (I —n®n)V (with I the 3 x 3 identity matrix) is the tangential derivative along I".
Additional terms arise from a general, inhomogeneous boundary value ¢..; cf. Theorem [3.2]
To describe the electrostatic free energy with point charges and to prove the main the-
orem, Theorem 3.2 we introduce various auxiliary functions that are weak solutions to the
boundary-value problems of the operator —A or —V - eV, with or without the point charges
Zfil (QQ:0, and with homogeneous or inhomogeneous Dirichlet boundary conditions. We also
prove several lemmas, Lemmas [4.1H4.5] on the calculus of boundary variations. Lemma 4.1
is of its own interest. It states that if the vector field V satisfies V' - n = 0 on the boundary
I', where n is the unit normal along I', then for |[t| < 1 the set I'y = I'y(V) is within an
O(t?)-neighborhood of the boundary T'. Lemmas are on the continuity and differ-
entiability of those functions with respect to boundary variations. Lemma [4.3| states that
the “I'-derivative” of the function ¢r  which is defined in is the unique weak solution



(rv € H}(Q) to the elliptic interface problem —V - erV(ry = f in , where f involves ¢r v
and V. Moreover,

Ory (V)00 © Tt — @r 00
t
Lemma |4.4] and Lemma generalize the result to other I'-dependent functions, including
the electrostatic potential ¢)r that is the unique soltuion to the boundary-value problem of
the dielectric-boundary PB equation (|1.8)).

We now make several remarks on our results. In our model, we use an inhomogeneous
Dirichlet boundary condition for the electrostatic potential (cf. and ((1.8)) that is com-
mon in modeling and analysis [7},34,53]. The nonzero Dirichlet boundary value leads to an
extra term ¢r /2 in the Boltzmann distribution and hence in the PB equation (L.8). If
there are surface charges on the boundary 02, then one can also use the Neumann boundary
condition for the electrostatic potential on 0€). In that case, the electrostatic energy should
include a boundary integral term involving the surface charge density; cf. [36}41].

If we use the homogeneous Dirichlet boundary condition ¢, = 0 for the electrostatic
potential, then the dielectric boundary force points from the high dielectric solvent region €2
to the low dielectric solute region 2_; cf. . Such prediction of a macroscopic property
is consistent with a microscopic picture of molecular forces that charged solute molecules
polarize the surrounding aqueous solvent, which is otherwise electrically neutral, generating
an additional electric filed that attracts the solvent to the solutes [13]. In the limiting case
where the region ), is conducting, i.e., the dielectric coefficient in 2, is infinity, then it
is expected that no bounded region €2_ will minimize the sum of the electrostatic energy
and the surface energy [42]. If a small, high-dielectric solvent region is surrounded by the
low-dielectric solute molecules (such as a few water molecules buried in a protein), then the
competition between the solute-solvent interfacial tension force and the dielectric boundary
force results an equilibrium solute-solvent interface which is however unstable with long-wave
perturbations, as shown in the stability analysis in [§]; cf. also [38]. Such analysis explains
partially why water molecules in proteins are metastable [51,52]. It remains open to confirm
if the dielectric boundary force still points from the high-dielectric solvent region to the
low-dielectric solute region for a general inhomogeneous Dirichlet boundary value ¢q.

In [4,/5,50], the authors use the Maxwell stress tensor to define and derive the dielectric
boundary force given an electrostatic potential that is determined by the dielectric-boundary
PB equation. The existence of such a stress tensor in the presence of dielectric boundary
is implicitly assumed. The shape derivative approach seems first introduced in [35] to de-
fine and derive the dielectric boundary force. However, approximations of point charges by
smooth functions are made there, and the derivation of the boundary force utilizes heavily on
the underlying variational principle that the electrostatic potential extremizes the dielectric-
boundary PB free-energy functional. This approach is applied to the electrostatic force acting
on membranes [43]. Here, we use the direct calculations to derive the boundary force, which
is a more general approach.

Our study of the dielectric boundary force is closely related to the development of a
variational implicit-solvent model (VISM) for biomolecules [19,20] (cf. also [9-11,49,53}/54]).

— CF,V in HI(Q) ast — 0.

6



Central in the VISM is an effective free-energy functional of all possible dielectric boundaries
that consists mainly of the surface energy of solute molecules, solute-solvent van der Waals
interaction energy, and continuum electrostatic free energy. Minimization of the free-energy
functional with respect to the dielectric boundary yields optimal solute-solvent interfaces, as
well as the solvation free energy. Numerical implementation of such minimization requires
a formula of the first variation of the VISM function, particularly, the dielectric boundary
force. In [37], the authors use the matched asymptotic analysis to derive the sharp-interface
limit of a phase-field VISM [47]. In [15], the authors prove the convergence of the free energy
and force in the phase-field VISM to their sharp-interface counterparts. In particular, they
prove the general result that the variation of the van der Waals—Cahn—Hilliard functional
converges to the mean curvature which is the variation of surface area. The recent work [26]
is a detailed analysis of the electrostatics in molecular solvation through different scaling
regimes arising from the large-number limit of solute particles.

The rest of the paper is organized as follows: In Section [2| we first state our assumptions
and introduce some auxiliary functions. We then prove the existence, uniqueness, and bounds
for the solution to the boundary-value problem of the dielectric-boundary PB equation. We
finally study the electrostatic free-energy functionals of ionic concentrations and electrostatic
potentials, respectively, with a given set of point charges and a dielectric boundary. In Sec-
tion [3] we reformulate the minimum electrostatic free energy, define the dielectric boundary
force, and present the main formula for such force. In Section [ we prove several lemmas
on the calculus of boundary variations. These lemmas are needed for the proof of the main
theorem on the dielectric boundary force. Finally, in Section [5| we prove the main theorem
(Theorem of the dielectric boundary force.

2 The Poisson—Boltzmann Equation and Free-Energy
Functional

2.1 Assumptions and Auxiliary Functions

Unless otherwise stated, we assume the following throughout the rest of the paper:
Al. The set Q C R3 is non-empty, bounded, open, and connected. The sets Q_ C R3 and
Q. C R? are non-empty, bounded, and open, and satisfy that Q_ C Q and Q, = Q\Q_.
The interface I' = 9Q_ = Q_ N Q. and the boundary 9 are of the class C® and C?,
respectively. The unit normal vector at the boundary I' exterior to )_ and that at 02
exterior to {2 are both denoted by n. The N points x1,...,zy for some integer N > 1
belong to Q_; cf. Figure [ Moreover, there exists a constant sy > 0 such that

dist (I", 0€2) > sp; (2.1)

A2. All the integer M > 2, and real numbers § >0, A >0, Q; e R(1 <i < N), ¢; #0
and p; € R (1 <j < M), and e > 0 and €. > 0 are given. Moreover, e_ # ;. The
parameter ¢° is defined by ¢3° = A=3ePri (j =1,...,M). The parameters g and ¢§°
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(1 < j < M) satisfy the condition of charge neutrality

M
> g =0; (2.2)
j=1

A3. The function B : R — R is defined in (L.2). The function er € L*(Q) is defined in
(1.5). The boundary data ¢, is the trace of a given function, also denoted by ¢, in
C2%(Q). (We use the standard notation for Sobolev spaces and other function spaces;
of. [1,22,[25].)

Note that the function B defined in satisfies that B € C*°(R). Since

M

- Z qjcé?oe’ﬁqjs and B"(s Z ﬂq e P45 Vs € R,

the function B is strictly convex, and the charge neutrality implies that B’(0) = 0.
Hence, s = 0 is the unique minimum point for B with B(s) > B(0) = 0 for all s # 0. By the
fact that M > 2 and the charge neutrality , there exist some ¢; > 0 and some ¢, < 0.
Hence, B(+o00) = oo. Similar arguments show that B'(co) = 0o and B'(—o00) = —oc.

We now introduce several auxiliary functions to treat the point-charge singularities, the
dielectric discontinuity I', and the inhomogeneous boundary data ¢, on 0€2. We first recall

that the Coulomb field ¢¢ is defined in 1) Let ¢ € o+ H 1(Q) be defined by

N
/ e_Vo-Vnds = Z Qin(z;) Vn € CH(Q), (2.3)
Q i=1

where C!(Q) denotes the class of C''(Q)-functions that are compactly supported in . Clearly,
we can modify the value of ngﬁ on a set of zero Lebesgue measure, if necessary, so that ngS is a
C>-function in Q \ {z1,...,2x}. Moreover, A¢ = 0in Q\ {z1,..., 25} and A(¢ — ¢¢) = 0
in €. There are infinitely many such functions. We will only use three of them. One of them
is the Coulomb field qb gbc The other two are ¢ gbg and qb gboo They are uniquely
determined by the boundary conditions

do=0 on dN and b = oo 0n ONY, (2.4)

respectively. Since 9 is C2 and ¢o, € C2(Q), we have ¢ — e € H2(2); cf. Chapter 8 in [25].
Therefore, all these three functions belong to ¢c + H2(Q2) N C=(Q) ¢ WHY(Q).

We remark that n € C}(Q) in can be replaced by n € H}(Q) with nlg_ € C1(Q_).
To see this, we first note that holds true if ngS is replaced by ggc (cf. ) Thus,

| =96 do)-Tndr=0  vie Hi@),
Q



as ¢ — oc € H'(Q) and C1(Q) is dense in H(Q). If n € HL(Q) also satisfies n]q_ € CH(Q),
then ng@c - Vn, hence Vg% - Vn, is integrable in 2. Moreover,

N
/ e V- Vndr = / e Vo - Vndr = ZQm(zi),
) Q p

where the second equality follows from straight forward calculations using the definition of

dc (cf. (1.6)).

We recall that the function ¢r ., € H'(2) is the unique weak solution to the boundary-
value problem (|1.7)), defined by ¢r o = ¢ on 92 and

/ erVore - Vndr =0 ¥n € Hy(Q). (2.5)
Q

By the regularity theory, we have, after modifying possibly the value of ¢r o, on a set of zero
Lebesgue measure, that

Proo €CANWE2(Q) and  ¢roola, € CF(Q) N H? () for s = —, +. (2.6)

Moreover, there exists a constant C' = C(Q,e4,6_, ¢o) > 0, independent of I', such that

|Pr 00 lwio0 () < C. (2.7)

See [25] (Theorem 8.16) and [39] (Theorem 1.1 and the beginning part of proof of Theorem 1.1)
(also [12]) for the global C'(2) and W1 regularities, and the W1>(Q) estimate, and [32]
(Section 16 of Chapter 3) and [28,29] for the piecewise H2-regularity. By (2.5)), we have

Adroo =0 inQ_UQ,. (2.8)

This implies the piecewise C™®-regularity in (2.6). Moreover, since ¢r, € Hg(2), routine
calculations by ([2.5) and the Divergence Theorem imply that [34]

[ércclr =0 and lerOn¢r colr = 0. (2.9)
Throughout, for any function u on €2 that has trace on I', we denote
ut = ula,, u” = ulg_, and  [ulr=ut—-u~  onT. (2.10)

Let &F,oo € (5@ + H'(€2) be the unique function such that QAﬁnoo = (oo On 0f) and
A N
/ erVor - Vnde = Z Qin(z;) Vn € CH(Q); (2.11)
Q i=1

cf. [21,/40]. If ¢ = b¢, or ¢o, Or ¢, then 1} is equivalent to

/ erV(dr.o — @) - Vnde = —(e4 — 5_)/ Vo - Vnde
Q

Q4
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= (e, — 5)/F8n<;37]d8 Vn € Hy(S2), (2.12)

where the unit normal n at T’ points from Q_ to Q. If n € Hj(Q) satisfies n|q_ € C1(Q_),
then it follows from ([2.12)) that

/ €FVQA5F7OO -Vndx = / erVeo - Vnde — (e, —e_) Vo - Vnda
Q Q

Q4

= / e V- Vndz
Q

= Z Qin(xy).

