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Steady-state bifurcation of a non-parallel flow involving

energy dissipation over a Hartmann boundary layer
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Abstract

A plane non-parallel vortex flow in a square fluid domain is examined. The energy

dissipation of the flow is dominated by viscosity and linear friction effect of a Hartmann

layer. This is a traditional Navier-Stokes flow when the linear friction effect is not

involved, whereas it is a magnetohydrodynamic flow when the energy dissipation is

fundamentally dominated by the friction. It is proved that linear critical values of a

spectral problem are nonlinear thresholds leading to the onset of secondary steady-

state flows, the nonlinear phenomenon observed in laboratory experiments.
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1. Introduction

To study the inverse energy cascade towards large scales [9] of plane flows, Som-

meria and Verron [13, 14, 16] presented magnetohydrodynamic experiments by using

electronically driven flows in a closed box, containing a thin horizontal layer of liquid

metal. The box is bottomed with electromagnets producing a uniform vertical magnetic

field. The flow velocity is small so that the upper free surface is negligible. The three-

dimensional motion reduces a two-dimensional one as the vertical movement in the

thin horizontal layer fluid can be ignored. The energy dissipation of the fluid motion

counts for viscosity and the Hartmann layer friction applied on the bottom of liquid

metal.

The non-dimensional governing equations of the two-dimensional approximation

motion for the velocity v and pressure p in the domain (0,1)× (0,1) are [13, 14, 16]

∂v

∂ t
+v ·∇v+∇p− 1

Re
∆v+

v

Rh
= f , ∇ ·v = 0. (1)
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Here Re is the Reynolds number, Rh is the Rayleigh number measuring the Hartmann

bottom friction and f is the Lorentz driving force defined by electric currents so that

∇×f =
π2

2
sin(2πx)sin(2πy) and

∫ 1

0

∫ 1

0
|∇×f |dxdy = 2.

The stream function ψ and the vorticity of the fluid motion are defined as

(∂ψ

∂y
,−∂ψ

∂x

)

= v, ω = ∇×v =−∆ψ .

The vorticity formulation of (1) is

−∂∆ψ

∂ t
+ J(ψ ,∆ψ)− ∆ψ

Rh
+

∆2ψ

Re
=

π2

2
sin(2πx)sin(2πy), (2)

where the nonlinear convective term is written as the Jacobian

J(ψ ,∆ψ) = ∂xψ ∂y∆ψ − ∂yψ∂x∆ψ .

The basic flow of (2) is dependant on the parameters Re and Rh. It is convenient to

use the modified system [15] of (2) expressed through

−∂∆ψ

∂ t
+ J(ψ ,∆ψ)+ (−µ∆+ν∆2)(ψ − sinxsiny) = 0. (3)

In reference to [13, 14, 16, 15], the stream function is assumed to satisfy the free slip

boundary condition

ψ |∂Ω = ∆ψ |∂Ω = 0 (4)

for the modified fluid domain Ω = (0,2π)× (0,2π), and is demonstrated in the Fourier

expansion

ψ = ∑
n,m≥1

an,m sin
nx

2
sin

my

2
. (5)

The parameters ν and µ are defined by the transformations [4]

Rh =
2
√

µ + 2ν

µπ
and Re =

8π
√

µ + 2ν

ν
. (6)

With this modification, we have the basic steady-state flow

ψ0 = sinxsiny.

The basic flow exhibits four vortices in Figure 1. The experiments [13, 14, 16]

show transitions of the basic flow in a scenario of inverse energy cascade towards to

large scales. The principal transition amongst them is the steady-state bifurcation of

ψ0 into a secondary flow, which is sketched in Figure 1 (b).
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To the understanding of the transition, Thess [15] demonstrated critical stability

parameters (νc,µc) of a spectral problem linearized from (3)-(4) so that linear stable

and unstable domains are defined. The author [4] provided nonlinear stability analysis

of a vortex flow and employed a numerical spectral scheme to study all possible linear

spectral solutions together with secondary flows as a result of nonlinear saturation of

primary linear instability. The vortex instability with respect to two vortex merging

phenomena was also discussed by Meunier et al. [10] and Cerretelli and Williamson[2].

The experimental studies [13, 14] of the non-parallel flow sinxsiny are developed from

the magnetohydrodynamic experiment of Bondarenko et al. [1] on the steady-state

bifurcation of the parallel Kolmogorov flow sinx. The existence of secondary steady-

state flows and secondary temporal periodic flows bifurcating from the Kolmogorov

flow has been studied extensively [5, 6, 8].

However, the basic flow ψ0 is non-parallel and rigorous instability analysis for the

secondary flow existence is missing. In the study of the linear spectral problem, Thess

[15] emphasized that linear stability theory is not able to predict the structure of flows

above the instability threshold, but it is a matter of bifurcation theory to decide whether

stationary secondary solutions exist at all. He also suggested the linear spectral study

to be continued in the following two directions: (i) the formation of a secondary flow

as a result of nonlinear saturation of the primary instability and (ii) linear stability anal-

ysis of the secondary flow (see Orszag and Patera [11] on this stability problem for a

parallel flow). In the present study, we solve problem (i) by showing the formation of a

secondary steady-state flow resulting from nonlinear saturation of the linear instability.

For problem (ii), no existing rigorous analysis is available. The linear stability analysis

of secondary flow [11] on the parallel Poiseuille flow problem is not applicable to (ii).

To sketch stability of the secondary steady-state flow, we use numerical computation

via a finite difference scheme. Selected numerical results show that the secondary flow,

close to its threshold and observed in the laboratory experiments [13, 14, 16], can be

obtained by taking an initial state in its vicinity. The stability of the secondary flow and

the positive viscosity ν > 0 ensure the convergence of the numerical scheme so that the

secondary flow attracts the non-stationary flow starting from the initial state.

It is the principal purpose of present paper to show the existence of the secondary

flows, which are to be contained in the Hilbert space

H4 =

{

ψ = ∑
n,m≥1

an,m sin
nx

2
sin

my

2

∣

∣

∣

‖ψ‖H4 =

(

∑
n,m≥1

(

1+(
n2+m2

4
)2
)2

|an,m|2
) 1

2

< ∞

}

.

