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EFFICIENT AND ACCURATE KAM TORI CONSTRUCTION FOR

THE DISSIPATIVE SPIN-ORBIT PROBLEM USING A MAP

REDUCTION

RENATO CALLEJA, ALESSANDRA CELLETTI, JOAN GIMENO, AND RAFAEL DE LA LLAVE

Abstract. We consider the dissipative spin-orbit problem in Celestial Mechanics,
which describes the rotational motion of a triaxial satellite moving on a Keplerian orbit
subject to tidal forcing and drift.

Our goal is to construct quasi-periodic solutions with fixed frequency, satisfying ap-
propriate conditions.

With the goal of applying rigorous KAM theory, we compute such quasi-periodic
solution with very high precision. To this end, we have developed a very efficient
algorithm. The first step is to compute very accurately the return map to a surface of
section (using a high order Taylor’s method with extended precision). Then, we find
an invariant curve for the return map using recent algorithms that take advantage of
the geometric features of the problem. This method is based on a rapidly convergent
Newton’s method which is guaranteed to converge if the initial error is small enough.
So, it is very suitable for a continuation algorithm.

The resulting algorithm is quite efficient. We only need to deal with a one dimensional
function. If this function is discretized in N points, the algorithm requires OpN logNq
operations and OpNq storage. The most costly step (the numerical integration of the
equation along a turn) is trivial to parallelize.

The main goal of the paper is to present the algorithms, implementation details and
several sample results of runs.

We also present both a rigorous and a numerical comparison of the results of averaged
and not averaged models.
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§1. Introduction

The construction of invariant structures in Celestial Mechanics and Astrodynamics has
become of great importance in recent times, both for theoretical reasons and for the prac-
tical design of space missions. At present, many space missions are based on the determ-
ination of periodic and quasi-periodic orbits. Some notable examples of periodic/quasi-
periodic orbits used in mission design are Lyapunov, Lissajous and halo orbits (see, e.g.,
[CPS15, GM01, JM99]).
The existence and persistence of quasi-periodic orbits was developed by KAM theory

([Kol54, Arn63, Mos62]). Making KAM theory into a practical tool is an ongoing and
rapidly progressing area, which applies to models of increasing complexity; it also leads
to applications and has uncovered new mathematical phenomena.
With these motivations, this work develops a method for the construction of invariant

tori in a concrete model of interest in Celestial Mechanics, namely the dissipative spin-
orbit problem (see Section §2), which describes the rotation about its center of an oblate
moon orbiting a planet and subject to tidal forces. Our goal is to develop a method to
compute quasi-periodic solutions in the spin-orbit problem. As it is well known, quasi-
periodic orbits can be described geometrically as invariant tori on which the motion is
conjugate to a rigid rotation. Hence, we will use indistinctly the names quasi-periodic
solution and invariant (rotational) torus.

§1.1. Overview of the method. The method we develop starts by constructing a
surface of section and a return map to it. The invariant tori for the flow correspond to
invariant tori for the return map. We show that these return maps for the spin-orbit
have the remarkable property that they transform the symplectic form into a multiple of
itself. These maps are called conformally symplectic systems and enjoy several remarkable
properties that lie at the root of a KAM theory and efficient algorithms (see Section §4.1).
To find the invariant torus of the map, we follow the approach in [CCdlL13b] and

formulate a functional equation for the drift parameter and for the embedding of the
torus, whose solutions are obtained formulating a quasi-Newton method that, given an
approximate solution of the functional equation, produces another one with a quadrat-
ically small reminder. The quasi-Newton method in [CCdlL13b] takes advantage of the
conformally symplectic geometric property.
The results of [CCdlL13b] guarantee that the method converges (as a double exponen-

tial, as Newton’s methods) if the initial error is small enough (compared to some readily
computable condition numbers).
The theorem in [CCdlL13b] also shows that the difference between the true solution

and the initial approximation is controlled by the error of the invariance equation, see
eq. (26). Results of this form are called a-posteriori theorems in numerical analysis. We
also note that one of the consequences of the work in [CCdlL13b] is a local uniqueness
for the solutions of (26), except for composition for a rotation. This lack of uniqueness
comes from the freedom on the choice of coordinates in the parameterization, but the
geometric object and the drift parameter are locally unique.
Since the iterative method converges for small enough error, it will be used as the

basis of a continuation method in parameters, which is guaranteed to converge until the
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assumptions in the theorem fail. Indeed, arguments in [CdlL10] show that the method
can be used as a practical way to compute the breakdown of the torus (see [CC10] for
an implementation to conformally symplectic maps). Note that the method is backed up
by theorems and guaranteed to reach to the boundary of validity of the theorem, if given
enough computational resources.
In this paper we will implement the method with extended arithmetic precision, mo-

tivated by the fact that the size of the error needed to apply the a-posteriori theorem is
typically smaller than what can be obtained in double precision. With modern program-
ming techniques, writing extended precision programs is not much more time consuming
than using standard arithmetic. Of course, there is a penalty in speed, but since the
algorithm is so efficient, one can still run comfortably even with extended precisions in
today’s desktop machines (see Section §5.5 for details on timings and resources). Of
course, in continuations, it is also possible to run the first iterations in double preci-
sion till the error is dominated by the double precision round-off and then run the final
iterations in extended precision.
We have also used jet transport in order to get automatically the (first order) vari-

ational flow with respect to initial conditions and parameters. In [CCGdlL20b] we use
the jet transport to get high order variational flows following the results in [GJJC`21].
Finally, we have taken advantage of some modern advances such as multicore machines

and multithreading given, for instance, continuation iterations in around 1 min when the
initial guess is small enough. We did not explore other advanced architectures such as
GPU, whose application in Celestial Mechanics is an interesting challenge. Some work
on a simpler problem is in [KAdlL21b].