Therefore, we can replace n € C2(Q) in (2.11) by n € H}(2) that satisfies g € C1(Q_).
By 42.11[) and (]2.12[), we have, after possibly modifying the value of QASROO on a set of zero
Lebesgue measure, that

Aldros—¢) =0 inQ_ and Adroo =0 in (Q_\{zy,...,zx})UQ, (2.13)
[bror =0 and  [erdudrocdr =0  onT. (2.14)
Moreover, it follows from the elliptic regularity theory [12,21,25}28},29,32,|39,|40] that

Froe—06 € COONWX(Q), (droe—0)” € CX(Q)NHA (L), ¢ € C®(Q)NH ().
(2.15)
< N),

Further, then there exists a constant ' > 0 that may depend on £, x; and Q; (1<
€1, €, ¢oo, and ¢, but does not depend on I', such that

6,00 — @llwrce(ay < C. (2.16)
These results (2.15) and (2.16]) follow from the same arguments used above (cf. the descrip-
tion below (2.7)) applied to (2.11) with n € C}(Q2) so chosen that the support of 7 is in a
neighborhood of I' that excluding the sigularities z; (i =1,..., N).

For any g € H71(Q2), let Lrg € H}(2) be the unique weak solution (defined using test
functions in Hj(€)) to the boundary-value problem

V.erVLirg=—g inQ and Lrg=0 on 0. (2.17)

This defines a linear, continuous, and self-adjoint operator Ly : H~1(Q2) — H}(Q). The map

1/2
g =gl == \/<g>LFg>H*1(Q),H§(Q) = [/ 5F|V(LF9)|2d4 (2.18)
0

defines a norm on H~!(Q) which is equivalent to the H'(Q)-norm. If g € L'(2), then we
define g € LY(Q) N H}(Q) if

sup {/ gudz :u € Hy(Q) N L>(Q) and ||u| i) = 1} < 00. (2.19)
Q

10



In this case, the action of g on H{(f2) is defined first for any u € H}(Q) N L>(Q) by the
integral of gu over Q and then extended for any u € Hj(Q2) by (2.19) and the fact that
H}(Q) N L>(Q) is dense in H(Q).

2.2 The Poisson—Boltzmann Equation

We now study the well-posedness of the boundary-value problem of the Poisson—Boltzmann
(PB) equation ({1.8]) with a dielectric boundary and point charges.

Definition 2.1. A functiony € gz§c+H1(Q) 15 a weak solution to the boundary-value problem

of the dielectric-boundary PB equation (1.8)), if = ¢oo on 0, x4+ B' (¢ — ¢r/2) € L' ()N
HY(Q), and

N
/Q {erwﬁ -V +x:B' (w - d)g“) n] dr =Y Qm(z;)  VneCHQ). (2:20)
=1

Note that we can replace n € C1(Q) in by n € H} () that satisfies n~ € C1(Q_);
cf. the remark below . The theorem below provides the existence and uniqueness of
the solution to the boundary-value problem of the dielectric-boundary PB equation, and an
equivalent formulation of such a boundary-value problem. These results are essentially proved
in [35]. Here we sketch the proof and add some points that are not included in the previous
proof due to some minor differences between the current and previous statements. Note that
do+ HY(Q) = ¢ro + H(Q). So, we can replace ¢¢ by ¢ro in the above definition. Note
also that there is a variational principle for the PB equation; cf. Theorem [3.1]

Theorem 2.1. (1) There exists a unique weak solution Yr € QASF ot Hi(Q) of the boundary-
value problem of the dielectric-boundary PB equation (1.8 . Moreover, after a possible
modification of Yr on a set of zero Lebesque measure, wp (bpoo € C(Q) NWhHe(Q),
(hr — drse)” € C®(Q) N H2(Q), and i € C=(Q) N H2(Q). Further, there exists
a constant C' > 0 that may depend on Q, z; and Q; (1 <i < N), ey, €, (oo, and B,
but does not depend on I', such that

lor — brcollwre(e) < C. (2.21)

(2) A function ) € ¢r s + HY(Q) with x4 B (¥ — ¢r.oo/2) € L'(Q) N H Q) is the weak
solution to the boundary-value problem of the dielectric-boundary PB equation (1.8)) if
and only if it is the unique solution to the following elliptic interface problem:

(A@W) — droe) =0 in Q.
/ (bl‘,oo o .
e AY—B (@b— 5 )—O in .y, (2.22)
[¥lr=0 and leron]r =0  onT,
(¥ =Y on O0N).

11



Proof. (1) With u = ¢ — GBF,oo and by (]2.11[) and d2.20l), it is equivalent to show that there
exists a unique ur € Hy () such that x4 B'(ur + ¢reo — dr.eo/2) € LY(Q) N H (), and

(ZSF,OO
2

/ {squp -Vn+ x+ B’ (ur + Proo — ) n] dr =0  ¥Yne H}(Q). (2.23)
Q

Define

Iul] :/Q {%F\Vu\z +x+B (U—Féf‘,oo - (bgoo)} dr  Yu € Hi(Q).

Since B > 0 and B is convex, we can use the direct method in the calculus of variations
to obtain a unique minimizer ur € H}(Q) of the functional I : H}(Q) — [0, 00]. Moreover,
comparing the values I[ur| and I[ur ] for any constant A > 0 large enough, where ur , = ur
if |up| < X and up )y = Asign (ur) otherwise, we have by the convexity of B that ur = up ) a.e.
Q) for some A independent on I'. Hence, ur € L*>(£2), and |Jur||z=q) < C for some constant
C' > 0 independent of T'; cf. [35]. This allows the use of the Lebesgue Dominated Convergence
Theorem in the routine calculations of (d/dt)|;—o![ur + tn] = 0 for any n € C2(2) to obtain
the equation in (2.23). Since C}(€2) is dense in H}(Q2), holds true. The convexity of B
now imiplies that ur is the unique solution as desired.

The regularity of the soluton ¢r follows from the elliptic regularity theory [12}21,25}28,29|
32,39], with the same argument above for the regularity of the function épm; cf. 2—_1)51) and
(2.16]). Note that the piecewise C'™ smoothness follows from a usual bootstrapping method.

(2) This part of the proof is the same as that given in [34]. O

2.3 Electrostatic Free-Energy Functional of Ionic Concentrations

We define

M
X = {(cl,...,cM) e LYQRY):¢;=0ae Q_ forj=1,...,M and qucj EHl(Q)},

j=1

X+—{(cl,...,CM)eX:cJZOa-e- Q+f01"j_17"'>M}'

Here, for any g € L'(Q), we define g € L*(Q2) N H~1(Q2) by (2.19). The space X is a Banach
space equipped with the norm

Ve=(c1,...,cm) € X.

M
lelle =Y llejllore) +
j=1

M
E :qjcj
j=1

Moreover, X, is a convex and closed subset of X. For any ¢ = (cy,...,cp) € X, stan-
dard arguments (cf. [21}22,25,40]) imply that there exists a unique weak solution ¢ to the
boundary-value problem 1' defined by ¥ € ¢c + H' (), 1 = ¢ on 99, and

N M
/ erVy - Vndr = Z Qin(x;) + / (Z %’Q’) ndx Vi € CCI(Q>7 (2.24)
@ i=1 Qv \j=1
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Equivalently, if ¢ € ¢ + H () satisfies (2.3), then

/ﬂ erV(¢ — ¢) - Vnda = /Q [(s_ — e, )Vé- i+ (Z qjcj) 77] dr Ve Hy(Q).

J=1

Clearly, 1 — ¢ is harmonic in Q_. Moreover, it follows from the definition of gzgp,oo (cf. 1}

and Lr (cf. (2.17)) that
M
w = ér,oo + LF <Z q]'Cj> . (225)
j=1

Since the function s — slogs (s > 0) is bounded below and 2 is bounded, Fr[c] > —o0
for any ¢ € Xy, where Fr[c] is defined in ({1.3).

Theorem 2.2. Let ¢r be the unique weak solution to the dielectric-boundary PB equation
(1.8). For each j € {1,..., M}, define crj: Q — [0,00) by

0 if v € Q_,
er() = e B4 [or () =1 00 () /2] ifreQy (2.26)
; .

Then cr := (cra,...,crm) € Xy and Yr is the electrostatic potential corresponding to cr,
i.e., the unique weak solution to (1.4)) with c¢; replaced by cr; (j =1,...,M). Moreover, cr
is the unique minimizer of the functional Fr : Xy — (—o00, 00| defined in (1.3)), and

Frier] = %Z Qi(vr — do)(@)

+ /Q + E (Wr — bro) B (wr - d)g’“) B (wr - d)g“)] dr.  (2.27)

Proof. By the properties of ¢r (cf. Theorem and ¢r o (cf. ), we have cr € X, If we
replace ¢; in by cr; defined in and note the definition of B in , we get exactly
the PB equation ([1.8). Therefore, the unique solution ¢r to the boundary-value problem of
the PB equation (|1.8) is also the unique solution to the boundary-value problem of Poisson’s
equation (|1.4]) corresponding to cr.

We now prove that cr is the unique minimizer of Fr : X, — (—o00,00]. To do so, we
first re-write the functional Fy. Let ¢ = (cq,...,cy) € Xy and let ¢ € d¢ + HY(Q) be the
corresponding electrostatic potential, i.e., the weak solution to defined in (2.24). Denote
f= Zj‘il g;cj. Since f =0 a.e. in Q_, we have by the definition of Ly (cf. (2.17)) that Lpf
is harmonic in €2_. Moreover,

N ~
Z Qi (Lrf) (x:) = / (¢rco — Orco) f da;
i=1 4
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of. Lemma 3.2 in [34] (where L/(4n) and G/(4x) are our L and ¢r s — ¢r o here, respec-

tively). This, together with || and the fact that all ¥ — ¢, Ggr,oo — ¢, and Lrf are
harmonic in €2_, implies that

Zcm do) (1) Z@z Lrf)(z; +Z@ Or.00 — 0c) (1)

= /Q (éro0 — Prooc) (Z Qjcj> dr + Z Qi(dr.o0 — dc) (1)
+ j=1 =1

With this and (2.25]), we can rewrite Fr[c] (1.3) as

1 M M M
Frle = /Q [5 (Z qy’%‘) Ly (Z Qjcj> +) (87 ¢ loge; + aycy)
+ =1 j=1 j=1

where all a; = a;j(z) (j =1,...,M) and Eyr are independent of ¢, given by

dx -+ E[)’F, (228)

aj(r) = g [quoo(x) - %qﬁp,m(:p)} + B8 (Blogh—1)—p; VYoeQ, j=1,...,M, (2.29)
lem . - . M
Eor =5 ) Quldre — do)(xs) + 5710 Y.
i=1 =1

Here and below, we denote by |A| the Lebesgue measure of A when no confusion arises.
We now compare Fr[c] and Frlcr]. By Taylor’s expansion, we have for any s,t € (0, 00)
that

1
slogs —tlogt = (1+logt)(s —t) + 2—(3 — 1) > (1 +logt)(s —t),
r

where 7 is in between s and t. Consequently, by (2.28)) and the fact that Lr is self-adjoint,
we have

Fr[] FF CI‘ / (Z% —Cry )LI‘ (Zq] —Cry )dﬂ?
+/ (Z q(c; — Cr,j)) Ly <Z QkCF,k> dz
Q \ =
+ 38~ Z/ (¢;logecj —crjloger,;) d:c—i—Z/ —cpj)oydx
M M
Z/ —crj) [%LF (Z qcr k;) + 67 (1 +logery) + o
=1 k=1

dzx.

14



It follows from the fact that ¢2° = A=3ePi (cf. the assumption (A2)), (2.25), @ and 2_%[)
that the quantity inside the brackets in the above integral vanishes. Thus, F[c] > Flcr|.
Hence, cr is a minimizer of Fr : X, — (—o00,00|. Since Fr is convex, and in particular,
s+ slog s is strictly convex on (0, 00), the minimizer of FT is unique; cf. [34].