The secondary flows will be constructed by nonlinear perturbation of the basic flow ψ0

by using the eigenfunctions of the spectral problem

λ ∆ψ =−µ∆ψ +ν∆2ψ + J(ψ0,(2+∆)ψ), 0 6= ψ = ∑
n,m≥1

an,m sin
nx

2
sin

my

2
, (7)

which is linearized from (3). The eigenfunctions will be studied in the following three

3
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Figure 1: (a) The basic steady-state flow ψ0; (b) the contour lines of the function ψ0 −0.1sin x
2

sin
y
2

, repre-

senting a profile of the secondary flow in the magnetohydrodynamic experiment [14].

linear orthogonal subspaces of H4:

E1 =

{

ψ ∈ H4| ψ = ∑
n,m≥1;n,m odd

an,m sin
nx

2
sin

my

2

}

, (8)

E2 =

{

ψ ∈ H4| ψ = ∑
n,m≥1;n odd;m even

an,m sin
nx

2
sin

my

2

}

, (9)

E3 =

{

ψ ∈ H4| ψ = ∑
n,m≥1;n even;m odd

an,m sin
nx

2
sin

my

2

}

. (10)

The algebraic form of spectral equation (7) displayed in next section shows that the

mode sin nx
2

sin
my
2

is influenced by the four modes sin
(n±2)x

2
sin

(m±2)y
2

in x and y di-

rections. The introduction of these orthogonal subspaces implies the validity of the

invariance property of (7) in the following sense:

sin
(n± 2)x

2
sin

(m± 2)y

2
∈ Ei whenever sin

nx

2
sin

my

2
∈ Ei i = 1,2,3.

The main result of the present paper reads as:

Theorem 1.1. (i). Let ν > 0, µ ≥ 0 and λ +µ+ 1
2
ν > 0. Then spectral problem (7) has

at most three linear independent eigenfunctions. These eigenfunctions are contained

in the set E1 ∪E2 ∪E3.

(ii) Assume that spectral problem (7) admits a critical solution (λ ,ψ ,ν,µ)= (0,ψc,νc,µc)
for νc > 0, µc ≥ 0 and ψc ∈ Ei for an integer 1 ≤ i ≤ 3. Then there exist a function

ψi ∈H4 and a real δ so that system (3)-(4) has a steady-state solution (ψ ,ν,µ) branch-

ing off the bifurcation point (ψ0,νc,µc) in the direction of ψc:

ψ = ψ0 + εψc + ε2ψi, ν = νc + εδνc, µ = µc + εδ µc, (11)
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provided that ε > 0 is sufficiently small. Here σ and ψi are uniformity bounded func-

tions of ε for small ε , and ψi is in the orthogonal complement of the eigenfunction

space span{ψc} or ψi ∈ H4/span{ψc}.

Remark 1.1. This theorem shows the secondary flow bifurcating in the direction of ψc.

If ψc is replaced by the eigenfunction−ψc, we have another secondary flow bifurcating

in the direction of −ψc.

This paper is structured as follows. The spectral analysis for the theoretical base of

Theorem 1.1 is established in Section 2, which contains the proof of Theorem 1.1 (i).

The second assertion of this theorem is proven in Section 3 by developing a bifurcation

technique of Rabinowitz [12] on a Bénard problem. Theorem 1.1 requires the existence

of a linear critical spectral solution (νc,µc,ψc). Section 4 contains a discussion of the

existence and connection of Theorem 1.1 with Crandall- Rabinowitz bifurcation theo-

rem. To enrich the theoretical result, we display numerical spectral solutions and use a

finite difference scheme to locate a secondary flow in accordance with the experimental

observation of [14, 16] in Section 5. This numerical study aids the stability detection of

the secondary flow. Moreover, in addition to the initial stage of inverse energy cascade

profiled in Figure 1, a larger scale topological transition via three vortices into two are

presented in Section 5.

2. Linear spectral analysis

We begin with the spectral assertion of Theorem 1.1.

2.1. Proof of Theorem 1.1 (i)

Proof. Let (·, ·) denote the inner product of real L2 as

(ϕ ,φ) =
1

π2

∫ 2π

0

∫ 2π

0
ϕφdxdy.

Taking the L2 inner product of the spectral equation (7) with −(∆+2)ψ and employing

integration by parts, we have

0 = (−λ ∆− µ∆ψ +ν∆2ψ + J(ψ0,(∆+ 2)ψ),(−∆− 2)ψ)

= (−λ ∆− µ∆ψ +ν∆2ψ ,(−∆− 2)ψ). (12)

This together with (7) becomes

0 = ∑
n,m≥1

βn,m(λ + µ +νβn,m)(βn,m − 2)|an,m|2 for βn,m =
1

4
(n2 +m2), (13)

or

∑
n,m≥1;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)|an,m|2

= β1,1(λ + µ +νβ1,1)(2−β1,1)|a1,1|2 +β1,2(λ + µ +νβ1,2)(2−β1,2)|a1,2|2

+β2,1(λ + µ +νβ2,1)(2−β2,1)|a2,1|2. (14)
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By the observation 2 > β1,2 = β2,1 > β1,1 =
1
2

and the condition λ + µ + 1
2
ν > 0, we

see that

λ + µ +νβn,m ≥ λ + µ +
1

2
ν > 0 for n, m ≥ 1

and the both sides of (14) are non-negative. Hence the right-hand side of (14) is positive

due to the non-zero eigenfunction property ψ 6= 0. Therefore we may firstly assume

the term involving a1,1 on the right-hand side of (14) being positive or a1,1 6= 0,

On the other hand, let an,m = 0 whenever n ≤ 0 or m ≤ 0. Spectral problem (7) is

formulated as [4]

∑
n,m≥1

βn,m(λ + µ +νβn,m)an,m sin
nx

2
sin

my

2
(15)

= −
∞

∑
n,m≥−2

{n−m

8
[(βn−2,m−2 − 2)an−2,m−2− (βn+2,m+2 − 2)an+2,m+2]

+
n+m

8
[(βn−2,m+2 − 2)an−2,m+2− (βn+2,m−2 − 2)an+2,m−2]

}

sin
nx

2
sin

my

2
.

This implies that the non-zero coefficient a1,1 produces the coefficients an,m for odd

integers n,m≥ 1. That is, the eigenfunction ψ ∈E1 is generated by the mode sin x
2

sin
y
2
.