§1.2. Efficiency and accuracy of the method. The use of return maps is very eco-
nomical and natural. In the study of invariant tori for differential equations, it is standard
to separate the directions along the flow and the transversal directions.
On the one hand, the torus remains very smooth along the directions of the flow for all

values of the perturbation parameter. The flow in these directions can just be reduced to
the well studied problem of computing solutions of ODE’s and, in fact, there are many
different algorithms suitable in different conditions.
On the other hand, the computation of the torus in the directions of the section is a

much more complicated problem, since it requires KAM theory and the tori along these
directions are much less regular; indeed, for large enough values of the perturbation,
the tori may disappear. Nevertheless, even for values of the perturbation parameter
where the tori do not exist, the solutions of the differential equations can be comfortably
computed.
By dividing the problem into the KAM part for maps and the propagation to the

return section, we reduce significantly the difficulty of the KAM part, since the tori have
lower dimension. The computation of the return map is more complicated, but it is
easily parallelizable and there are many studies on optimizing it. Hence the break up
ends being rather advantageous. As indicated above, the methodologies of the two parts
are very different and each of them can be fine tuned separately.
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The KAM part for maps is well documented in [CCdlL13b]; the algorithm therein
applies quasi-Newton corrections and takes advantage of several identities related to the
fact that the map is conformally symplectic.
The number of explicit steps of the KAM iterative procedure is about a dozen, see

Algorithm 5.4. All the elementary steps are well structured vector operations that are
primitives in modern languages or libraries, so that they are not too cumbersome to
program.
Quite remarkably, all the steps are diagonal either in a grid representation of the

function or in a Fourier representation. Of course, we can switch from one representation
to the other using FFT. Hence, for a function discretized in N modes, the quadratically
convergent method requires only OpNq storage and OpN logNq operations. Note that,
in modern computers, the vector operations and the FFT are highly optimized, with
specialized hardware.
These KAM algorithms have been implemented for maps given by explicit simple

formulas [CC10, CF12, CCdlL20]. In theory, the only thing that one would need to
do is to use the return map of the ODE (and its variational equations) in place of the
explicit formulas. However, as we report in [CCGdlL20a], in contrast with the explicit
formulas that have few important harmonics, the return maps have many more relevant
harmonics; this requires some adaptations and the phenomena observed are different.

§1.2.1. Relation with other methods. The methods of computing invariant tori based on
normal form theory require working with functions with as many variables as the phase
space, see [SL12, SL15]. In contrast, our methods require to manipulate only functions
with as many variables as the dimension of the tori of the map. Reducing the number
of variables in the unknown function is very important, since the number of operations
needed to manipulate a function grows exponentially (with a large exponent) with the
number of variables. Some recent papers that are also using return maps in Celestial
Mechanics are, for instance, [HM21] (full dimensional tori in Hamiltonian systems) and
[KAdlL21a] (whiskered tori, their stable and unstable manifolds and their intersections
in Hamiltonian systems).
It is interesting to compare the methods developed here to [Oli16], which uses a dis-

cretization of the tori without separating the tori and the flow directions. If the torus
is discretized in N points, this method requires OpN2q storage and OpN3q operations.

Notice that N points in 2-D tori give more or less the same precision as N
1

2 in 1-D tori.
A curious remark is that the linearization of the invariance equation (26) has a spec-

trum lying in circles as shown by [Mat68] (see [AKdlL07, HdlL] for numerical experi-
mentations), so that the Arnold-Kyrlov methods, successful in other models ([SNS10]),
do not work very well. The method we use can be understdood as saying that, using geo-
metric identities, we get the linearized equations to become constants (this phenomenon
is called automatic reducibility).
One improvement in continuation methods, after an expensive effort in one step, is

that one can compute inverses ([Mos73, Hal75]) or diagonalizations ([HdlL06, JO09]),
perturbatively. These methods require still to store OpN2q storage and the perturbative
calculations still require OpN3q operations even if the constants improve.
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§1.3. The model. We have implemented our results to the so-called dissipative spin-
orbit model ([Cel10]). In this section, we will review the physical bases of the model as
well as formulate several variants (so-called, time-dependent friction (8) and averaged
friction (9)). These models will be analyzed (numerically and rigorously) in subsquent
sections.
The spin-orbit model describes the rotational motion of a triaxial non-rigid satellite

whose center of mass moves along an elliptic Keplerian orbit around a central planet.
The spin-axis of the satellite is assumed to be perpendicular to the orbital plane and
coinciding with the shortest physical axis. The rotation angle of the satellite is the angle
between the longest axis of the satellite and a fixed direction, e.g. the periapsis line.
The motion of the rotation angle satisfies a second order differential equation depending

periodically on time, through the orbital elements describing the osculating position of
the center of mass of the satellite; such equation depends on two parameters, namely the
orbital eccentricity and the equatorial flattening of the satellite. The model equations
include a dissipative term due to the non-rigidity of the satellite, since the rotation gives
rise to tides that dissipate energy and generate a torque. We adopt the model of [Pea05]
in which the tidal torque is proportional to the angular velocity with a time-periodic
coefficient. The dissipative term depends on two parameters: the orbital eccentricity and
the dissipative factor, which is determined by the physical features of the satellite.
For typical bodies of the solar system, e.g. the Moon and many others among the

biggest satellites, the force induced by the dissipation is much smaller than the con-
servative part, so that dissipation can be ignored in the description over short times.
Nevertheless, since the dissipative forces have consequences that accumulate over time,
they are very important in the description of long-term effects.
In the applied literature, it is very common to use a simplified version of the tidal torque

that can be obtained by averaging the dissipation over time ([CC09, CL14, CL04]), so
that the tidal torque becomes proportional to the derivative of the rotation angle.
One of the advantages of the method in this paper is that it provides a rather general

rigorous justification of the averaging method for quasi-periodic solutions The basic idea
is very simple: using standard averaging methods, we control the 2π time map and,
then, the effect of changing the map is controlled by the a-posteriori theorem (see Ap-
pendix A). For the spin-orbit problem we also provide another justification that applies
to all solutions.
Our formalism provides also rigorous estimates on the validity of the averaging ap-

proximation. Standard averaging theory can give estimates on the difference between
the return maps in the averaged model and the true model (notice that the time of
flights in return maps is about 1, so that controlling the averaging method to order
1 is very standard). Then, we can use the a-posteriori format of the KAM theory in
[CCdlL13b] to obtain estimates on the difference between the KAM tori and the drift
parameters in the averaged and non-averaged cases. This result may look surprising,
since one obtains control on solutions (and drift) for very long times. Besides this very
general perturbative argument, in Appendix A we present some elementary arguments
that, taking advantage of the structure of the system, obtain non-perturbative results.
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We conclude by mentioning that the current work has several consequences: in [CCGdlL20b]
we study the quantitative verification of a-posteriori theorems and the quantitative con-
dition numbers, while in [CCGdlL20a] we explore numerically the boundary of validity of
KAM theory and uncover several phenomena that deserve further mathematical invest-
igation. We hope that this paper (and the companions [CCGdlL20b] and [CCGdlL20a])
can stimulate further research, for example turning the estimates in [CCGdlL20b] into
rigorous computer assisted proofs, studying higher dimensional models, incorporating
more advanced computer architectures and explaining the phenomena at breakdown.