Finally, we obtain from (|1.3)) with ¢r and cr replacing ¥ and ¢, respectively, (1.2),

and ([2.26)). O

3 Dielectric Boundary Force

3.1 Electrostatic Free Energy of a Dielectric Boundary

Given any dielectric boundary I', we denote by

E[l'] = min Fr[d], (3.1)
the minimum electrostatic free energy given in Theorem [2.2] (cf. (2.27))). We reformulate E[I']
to convert the discrete part of the energy into volume integrals that will be useful when we
calculate the variation of E[I'] with respect to the boundary variation of I'.

Lemma 3.1. Let T be a dielectric boundary satisfying the part of the assumption Al on T’
i Subsection . Let ¢r € ¢c + HY(Q) be the corresponding solution to the boundary-value
problem of PB equation (1.8]). We have

B[l = - /Q IV (r = o) e - /Q B (w - ‘@W) d

E_—¢&4
2

N
| Vore Vinda3YQuén—dom) 62
+ 1=1

where all the functions QASC, QASO, QASOO, roo, and gZ)F,OO are defined in Subsection .

Proof. We first prove an elementary identity. Let u € C’2(Q nc 1(Q ) be such that Au = 0in
Q_.Letv e ¢C+H1(Q )NC(Q_), in particular, v = bc, o, oo, OT gbp ~ (restricted onto Q_).
Denote B, = UY,B(z;,«) for 0 < a < 1 and v the unit normal at dB(a) = UY,0B(z;, o),
pointing toward z; (i = 1,..., N). Since the unit normal n at I" points from Q_ to {2, and
since v = ¢ + 0 for some & € H'(Q_) N C(Q_) and ¢¢ is given in (1.6), we have

Vu-Voder = lim Vu - Vudz
Q_ a—07t Q_\Ba

N
= [ JyuvdS+ lim / duvdS
r a—0+t ; OB(z;,0)

= /8nuvd5. (3.3)
r
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Denoting now W = (1/2) 327 | Qi(dse — ¢c)(x;), we have by and that
ZQ ¢1"<>o ¢00 xz ZQ@ ¢1"oo (x”L)

+/Q+{§<wp—¢noo> (wr—qu”)—B(wp—qj;”)}dHW (3.4

We first consider the first term in (3.4]). Note that the unit vector n normal to I points from
Q_ to ;. We have by Green’s formula that

lom . - .
) Z Qi(dr oo — doo)(Ti)
i=1

_ /Q %vqgo V(.o — doo) da [by with ¢ = ¢ and 1) = dr s — Pod]
= / %Véo -V (fr o0 — Goo) da + /Q+ %Véo -V (dro0 = Poo) d
_ / 000G o0 — Buc) 0 +/ Vo V(o —du)dz by BI)

r Q4

Ep A A E_ A ~
S D00 o dS — | S heDudncdS [y @I

N T
E_ A N ~
+ / V0 V(ro — b dr
Q4

= _/ %@Oanggm ds —|—/ iéoang%w ds [since ¢ = 0 on I
004

o0, 2

givéo Voo dt + / %‘véo Voo da
Q4

/
/ Yy V(Brae — duc) o

&4
2

Voér. - Vo di.

Q4

Considering now the second and third terms in (3.4]), we have
|
5 2 Qiltr — droo)(2:)
i=1

+/Q+ B (Yr — 6r.00) B (wr— ¢F°°) B (w- ¢g“)] dr
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N
Z wl"_qbl"oo Ty __ZQz wl"_(bl"oo)(lﬁ)

+/Q+ { (Yr — 6r.00) B’ (wr - ‘b“") B (wr - ‘bg“’)] di

_/€FV<5F,OO' (¢F—¢Foo diff by -
Q

_ %/Q |:5FVwF -V (¢r — ¢;F,oo) +x. B (¢F B ¢Foo) (¢Yr — ¢r oo)] [by ]

+/Q+ F (Wr — bro) B (wp— (bg”) B (wp— (bg‘”)] dz
- /Q IV (r — dro)] Qda:— ( ¢F“)

SV = ) ngsroodw/m% N
e I
Q
+ 3V(¢r — Proo) - Vor o0 d
+ %((inw — ¢ro) A(Yr — ¢rs0) dz by [2:22) and
= — [ IV dr)de - /Q+ B (wr _ ¢1;oo) o

V(wr - éF,oo) : V(&Foo (bl"oo dl’ by .

+

D\ﬁ\s\b\w\g\s\»p\s\m\

o 8

%v<§5l",oo — ¢roo) - V(¢r — QBF,OO) dx

On (Y — ggf{oo)(ggpm — ¢roo) dS  [since gzgp s — Proo = 0 on 09
n be‘ oo)
— 2dr — —
IV(¢r — ¢roo)| dz /Q+ (¢F

(wF - &F,oo) : v(QEF,oo - ¢F7oo) d$

on t
+

™ NM) ‘°|

+
v |

On(r — éioo)((iroo Proo)dS  [by (2:22) with ¢ = ¢r and (2.14) |
V(e — dro)fide— [ B (wp - ¢g°°) dr. by G3)

Now (3.2)) follows directly from (3.4) and the above two expressions.

1\3|£? 1\3||
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We define Gr : ér oo + H2(Q) = RU {—00} by

Grlt] = - [ FIV( — dro)da — |

Q

B (0= 25 ) dr b o,
.

where

E_—¢&4
2

N
. . 1 . .
Urooo = [ Vore - Vords + 53" Qil6n — o).
£ 23
We shall call Gr the PB energy functional. Note that by Lemma[3.1] E[I'] = Gr[¢r]. In fact,

we have the following variational principle for the PB energy functional.

Theorem 3.1. The Fuler—Lagrange equation of the PB energy functional Gr : qu,oo +
H}(Q) — RU{—oc} is exactly the dielectric-boundary PB equation. Moreover, the functional
Grl] is uniquely mazimized over ¢r.o + HE(Q) by the solution Yr to the boundary-value
problem of the PB equation , and the mazimum value is exactly E[T].

Proof. Direct calculations verify that the Euler—Lagrange equation for the PB energy func-
tional Gr[| is indeed the dielectric-boundary PB equation; cf. Definition 2.1 The exis-
tence of a unique maximizer can be proved exactly the same way as in the proof of Theo-
rem [2.1] These, together with Lemma imply that the maximum value of the free energy
is Gr[yr] = E[I']. O

We remark that the PB functional Gr|-| is maximized, not minimized, among all the
admissible electrostatic potentials. In general, for a charged system occupying a region D C
R3 with the dielectric coefficient € and charge density p € L?(D), the commonly used energy
functional of electrostatic potentials 1) is given by

T /D (~SIvuP + o) d.

With suitable boundary conditions, this functional is maximized by a unique electrostatic
potential. This maximizer is exactly the solution to Poisson’s equation, which is the Euler—
Lagrange equation of this functional. Moreover, the maximum value of the functional is
exactly the electrostatic energy corresponding to the potential determined by Poisson’s equa-
tion. See [7] for more related discussions.

3.2 Definition and Formula of the Dielectric Boundary Force

Let I be a dielectric boundary as given in the assumption Al in Subsection[2.1] Let ¢ : R? —
R be the signed distance function to I', negative in _ (inside I') and positive in R?\ Q_
(outside T'). Then, n = V¢ is exactly the unit normal along I', pointing from _ to €.
Since I' is assumed to be of the class O3, there exists dy > 0 with

1

1 . : s
doy < 5 min (dlst (T, 002) min dist (z;, F))
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such that the signed distance function ¢ is a C3-function and V¢ # 0 in the neighborhood

No(T) ={x € Q: dist (z,T) < do} (3.5)
in Q of I'; cf. [25] (Section 14.6) and [31]. Define
VY ={V € C}R*R?) :supp (V) C Ny(I')}. (3.6)

Let V € V. For any X € R3 let + = 2(t, X) be the unique solution to the initial-value
problem
t=V(z) (teR) and  z(0,X) =X, (3.7)

where a dot denotes the derivative with respect to t. Define T3(X) = z(t, X) for any X € R?
and any ¢t € R. Then, {T}}cr is a family of diffeomorphisms and C?-maps from R? to R?
with Ty = I the identity map and T_, = T, ! for any ¢ € R.

Let t € R. Since supp (V) C Np(I') C Q, we have T;(Q2) = Q and T;(9Q2) = 99Q. Clearly,
T:(2-) Cc Qand T;(Q4) = Q\T3(Q-). Moreover, I'y :=Ty(I") = 0T3(Q-) = T:(Q-)NT(24) is
of class C?. Note that z; € T;(Q_) and Ty(z;) = z; for alli = 1,..., N. Analogous to , er,
is defined correspondingly with respect to T3(€2_) and 7;(€24). We shall denote I'y = I'y(V)
to indicate the dependence of I'y on V' € V. For each ¢t € R, the electrostatic free energy
E[Ly(V)] is defined in (3.1) (cf. also (3.2)) with I'; = I';(V) replacing I".

Definition 3.1. Let V € V. The first variation of E[I'] with respect to the perturbation of I’
defined by V is

s Bl = SERW)| = i VI B

if the limit exists.

We recall that the tangential gradient along a dielectric boundary I' is given by Vi =
(I —n®n)V, where I is the identity matrix. The following theorem provides an explicit
formula of the first variation op,y E[I'], and its proof is given in Section [B}

Theorem 3.2. Let I' be a given dielectric boundary as described in the assumption Al in
Subsection . Let Yr € ggp,oo + H} () be the unique weak solution to the boundary-value
problem of the dielectric-boundary PB equation . Then, for anyV €V, the first variation
drvE[l] ezists, and is given by

51y E[T] = / g (V - n) dS,
r
where

1 /1 1
= (2= L) e — xtteeton.)

gt E_

= ; = (IVrtr|* = Vrdr - Vigro) + B <¢r - ¢gw> ‘ (3.8)

We identify ¢r in (3.8]) as the first variation of E[I'] and denote it as gr = drE[I']. We call
—orE[l'] the (normal component of the) dielectric boundary force.

+
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4

4.1

Some Lemmas: The Calculus of Boundary Variations

Properties of the Transformation 7;

We first recall some properties of the family of transformations T} : R?* — R3 (¢ € R) defined
by in Subsection above via a vector field V' € C?(R3 R3). These properties hold
true if we change R? to R? with a general dimension d > 2. They can be proved by direct
calculations; cf. [18] (Section 4 of Chapter 9).