Moreover, the derivation of (14) implies that

β1,1(λ + µ +νβ1,1)(2−β1,1)|a1,1|2

= ∑
n,m≥1;n,m odd;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)|an,m|2. (16)

Similarly, we may suppose ψ ∈ E2 when a1,2 6= 0 and ψ ∈ E3 when a2,1 6= 0.

Additionally, the corresponding coefficients are subject to the equations

β1,2(λ + µ +νβ1,2)(2−β1,2)|a1,2|2

= ∑
n,m≥1;n odd;m even;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)|an,m|2 (17)

for a1,2 6= 0, and

β2,1(λ + µ +νβ2,1)(2−β2,1)|a2,1|2

= ∑
n,m≥1;n even;m odd;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)|an,m|2 (18)

for a2,1 6= 0. The proof of Assertion (i) is complete.

2.2. Spectral simplicity property

To construct the secondary flows, we have to use the eigenfunction simplicity prop-

erty shown in the following result.
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Theorem 2.1. Let ν > 0, µ ≥ 0 and λ + µ + 1
2
ν > 0. Then we have eigenfunction

space dimension estimate:

dim
{

ψ ∈ Ei| λ ∆ψ =−µ∆ψ +ν∆2ψ + J(ψ0,(∆+ 2)ψ)
}

≤ 1, i = 1,2,3. (19)

Moreover, if (λ ,ψ ,ν,µ) is a spectral solution of (7) for ψ ∈ E1∪E2∪E3, then we have

((−λ ∆− µ∆+ν∆2)ψ ,ψ∗) 6= 0. (20)

Here ψ∗ is the conjugate eigenfunction of ψ subject to the conjugate equation of (7):

λ ∆ψ∗ = −µ∆ψ∗+ν∆2ψ∗+(−∆− 2)J(ψ0,ψ
∗), (21)

ψ∗ =
∞

∑
n,m≥1

a∗n,m sin
nx

2
sin

my

2
6= 0,

produced by employing the L2 pairing (·, ·).
Proof. To show the validity of (19), we suppose that there is a spectral solution (λ ,ψ ,ν,µ)
with the eigenfunction ψ ∈ E1. To the contrary, if (19) with i = 1 is not true, there ex-

ists an additional spectral solution (λ , ψ̂ ,ν,µ) with the eigenfunction ψ̂ ∈ E1 linearly

independent of ψ and involving expansion coefficients ân,m. It follows from (16) that

â1,1 6= 0. Therefore, we have the additional spectral solution (λ ,ψ − a1,1

â1,1
ψ̂ ,ν,µ). Us-

ing the eigenfunction ψ − a1,1

â1,1
ψ̂ instead of ψ in (16), we have

0 = ∑
n,m odd;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)|an,m− a1,1

â1,1
ân,m|2, (22)

which together with the condition λ + µ +ν 1
2
> 0 gives

an,m =
a1,1

â1,1
ân,m or ψ =

a1,1

â1,1
ψ̂1,1.

Hence ψ̂ and ψ are linearly dependent. This leads to a contraction and thus (19) holds

true for i = 1.

Arguing in the same way, we obtain (19) for i = 2 and 3.

To verify (20), we first assume the eigenfunction ψ ∈ E1. Consider the conjugate

spectral problem (21), which can be formulated in the algebraic equation

0 = ∑
n,m≥−2;n,m odd

{

βn,m(λ + µ +νβn,m)a
∗
n,m

− (βn,m− 2)

{

n−m

8
(a∗n−2,m−2 − a∗n+2,m+2)+

n+m

8
(a∗n−2,m+2 − a∗n+2,m−2)

}

}

sin
nx

2
sin

my

2
.

Here a∗n,m = 0 whenever n ≤ 0 or m ≤ 0. The previous equation is rewritten as

0 = ∑
n,m≥−2;n,m odd

{

[(λ + µ)βn,m+νβ 2
n,m]

a∗n,m
βn,m − 2

(23)

−n−m

8
(a∗n−2,m−2−a∗n+2,m+2)+

n+m

8
(a∗n−2,m+2−a∗n+2,m−2)

}

sin
nx

2
sin

my

2
.
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Moreover, for a′m,n =
a∗n,m

βn,m−2
, equation (23) becomes

0 = ∑
n,m≥−2;n,m odd

{

[(λ + µ)βm,n +νβ 2
m,n]a

′
m,n

+
n−m

8
[(βm−2,n−2 − 2)a′m−2,n−2− (βm+2,n+2 − 2)a′m+2,n+2]

+
n+m

8
[(βm+2,n−2 − 2)a′m+2,n−2− (βm−2,n+2 − 2)a′m−2,n+2]

}

sin
nx

2
sin

my

2
.

Replacing the indices n, m by m̃, ñ respectively, and then omitting the index superscript

tildes, we have

0 = ∑
n,m≥−2;n,m odd

{

[(λ + µ)βn,m +νβ 2
n,m]a

′
n,m

+
n−m

8
[(βn−2,m−2 − 2)a′n−2,m−2− (βn+2,m+2 − 2)a′n+2,m+2]

+
n+m

8
[(βn−2,m+2 − 2)a′n−2,m+2− (βn+2,m−2 − 2)a′n+2,m−2]

}

sin
mx

2
sin

ny

2
.(24)

The algebraic equation system for the coefficients of (24) is identical to that for the

coefficients of (15), when the supercritical primes are omitted. Thus by (19), we have

the relationship between the expansion coefficients of the eigenfunction ψ and those

of its conjugate counterpart ψ∗:

a∗n,m = (βm,n − 2)am,n.

Hence, we have

(∆(−λ − µ +ν∆)ψ ,ψ∗) = ∑
n,m≥1;n,m odd

βn,m(λ + µ +νβn,m)(βn,m − 2)an,mam,n. (25)

Note that ψ 6= 0 implies a1,1 6= 0 due to (16). Moreover, from the algebraic equation

defined by the first component of (15) with respect to the mode sin x
2

sin
y
2
, it follows

that the coefficient a1,1 is proportional to a1,3 −a3,1. Hence a3,1 6= a1,3 due to a1,1 6= 0.

Therefore the Cauchy inequality

2a1,3a3,1 < a2
1,3 + a2

3,1 (26)

holds true. It follows from (25), (26) and the Cauchy inequality 2an,mam,n ≤ a2
n,m+a2

m,n

that

(∆(−λ − µ +ν∆)ψ ,ψ∗) = −β1,1(λ + µ +νβ1,1)(2−β1,1)a
2
1,1

+ ∑
n,m≥1;n,m odd;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)an,mam,n

< −β1,1(λ + µ +νβ1,1)(2−β1,1)a
2
1,1

+ ∑
n,m≥1;n,m odd;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)a2
n,m,

8



which equals zero due to (16). This gives the validity of (20) when ψ ∈ E1.