§1.4. Organization of this paper. This work is organized as follows. In Section §2 we
present the spin-orbit model with tidal torque. The numerical formulation of the spin-
orbit problem is given in Section §3, while the spin-orbit map is derived in Section §4. The
algorithm for the construction of invariant attractors and its applications is presented in
Section §5. Finally, some conclusions are given in Section §6.

§2. The spin-orbit problem with tidal torque

Consider the motion of a rigid body, say a satellite S, with a triaxial structure, rotating
around an internal spin-axis and, at the same time, orbiting under the gravitational
influence of a point-mass perturber, say a planet P. A simple model that describes the
coupling between the rotation and the revolution of the satellite goes under the name
of spin-orbit problem, which has been extensively studied in the literature in different
contexts (see, e.g., [Bel01, Cel90b, Cel90a, CL04, WPM84]). This model is based on
some assumptions that we are going to formulate as follows. Let A ă B ă C denote the
principal moments of inertia of the satellite S; then, we assume that:

H1. The satellite S moves on an elliptic Keplerian orbit with semimajor axis a and
eccentricity e, and with the planet P in one focus;

H2. The spin-axis of the satellite coincides with the smallest physical axis of the
ellipsoid, namely the axis with associated moment of inertia C;

H3. The spin-axis is assumed to be perpendicular to the orbital plane;

H4. The satellite S is affected by a tidal torque, since it is assumed to be non-rigid.

We adopt the units of measure of time such that the orbital period, say Torb, is equal to
2π, which implies that the mean motion n “ 2π{Torb is equal to one.
We define the equatorial ellipticity as the parameter ε ą 0 given by

ε “ 3

2

B ´ A

C
, (1)

which is a measure of the oblateness of the satellite. When ε “ 0, then A “ B which
means that the satellite is symmetric in the equatorial plane and, because of (H3), it
coincides with the orbital plane.

We consider the perturber P at the origin of an inertial reference frame with the
horizontal axis coinciding with the direction of the semimajor axis. It is convenient
to identify the orbital plane with the complex plane C. The location of the center of
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mass of the rigid body S with respect to the perturber P is given, in exponential form,
by r exppifq P C, where r ą 0 and f are real functions depending on the time t and
they represent respectively the instantaneous orbital radius and the true anomaly of the
Keplerian orbits. Indeed, over time, r and f describe an ellipse of eccentricity e P r0, 1q,
semimajor axis a and focus at the origin, see Figure 1.

Given that the mean motion n has been normalized to one, then the mean anomaly
coincides with the time t. By Kepler’s equation ([Cel10]), we have the following relation
between the eccentric anomaly u and the time:

t “ u ´ e sin u . (2)

The expressions which relate r and f with the eccentric anomaly (and hence with time
through (2)) are given by

r “ ap1 ´ e cosuq , (3)

r exppifq “ apcosu ´ e ` i

?
1 ´ e2 sin uq . (4)

Notice that we are assuming in (4) that for t “ 0, fp0q “ up0q “ 0, and consequently,
fpπq “ upπq “ π when t “ π. We also recall the following relations between the Keplerian
elements, that will be useful in the following:

cos f “ cosu ´ e

1 ´ e cosu
and sin f “

?
1 ´ e2 sin u

1 ´ e cosu
. (5)

As for the rotational motion, let x be the angle formed by the direction of the largest
physical axis, which belongs to the orbital plane, due to the assumptions (H2) and (H3),
with the horizontal (or semimajor) axis a.

If we neglect dissipative forces, the equation of motion which gives the dependence of x
on time is given by the following expression ([Cel10]) to which we refer as the conservative
spin-orbit equation:

d2xptq
dt2

` ε

ˆ
a

rptq

˙3

sin
`
2xptq ´ 2fptq

˘
“ 0 , (6)

where ε ą 0 is given in (1), rptq “ rpuptq; eq in (3), fptq “ fpuptq; eq in (5), and where u

is related to t through (2).

If we now assume that the satellite is not rigid, then we must consider a tidal torque,
say Td, that acts on the satellite. According to [Mac64, Pea05], we can write the tidal
torque as a linear function of the velocity:

Td

ˆ
dxptq
dt

, t

˙
“ ´η

ˆ
a

rptq

˙6ˆ
dxptq
dt

´ dfptq
dt

˙
, (7)

where η ą 0 is named the dissipative constant. Since we are interested in astronomical
applications, we specify that η depends on the physical and orbital features of the body
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f(t, e)

r(t, e)

P

a

S

x(t)

a

√

1
−
e
2

Figure 1. The spin-orbit problem: a triaxial satellite S moves around a
planet P on an elliptic orbit with semimajor axis a and eccentricity e. The
position of the barycenter of S is given by the orbital radius r and the true
anomaly f . The rotational angle is denoted by x.

and takes the form

η “ 3n
k2

ξQ

ˆ
Re

a

˙3
M

m
,

where k2 is the second degree potential Love number (depending on the structure of
the body), Q is the so–called quality factor (which compares the frequency of oscillation
of the system to the rate of dissipation of energy), ξ is a structure constant such that
C “ ξmR2

e, Re is the equatorial radius, M is the mass of the central body P, m is the
mass of the satellite S. Astronomical observations suggest that for bodies like the Moon
or Mercury the dissipative constant η is of the order of 10´8.