(1)

Let X € R? and ¢t € R. Let VT}(X) be the gradient matrix of 7} at X with its entries
(VT(X))i; = 0,T/(X) (i,j = 1,2,3), where T} is the ith component of T;. Let

Ji(X) = det VT;(X). (4.1)
Then for each X € R? the function ¢ — J;(X) is a C*-function and

dJy

dt
where o denotes the composition of functions or maps. Clearly, VT = I, the identity
matrix, and Jy = 1. Moreover,

= ((V-V)oT})J,

J(X)=1+t(V-V)(X)+ H(tX)* VteR VX eR’ (4.2)
where H(t, X) satisfies
sup{|H(t, X)|: t e R, X € R’} < o0, (4.3)

since V' is compactly supported.
For each t € R, we define Ay (t) : R® — R by

Av(D)(X) = J(X) (VT,(X) ™ (VLX) (4.4)

where a superscript 7' denotes the matrix transpose. Clearly, A(t) € C*(R? R3*?), and
the t-derivative of Ay (f) at each point in R is

Ay (t) = [(V-V) o T) = (VI}) "' ((VV) o T,) VT,

—(VT) " ((VV) o T)"(VT})] Av (1), (4.5)
In particular
AL (0) = (V- V)I -VV —(VV). (4.6)
Moreover,
Ay (X) =T +tAL(0)(X) + K(t, X)t* VteR VX €R? (4.7)
where K (t, X) satisfies
sup{|K (¢, X)|: t e R, X € R’} < oo. (4.8)
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(3) For any u € L*(Q) and t € R, uo Ty € L*(Q) and wo T, ' € L?(2). Moreover,

limuoT, =u and limuo T, ' =u in L*(9). (4.9)

t—0 t—0
For any u € H'(Q) and t € R, uo Ty € H'(Q) and wo T, ' € H*(Q). Moreover,

V(woT; ") = (VI; )" (Vuo T, ") and V(uoTy) = (V)" (VuoTi), (4.10)
limuoT, =u and limuoT, ' =u in H'(Q). (4.11)

t—0 t—0

If u e H*(Q), then

T _
Lol Su-v = 0. (4.12)

HY(Q)

lim
t—0

4.2 Tangential Force

This is a geometrical property on the effect of tangential component of a velocity vector field
to the motion of an interface. We shall state and prove it for a general d-dimensional space
R? with d > 2. We assume that I' is a C?, closed, hypersurface in R%. We denote as before
the interior and exterior of I' by € and €2, respectively. We also denote by n the unit
vector normal to the surface I' at a point on I, pointing from the interior to exterior of T'.
We assume that V € C?(R¢ RY) and define the transformation 7; : R — R? (¢t € R) by
Ty(X) = z(t,X) for any X € R? and ¢t € R, where z = z(¢, X) is the unique solution to the

initial-value problem ({3.7)).

Lemma 4.1. If V -n =0 on I, then there exist ty > 0 and C' > 0, depending on I' and V,
such that

dist (T;(X),I) < Ct* VX €T Vt € R with |t| < to, (4.13)
{z € RY: x7y0,)(2) # xa.(2)}] < CF if [t <to, s =— or +. (4.14)

Proof. We first prove (4.13). Since T is of C%, there exist finitely many open balls in R?
such that their union covers I' and that the intersection of I" with each of such open balls
is the graph of a C® function in a local coordinate system. Let us fix one of such open
balls, B, and assume without loss of generality that the corresponding C®-function is given
by h : Hj:(aj—(E,quLé) — R for some a;,b; € Rwitha; <b; (j=1,...,d—1) and 6 > 0,
where BN T is the graph of h on H;l;i(aj —0,b; +6). Here, we use the local coordinate
system depending on B with the notation

X = (X', Xy) € RY, X' = (X1, -, Xq1) € R X, R,

So, X4y = h(X') for all X’ € H;l;ll(aj —9,b; +6). We shall assume that 6 > 0 is small enough
so that the corresponding concentric balls with radius reduced by ¢ still cover I', and that

in particular the union of the graphs of h on H?;i(aj, b;) with all open balls B is still T".
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Moreover, since all I" and T} (t € R) are smooth, there exists ¢, € (0,1) such that, for any
t € R with [¢t| < t; and for any X = (X', X,) € I' with X’ € Hj;i(aj,bj), the coordinate
(Ty(X)) of Ty(X) = ((Tx(X)), (T:(X))q) is still in H;.l;i(aj —6,b;+0), the domain of h. With
this setup, we shall prove that there exist ty € (0,t,) and C' > 0 such that
d—1
dist (T,(Xo),I') < C#* if Xo = (X}, Xoa) € T with X{ € [[(a;,b;) and [t| < 5. (4.15)

Jj=1

This then implies (4.13)).

X

1

1

I

I

I

I

1

I

I

I

1

1

1
o
L4

P X X’

Figure 2: A local graph representation of the surface I'.

Let us fix an arbitrary point Xo = (X{), Xoq4) € ' with X € H;l;%(aj, b;) and Xog = h(X));
cf. Figure 2. The equation for the plane, Sy, that is tangent to the surface I' at X € I is
given by

(X — Xo) - n(Xo) =0  with X = (X', X,) € R,

where n(Xj) is the unit vector normal to I" at X,
Vo h(X)),1
n(Xo): ( X ( O)/) .
V14 [Vh(X)P

Let t € R with |t| < ;. Denote by P, = (P}, P,q) € Sp the point of the orthogonal projection
of the vector T;(Xy) — X on this tangent plane S, given by

(4.16)

P, = = [(Ti(Xo) — Xo) - n(Xo)] n(Xo) + Ty(Xo). (4.17)
Denote
Qi = (@1, Qua) = (P, W(F))) € T. (4.18)
We show that
ITy(Xo) — Q] < Ct* if t| <t (4.19)
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for some constants ty € (0,1) and C' > 0 independent of Xj. This should imply (4.15]) as
dist (T4(Xo), I') < [Ti(Xo) — Q-
To prove (4.19)), it suffices by the triangle inequality to prove

Ti(Xo) — P| < CF, (4.20)
[P, — Q] = [P — Qual < CP, (4.21)

for all ¢t with |t| < ty. Here and below in the proof, C' denotes a generic constant independent
of Xy and t € [—tg, to]. Since V' € C?(R3,R?), we have by (3.7) that

OuTy(X) = Opz(t, X) = 0,(V(x(t, X)) = (VV((t, X)) Oy (t, X)
= (VV(z(t, X))V(z(t, X)) <C ViteRVYX cR%

Therefore, by Taylor’s expansion, (4.17)), (3.7]), the fact that |n(Xy)| = 1, and the assumption
that V' (Xy) - n(Xo) = 0, we have

| T3:(Xo) — P = |[x(t, Xo) — Xo] - n(Xo)|
< |2(0, Xo) — Xo| + [t0:2(0, Xo) - n(Xo)| + Ct?
= [tV(Xo) - n(Xo)| + C#*
= Ct?,

proving (L20).

Since V' is compactly supported, we have by (3.7)) and Taylor’s expansion that
| T4(Xo) — Xo| = |2(t, Xo) — Xo| = [t0h(&, Xo)| = [¢]|V (x(&, Xo))| < Cltl,

where ¢; is in between 0 and ¢. This and (4.20)) imply

Pl = X1 < 1P — Xol < |P = T(Xo)| + T(Xo) = Xol <Ot it <to.  (422)
By and Taylor’s expansion,
Qtd - h<Pt,)
= h(Xg) + Vxh(Xg) - (B — Xg) + %Vg(’h(}/t/)(Pt/ - Xg) - (P = Xg) (4.23)

for some Y/ € H?;i(aj, b;). Since (P — Xo) - n(Xo) = 0, Xog = h(X(), and n(X,) is given by
(4.16)), we have that

P = h(X}) + Vxih(Xo) - (P — X)),
This, together with (4.23) and (4.22), implies (4.21)). The constant C' depends on h and V/,
and hence on I" and V' only.
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We now prove . We only consider the case s = —, as the case s = + can be treated
similarly. Moreover, for t = 0, the inequality in holds true obviously, since Tj is the
identity map. So, let ¢ € R be such that 0 < [t| < ty. We further assume that 0 < t < ¢, as
the case —ty <t < 0 is similar.

We claim that

QAT,(Q) = (U N\T(Q) U(T,(Q)\ Q) C{X e R : dist (X,T) < Ct?}, (4.24)

where the constant C' is exactly the same as in ([4.13). In fact, if X € Q_\ T3(Q_), then
X € Q_ and T ¢(X) € Q. Hence, {T,(T_+(X))}o<s<: is a C*-curve in R? connecting one
endpont Ty(T (X)) = T_(X) € Q to the other Ty(T_ (X)) = X € Q_. Since I' is a closed
hypersurface in R, there must exist so € (0,¢) such that Ty (T_4(X)) = Ty,_+(X) € T. Hence,
by with ¢ — s and Ty, _+(X) replacing ¢ and X, respectively,

dist (X, T) = dist (T}, (Tso—+(X)),T) < C(t — 50)* < Ct2.

Similarly, if X € T,(2_)\ Q_, then dist (X,T) < Ct*. Hence, (4.24) holds true.

By (4.24)), we have

H{X eR?: xa @) # xa_(0)}| = [Q-AT,(Q-)] < {X € R? : dist (X, ") < C#*}].

This implies (4.14) (for s = —), as the right-hand side of the above inequality is bounded by
Ct? if |t| < to with a possible smaller ¢y (cf. Lemma 2.1 in [33]). O

4.3 Continuity and Differentiability

Let I" be a dielectric boundary satisfying the assumptions in A1l of Subsection [2.1| and V eV

(cf. (3.6)). Let {T;}ep be the corresponding family of diffeomorphisms defined by (B.7). Let
¢ € WHH(Q) satisfy (2.3). We consider the approximations ¢ o 7. Note that ¢ o T, — ¢ and

V¢ -V vanish in any small neighborhood of UN ,z;, as V(X) = 0 and T3(X) = X for any X
in such a neighborhood and any t € R.

Lemma 4.2. Let ¢ € ¢ + HY(Q) satisfy (2.3). We have

fim 190 T, — sy = . (4.25)
Moreover, Vo -V € H(Q) and
Sy )
lim |[221 =0 g4y = 0. (4.26)
t—0 t
H(Q)

Proof. Let 0 > 0 be such that B, := U, B(z;,0) C Q and V = 0 on B,. Then, there exists
¢ € C®(Q) N H*(Q) such that (b = 0in B,/ and ¢ = ¢ a.e. in 2\ B,. These imply that
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$oT,—¢ = poT,—p, and V-V = V-V ae. in Q for all t. This implies that V-V € H ().
Moreover, it follows from (4.11)) that

lim |6 0 T, = 1oy = lim 6 0 Ty = &l 1) = 0,

implying (4.25)), and from (4.12)) that

~ ~

T, — . T, — -
L 1 e e LR I
— —
H(Q) HY(Q)
implying ({4.26)). O

We recall that ¢r o, € HY(Q) N C(Q) is the unique weak solution to the boundary-value
problem (1.7)), defined in (2.5). Similarly, ¢r, .. € H'(2) N C(Q) for each t € R is the unique
weak solution to the same boundary-value problem with I'y = T}(I") replacing I'.

Lemma 4.3. (1) There exists a unique Cry € H}(Q) such that

/ 5FVCF,V -Vndr = — / 51“Alv(0)v¢1“,oo - Vndx Vn e H&(Q), (427)
Q Q

where A}, (0) is defined in (4.6). Moreover, the mapping V +— (py is linear in 'V, i.e.,
revitevs = il +elry,  forall Vi, Va €V and 1, ¢ € R

(2) By modifying the value of (rv on a set of zero Lebesque measure, we have that Gty €
H?(Q) N CY(SY) for s = — or +. Moreover,

AGry = =V - [AL(0)Voro] = A(Vor - V) in Q- UQ,, (4.28)
[[Eranpr]]r = _[[EFA/‘/(())vQSF,OO : n]]p onT. (429)
(3) We have
11&1_{% [¢r, 00 0Ty — (bF,OOHHl(Q) =0, (4.30)
T _
lim [|rese 0Lt = oo Crv = 0. (4.31)
t—0 t H(Q)

(4) If V-n=0onT, then (ry = Voro -V in Q.

Proof. (1) The existence and uniqueness of (ry € HJ(£2) that satisfies follow from the
Lax-Milgram Lemma [22,[25]. By (4.6), A} (0) is linear in V. Therefore, by the definition
(4.27) of (rv € Hy(R2), Cr,v is linear in V.