Moreover, if (7) has a spectral solution (λ ,ψ ,ν,µ) with the eigenfunction

ψ = ∑
n,m≥1;n odd;m even

an,m sin
nx

2
sin

my

2
∈ E2, (27)

the algebraic equation (15) for the coefficients an,m of ψ reduces to

0 = ∑
n,m≥−2;n odd;m even

{

βn,m(λ + µ +νβn,m)an,m

+
n−m

8
[(βn−2,m−2 − 2)an−2,m−2− (βn+2,m+2− 2)an+2,m+2]

+
n+m

8
[(βn−2,m+2 − 2)an−2,m+2− (βn+2,m−2− 2)an+2,m−2]

}

sin
nx

2
sin

my

2
. (28)

Therefore, the conjugate spectral problem (21) has a solution (λ ,ψ∗,ν,µ), subject to

the algebraic equation

0 = ∑
n,m≥−2;n odd;m even

{

[(λ + µ)βn,m +νβ 2
n,m]

a∗n,m
βn,m − 2

(29)

−n−m

8
(a∗n−2,m−2−a∗n+2,m+2)+

n+m

8
(a∗n−2,m+2−a∗n+2,m−2)

}

sin
nx

2
sin

my

2
.

Here the assumption a∗n,m = 0 whenever n ≤ 0 or m ≤ 0 is used. For a′m,n =
a∗n,m

βn,m−2
,

equation (29) becomes

0 = ∑
n,m≥−2;n even;m odd

{

[(λ + µ)βn,m+νβ 2
n,m]a

′
n,m

+
n−m

8
[(βn−2,m−2 − 2)a′n−2,m−2− (βn+2,m+2− 2)a′n+2,m+2]

+
n+m

8
[(βn−2,m+2 − 2)a′n−2,m+2− (βn+2,m−2− 2)a′n+2,m−2]

}

sin
mx

2
sin

ny

2
. (30)

This together with (19) implies that spectral problem (7) has a spectral solution (λ , ψ̃ ,ν,µ)
with

ψ̃ = ∑
n,m≥1;n even;m odd

an,m sin
nx

2
sin

my

2
∈ E3, (31)

9



subject to the equation

0 = ∑
n,m≥−2;n even;m odd

{

[(λ + µ)βn,m+νβ 2
n,m]an,m

+
n−m

8
[(βn−2,m−2 − 2)an−2,m−2− (βn+2,m+2− 2)an+2,m+2]

+
n+m

8
[(βn−2,m+2 − 2)an−2,m+2− (βn+2,m−2− 2)an+2,m−2]

}

sin
mx

2
sin

ny

2
. (32)

Therefore, we have

a∗n,m = (βn,m − 2)am,n. (33)

We show that an,m 6≡ am,n. Otherwise, if an,m ≡ am,n, equation (32) becomes

0 = ∑
n,m≥−2;n odd;m even

{

[(λ + µ)βn,m+νβ 2
n,m]an,m

− n−m

8
[(βn−2,m−2 − 2)an−2,m−2− (βn+2,m+2− 2)an+2,m+2]

− n+m

8
[(βn−2,m+2 − 2)an−2,m+2− (βn+2,m−2− 2)an+2,m−2]

}

sin
mx

2
sin

ny

2
. (34)

Adding (34) to (28), we have

∑
n,m≥1;n odd;m even

[(λ + µ)βn,m+νβ 2
n,m]an,m sin

mx

2
sin

ny

2
= 0

or an,m ≡ 0. This leads to a contradiction. Hence

an,m 6≡ am,n. (35)

By (33), we have

(∆(−λ − µ +ν∆)ψ ,ψ∗) = ∑
n,m≥1;n odd;m even

βn,m(λ + µ +νβn,m)(βn,m − 2)an,mam,n (36)

If a1,2 = a2,1, we use (12), (35) and Cauchy inequality to obtain from (36) that

(∆(−λ − µ +ν∆)ψ ,ψ∗)

< β1,2(λ + µ +νβ1,2)(β1,2 − 2)a2
1,2

+ ∑
n,m≥1;n odd;m even;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)
a2

n,m+ a2
m,n

2

= β1,2(λ + µ +νβ1,2)(β1,2 − 2)
a2

1,2+ a2
2,1

2

+
1

2
∑

n,m≥1;n odd;m even;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)a2
n,m

+
1

2
∑

n,m≥1;n even;m odd;βn,m>2

βn,m(λ + µ +νβn,m)(βn,m − 2)a2
n,m

10



which equals zero due to (17) and (18). This gives (20) under the condition a1,2 = a2,1.

Actually, we can assume a1,2 = a2,1 = 1, since the spectral problem is linear. This

gives (20) for the eigenfunction ψ ∈ E2. This derivation also implies the validity of

(20) when the eigenfunction ψ ∈ E3. The proof of Theorem 2.1 is completed.

3. Proof of Theorem 1.1 (ii)

Proof. Firstly, we introduce a flow invariant space so that Fredholm alternative theory

can be applied for the critical eigenfunction ψc ∈ Ei. Theorem 2.1 shows that ψc ∈ Ei

is a simple eigenfunction. That is,

dim

{

ψ ∈ Ei

∣

∣

∣0 =−µc∆ψ +νc∆2ψ + J(ψ0,(∆+ 2)ψ)

}

= 1

and (20) holds true. Ei is an invariant space of linear spectral problem (7) but is not flow

invariant for nonlinear problem (3)-(4). The linear perturbation part of the bifurcating

solution is expected to be in the eigenfunction space span{ψc} ⊂ Ei. Therefore, we

need to consider the bifurcation in a nonlinear flow invariant space of (3)-(4) and the

space is generated nonlinearly from the linear space Ei.

To do so, we use the summation notation

∑
1

= ∑
1≤n,m odd

+ ∑
2≤n,m even

,

∑
2

= ∑
1≤n odd;2≤m even

+ ∑
2≤n,m even

,

∑
3

= ∑
2≤n even;1≤m odd

+ ∑
2≤n,m even

.