The dynamics including the tidal torque is then described by the following equation
to which we refer as the dissipative spin-orbit equation:

d2xptq
dt2

` ε

ˆ
a

rptq

˙3

sin
`
2xptq ´ 2fptq

˘
“ ´η

ˆ
a

rptq

˙6ˆ
dxptq
dt

´ df

dt

˙
. (8)

The expression for the tidal torque can be simplified by assuming (as in [Pea05, CL04])
that the dynamics is essentially ruled by the average T d of the tidal torque over one
orbital period, which can be written as

T d

ˆ
dx

dt

˙
“ ´η

ˆ
L̄peqdx

dt
´ N̄peq

˙
, (9)

where (compare with [Pea05])

L̄peq ” 1

p1 ´ e2q9{2

ˆ
1 ` 3e2 ` 3

8
e4

˙
,

N̄peq ” 1

p1 ´ e2q6
ˆ
1 ` 15

2
e2 ` 45

8
e4 ` 5

16
e6

˙
.
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When considering the averaged tidal torque, one is led to study the following equation
of motion to which we refer as the averaged dissipative spin–orbit equation:

d2xptq
dt2

` ε

ˆ
a

rptq

˙3

sin
`
2xptq ´ 2fptq

˘
“ ´η

ˆ
L̄peqdxptq

dt
´ N̄peq

˙
. (10)

Note that in this model, we consider the average of the tidal forces, but do not average
the conservative forces (see Appendix A). This is justified because, as indicated before,
in practical problems, the dissipative forces are much smaller than the conservative ones.

Remarks 2.1. (i) The parameter ε in (1) is zero only in the case of an equatorial
symmetry with A “ B. In that case, the equation of motion (6) is trivially
integrable.

(ii) When e “ 0, the orbit is circular and therefore r “ a and f “ t` t0. Also in this
case the equation of motion (6) is integrable.

(iii) The equation (6) is associated to the following one-dimensional, time-dependent
Hamiltonian function:

Hpy, x, tq “ y2

2
´ ε

2

´ a

rptq
¯3

cosp2x ´ 2fptqq . (11)

(iv) Equations (6), (8) and (10) are defined in a phase space which is a subset of
r0, 2πq ˆ R. Such a phase space can be endowed with the standard scalar product
and a symplectic form Ω, which in our case, is just the two dimensional area in
phase space. Even if in two dimensional phase spaces the area (volume) is the
same as the symplectic manifold, in systems with N degrees of freedom (N ą 1)
the preservation of the two-form Ω is much more stringent than the preservation
of the 2N dimensional volume.

§3. Numerical version of the spin-orbit problem

To get a numerical representation of the ordinary differential equation (8) (equivalently
(6) or (10)), it is convenient to express the equation in terms either of the eccentric
anomaly u or the mean anomaly which coincides with t. Although there is a clear
bijection between t and u through (2), it seems reasonable to redefine everything in
terms of the eccentric anomaly u due to the expressions of r in (3) and f in (4). The
procedure to get the equation of motion with u as independent variable is the following.
The expression of f in (5) is given easily in terms of u (and e). Let spxq “ spx; u, eq

be the function defined as spx; u, eq – sinp2xptq ´ 2fptqq, where the dependence on u, e
enters through f . Using trigonometric identities, we have an explicit expression in terms
of u and e for the sinus in (8):

spx; u, eq “ sinp2xqp2 cos2 f ´ 1q ´ cosp2xq2 cos f sin f . (12)

Note here the useful relation for the derivatives of s, c:

Bs
Bxpx; u, eq “ 2cpx; u, eq ,

Bc
Bxpx; u, eq “ ´2spx; u, eq ,

(13)
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where
cpxq “ cpx; u, eq – cosp2xqp2 cos2 f ´ 1q ` sinp2xq2 cos f sin f . (14)

The time-change given by (2) leads to

df

dt
“

´a

r

¯2 ?
1 ´ e2 .

As a consequence, equation (8) can be expressed in terms of the independent variable u

as

d2βpuq
du2

´ dβpuq
du

a

rpuqe sin u ` ε
a

rpuqspβq “ ´η

ˆ
a

rpuq

˙5ˆ
dβpuq
du

´ a

rpuq
?
1 ´ e2

˙
(15)

with r defined in (3) and spβq – spβ; u, eq given in (12)1.
Note that the introduction of u as independent variable implies a non-constant de-

formation in the angular component. More precisely, if yptq “ dxptq
dt

, defining

βpuq – xpu ´ e sin uq , (16)

we obtain

γpuq –
dβpuq
du

“ rpuq
a

ypu ´ e sin uq .

The ODE system (15) can now be integrated by any classical numerical integrator
([HNW93]) without having to solve the Kepler’s equation (2) at each integration step.
In the following sections, we will use a Taylor’s integrator ([JZ05a]) that we briefly
recall for self-consistency in Appendix B. We have used Taylor’s method because it can
produce solutions with high accuracy (say 10´30), since it can easily increase the orders
of the Taylor’s expansions in order to provide good enough trajectory values. These
integrators are also used to produce rigorous enclosures ([BM98]). Both features seem to
be important towards the goal of producing computer-assisted proofs (progress towards
this goal will be reported in [CCGdlL20b]) or in the study of phenomena at breakdown
that require delicate calculations not easy to make convincing (progress towards this goal
will be reported in [CCGdlL20a]).
Even if not directly used in the present paper, we report in Appendix C the variational

equations associated to (15). The variational equations with respect to coordinates and
parameters can be used for different purposes (see [CCGdlL20b], [CCGdlL20a]), e.g.
to compute the parameterization of invariant structures, to get estimates based on the
derivative of the flow, to compute chaos indicators like the Fast Lyapunov Indicator
([FLG97]).

§4. The conformally symplectic spin-orbit map

In this section, we introduce the notion of conformally symplectic systems (Section §4.1),
we reduce the study of the spin-orbit problem to a discrete map (Section §4.2) and we
provide an explicit expression of the conformally symplectic factor (Section §4.3).

1We abuse the notation referring rptq “ ap1 ´ e cosuptqq and rpuq “ ap1 ´ e cosuq as equal (similarly
fptq and fpuq). Although formally we should label them differently, they are equivalent via the Kepler’s
equation.
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§4.1. Conformally symplectic systems. Conformally symplectic systems are dissip-
ative systems that enjoy the remarkable property that they transform the symplectic
form into a multiple of itself.
The formal definition for 2n-dimensional discrete and continuous systems is the fol-

lowing.