(2) Let s denote — or +. Note by , , and that A}, (0)Veor. € CH(Q) N
H (). For any n € CH(Q) with supp (n) C s, we have by (4.27) and the Divergence
Theorem that

/ esViry - Vndx = / eV - [AL(0)Vor o ndx.
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Hence, —Alry = V - [4,(0)Vér o] in Q. Since the right-hand side is in L*(Q) N C(£),
it follows from the elliptic regularity theory [25,32] that ¢ € H?*(€) N C'(€y), after a
possible modification of the value of (p on a set of zero Lebesgue measure. Moreover, the

first equality in (4.28]) follows.
Let us denote by V* (i = 1,2,3) the components of V. With the conventional summation
notation (i.e., repeated indices are summed), we have by (4.6, (2.6, and (2.8)) that

=V (A4y(0)Vér,«)

=V [VV+ (V)" = (V- V)] V¢r

= 0; (0;V'0;0r 00 + OV? 001 00 — Ok VF 007 )

= 20401 00OV’ + 0:V? 0,61 00

= aiiajd)p,oovj + 2aij¢p,ooaivf + 8“-Vjc9j<bp,oo [since Oji¢r 00 = 0]

= 35 (056r V)

= A(Vore - V) in Q_UQ,, (4.32)
implying the second equation in .

Since (ry € Hi(Q2) and Alry € L?(€) for s being — or +, and since the unit normal n
at the I' points from Q_ to Q,, we have by the Divergence Theorem that both sides of the

equation in (4.27)) are
/ erV(ry - Vndz = / e_V(ryv - -Vndzr + / e+Viry - Vndz
Q

_ Q

= _/ E—ACF,VWCL’D_/Q 5+ACp7vnd$—/F[[EranCr,v]]FndS,
- +
and
- /Q er Al (0)Vro - Vi da
—_/ A (0) V- Vndx—/Q e A (0)Vr oo - Vida
- +
:/ e V- (A] ()ngbpoondx—i—/g e+ V- (A (0)Vér oo )n do
- +

4 / e Ay (0)V roe - e dS,
I

respectively. These, together with and (4.28)), imply (4.29)).
(3) Replacing I, ¢r o, and n by Iy, ¢r, o, and no T, ! for t € R, respectively, in the weak

formulation (2.5)), we get by the change of variable x = T;(X) that
/ erAy (t)V(ér, 0 0 Tt) - VdX =0 Vn € Hy(92).
Q
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This and (2.5)) imply for any n € H}(Q) that
/ EFV(Qth,OO o T;t - qbnoo) : Vn dX = / SF[I - Av(t)]V(qbrhoo o 7—;5) : V77 dxX. (433)
Q Q

It follows from a change of variable, (4.2)), (4.3), (4.7), and (4.8) that ||V (¢r, o 0 T3)| 22(0)

is bounded uniformly in ¢. Setting n = ¢r, « 0 T} — ¢reo € Hy(2) in (4.33), we then obtain
by , , and the Cauchy—-Schwarz and Poincaré inequalities.

Dividing both sides of by t # 0 and setting now 1 = (¢r, 00 01t — Preo)/t — (v in
the resulting equation and also in , we have by the Cauchy—Schwarz inequality that

T _ 9
/51" v (Qth,oo O 1y ¢F,oo . Cnv) dX
Q t
I — Ayt 00 01y — Or.o
= [ [%” +A’V<0>} V(ér o0 T) -V (¢ o —m) ax
Q
oo © T - o0
+ / er Ay (0)V [fr,co — drio0 0 Ty)] - V <¢pt7 tt Proo _ CF,V) aXx
Q
Av(t) — T — tAL (0 00Ty — broe
S C H V( ) V( ) ||¢Ft,oo o T;fHHl(Q) ¢F s t ¢F, . CI"V
t L(Q) t H(Q)
+,00 o T - fe'e)
+ Cl|or,00 — Ory00 © Tyl 11 (0) or, tt Proo _ Crv
H1(Q)

This, together with Poincaré’s inequality, (4.7)), (4.8)), and (4.30]), leads to (4.31)).
(4) Assume now V -n = 0 on I'. Recall from subsection [3.2| that the signed distance to T,

¢ : R?* — R, which is negative in 2_ and positive outside I, is in fact a C®-function and also
Vo # 0 in Ny(T'), a neighborhood of T' in €; cf. . Moreover, n = V¢ on I'. We define
n = V¢ on No('). Now, since V-n =0 on I, by Lemma [4.1] there exists to = to(V) > 0 and
a constant Cy > 0 which may depend on T', such that dist (x, ') < Cyt? for all z € T'; and all
t € [—to,to]. Let D(t) = {z € Q : dist (x,T') < Cypt*}. Then I’y C D(t), and hence er, = er
on Q\ D(t), for all |t| < t5. Moreover, the measure |D(t)| = O(t?) as t — 0; cf. Lemma 2.1
in [33].

Let hy = (¢r,.00 — Pr.oo)/t with |t| < t5. We have now by and that with I'; replacing
I' that

/ er,Vh - Vndx = —/ T t_ °r Vore - Vndr — Vn € Hy(9). (4.34)
0 Q

Setting n = h, € H}(2), we have by the uniform boundedness of Vor, . (cf. (2.7)), the
Poincaré and Cauchy—Schwarz inequalities, and the fact that |D(t)| = O(#?) as t — 0 that

9 1/2
D(¢)

where C' > 0 is a generic constant, independent of ¢. Thus, there exists a subsequence of h;
(Jt] < to), not relabeled, and some h € H}(S2), such that h; — h weakly in H'(Q) as t — 0.

Ery —€r
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Working on this subsequence, we have by (2.5 (with ¢r, o replacing ¢r ), (4.34), (2.7),
and the fact that the measure |D(t)| = O(t?) — 0 as t — 0 that for any n € H}(Q)

/ erVh - Vndx
Q

/ (er — er,)Vh, - Vipda — / L - L Voro - Vide
Q

Q

<

/ (er, —er)Vhy - Vndx| + / S, Vor e - Vndx
D(t) D(t) t

1/2
sc{uhtumm \D()W?] (/ rvm?m)
|t| D(¢)

1/2
<C (/ |V77\2d$>
D)

— 0 ast — 0.

Since hy — h weakly in H'(Q), we have
/spVh~Vndq::O Vn € Hy(S2).
Q

Setting n = h € Hy(Q), we see that h = 0 in H}(Q).
We now show that (r = V¢r -V in Q. Let n € L*(Q) and t # 0. Since hy — h = 0
weakly in H'(€2), we have by the properties of the transformations T; (¢t € R) (4.9), (4.12),

and f that

/(bl“zoooT;‘, ¢Foo dX

/¢Ftoo — Preo © dX+/¢I‘oo ndX — /¢Foo77dX

:/ht (noT! )detVT;ldH/ ¢Ft’°° (no T )detVTt_lda:—/ ‘Z)Ff” dx
Q 0 0

= / " (770Tt_1) det VT, 'dx
Q

T — detVT ' —1
n /ngﬁp,oo (—77 ° tt Tdet vt 4S8 Yo — 2 tt ) dr

Q Q
= /(V¢r,oo Vndr  ast—0.
Q

This and (4.31]), together with the arbitrariness of n € L?(2), imply that (ry = Ver -V
in €. O
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We recall that Qgpm is determined by and the boundary condition qu,oo = Poo
on 0f). For each t € R, we denote by @phoo the unique function that is defined by
with I'; replacing I" and the same boundary condition ngpuoo = (oo 0n 0f). Note that all the
singularities x; (i = 1,..., N) are outside the support of the vector field V.

Lemma 4.4. (1) There exists a unique &ry € H(Q) such that
/ erVéry - Vndr = — / ep A (0)Vor o - Vi da Vn € Hy (). (4.35)
Q Q

(2) By modifying the value of &ry on a set of zero Lebesgue measure, we have that &, €
H?(Qs) N CY(S) for s = — or +. Moreover,
Abry ==V - A (0)Vore = A(Vore - V)  inQ_UQ,, (4.36)
[erdnéry]r = —[er 4y (0)8nér ol on T
(3) We have

lim [|¢r, 0 © Tt = ¢r.ccll (@) = 0,

¢2Ft,oo o T't - (ﬁf,oo
t

0.

lim
t—0

- fI‘,V

HY(Q)

Proof. The proof is the same as and simpler than that of the next lemma, Lemma [1.5] as
there is an extra term B there, which can be set to 0 here. The only exception is the second
equality in (4.36]) which can be obtained by the calculations same as in (4.32)). O

We recall that ¢¥p € ¢c + HH(Q) N C(Q) = QASF?OO + HY() N C(Q) is the unique weak
solution to the boundary-value problem of the dielectric-boundary PB equation ; cf.
Definition . For each t € R, we denote by 4r, € ¢ + H'(2) N C(Q) the unique solution
to the same boundary-value problem with I'; replacing I'.

Lemma 4.5. (1) There exists a unique wry € H} () such that

/ [ﬁrvwr’v -Vn+ X...BN (1/11“ — QSFT7OO> WF,VTI:| dx
Q

=— / er Ay (0)Vir - Vndx
0

[ fwevim (o= ) - S (- =) [y we Hi@)
o 2 2 2
(4.37)

(2) By modifying the value of wry on a set of zero Lebesque measure, we have that wi ,, €
H?(Q) N CH(S) for s = — or +. Moreover,

Awr’v =-V- A/‘/(())pr = A(VQ/JF . V) m Q_, (438)
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€+AWF7V — (@Z) — ¢FOO) wryv = —€+v . A,V(O)VQﬁF
+(V-V)B (wr - ¢F°°) - CFQV (¢ - (b“") in Q4 (4.39)
[[EpanwF7v]]r = _[[5FA/V( ) n@ZJF]]F onT. (440)
(3) We have
lim [[¢or, o Ty = ¢hrl i) = 0, (4.41)
lim || 00T =00 = 0. (4.42)
t—0 t ’ HL(Q)

Proof. (1) Since B” > 0, the support of V' does not contain any of the singularities z;
(t=1,...,N ), and Yr and ¢r  are uniformly bounded on the union of the support of V
and Q+ (cf and (2.21))), the existence and uniqueness of wr € H{(€2) that satisfies
([4.37) follows from the Lax—Milgram Lemma [22}25].

(2) Choosing n € CH(Q) in (4.37) with supp (n) C Q_ and applying the Divergence
Theorem, we obtain the first equation of in a.e. 2_. Since the right-hand side of
this first equation is in L2(2_) N C(Q_), it follows from the regularity theory [25,32] that,
with a possible modification of the value of wry on a set of zero Lebesgue measure, wp;, €
H?*(Q_) N C*(Q2_). Now, the first equation in - holds for each point in Q_. The second

equatlon is similar to that in . (cf. - By similar arguments, we obtain that
(4-39)

wry € H*(2) N CY(Q4) and By splitting each of those two integrals in (4.37) that
has the term Vn into integrals over €2_ and Q+, respectively, using the Divergence Theorem,

and using and (4.39), we obtam

(3) Let qbc be given as in and t € ]R Denote
r=tyr—do and 4y =, — do.
We first prove 1’ By 1) (with quS = ggc) in Lemma , it suffices to prove that
lim [t 0 Ty — Yl i) = 0. (4.43)
By Definition [2.1] and (2.3)) (cf. also (2.12))), we have

/ [ervwr -Vn+ x4 B’ (wr + ¢ — (br’m) 77} dx
Q

2

= —(ey—e.) | Voo -Vndz  Vne HY Q). (4.44)
Q4

Replacing I', Q. , ¥, and n in (4.44) by I, = Ty(T"), T,(%4.), ¥r,, and n = noT; !, respectively,
we obtain by the change of variable x = T;(X) and (4.4)) that

/ [ngv@)V(wr,t oT,) - Vi +x: B ((w s ¢F5°o) T) " "} -
Q
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— (en — g)/ Av(OV(doo T -VndX ¥y e HAQ). (4.45)
Qy
Subtracting (4.44) from (4.45) and rearranging terms, we get
[ er Ve o T) - V] 9pax
Q

/ H[AV(t) — 11V (G 0 Th) - Vi dX
(( rt+¢c—¢“"°> oTt) (J, — DndX

|: (wrt+¢C_¢th)oﬂ)_ (¢r+¢C_¢FOO>:|7]dX

C(es el )/ V(deoT,) — Vo] - VydX

—(es —e.) /Q [Ay(t) = IV (dc o Th) - VpdX Wy e HAQ). (4.46)