We define the H4 subspaces

H4
i =

{

ψ ∈ H4
∣

∣

∣ ψ = ∑
i

an,m sin
nx

2
sin

my

2

}

for i = 1,2,3,

and the L2 subspaces

Hi =

{

ψ = ∑
i

an,m sin
nx

2
sin

my

2

∣

∣

∣ ‖ψ‖L2
=
(

∑
i

a2
n,m

) 1
2
< ∞

}

for i = 1,2,3.

This definition ensures H4
i ⊃ Ei for i = 1,2,3 and H4

i is orthogonal to E j if i 6= j.

Hence the assertion of Theorem 2.1 remains valid when Ei is replaced by H4
i . That is,

the eigenfunction simplicity property holds true in H4
i . The nonlinear flow invariant

property of H4
i is valid in the following sense

∆−2J(ϕ ,∆φ) ∈ H4
i whenever ϕ , φ ∈ H4

i . (37)

11



This invariance property is confirmed by the estimate

‖∆−2J(ϕ ,∆φ)‖H4 ≤ ‖J(ϕ ,∆φ)‖L2

≤ ‖∇ϕ‖L4
‖∇∆φ‖L4

≤C‖ϕ‖H4‖φ‖H4 ,

due to Hölder inequality and Sobolev imbedding, and the multiplication computation

J(ϕ ,∆φ) =

(

∑
i

an,m
n

2
cos

nx

2
sin

my

2

)(

∑
i

bn,m
m

2
βn,m sin

nx

2
cos

my

2

)

−
(

∑
i

an,m
m

2
sin

nx

2
cos

my

2

)(

∑
i

bn,m
n

2
βn,m cos

nx

2
sin

my

2

)

= ∑
i

cn,m sin
nx

2
sin

my

2

for coefficients cn,m rearranged from an,m and bn,m. Here we use the functions

ϕ =∑
i

an,m sin
nx

2
sin

my

2
∈ H4

i and φ = ∑
i

bn,m sin
nx

2
sin

my

2
∈ H4

i .

Now we rewrite the critical spectral problem as

L ψc = 0 for L ψ =−µc∆ψ +νc∆2ψ + J(ψ0,(∆+ 2)ψ).

We see that L maps H4
i into Hi. To employ the Fredholm theory, we define the range

of L as

Ran(L ) =
{

ϕ ∈ Hi

∣

∣

∣ there exists φ ∈ H4
i so that L φ = ϕ

}

.

It readily seen that Ran(L ) is the space orthogonal to ψ∗
c , the conjugate eigenfunction

of ψc, in the following sense:

Ran(L ) =
{

ψ ∈ Hi

∣

∣

∣ (ψ ,ψ∗
i ) = 0

}

.

By the Fredholm alternative theory of Laplacian operators, L has an inverse operator

L
−1 : Ran(L ) 7→ H4

i (38)

so that

‖L −1ψ‖H4
i
≤C1‖ψ‖L2

, ψ ∈ Ran(L ) (39)

for a constant C1.

Secondly, following Rabinowitz [12] on a Bénard problem, we seek the secondary

steady-state solution (ψ ,ν,µ) branching from the bifurcation point (ψ0,νc,µc) in the

direction of ψc as

ψ = ψ0 + εψc + ε2ψi, ν = νc + εσνc, µ = µc + εσ µc (40)

12



for a function ψi ∈ H4
i and a real σ , provided that ε > 0 is sufficiently small.

Substitution of the predicted solution (40) into the stationary form of (3), or the

equation

0 =(−µ∆+ν∆2)(ψ −ψ0)+ J(ψ0,(2+∆)(ψ −ψ0))+ J(ψ −ψ0,∆(ψ −ψ0))

=(−(µ − µc)∆+(ν −νc)∆
2)(ψ −ψ0)+L (ψ −ψ0)+ J(ψ −ψ0,∆(ψ −ψ0)),

produces the equation

0 = (−εσ µc∆+ εσνc∆2)(εψc + ε2ψi)+L (εψc + ε2ψi)

+J(εψc + ε2ψi,∆(εψc + ε2ψi)).

Since L ψc = 0, the previous equation can be rewritten as

σ(−µc∆+νc∆2)ψc +L ψi = Fε(σ ,ψi) (41)

with

Fε(σ ,ψi) = −εσ(−µc∆+νc∆2)ψi − J(ψc + εψi,∆(ψc + εψi)).

To show the existence of the unknowns ψi and σ , we take L2 inner product of (41)

with ψ∗
c to obtain

σ((−µc∆+νc∆2)ψc,ψ
∗
c )+ (L ψi,ψ

∗
c ) = (Fε(σ ,ψi),ψ

∗
c ). (42)

Applying Theorem 2.1 with Ei replaced by H4
i , the invariance property (37) and the

identity

(L ψi,ψ
∗
c ) = (ψi,L

∗ψ∗
c ) = 0,

we may rewrite (42) as

σ =
(Fε(σ ,ψi),ψ

∗
c )

((−µc∆+νc∆2)ψc,ψ∗
c )

. (43)

The combination of (41) and (43) yields

L ψi = Fε(σ ,ψi)−
(−µc∆+νc∆2)ψc(Fε(σ ,ψi),ψ

∗
c )

((−µc∆+νc∆2)ψc,ψ∗
c )

. (44)

The nonlinear invariance property (37) implies Fε(σ ,ψi) ∈ Hi. It is readily seen that

the right-hand side of (44) is in Ran(L ). Therefore, we may use the inverse of L to

produce

ψi = L
−1
(

Fε(σ ,ψi)−
(−µc∆+νc∆2)ψc(Fε(σ ,ψi),ψ

∗
c )

((−µc∆+νc∆2)ψc,ψ∗
c )

)

. (45)

For simplicity of notation, we rewrite the equations (43) and (45) in the following form

(σ ,ψi) = Gε(σ ,ψi), (46)

13



where the two components of the operator Gε(σ ,ψi) represent respectively the right-

hand sides of (43) and (45). Thus, to seek the solution (ψ ,ν,µ) in (40) becomes to

confirm the existence of the fixed point for the operator Gε .

Finally, it remains to prove that Gε is a contraction operator mapping a complete

metric space into itself. The complete matric space is defined as

X =

{

(σ ,ψ) ∈ (−∞,∞)×H4
i

∣

∣

∣ ‖(σ ,ψ)‖X = |σ |+ ‖ψ‖H4
i
≤C

}

.