Let M “ U ˆ Tn be the phase space with U Ď Rn an open and simply connected
domain with smooth boundary. We endow the phase space M with the standard scalar
product and a symplectic form Ω, represented by a matrix J at the point z acting on
vectors u, v P R2n as Ωzpu, vq “ pu, Jpzqvq.
For the spin-orbit model, the symplectic form Ω is represented by the constant matrix

J which takes the form

J “
ˆ

0 1
´1 0

˙
. (17)

Definition 4.1. A diffeomorphism f on M is conformally symplectic if, and only if,
there exists a function λ : M Ñ R such that

f˚Ω “ λΩ , (18)

where f˚ denotes the pull–back of f (i.e., f˚Ω “ Ω ˝ f) and λ is called the conformal
factor.

In the following, we will consider a family fµ : M Ñ M of mappings and we will call
µ P R the drift parameter. Correspondingly, we will replace (18) by

f˚
µΩ “ λΩ .

We notice that for λ “ 1, we recover the symplectic case. Moreover, as remarked in
[CCdlL13b], for n “ 1 any diffeomorphism is conformally symplectic with a conformal
factor that might depend on the coordinates; in particular, when Ω is the standard area,
one has either λpxq “ | detpDfµpxqq| or λpxq “ ´| detpDfµpxqq|. When n ě 2, it follows
that λ is a constant (see, e.g., [Ban02, CCdlL13b]).

Definition 4.1 extends to continuous systems by the use of the Lie derivative.

Definition 4.2. We say that a vector field X is a conformally symplectic flow if, and
only if, denoting by LX the Lie derivative, there exists a function µ : R2n Ñ R such that

LXΩ “ µΩ . (19)

Denoting by Φt the flow at time t of the vector field X , we observe that (19) implies
that

pΦtq˚Ω “ eµtΩ .

In our applications we will consider a family of vector fields Xσ depending on a drift
parameter σ P R and we will replace (19) by

LXσ
Ω “ µΩ .
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In our applications we will also have to consider time-dependent vector fields. A time
dependent vector field Xptq is conformally symplectic when LXptqΩ “ µptqΩ. It is not
difficult to show that Φb

a, the diffeomorphism which takes initial conditions at time a to
the position at time b (hence Φc

a “ Φc
b ˝ Φb

a), satisfies

pΦb
aq˚Ω “ e

şb
a
µpsq dsΩ . (20)

Note that (20) implies that if Xptq is periodic of period T , the conformal factor of Φa`T
a

is independent of a and it is equal to the conformal factor of a vector field with a constant

µ̄ “ 1
T

şa`T

a
µpsq ds. This will be useful in the justification of averaging (see Appendix A).

The spin-orbit models described by (8) and (10) are both conformally symplectic. Let
us start to show that the averaged system (10) is conformally symplectic. We write (10)
as the first order system

9x “ y

9y “ ´ε
´a

r

¯3

sinp2x ´ 2fq ´ µp 9x ´ υq ,

where µ “ ηL̄peq and υ “ N̄peq
L̄peq . Hence, µ is the conformal factor and υ is the drift

parameter. Denoting by iX the interior product and recalling that Ω “ dy ^ dx, we have

iXΩ “ 9ydx ´ 9xdy “
”

´ µpy ´ υq ´ ε
´a

r

¯3

sinp2x ´ 2fq
ı
dx ´ y dy .

Then, we have

dpiXΩq “ ´µ dy ^ dx “ ´µΩ .

Since

LXΩ “ iX dΩ ` dpiXΩq “ dpiXΩq ,

we conclude that

LXΩ “ ´µΩ .

A similar computation shows that the model described by (8) is conformally symplectic.

§4.2. The spin-orbit map. We introduce the Poincaré map associated to (8) or (10),
which allows one to reduce the continuous spin-orbit problem to a discrete system. We
denote by Ge the flow at time 2π in the independent variable u associated to the equation
of motion (15) in the coordinates pβ, γq:

Gepβ0, γ0q “
ˆ
βp2π; β0, γ0, eq
γp2π; β0, γ0, eq

˙
(21)

with βp2π; β0, γ0, eq and γp2π; β0, γ0, eq denoting the solution at u “ 2π with initial

conditions pβ0, γ0q at u “ 0. If we set Ge “ pGp1q
e , G

p2q
e q, then the Poincaré map associated

to (15) is

β̄ “ Gp1q
e pβ, γq

γ̄ “ Gp2q
e pβ, γq .
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The Poincaré map Pe at time t “ 2π associated to (8) is then given by the conjugacy

Pe “ Ψ´1
e ˝ Ge ˝ Ψe (22)

with the (time) change of coordinates from px, yq{p2πq to pβ, γq given by

Ψe “ 2π

ˆ
1 0
0 1 ´ e

˙
. (23)

Using the map Ge is very advantageous in numerical numerical implementation because
this allows us to avoid to dealing with the Kepler’s equation (2). On the other hand,
the map Pe is appropriate for physical interpretations, and the close and explicit relation
among them (22) allows to choose the most advantageous one for the task at hand.

§4.3. The conformally symplectic factor. Our next task is to find an explicit form for
the conformally symplectic factor λ of the Poincaré map associated to (8) or equivalently
(15).

By the Jacobi-Liouville Theorem, the determinant of the differential of the Poincaré
map is obtained by integrating the trace of the Jacobian matrix associated to (8). Since
the determinant and the trace of a matrix are invariant under a change of basis, their
values are the same if we compute the system (15) via the Jacobian with elements aij
given by

a11 “ 0, a21 “ ´2ε
a

rpuqcpβ; u, eq ,

a12 “ 1, a22 “ e
a

rpuq sin u ´ η

ˆ
a

rpuq

˙5

.

This leads to the following expression for the conformal factor:

λ “ exp

˜ż 2π

0

˜
e

a

rpuq sin u ´ η

ˆ
a

rpuq

˙5
¸

du

¸
. (24)

It is remarkable that the integral in (24) can be computed analytically in terms of η
and e. To this end, we need the following preliminary result.