Setting n = ¢, o Ty — ,, we have by the uniform bound of all ¢, ; and ¢r, o (cf. (2.21)) and
(2.7)), the Mean-Value Theorem, and the convexity of B that

|: ((wrt+¢c_¢réoo)oTt)_Bl (wr‘{'&(}_égm)}n
- _B”()\t> (wr,t © Tt - wr + (%C o T;f - (50 + %(bf‘t,oo o n - %¢F,oo) <wr,t o T;f - wr)
= —B”()\t>(¢r,t oT} — %)2

— B”()\t) <¢EC o E - ¢EC + %(bl“t,oo o Tt - %¢F,oo) (wr,t o n - wr)

< C|(¢;C ol — éc)@br,t oTi =) +C |(¢Ft700 ol — ¢F,00)(¢r,t oTi — )], (4.47)

where )\, is in between (%,t + 95@ — ¢rt7m/2> oT; and ¥, + ngﬁc — ¢r.o/2 at each point in Q,
and the constant C' > 0 is independent of ¢ and I'. Now, the combination of (4.46) with
n =y, 0T, — 1, and (4.47)), together with the uniform bounds for ¢,, and ¢r, o, and the

Cauchy—-Schwarz and Poincaré inequalities, leads to
[V 0 Ty — ol () < CNAv () = I|| oo @)l|rs © Til| i) + Cll e — 1| (o)
+ OH¢C o T;ﬁ - ¢C||H1(Q+) +C ||¢Ft,o<> o E - ¢F,oo||H1(Q)
+ C[|Av(t) — [HLoo @) 19c o Tillmay)-

Now the Convergence - ) follows from (| . . . the uniform bound of v, 4,
Lemma 4.2 (with ¢ = ¢¢), and Lemma
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We now prove (4.42)). Let us denote wry = wryy — V(}Aﬁc - V. By Lemma (cf. 1}
with ¢ = ¢¢), we need only to prove that

1; 77Dr,t o 7—‘t - Q/Jr ~
m [|—————— — Wr.v
t—0 t ’

= 0. (4.48)
HL(©)

We first note that the Divergence Theorem and the calculations in (4.32) imply that
40 Véc + V(Vic - V) - Vs
Q

= —/Q[v (AL (0)Véc) + A(Vec - V)] ndx
=0 Vn € Hé(Q)

This allows us to rewrite (4.37)) into the following equation for wr y:

/ {gFV@F,V -V + x4+ B” (% + &C - ¢1;OO) @)F,Vﬁ] dX
Q

__ /Q er A4, (0)V (¢r — o) - VipdX

L lr(en-er

+B" (wrﬂﬁc - ¢F2’°°) (vgﬁc V- C%)] ndX

ey —e) / AL (0)Vde + V(Voe V)] -VndX  Vge Hi(Q).  (449)

Multiplying both sides of (4.46)) by 1/¢ and combining the resulting equation with (4.49)),
we obtain by rearranging terms that

T T_ r ~
/SFV (M —wr,v> L VndX
Q

- /Q r [(W) V(i o Ty) - A@(@W} -V dX

/ n ¢Ft,oo Jt_]-
[ (i) om) (557)

1 (s o= 252 ) (7 V) ax

1 / N le“t,oo / " ng,oo
—/m{; {B ((¢r,t+¢c—T)OTt)—B (¢r+¢c— 5 )}

—-B" <¢r + (,gc — ¢1;oo) ((DF,V + Vﬂgc V= CFTV) } ndX
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e [ (A9 Vioeom) - a4 Ve - vnax

— (&4 — 5)/Q \Y (M — Vo - V> -VndX  Vne€ Hy(Q).  (4.50)

Specifying n = (¢, 0 Ty — )/t — &y € HJ(Q), we have by the fact that B” > 0, the
Mean-Value Theorem, the uniform bound for all the functions ., (r v, and wry (cf. (2.7),

(2-16)), (2.21)) that in Q.

1 / n ¢Ft700 / n (bl",oo
—{g {B ((¢r,t+¢c— 5 )OTt)_B (¢r+¢c— 5 )1

_B~Q%+éc_¢nw)(wa+v@yvu_@z)}<%¢Zﬁ:ﬁﬁ_@mJ

2 2 t

o " wr,toTt_wr QECOTt_QASC QSFt,oooTt_ﬁbF,oo 77Z)r,t07—1t_¢r ~
=—B"(&) ( ; + + N 2%t ) ( t a wr,v)

LB <¢r bde— ¢F2,oo) (@F,V VeV — Crév) (¢r,t 07;— Yr —@F,V)

2

—_p (gt) (wr,t O? - wr _ CDF,V)

_ B// (5t> (QF,V + ¢C o 7;: - ¢C B ¢Ft,oo o ;;2; - ¢F,oo) (wr,t o 7;7& - 1/% . (;JRV)

i[5 (00 o= 252 ) = 20| (o W v = S0 (B2 )

+ B”(ft) ((IJF,V + Véc -V - CF2V> (wr’t O? — % — djpy)

1" QASC oT; — Qgc 2 Qbrt,oo oT; — Qbr,oo CF,V
< —-B"(&) <—t — VooV — 5 +35 >
(¢r,toﬂ—¢r_w )
' t v

-+ B/”(O't) <¢r + QBC — (bgoo — é't) ((DF,V + vqgc V= gl;V) (wr,t ozt—‘t - wr . (I)nv)

b T_A i ooT_ 00 r T_r
SC(%o; % _ Ve v|+ [Pl m,_&vﬂww; Y
0 n roT_r ~
40 ([ o T = il + [ 0 T = | +10re o Ts = bl ) |20

where & and o, are in between (1, ; + (;5@ — ¢r,.00/2) 0T} and 1, + QAﬁc — ¢r./2 at each point in
2;. Now, combining this inequality and the identity (4.50) with n = (10Tt —,)/t —r v €
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H}(Q), we obtain by the Poincaré and Cauchy-Schwarz inequalities and rearranging terms
that

wr,t o Tt - wr ~ ?

—wrv
t

SC/
Q

+c/
Q4

H(Q)

(2 9=0) Vom0V,

2

t

¢th Jt_l
(0o 2=) om) (27

2
(bFoo

—B’<wr+g§c— 5 )(V-V) dX
~ N 2
T, — - T, — 2
—i—C( ¢CO t ¢C—V¢C'V +'¢Ft,ooo t QSF’OO_CF,V
t 12(04)
HY(Q4) +

+ [[thr s 0 Tt — ¢r||%2(ﬂ+) + [|¢pc o Ty — QEC”%?(QJr) + [|ér,00 0 Tt — ¢F,oo||%2(sz+))

/ < ) V(g o T;) — A4 (0)Voc
Si(t) 4+ Sa(t )+Sg( )+ Sa(t)]. (4.51)

It follows from . . Lemmau with gb gzﬁc) and 1) that

S, (1) :/Q [Av(t)_

1
; ] V(s 0 Tp) — Ay (0)
< 2/Q [Av<t) -1 A’V(O)] V(¢ oTy)| dX + 2/Q | AL (0)V (thyy 0 T} — wr)|2dX
— 0 ast — 0. (4.52)

t
By the uniform boundedness of ¢,; and ¢r, ~ (cf. (2.7), (2.16), (2.21)) the Mean-Value
Theorem, (4.2) and (4.3]), Lemmas and and (4.41)), we have

,O0 Ji—1 / 2 0o
Sz(t)z/Q+ ((%w%—gbrﬁ >0Tt>< - )—B<¢r+¢c—¢; )(V-V)
2
32/ ((¢rt+¢c—¢“°")oﬂ) (J’*t_l—v-v> dx
Q4
2
+2/Q B’((%,H—éc— gbf‘;oo) OE) <wr+¢0_ ¢FOO)

2
SC/ J—1
Q4

2

2

2
dX

-V.V] dX
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+ C (‘wr,t o E - wr|2 + |§5C o E - $C|2 + |¢Ft,oo o E - ¢F,oo’2) dX
Qy

—0 ast — 0. (4.53)

By Lemma (with ¢ = ¢¢), Lemma , and , we have

b o Ty — ¢ N T —
Sg(t) = ‘ M — V(bc -V -+ ‘ ¢Ft’oo °© tt ¢F700 _ <F7V
HY(Q4) L2(Q4)
+ ”wr,t ol — erLQ(Q” + ”(ﬁC ol — (%(3”%2(5)” + ||¢pt7oo ol — (bF,OO”%Q(QJr)

It follows from — and Lemma (with ¢ = ¢¢) that

Sa(t) = /Q ) {—AV(? -1 Cax

] V(de o 1) — Ay (0)Voe

Ay(t) =1 , R 2 R N
<C f_AV(O) VigcoT)| +C | [V(¢coTi—¢c)l'dX
o o
— 0 as t — 0. (4.55)
Now the desired convergence (4.48)) follows from (4.51))—(4.55)). O

5 Proof of Theorem [3.2

Proof of Theorem[3.3. Fix V € V (cf. (3.6)). Let {T}}ier be the family of diffeomorphisms
from R? to R? defined by T;(X) = (¢, X) as the solution to the initial-value problem ([3.7)).
We proceed in five steps. In Step 1, we calculate the limit as ¢ — 0 that defines the variation
dr.v E[I']; cf. Definition . In Step 2, we simplify the expression of ér y E[I']. In Step 3, we
convert all the volume integrals in dr v E[I'] into surface integrals on the boundary I', except
one volume integral that involves the B’ term. In Step 4, we rewrite the surface integrals to
have the desired form (i.e., with a factor V - n in the integrand). Finally, in Step 5, we treat
the only volume integral term that involves B’ to get the desired formula.

Step 1. Let t € R. We recall that ¢r, o, qut,oo, and v, are the solutions to 1D 1D
and (2.20) with T’y = T(T') replacing I, respectively, and that all these functions have the

boundary value ¢, on 9€). Recall that ¢y and ¢, are defined by 1} and 1) We denote
in this proof

Yy = Yr — QASF,OO and 1y = U1, — Or, co- (5.1)
By (3.1) and (3.2)) with I'; replacing I", the definition of Ay (t) (4.4) and J; (4.1), and the

change of variable x = T;(X), we have

€ t t,00
E[l,] = _/ %ywr,t\?dx —/ B (wn - ¢F2 ) dz
Q Te(24)
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E_—¢&4
2

| Vor Vandorw
Te(Q24)

—— [ T AV s o T) - V00 T

_/ B ((@z)rt _ ¢F§v°°) oTt) J,dX
Q4

S / AV(t)V(éft,oo o Tt) ’ V(éa o Tt) dX + W,
Q4

M

where W = (1/2) N, Qi(¢oo — ¢0)(2;) is independent of T'. Consequently,

Ely] - E[TY

t :_/Qt [Ay()V (Y0 Ty) - V(rr 0 Ty) — Vb - Vb dX

LA (o) o)

+ 555 [ [AVOVGr s o T) V(0o Th) ~ Vire - Vo] dX
Q4

2 t
E_

= —01(t) — Galt) + =y (1). (5.2)

By rearranging the terms, we obtain that

51(t) = /Q % |:AV(t) — It_ tAQ/'(O):| V(wr,t o irt) . V(17Z}1",t o irt) dX

4 / A (O)V (s 0 Th) - V(i 0 Ty) dX
Q

er wr,toﬂ_d}r
b [ F 9o+ v v (L o

It thus follows from - - Lemma and Lemma E 5| that

t—0

lim 51 (t) = /Q{-TF [%A/V(O)V@Dr . V@Dr + V@Z)r . V(u}ry — £F,V):| dX, (53)

where &py and wr y are defined in (4.35)) in Lemma and (4.37)) in Lemma , respectively.
Denote ¢ = Yr — ¢r /2 and ¢ = (¢Yr, — ér,./2) 0 T;. The second term d5(¢) in (5.2]) can

be written as

52@):/9 Jtt_lB(qt)dXJr/Q Md}(, (5.4)

Since the L*>(Q2)-norm of ¢; is bounded uniformly in ¢t € R (cf. (2.15) and (2.21)), it follows
from Lemma [4.3] and Lemma [4.5 that ¢; — ¢ in L*(Q). Hence, B(q;) — B(q) in L*(,) as
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t — 0. This, together with (4.2) and (4.3)), implies that

m [ 2= 1B(qt) dX = | (V-V)B(q)dX. (5.5)

t—0 Q4 Q4

Now Taylor’s expansion implies that
B(g(X)) — B(¢(X))

t
_ Bq0 ) =)

(X) — q¢(X)

" , a.e X e,

+ 3B/ (X)) [a(X) ~ g(X)]

where 7;(X) is in between ¢(X) and ¢,(X), and its L*>°(€2)-norm is bounded uniformly in ¢.