Here C > 0 is a constant to be defined afterward.

To show the contraction property, we use the boundedness of L −1 in (39), the

expressions (43) and (45), and Hölder inequality to produce

‖Gε(σ ,ψi)‖X ≤
(

‖ψ∗
c ‖L2

|((−µc∆+νc∆2)ψc,ψ∗
c )|

+C1

(

1+
‖(−µc∆+νc∆2)ψc‖L2

‖ψ∗
c ‖L2

|((−µc∆+νc∆2)ψc,ψ∗
c )|

)

)

‖Fε(σ ,ψi)‖L2
.

This yields, by renaming the constant bounded by the large brackets in the right-hand

side of the previous equation as C2,

‖Gε(σ ,ψi)‖X ≤ C2‖Fε(σ ,ψi)‖L2
.

Hence, by Hölder inequality and Sobolev imbedding inequality, we have

‖Gε(σ ,ψi)‖X ≤ C2‖J(ψc + εψi,∆(ψc + εψi))+ εσ(−µc∆+νc∆2)ψi‖L2

≤ C2

(

‖∇(ψc + εψi)‖L4
‖∇∆(ψc + εψi)‖L4

+εσ‖(−µc∆+νc∆2)ψi‖L2

)

≤ C3

(

‖ψc‖2
H4

i
+ 2ε‖ψc‖H4

i
‖ψi‖H4

i
+ ε2‖ψi‖2

H4
i
+ εσ‖ψi‖H4

i

)

≤ C4

(

1+ εC+ ε2C2 + εC2
)

for the constants Ck independent of (σ ,ψi) ∈ X and ε > 0. Therefore, we obtain

‖Gε(σ ,ψi)‖X ≤C for (σ ,ψi) ∈ X , (47)

provided that

C

2
=C4

and

C4(εC+ ε2C2 + εC2) =C4(ε + 2ε2C4 + 2εC4)C ≤ 1

2
C,
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by taking ε > 0 sufficiently small. The property (47) implies the injection property

Gε : X 7→ X .
Arguing in the same manner, we have the contraction property:

‖Gε(σ ,ψi)−Gε(σ
′,ψ ′

i )‖X ≤ 1

2
‖(σ ,ψi)− (σ ′,ψ ′

i )‖X

for (σ ,ψi), (σ
′,ψ ′

i ) ∈ X , provided that ε > 0 sufficiently small. Therefore, by the

Banach contraction mapping principle, the operator Gε with small ε > 0 admits a

unique fixed point (σ ,ψi) ∈ X . This confirms the existence of the steady-state solu-

tion (ψ ,µ ,ν) of (3) and (4) in the form of (40).

The uniform boundedness of the σ and ψi with respect to ε is given by (47). The

property ψi ∈H4
i /span{ψc} is implied from (45) due to the Fredholm operator property

L −1 : Ran(L ) 7→ H4
i /span{ψc}. The proof of Theorem 1.1 is completed.

4. Discussion on Theorem 1.1

4.1. Discussion on the existence of critical spectral solution

From viewpoint of numerical computation, a critical spectral solution (νc,µc,ψc)
of spectral problem (7) with λ = 0 can be calculated by using algebraic equation

(15). However, from viewpoint of rigorous analysis, its existence remains unsolved.

In the unidirectional Kolmogorov flow problem, its linear spectral equation can be

transformed into a continuous fraction equation, from which the existence of critical

value is obtained. The coefficients of the corresponding eigenfunction can expressed as

multiplications of continuous fractions ( see [5, 6, 8]) for both real and non-real eigen-

functions. However, this continuous fraction approach is no longer applicable to the

present multi-directional flow problem. To facilitate the understanding of the difficulty,

we discuss the problem with the aid of a truncated form.

For simplicity, we only consider eigenfunction in E1. Linear spectral problem (7)

or (15) with λ = 0 can be rewritten in the form

0 = ∑
−2≤n,m;n+m≤k;n,modd

{

αn,mbn,m +(n−m)[bn−2,m−2− bn+2,m+2]

+(n+m)[bn−2,m+2− bn+2,m−2]
}

sin
nx

2
sin

my

2
(48)

as k → ∞. Here

αn,m = 8
βn,m(µ +νβn,m)

βn,m − 2
, bn,m = (βn,m − 2)an,m for n,m ≥ 1, otherwise bn,m = 0.

If Ak represents the square matrix of influence coefficients and Bk the truncated eigen-

vector consists of bn,m, then (48) becomes

AkBk = 0
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For example, for the approximating spectral problem for k= 8, we have the 10-dimensional

truncation equation

0 = α1,1b1,1 − 2b1,3+ 2b3,1

0 = α1,3b1,3 − 4b1,5+ 2b3,5+ 2b1,1 − 4b3,1

0 = α3,1b3,1 + 4b5,1− 2b5,3− 2b1,1 + 4b1,3

0 = α1,5b1,5 − 6b1,7+ 4b1,3− 6b3,3

0 = α5,1b5,1 + 6b7,1− 4b3,1+ 6b3,3

0 = α3,3b3,3 + 6b1,5− 6b5,1

0 = α1,7b1,7 + 6b1,5− 8b3,5

0 = α7,1b7,1 − 6b5,1+ 8b5,3

0 = α3,5b3,5 − 2b1,3+ 8b1,7− 8b5,3

0 = α5,3b5,3 + 2b3,1+ 8b3,5− 8b7,1

or

0 = A8B8 =































α1,1 −2 2 0 0 0 0 0 0 0

2 α1,3 −4 −4 0 0 0 0 2 0

−2 4 α3,1 0 4 0 0 0 0 −2

0 4 0 α1,5 0 −6 −6 0 0 0

0 0 −4 0 α5,1 6 0 6 0 0

0 0 0 6 −6 α3,3 0 0 0 0

0 0 0 6 0 0 α1,7 0 −8 0

0 0 0 0 −6 0 0 α7,1 0 8

0 −2 0 0 0 0 8 0 α3,5 −8

0 0 2 0 0 0 0 −8 8 α5,3





























































b1,1

b1,3

b3,1

b1,5

b5,1

b3,3

b1,7

b7,1

b3,5

b5,3































. (49)

The truncation seems quit harsh, but the solution to this equation is reasonably close

to that of the original one. The existence of the corresponding spectral critical solution

becomes the existence of the critical value (ν,µ) = (νc,µc) 6= (0,0) satisfying the

determinant equation

det(A8(ν,µ)) = 0.