Lemma 4.3. If e P r0, 1q and r “ ap1 ´ e cosuq, then
ż 2π

0

ˆ
a

rpuq

˙5

du “ π
3e4 ` 24e2 ` 8

4p1 ´ e2q9{2 .

Proof. Since e P r0, 1q, then pa
r
q5 has no poles in the unit circle. By the change of variables

z “ exppiuq and a straightforward application of the Residue Theorem, we obtain:
ż 2π

0

ˆ
a

rpuq

˙5

du “ 2π
ÿ

w sing.
|w|ă1

Res

ˆ
25z5

p2z ´ ez2 ´ eq5 , w
˙

,

where Res denotes the residue of a holomorphic function. To compute the residue, we
need to evaluate the poles α˘ which are given by α˘ “ e´1p1˘

?
1 ´ e2q. Since |α´| ă 1,
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then by an explicit computation, we get:
ż 2π

0

ˆ
a

rpuq

˙5

du “ 2π
1

4!
lim
zÑα

´

d4

dz4
p ´25z4

e5pz ´ α`q5 q

“ 2π lim
zÑα

´

32
`
α4

` ` 16α3
`z ` 36α2

`z
2 ` 16α`z

3 ` z4
˘

e5pα` ´ zq9

“ π
3e4 ` 24e2 ` 8

4 p1 ´ e2q9{2 . �

The above result leads to the following Corollary, which gives an explicit form of the
conformal factor of the spin-orbit model described by (8).

Corollary 4.4. The conformally symplectic factor of the 2π-time map of the spin-orbit
problem with tidal torque given by the system (8) has the following expression:

λ “ exp

ˆ
´ ηπ

3e4 ` 24e2 ` 8

4 p1 ´ e2q9{2

˙
.

Remarks 4.5. (i) Note that the result in Corollary 4.4 is also valid under the change
of time given in (2). This means that the 2π-time map associated to the system
(15) has the same symplectic factor, since the determinant is invariant under a
change of basis.

(ii) The conformally symplectic factor λ can be either contractive, expansive or neut-
ral. The value λ has a clear dynamical interpretation: at each 2π-interval of
time, the values move λ far away from unity. We remark that in this work we
are interested to the contractive case, namely η ą 0.

§5. The computation of invariant attractors

We consider the model described by equation (8) and we provide an algorithm (see
Section §5.1) for the construction of KAM invariant attractors. The algorithm relies
on the fact that, starting from an initial approximate solution, one can construct a
better approximate solution. A possible choice for the initial approximate solution is
presented in Section §5.2. A validation of the goodness of the solution is considered
in Section §5.3, which provides some accuracy tests. The construction of the invariant
attractors through the implementation of the algorithm described in Section §5.1 requires
some technical procedures, precisely multiple precision arithmetic (see Appendix D) and
parallel computing (see Section §5.5). Examples of the application of Algorithm 5.4 are
given in Section §5.6.

§5.1. An algorithm for constructing invariant attractors. Invariant attractors for
the map Pe defined in (22) associated to the dissipative spin-orbit equation (8) can
be obtained by implementing an efficient algorithm based on Newton’s method; this
algorithm is also used to give a rigorous proof of invariant tori through KAM theorem,
see [CCGdlL20b], as well as to give accurate bounds on the breakdown threshold, see
[CCGdlL20a].



KAM TORI FOR THE DISSIPATIVE SPIN-ORBIT PROBLEM 15

To introduce the algorithm, we need to fix the frequency ω, that we are going to
choose sufficiently irrational, see Definition 5.1, and we need to introduce invariant KAM
attractors, see Definition 5.2.

Definition 5.1. The number ω P R is said Diophantine of class τ and constant ν for
τ ě 1, ν ą 0, and briefly denoted as ω P Dpν, τq, if the following inequality holds:

|ω k ´ q|´1 ď ν´1|k|τ (25)

for q P Z, k P Zzt0u.
We remark that the sets of Diophantine numbers as in Definition 5.1 is such that their

union over ν ą 0 has full Lebesgue measure in R.

Next, we define as follows an invariant attractor with frequency ω satisfying (25).

Definition 5.2. Let Pe : M Ñ M be a family of conformally symplectic maps defined
on a symplectic manifold M Ă R ˆ T and depending on the drift parameter e. A KAM
attractor with frequency ω is an invariant torus described by an embedding Kp : T Ñ M

and a drift parameter ep, satisfying the following invariant equation for θ P T:

Pep ˝ Kppθq “ Kppθ ` ωq . (26)

We will often write (26) in the form

Pep ˝ Kp “ Kp ˝ Tω ,

where Tω denotes the shift function by ω, i.e., Tωpθq “ θ ` ω.
The solutions of the invariance equation (26) is unique up to a shift. For all real α, if

K̂ppθq – Kppθ `αq, then pK̂p, epq is also a solution of (26). Note that all these solutions
parameterize the same geometric object. In [CCdlL13b] there is a simple argument
showing that this is the only source of lack of local uniqueness.

Remark 5.3. It is easy to see – even in the integrable case – that to obtain an attractor
with a specific frequency we need to adjust the drift parameter.
Hence, repeating the calculation several times, we obtain the drift as a function of the

frequency. One can invert this – one-dimensional – function and obtain the frequency as
a function of the drift, so that the two are mathematically equivalent, see Figure 2.
For astronomers, the frequency is directly observed and it is natural to think of using

the measurements of the frequency to obtain values of the drift.
Theoretical physicists may prefer that the values of the drift are known and that one

predicts the frequency.
Both points of view are mathematically equivalent modulo inverting a 1-D function. In

astronomy, since there is little a-priori information on the values of the elastic properties
of the satellites, it seems more natural to study the drift as function of the frequency. On
other physical applications, where the values of the model are known from the start, the
other point of view may be preferable.
One small technical problem (that can be solved) is that the function is not defined

for all values of the frequency. The theory only establishes for a set of large measure.
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Repeatedly, not all the values of the drift parameter lead to a system that has a rotational
attractor.