It then follows from Lemma [£.3] and Lemma [£.5 that

4 —4q
t

— 0 ast — 0,
L2(Q4)

4 — g
[ Bt 05 ax| < Clla - dloy
Q4

where C' is a constant independent of . Consequently, by Lemma [4.3] and Lemma [4.5| that

B —B —
i [ PO B gy [ p®tax = [ i <w - CTV> =
Q4

t—0 QO t t—0 Q.

where wry and (py are given in (4.37) and (4.27)), respectively. This, together with ([5.4)
and ([5.5)), and our definition of ¢ and ¢;, implies that

lim 8y (t) = /Q+ [(v -V)B (wp - ¢F2’°°) + B (¢p - ¢2°°> (WF,V - CFTVH dX. (5.6)

Rearranging the terms, we have

() = [ AU 01y VG o Ty ax

t
X V(¢Ft,oo 9} E) - v¢f‘,oo . V(Qg() o ,_Tt) dx
Q4 t
+ [ Véra V(gooTy) = Vo,
Q4 t

+ [ A0V o T) - Vo T dX.
Q4

Therefore, we have by , , Lemma (with b = ngSC), and Lemma that

lim 64(t) = /Q [vgp,v-va30+vqﬁp,oo~V(vg£0-V)+A’V(o)v(;3noo-v¢30} dX. (5.7

t—0
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It now follows from Definition B-2), (-3), (B.6), and (5.7) that the first variation

drEI'] exists and is given by

5p7vE[F] = —/ %A@(O)V?ﬂr . Vwr dX + / Ervwr . Vf[‘}v dX — / EFVQ/}T . pr’v dX
Q Q Q

Lol (o) o)
o, 2 2 2

=% | Ve VpdX

_|_

2 O,

= ;5+ / [w@rm V(Yo V) + A (0)Vr . - vqéo] dX
Q4

:M1+M2+M3+M4+M5+M6. (58)

+

Step 2. We now simplify this expression. By Lemma and our notation 9, = ¢r — anoo,
we can express the sum of the first two integrals above as

M+ My = — /Q %AIV(O)V(@/}F — reo) - V(tbr — dr o) dX

_ / e A (0)Vor oo - V(i — droo) dX
QO

er ,, er ) ’
—— [ FA 0V VordX + [ T4 VirmdX.  (59)
Q Q

Note that the last two integrals exist as the singularities x; (1 <1i < N) of ¢r and QASF,OO are

outside the support of V' and A}, (0) is given in (4.6). By (2.20) in Definition [2.1f and ([2.11])

we have
/ [er)r -Vn+ x4 B (¢r - gbl;”) 77} dX =0
Q

for all n € C}(Q) and hence all n € Hj(Q). Setting n = wry, we get the two-wr y terms in
(5.8) (one is M3 and the other is part of M,) cancelled:

¢F,oo
2

/ |:€I‘V’¢r . VCL)]_'"V + X+B/ (wp — ) wnv} dX = 0. (510)
Q

To simplify Ms, we note that we can replace n in (2.3) (with ¢ = ) and (2.11) by
Srv € Hy(Q), as &pyvla. € C*(01); cf. the remark below (2.4]) and that below (2.12). It then
follows that

E_ ~ £ ~
Ms=—= [ Véry-VoodX — = [ Veéry - VoydX
2 Ja, 2 Ja,

N
€ - 1 PN
—— [ Ve VandX 453 Qerle) by @) with 6=
Q i=1
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€ n € A
== | S Verw VéudX + | SVre- VérydX  [by @1D)]

Q

= /Q E—FVﬁjV : v(ﬁgF,oo ¢0 - ¢Foo dX by -
- _/ SA (0)Vor o - V(ro — do — dree) dX. [by Lemma [I] (5.11)
Q

Since quSO is harmonic in the support of V' that excludes all z; (i = 1,..., N), we have by
the same calculations as in (4.32)) that

V- [V(V&o V) + AL(0)Veo| =0 in .

Thus, since the normal n along I' points from 2_ to €2, , we have by the Divergence Theorem
that

%— Vore - [V(Vy - V) + Ay (0) Vo] dX

Q4
S X , .
=5 [ ral¥ (Vi V) + Ay 0)Vn] - s
_ ——/ Vor  [V(Voo - V) + A (0)V ] dX
Therefore, since Af,(0) (cf. (4.6)) is symmetric,
E_—¢&4

Mg = — Vore - [V(Vo - V) + AL (0) V] dX

9 0.
€ A ~ , A A
S / L Voreo - V(Vo - V) + A (0)Vr.oo - Vo] dX
Q
g
_ / LA (0)Vr - VdodX. [by @II) (5.12)
Q
It now follows from . - that

b ET) = — / AL (0) Vi - Vi dX + / () Vr s - Vorn dX
Q

+/Q+ [%V (wp— ¢F°°) —(V-V)B (wr - ¢2°°>] dx

=P + P, + Ps. (5.13)

Step 3. We convert most of these volume integrals into surface integrals on I". We shall
use the following identities that can be verified by using the Divergence Theorem and ap-
proximations by smooth functions:

/(V-U)va-vz)dx:—/ U - (V*aVb + V*bVa) dx+/ (Va-Vb)(U -v)dz, (5.14)

oD
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/ (VU)Va-Vbdr = —/ U - (AaVb+ V*Va) dz + / (Va-v)(Vb-U)dz. (5.15)

oD

Here, D C R? is a bounded open set with a C'' boundary 0D, U € H'(D,R?), a,b € H*(D),
V2a is the Hessian matrix of a, and v is the unit exterior normal at the boundary dD. If in
addition Aa = Ab =0 in D, then we have by (5.14)) and ([5.15) that

/ (VU + (VU)' —(V-U)I)Va- Vbdz
= / (Va-U)-(Vb-v)+(Vb-U)-(Va-v)—(Va-Vb)- (U -v)]dS. (5.16)
oD

Note that V' = 0 in a neighborhood of all z; (1 <i < N) and V = 0 on 02 and that the
unit normal vector n on I' points from Q_ to Q. By Theorem 2.1 Ar =0 on Q_Nsupp (V)

and e, AYr = B'(¢Yr — ¢r/2) on . Therefore, we have by (4.6)), (5.14]), and (5.15)) that

P :/g—F[VV+(VV)T—(V-V)I]ngp-vadX
o2

_ / e_(VV)Vir - Vior dX + / e (VV)Vir - VirdX
a_

Q4

1\3||m

(V-V)Vir - VordX = [ S5V V)Vir - VordX
- Q

e V- (AYrVipr + V2rVior) dX + /F e (Vyp - V) (Vp -n)dS

[

V- (Ade Vi + VPr Vi) dX — / e (VUi - V) (Wi ) dS
N

+ €_V-V2¢FV¢FdX—/%|V¢;|2(V-n) ds
_ I
n g+v-v2¢pv¢pdx+/%\w;y?(v-n) ds
n r
—— [ e aun(Vir - V)aX 4 [ (Vo V)V m)as = [ SIVerP nds
_ I I

- [ eebun(Vee V)X~ [ (ot VUt m) s+ [ SV V) ds
Q4 r r
= [ (Vo VITU - m)ds = [ eu(Vai V(T ) ds
e_ 7 ey
— [ SIVUrE myas+ [ SVt PO mds

—/Q B (w — ¢F2*°°> (Vipr - V) dX, (5.17)
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where a superscript — or + denotes the restriction from €2_ or (2, respectively.

Since ¢r ~ and ¢r o are harmonic in Q_Nsupp (V') and O, and since the normal n points
from Q_ to 2, we have by (4.6)), (5.16)), and the notation of jumps (2.10)) that

P, = / € (V-V)[-VV — (VV)T]V§£F,OO Ve dX
. 2 Y
+/ UV VI = VV — (VV)T|Vrm - Vor o dX
B % /H&?F(vér"Oo ’ )(Vle'"oo ’ n) + €F<v¢§1—‘,oo ’ n) (V¢F,m : V)
r

— er(Voros - Voéroe)(V - n)]r dS. (5.18)

Using the Divergence Theorem and noting again that the normal n at I" points from _
to €2,, we obtain

o Cl" V ¢F,oo / ¢1" 0o V(Zﬁl",oo
T S P R (S TC S P

b [ 5 (or- ) 0 mpas

= / {5 (Crv = Vore - V) + Vir - V] B’ (Yﬁr — (bl;oo) dX
Q4
+/FB (¢F - d)g“) (V -n)dS. (5.19)
It now follows from ({5.13]) and ( - - ) that
opv B[] = /5—(V¢r_ -V)(Vyr -n)dS — /5+(V¢;r -V)(VYf - n)dS
r r
- [ GV P s+ [ Svut Py ds

1 ~
+ 2 Aﬂgr(v¢r,m V)(Vére - n)rdsS
+ % /F[[ﬁr(végr,oo n)(Vore - V)rdS
1 A~
) /F[[gr(v¢r,oo *Vére)(V - n)rdS

% (CGrv = Vére V) B <7/)F _ o OO) dX

" / +
/F (¢F - Cb“”) (V -n)dsS. (5.20)
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Step 4. We express the surface integrals into those with the factor V - n in the integrand.
Note that on each side of I', we can write

Vir = (Vor - n)n + Vrr = 0,¢rn+ Ver on T,

where Viryr = (I —n®n)Vir is the tangential derivative. Clearly n - Vryr = 0. Moreover,
Vit = Vryp on T. Thus,

Vi — Vi = (Op0f — Outs)n on T,

By Theorem , we have also e Vi -n =e_Viip -n = erVir-n on I'. Therefore, the first
four terms in ([5.20) are

/Fg_(wr—.vxwr— ) dS - / e (VU - V(T - n)dS
— [ SIVUrE myas+ [ SVt P mas
_ / erOtbr (Dpth — Outop)(V - ) dS
r
+ [ Flowi PV mas+ [ S Vrue (v ) ds
) / o (V- m)ds - / VPV - n) dS
- _/g+|an¢r+|2(v-n) ds+/s_|8n¢;|2(v-n) s
r r
+ [ Flowi PV mas+ [ S Vrue (v ) ds

) / o (V- m) s - / VPV - n) dS

__L (L . L) [lerouinf (v s + =55 [ Voo mas. G2y
I I

€y E_ 2
Similarly, on each side of I', we have with ur = ¢r  or quﬁoo that

Vur -V = (Opurn + Vreur) - (V-n)n+ (I —n®@n)V)
= Opur(V -n) + Vrur(I —n®n)V.