Since α1,1 < 0 and αn,m > 0 for (n,m) 6= (1,1), we see that limν+µ→∞ det(A8(ν,µ))→
−∞. Therefore, the existence of the root (νc,µc) can be confirmed if one finds some

(ν,µ) so that det(A8(ν,µ)) > 0. However, it is laborious to prove this positivity prop-

erty although Ak is always skew-symmetric when ν = µ = 0. To show the positivity

property and then the root existence, we use the selected computation result in Figure

2, which shows the roots (νc,µc) ≈ (0,0.236) from (a) and (νc,µc) ≈ (0.237,0) from

(b)-(c). This result is comparable with that computed by Thess [15].

Similar behaviour exists for the polynomial det(Ak) as k increases. Actually, the

behavior of the polynomial det(A8) such as transversal crossing the horizontal zero

line is comparable to that of the third degree polynomial (see Figure 2 (d))

det(A4) = α1,1α1,3α3,1 + 16α1,1 + 4α1,3 + 4α3,1,

although the deviation with respect to the root increases. Here A4 is the 3×3 matrix in

the top-left corner of A8.
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Figure 2: Selected computation results for the polynomials det(A8(ν ,µ)) and det(A4(ν ,µ)) crossing hori-

zontal zero lines.

4.2. Connection to Crandall- Rabinowitz bifurcation theorem

The bifurcation result can be obtained by Crandall- Rabinowitz bifurcation theorem

[7], although the secondary flow shown in Theorem 1.1 is more informative due to the

construction by Banach fixed point theorem. As an alternative way, we would like to

show the existence of the secondary flow as a consequence of the following.

Theorem 4.1. (Crandall and Rabinowitz [7, Theorem 1.7]) Let X, Y be Banach spaces,

V a neighborhood of 0 in X and

F : (−1,1)×V 7→ Y (50)

have the properties

(a) F(τ,0) = 0 for |τ|< 1,

(b) The partial derivatives Fτ , Fψ and Fτψ exist and are continuous,

(c) The kernel space N(Fψ (0,0)) and the orthogonal compliment Y/Ran(Fψ(0,0)) are

one-dimensional,

(d) Fτψ(0,0)ψc 6∈ Ran(Fψ(0,0)), where

N(Fψ (0,0)) = span{ψc}.

Then there is a neighborhood U of (0,0) in R×X, an interval (−a,a), and continuous

functions

κ : (−a,a) 7→ (−∞,∞), Ψ : (−a,a) 7→ X/N(Fψ(0,0))

such that κ(0) = 0, Ψ(0) = 0 and

F−1(0)∩U =
{

(κ(ε),εψc + εΨ(ε)
∣

∣

∣ |ε|< a
}

∪
{

(τ,0)
∣

∣

∣(τ,0) ∈U
}

.
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Theorem 4.2. Assume that the spectral problem (7) admits a critical solution (λ ,ψ ,ν,µ)=
(0,ψc,νc,µc) for νc > 0, µc ≥ 0. Then there exist continuous functions

κ : (−a,a) 7→ (−∞,∞), Ψ : (−a,a) 7→ H4/span{ψc} with κ(0) = 0, Ψ(0) = 0,

for a small constant a > 0, so that system (3)-(4) has the bifurcating steady-state solu-

tion (ψ ,ν,µ) expressed as

ψ = ψ0 + εψc + εΨ(ε), ν = νc +νcκ(ε), µ = µc + µcκ(ε), for ε ∈ (−a,a).(51)

It should be noted that Theorem 4.2 is the same as Theorem 1.1, after we use the

setting

κ(ε) = εδ (ε,ψc), Ψ(ε) = εψi(ε,ψc) for 0 ≤ ε ≤ a,

κ(ε) =−εδ (−ε,−ψc), Ψ(ε) = εψi(−ε,−ψc) for − a ≤ ε < 0.

Proof. For employing Theorem 4.1, we formulate the fluid motion problem into the

functional framework of Theorem 4.1 and then show the validity of properties (a)-(d)

and (50). Indeed, using the perturbation

ψ = ψ0 +ψ ′, ν = νc + τνc, µ = µc + τµc, (52)

we may rewrite (3) as

F(τ,ψ) = 0, (53)

for

F(τ,ψ) =−(τ + 1)µc∆ψ +(τ + 1)νc∆2ψ + J(ψ0,(2+∆)ψ)+ J(ψ ,∆ψ), (54)

after omitting the superscript prime. Thus (τ,ψ) being a steady-state flow means

(τ,ψ) ∈ F−1(0) and we are seeking steady-state solutions branching off the basic flow

(τ,ψ) = (0,0). It follows from Theorem 1.1(i) that

ψc ∈ Ei for some integer 1 ≤ i ≤ 3. (55)

Let X = H4
i and Y = Hi. The injection property (50) is valid due to (37), and then the

definition given by (54) implies the validity of properties (a)-(b).

Moreover, note that νc > 0 and

Fψ(0,0)ψ =−µc∆ψ +νc∆2ψ + J(ψ0,(2+∆)ψ).

The linear operator Fψ(0,0) : X 7→ Y is Fredholm index zero. Hence the complement

Y/Ran(Fψ(0,0)) = span{ψ∗
c }

for ψ∗
c the conjugate counterpart of ψc, since

N(Fψ (0,0)) = span{ψc}
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due to (19) and (55). We thus have property (c).

Additionally, upon the observation

Fτψ(0,0)ψ =−µc∆ψ +νc∆2ψ ,

equation (20) becomes

(Fτψ(0,0)ψc,ψ
∗
c ) 6= 0 or Fτψ(0,0)ψc 6∈ Ran(Fφ (0,0)), (56)

and hence property (d) holds true. Here we have used the property

Ran(Fψ(0,0)) =
{

φ ∈Y

∣

∣

∣(φ ,ψ∗
c ) = 0

}

.

Therefore, by Theorem 4.1, we have the desired functions κ and Ψ so that the equation

F(τ,ψ ′) = 0 has solutions

ψ ′ = εψc + εΨ(ε), τ = κ(ε)

This together with (52) implies Theorem 4.2. The proof is completed.