The starting point of the iterative process in the spin-orbit problem is then pK, eq, an
approximate solution of the invariance equation (26),

Pe ˝ Kpθq ´ Kpθ ` ωq “ Epθq , (27)

where the “error” E is thought of as small (making precise the notion of small will require
the introduction of norms).
Algorithm 5.4 below takes the pair pK, eq and produces another approximate solution

pK̃, ẽq, which satisfies (26) up to an error whose norm is quadratically smaller with respect
to E (again, making all this precise requires introducing norms).
We note that all the steps are rather explicit operations taking derivatives, shifting and

performing alebraic operations. The most delicate steps are 8 , 12 , which involve solving
cohomology equations and step 9 which involves solving a 2 ˆ 2 linear equation. The
assumption of invertibility of this explicit 2 ˆ 2 matrix is a non-degeneracy assumption
that takes the place of the classical twist condition.
The Algorithm 5.4 is based on that described in [CCdlL13b] and adapted for the spin-

orbit problem. Even if, for the sake of simplicity, we only present the algebraic operations
in the recipe, in [CCdlL13b] there are geometric interpretations that motivate the steps.

Algorithm 5.4 (Newton’s method for finding a torus in the spin-orbit problem).

‹ Inputs: J as in (17), ω a fixed frequency, an initial embedding K : T Ñ T ˆ R,
access to the 2π-time flow map Ge of (15) for fixed values ε and η, change of
coordinates depending on e, Ψe ” 2π p 1 0

0 1´e q, and conformally symplectic map
Pe ” Ψ´1

e ˝ Ge ˝ Ψe.

‹ Output: New K and e satisfying the invariance equation (26) up to a given
tolerance.

‹ Notation: If A is defined in T, A –
ş
T
A and A0 – A ´ A.

1. E Ð Pe ˝ K ´ K ˝ Tω,
E1 Ð E1 ´ roundpE1q.

2. α Ð DK.

3. N Ð pαtαq´1.

4. M Ð
“
α J´1αN

‰
.

5. rE Ð pM´1 ˝ TωqE.

6. λ from the Corollary 4.4.
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7. P Ð αN ,
S Ð pP ˝ TωqtDPe ˝ KJ´1P ,
rA Ð M´1 ˝ TωDePe ˝ K.

8. pBaq0 solving λpBaq0 ´ pBaq0 ˝ Tω “ ´p rE2q0,
pBbq0 solving λpBbq0 ´ pBbq0 ˝ Tω “ ´p rA2q0.

9. Find W 2, σ solving the linear system
˜

S SpBbq0 ` rA1

λ ´ 1 rA2

¸ ˆ
W 2

σ

˙
“

˜
´ rE1 ´ SpBaq0

´ rE2

¸
.

10. pW2q0 Ð pBaq0 ` σpBbq0.

11. W2 Ð pW2q0 ` W 2.

12. pW1q0 solving pW1q0 ´ pW1q0 ˝ Tω “ ´pSW2q0 ´ p rE1q0 ´ p rA1q0σ.

13. K Ð K ` MW ,
e Ð e ` σ.

Algorithm 5.4 needs some practical remarks:

‚ Because of the periodicity condition Kpθ`1q “ Kpθq`p 1
0 q, one can always define

the periodic map rKpθq – Kpθq ´ p θ
0 q which, generically, admits a Fourier series.

Then, one obtains that

K ˝ Tω “ rK ˝ Tω ` p ω
0 q .

‚ The function E in step 1 must perform the subtraction in the first component in
T. For a numerical implementation that can be fulfilled by the assignment E1 Ð
E1 ´ roundpE1q, where round returns the nearest integer value of its argument.
Such a function is commonly provided in almost all programming languages.

‚ The matrix M in step 4 is unimodular, which allows to get an easy inverse matrix
expression.

‚ The quantities DPe and DePe in step 7 are needed to compute the directional
variational flow of Φ, which can be done automatically using the explanations in
Section C.1.

‚ The stopping criterion is either that }E} or maxt}MW }, |σ|u is smaller than a
prefixed tolerance.

A common numerical representation for periodic mappings is a Fourier series in the inputs
K1 and K2, which gives us a representation of K ” pK1, K2q. In such a representation,
we can use the Fourier transform, or its numerical version via Fast Fourier Transform
(FFT) algorithm.
Therefore any periodic mapping, say f , admits two representations, namely in points

(or table of values) and in Fourier coefficients. The first one is just the values p qfkqn´1
k“0

of the mapping in an equispaced mesh in r0, 1q of size n. The second one is obtained
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by the Inverse of the Fast Fourier Transform (IFFT), denoted by p pfkqn´1
k“0. Notice that,

because the function is assumed to be real-valued, the two representations can have the
same size, i.e. n real values.
Depending on the step in Algorithm 5.4, it may be better to use one representation or

the other. For instance, Pe ˝ K in 1 , and DPe ˝ K, DePe ˝ K in 7 are better when K is
in a table of values, although an ODE version of (8) in terms of Fourier coefficients can
be considered.
On the other hand, the composition with Tω and the solution of the cohomological

equations in 8 and 12 are easier if K is in Fourier series. Indeed, these equations can be
solved in Fourier coefficients, using the following result whose proof is straightforward.

Lemma 5.5. Let ηpθq “ ř
k ηk expp2πik ¨ θq and let ω be irrational. Then:

(i) If η0 “ 0, then φ ˝ Tω ´ φ “ η has solution φpθq “ ř
k φk expp2πik ¨ θq with

φk “
#

ηk
expp2πik¨ωq´1

if k ‰ 0,

0 otherwise.

(ii) If λ is not a root of unit, then φ ˝ Tω ´ λφ “ η has solution with coefficients

φk “ ηk

expp2πik ¨ ωq ´ λ
.

§5.2. Initial approximation of the invariant curve. Repeated application of the
Newton’s method from Algorithm 5.4 produces a very accurate solution provided that
one can get a good enough initial approximation. In this section we address the problem
of producing such an initial approximation. Although the methods are rather general, we
are going to give the results for the cases of study in this paper. We select the following
two frequencies with good Diophantine conditions belonging to the class Dp 2

3´
?
5
, 1q, see

Definition 5.1:

ω1 “ γ`
g (28)

and

ω2 “ 1 ` 1

2 ` γ´
g

, (29)

where we define γ˘
g “

?
5˘1
2

.
One method to provide an initial approximation is, of course, to continue from an

integrable case that can be solved explicitly. Another method is to do an easy calculation
of an approximate torus. Since the system is dissipative, the torus, if it exists, will be an
attractor.