Moreover, £,0,uft = e_0,ur and dpuf = drup on I'. Therefore, the next three terms in

become
L Vo VIV s + 1+ Vo v ] dS
§/I‘[[€F< ¢F,oo' )( ¢F,oo n)]]F +§\/[‘|I€F( ¢F,oo TL)( ¢F,oo' )]]F
_ % /F [er(Vor o - Vora)(V - n)]r dS

42



= /F[[ffranqgr,ooan(br,oo]]r(v -n)dS
- %/Fﬂﬁr(anﬂgr,ooanﬁbnoo + Vior e - Vréreo)r(V -n)dS
= % /F [er0nr 00Onér s (V - 1) dS — % /F [erVrdr oo - Vidroolo(V -n)dS.  (5.22)
It now follows from f that
ey Bl =~ (i - i) / lerOutrl2(V - n)dS + S5 / VeV - n) ds

€y E_ 2

1 ~ 1 .
o / [ev0udr curJe(V ) dS — / [erVidre - Vidracr(V - n) dS
T T

1 00

+/FB (wr - ¢2°°> (V -n)dS. (5.23)

Step 5. We finally rewrite the volume integral above into a surface integral on the
boundary I'. Recall from the beginning of Subsection [3.2] that the signed distance function
¢ : R® — R with respect to I' is a C*-function and V¢ # 0 in the neighborhood Ny(T") of T.
We extend n = V¢ on I' to Ny(T), i.e., we define n = V¢ at every point in Ny(I'). Note that
n € C*(Ny(T)). Since V' € V vanishes outside Ny(T'), both the normal component (V - n)n
and the tangential component V' — (V - n)n = (I —n®n)V of V are in the class of vector

fields V; cf. . Since
V=V -nn+ (I -n®n)V and (I —n®n)V-n=0,

we have by Lemma [£.3] that

v — Vore -V = vmnt-nen)v — Vére - [(V-n)n+ (I —n@n)V]
= (v — Vore - (V-n)n+ (o (—ngnyv — Voére - (I —n@n)V
= CF,(V-n)n - V¢F,oo : (V : n)n in Q.

Therefore, we may assume that
V=WV-nn inN(T). (5.24)

By Lemma [£.3] iy, € H?(S)) for s = — or +. Thus, by [{28), A(Vére - V) € L?(6%)
for s = — or +. Therefore,

Vor. -V € H*() fors = —or +. (5.25)

Recall from 1} that ¢, = wr—(zgnoo € H} (). Note by Theoremthat A, = 0in Q_ and
e+ Ay = B'(r—¢r0/2) in €. Note also by ([4.28)) in Lemma [£.3|that A(Cry —Ver V) =
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0in 2_UQ,. We then obtain by Green’s second identity with our convention that the normal
n at I' pointing from Q_ to 2, and the fact that [er(r 0,1 ]r = 0 which follows from the
third equation in (2.22)) that twice of the volume term in (5.23)) is

Q= ; (Cov = Vore-V)B <¢F — ¢Fw) dX
= [ eellGoy = Vra V) Ay = i (G = Vi - V)] aX
+ / - [(Cry = Vore - V) A — 0 A (Cry — Vore - V)] dX

_ / e [(Cow — Voo - V) 0uths — t0n (Coy — Vér oo - V)]]r dS

/[[€r Vor - V)ouih]rdS + /[[€F¢ OnCrv]rdS — /[[5F¢ On(Vor e - V)[rdS
= Q1+ Q2 — Q3. (5.26)
It follows from that

@1 = /HEF(VQbF,oo : V)anl/}r]]l“ dsS = /H5F8n¢F,man¢er(V . n)dS (527)
r r
Since [¢,]r = 0 and [erd,¢r,oo]r = 0, we have by Lemma [4.3] (cf. (£.29)) that
Q2 = /ﬂarlbranﬁ“,v]]r as

=~ [Ieet: Ay 0) Vi - lrds

- / [ertse [VV + (V)T = (V- V)] Vér o - n]r dS
r

= / [ere: [VV + (VV)'] Vor o - n]r dS
r

= / [ertaVér e - [VV + (VV)T] n]rdS. (5.28)
r

Denoting by n’ the jth component of n and noting that 9;n/n’ = (1/2)9;||n||* = 0, we obtain
on each side of T' (i.e., on NVp(T') UQ_ and Ny(T') U,) that
Vore - (VV +(VV)")n
= iPr oo (8~Vi 4 a.vj) n’
- ngF 00 ((V n) )n” + 8z¢1“ 00 ((V n)nj)n] [by ]
= 0;¢r,000;(V - n)n'n’ + 0iér (V- n)0; nind
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+ 001 000 (V - n)n?nd + Oi¢r oo(V - n)0imin?
= (Vore n)V(V-n) -n+ Vér - ((Vn)n)(V n) +Vore - V(V -n).

This and ([5.28)), together with the fact that [erVer o - n]r = 0 on I, lead to

Q2 = /[[5r1/1rv¢r,oo ~(Vr)n]r(V - n)dS + /[[&%V(ﬁr,oo -V(V-n)]rdS
r r
=21 + Q2. (5.29)

To further simplify these terms, let us recall the surface divergence Vv for a vector field
v along the boundary I' and its integral on I'

Vr-v=V-v—(Vo)n-n, (5.30)
/Vp vdS—Q/Hv n) (5.31)

where H is the mean curvature; cf. |18] (Section 5 of Chapter 9).
Consider the term ()3 ; in (5.29)). Since n = V¢ is a unit vector field, we have n- (Vn)n =
n‘dn'n? = (1/2)n?d;(n'n") = 0. Hence, on each side of I', we have

V(ﬁp’oo . (Vn)n = Vp(ﬁnoo . (Vn)n (532)

Let us denote ar = ¢, Vr¢r « and note that [ar]r = 0. Hence ar € H'(Ny(T'), R?). Note
also that ar - n = 0. Thus,

(Var)n-n+ar - (Va)n = [(Var)'n+ (Vn) ar] - n

=V(ar-n)-n
—0  in Ny(D). (5.33)
This implies that
(Varn) -n = —ar - (Vn)n € H'(No(T)). (5.34)

By (5.24), we have for s = — or + that

V(Vore V) n=V((Vére -n)(V-n))-n
= (V(Vére -n) -n)(V-n)+ (Vore -n)V(V-n)-n in Qs N AN(T).

This, together with (2.6) and (5.25]), implies for s = — or + that
(V(Véro -n)-n)(V-n) € H(Qs NN(T)). (5.35)

Therefore, since Vrgr o = Vor o — (Vér o -n)n, A¢r o = 01in Q_ and Q. , and 1), and ¢r
are in W1 on each side of I', we can verify that for s = — or +

(V-ap)(V-n) = (Vih - Vor o) (V- n) = (Vi - n)(Vore - n)(V - n)
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—P(V(Vore - n)-n)(V-n) = (Vore - n)(V-n)(V-n) € H(Q, NN(T)). (5.36)
By (5.34), (5.36), and (with ar replacing v), we have for s = — or + that

(Vr-ap)(V-n)=(V-ar)(V-n) — (Varn -n)(V -n) € H(Q, N No(T)). (5.37)
With all the regularity results , , and , we have now by , , and

(:30) (with ar replacing v) that
Qa1 = [ [zvar (Tmjali(V ) d
_ /Fﬂap(vap)n eV - n)dS
— /F [ex(Vr - ar — V- ap)[e(V - n) dS. (5.38)

Consider now the term ()25 in ((5.29)). On each side of T',

Vgﬁr,oo . V(V . TL) = [(qur’oo . n)n + qubnoo] . [(V(V . n) . n)n + Vr(v . n)]
= (Vore - n)(V(V -n)-n)+ Vrore - Vr(V - n).

Since [¢;]r = 0 and [erV¢r o - n]r = 0, we thus have

Hgfwrvﬁbl“,oo : V<V ’ n)]]l“
= [erte(Véro - n)(V(V -n) - n)]r + [ertrVrore - Ve(V - n)]r
= [erar - Vr(V - n)]r. (5.39)

One can verify that on both side of '
Vi ((V-n)ar) = (V-n)Vr-ar+ar-Vp(V -n).

Consequently, we have by (5.29), (5.39), (5.31), and the fact that Vi¢r o -n = 0 on each side
of I' that

Qo = / [erar - Ve(V - m)]r dS
_ /P [erVr - ((V - m)ar)r dS — /F [ec(V - 2) Vi - ar]r dS
- /F[[25FH((V “n)arp - n)]rdS — /F[[ervF ~ap]p(V -n)dS
_ _/F[[grvp car]e(V - n) ds.
This, together with (5.29), (5.38), and the notation ar = ¢, Vrér «, implies that
Qy = — /F [erV - ar]r(V -n)dS = — /F [erV - (4 Vrér o) o (V - n) dS. (5.40)

46



Now, let us calculate the term @3 in ((5.26]). Since V = (V -n)n (cf. (5.24))), we have from
both sides of I' that

V(Vore V) -n=V((Vére-n)(V-n)) n
=V(Vore -n)-n(V-n)+ (Vére -n)V(V -n) - n.

Since [erVér « - nfr = 0, we have by and that
Qg = /[[EF@/JrV(VQbF,OO . V) . n]]r dS = /[[EF@/JrV(quF,OO . 7’L) . n]]p(V . TL) dS (541)
r r

It now follows from (5.26)), (5.27)), (5.40)), and (5.41)) that

Q = /[[gf‘[@n(bl",ooanwr -V (%Vrﬁbr,oo) - wrv(V(bF,oo : TL) ’ n]]]F<V ’ n) ds. (542>
T

By the definition of the tangential gradient, the fact that A¢r o, = 0 on both sides of I" (cf.
(2.8)), and V- n =2H on I', we can simplify the terms inside the pair of brackets in (5.42]).
On both sides of I', we have

On@r,ccOnths — V- (1 Vrér o) — 0:V(Vore - n) - n
= 0n@rocOn¥c — V - [ Vér oo — ¥ (Vér o - n)n] — 0. V(Vor o -n) - n
= On¢r,0cOn¥r — Vi - Vor o — 0 Adr o
+ V(i(Véro 1)) - n+(Vore - n)(V-n) =) V(Vere -n) - n
= On9rocOnthe — Vb - Vor o + (Vor e - 1) (Vi - n) + ¢ (Vor oo - 1) (V - n)
= 200010000 Pr — [(VUr - n)n + V] [(Vérco - n)n + Vidr,oo| + 2HY:0p¢r oo
= OnOrccOntr — Vrér o - Vb + 2H1,0,01 oo

Plug this into (5.42). Noting that ¢, = ¢)p— ¢r s and that all Vthy, Vidr e, €10 (Yr— dr oo ),

and er0,¢r ~ are continuous across the boundary I', we obtain that
Q - /[[€F<anwran¢1",oo - V1"1/}1r : vF¢F,oo)]]I‘(V . n) as
T
= /HEF[an(¢F — QEF,oo)anQSF,oo — Vr(¢r - QASF,OO) - Vrér o) r(V - n)dS. (5.43)
r

Finally, we obtain by ((5.23), (5.26]), and (5.43) that some of the terms in ory E[I'] (5.23)

are simplified into

1 ~ 1 A
5 /HgFan¢F,m8n¢F,m]]F(V ) ”) ds — 5 /ﬂgrvrﬁbnoo : VF¢F,m]]F(V : n) ds
r r

1 0o
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1 N 1 . 1
=3 /[[5F3n¢nooan¢r,oo]]r(v n)dS — 3 /[[5FVF¢F,OO - Vroreolr(V -n)dS + 5@
r r
1
=5 /[[gr(anwranqsf‘,oo — Vrir - Vior o) r(V - n) dS
r
1 1 o
=3 / 401 Ondf oo (V - m)dS — 3 / €_Onr Ondp oo (V - m)dS
r r
_ %" / Vrir - Vr(br,oo(v . n) dS + % / Vrr - qubnoo(v . n) ds
r r

E_

_1 (i - i) / rurerdudr oV - m)dS — “H
T

2 Eq E_

/ prp . quﬁjoo(v . n) dS
r

This and (5.23) imply the desired formula ({3.8). The proof is complete. O
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