5. Numerical computation

Firstly, we compute critical spectral solutions. Let S be the set of all spectral solu-

tions (ψc,νc,µc) with νc, µc ≥ 0 and (νc,µc) 6= (0,0) satisfying the spectral problem

0 = −µc∆ψc +νc∆2ψc + J(ψ0,(2+∆)ψc), (57)

0 6= ψc = ∑
n,m≥1

an,m sin
nx

2
sin

my

2
∈ H4.

By Theorem 2.1, the set of all critical values {(νc,µc)} is the union of the following

three subsets

Si =
{

(µc,νc)
∣

∣

∣(ψc,νc,µc) ∈ S and ψc ∈ Ei

}

, i = 1,2,3. (58)

Numerical spectral solutions are obtained by using the MATLAB eig function. S1 is

the same as the set of numerical data in [15, Table I] and is the curve joining the points

(0.2371,0) and (0,0.2310) in Figure 3 (a), which shows that S1 is the neutral line sep-

arating the linear stable and linear unstable domains. However, for the eigenfunction

ψc ∈ E2, the proof of Theorem 2.1 shows the coexistence of two critical orthogonal

eigenfunctions. The other one is given by (31). The numerical simulation of the two

eigenfunctions sharing with the same critical vector value (νc,µc) was given in [4].

In fact, we have S2 = S3, since horizontal coordinate is symmetric with the vertical

coordinate in the spectral problem (57). The subset S2 = S3 forms the line touching

the points (0.0415,0) and (0,0.01515) inside the linear unstable domain displayed in

Figure 3(a). For displaying purpose, following three classes of approximating critical

eigenfunctions

ψc ≈ ∑
n,m odd;1≤n,m≤11

an,m sin
nx

2
sin

mx

2
∈ E1, (59)
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ψc ≈ ∑
n odd;m even;1≤n,m≤11

an,m sin
nx

2
sin

mx

2
∈ E2, (60)

ψc ≈ ∑
n even;m odd;1≤n,m≤11

an,m sin
nx

2
sin

mx

2
∈ E3, (61)

at some typical critical values in S1 ∪S2 ∪S3, are exhibited respectively in Figure 3(b)-

(d).

0 0.0415 0.2371
0

.01515

0.2310

(a)

linear unstable

linear stable

S
1

S
2
 or S

3

(b)

0 2
0

2

(c)

0 2
0

2
(d)

0 2
0

2

(e)

0 2
0

2

Figure 3: (a) All critical values (νc,µc) ∈ S1 ∪ S2 ∪ S3; (b) critical eigenfunction ψc ∈ E1 for (νc,µc) =
(0.00054,0.2315) or (Rec,Rhc) = (22446,1.326); (c) critical eigenfunction ψc ∈ E2 for (νc,µc) =
(0.00054,0.0177) or (Rec,Rhc) = (6378,4.929); (d) critical eigenfunction ψc ∈ E3 for (νc,µc) =
(0.00054,0.0177) or (Rec,Rhc) = (6378,4.929); (e) numerical presentation of the nonlinear secondary flow

at (ν ,µ) = (0.0005,0.23).
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Figure 4: The steady-state flows when (a) (Re,Rh) = (700,1.55), (b) (Re,Rh) = (700,3), (c) (Re,Rh) =
(700,5), and (d) (Re,Rh) = (700,7).

Secondly, we compute the bifurcating steady-state flow shown in Theorem 1.1. To

understand the experimental magnetohydrodynamic flows, we follow [13, 14, 16] to

consider almost inviscid flows so that their energy dissipation is essentially controlled

by the Hartmann layer friction µ or the Rayleigh number Rh. When the critical eigen-

function ψc ∈ E2 ∪E3, the secondary flows branching from the corresponding critical

vector values in the linear unstable domain is unobservable in laboratory experiments,

although they are contributed to the complexity of flow dynamic behaviour towards to

turbulence. We only consider the flows related to (ψc,νc,µc) with ψc ∈ E1.

If a secondary flow bifurcating in the direction ψc ∈ E1 is stable, it attracts flows

initially from the states in its vicinity and thus can be reached by numerical compu-

tation. Indeed, the desired stable secondary flow is obtained by employing a finite

difference scheme with a 80× 80 gridding mesh of the fluid domain Ω. For exam-

ple, a numerical secondary solution is obtained for (ν,µ) close to the critical condi-

tion (νc,µc) = (0.00054,0.2306) or (Rec,Rhc) = (22402,1.329). In Figure 3(e), we

present nonlinear secondary steady-state flow at (ν,µ) = (0.0005,0.23) or (Re,Rh) =
(24158,1.33), which represents the secondary flow bifurcating from ψ0 at (νc,µc) =
(0.00054,0.2306). This secondary flow is actually the limit of the flow initially from

the state (see figure 1 (b))

ψ0 − 0.1sin
x

2
sin

y

2
. (62)

Therefore, the steady-state flow is obtained by computing the non-stationary flow in
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the numerical computation.

The secondary flow in Figure 3(e) shows the topological transition for the merg-

ing of two vortices, observed by Sommaria and Verron [14, 16]. Their experimental

threshold for the onset of secondary flow is Rhc = 1.52, which is close to but higher

than the present numeric one Rhc = 1.329. This is due to the neglect of the energy

dissipation inside the lateral boundary layers of the original three-dimensional fluid

motion problem (see [15]).

When (ν,µ) is close to the threshold (νc,µc), the nonlinear secondary flow in Fig-

ure 3(e) is comparable with the initial form (62) expressed in Figure 1 (b). This is

owing to the principal mode sin x
2

sin
y
2

generating the eigenfunction ψc. By numerical

computation and (16), the principal coefficient a1,1 of the principal mode is signifi-

cantly larger than other coefficients an,m.

Finally, we show an additional nonlinear topological bifurcation of the flow motion

by considering another bifurcating flow with respect to the initial state

ψ0 + 0.1sin
x

2
sin

y

2
. (63)

By choosing a smaller Reynolds number value, the initial state leads to the occur-

rence of the four steady-state flows shown respectively in Figure 4 (a)-(d) in four

different (Re,Rh) values. Their corresponding (ν,µ) values are (0.0173,0.1982),
(0.0102,0.0603), (0.0072,0.0254) and (0.0058,0.0148), respectively. Figure 4 shows

the inverse energy cascade towards large scales by merging four vortices into three and

then combining three vortices into two.
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