§5.2.1. A continuation method from the integrable case. Let us start to analyze the av-
eraged problem for which we look for the drift starting from the integrable case. Fix the
frequency ω and set ε “ 0 in (10); then, the drift e can be chosen so that

N̄peq
L̄peq “ ω .
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The above equation provides the eccentricity as a function of the frequency. In fact, as
noticed in [CC09], for η ‰ 0 the solution of (10) can be written as

xptq “ xp0q ` N̄peq
L̄peq t ` 1 ´ expp´ηtq

η

ˆ
9xp0q ´ N̄peq

L̄peq

˙
,

which shows that 9x “ N̄peq
L̄peq is a global attractor for the unperturbed, purely dissipative

case ε “ 0. Setting y “ 9x, we can select as initial starting condition

xp0q “ 0 and yp0q “ N̄peq
L̄peq . (30)

We remark that, despite the use of the averaged version of the spin-orbit problem given
in (10), to approximate an initial guess of the eccentricity in terms of the frequency,
we can also use the non-averaged spin-orbit problem (8) to provide an approximated
eccentricity, see Section §5.2.2.

§5.2.2. Direct iteration. We propose a method different from Section §5.2.1, which takes
advantage of the fact that the torus, if it exists, is an attractor. We do not need to
consider the average equation and we can start from the model (8). Hence, we start by
selecting a set of points at random; after a transient number of iterations (e.g., choose
the transient as the inverse of the dissipation multiplied by a convenient safety factor),
we expect that the orbit is close to the attractor. Then, we assess whether indeed this
orbit has a rotation number.
Since not all the attractors of dissipative maps are rotational orbits, not all of them

should have a rotation number. Of course, there may be situations where the orbit is a
chaotic attractor that happens to have a rotation number.
Given the importance of the rotation number, there are quite a number algorithms

to compute it, e.g. [LFC92, Ath98, Las99, ALM00, Las99, SV06, GMS10a, GMS10b,
SNS10]. We have used the method in [DSSY17] which speeds the convergence to the
rotation number. We will present more details of the calculation in [CCGdlL20b]. We
note that the method in [DSSY17] gives a very good indication of the existence of an
invariant circle. In [DSSY17] it is shown that if there is a smooth invariant circle, the
convergence of the method to a rotation number is very fast. Hence the fast convergence
of the algorithm is a reasonably good evidence of the existence of a rotational torus. Of
course, the convergence of the Newton’s method started in this guess is a much stronger
validation of the correctness of the guess.
Figure 2 compares the two approaches explained here and in Section §5.2.1. The first

one is straightforward, since it consists in plotting the function N̄peq{L̄peq in terms of
the eccentricity e. The second one requires a little bit more effort, since it needs to
numerically integrate (8) to compute the rotation number.

§5.2.3. Initial approximation for the embedding. Once we have fixed an initial guess for
the eccentricity and an initial starting point, we can proceed to get an initial guess of
the embedding K which is needed as input in the Algorithm 5.4. To this end, we first
perform a preliminary transient of iterations of Ge, defined in (21), at the initial point
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Figure 2. Eccentricity versus the rotation number denoted by + of the
system (8) with ε “ 10´4 and η “ 10´5. Frequencies as in (28) and
(29). The small window is just a zoom-in near to ω2 which shows that
the averaged quantity N̄peq{L̄peq approaches the non-averaged rotation
number.

Ψepxp0q, yp0q{p2πqq, with pxp0q, yp0qq given in (30). After that, we can follow the steps
in Algorithm 5.6 to get the initial guess for K for the Algorithm 5.4.

Algorithm 5.6 (Invariant curve approximation).

‹ Inputs: Points pβk, γkqn´1
k“0 Ă r0, 2πq ˆ R from iteration of the 2π-time Poincaré

map of (15) with parameter values ε, η, and e and number of Lagrange interpol-
ation points 2j P N.

‹ Output: Initial embedding K for Algorithm 5.4 with a given mesh size nθ.

1. Sort pβik , γikqn´1
k“0 such that βi1 ď ¨ ¨ ¨ ď βin.

2. Mesh βk “ 2πk{nθ with k “ 0, . . . , nθ ´ 1.

3. For each k “ 0, . . . , nθ´1, let γk be the Lagrange interpolation centered at pβik , γikq
with 2j points γik´j pmod nq, . . . , γik`j pmod nq and their respective abscissae.

4. Return the table of values K ” pΨ´1
e pβk, γkqqnθ´1

k“0 with Ψe from (23).

§5.3. Accuracy tests. We are now looking for K : T Ñ T ˆ R and the parameter e so
that the invariance equation (26) is verified, for Pe given in (22) and a fixed frequency ω

like in (28) or (29).
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In this process, we have three main sources of error that affect the result.

E1. The error of the invariance condition on the table of values. This error is controlled
by the Newton’s procedure.

E2. The error on the integration. This error is controlled by the numerical integrator
when we request absolute and relative tolerances.

E3. The error in the discretization. To control this source of errors we need first to
estimate it, and then to be able to change the mesh when the error is too large.

Let us address the error coming from (E3). Let A Ă T be the set of points corresponding
to the table of values used in the algorithm. In the case of a Fourier representation of
size nθ, then A “ tk{nθunθ´1

k“0 is an equispaced mesh of r0, 1q. After some iterations of
the Newton’s Algorithm 5.4, we obtain a set of values tKpθiquθiPA and an eccentricity e

satisfying the invariance equation in a mesh

max
θiPA

}Pe ˝ Kpθiq ´ Kpθi ` ωq} ă δ , (31)

where δ is a fixed tolerance, e.g. « 10´11 in double precision. Note that we are not fixing
the norm in (31) which typically can be the sup-norm, the analytic norm, etc.
Let us now define δ˚ as

δ˚ “ max
θPT

}Pe ˝ Kpθq ´ Kpθ ` ωq} .

The computation of δ˚ is in general difficult and we suggest two standard heuristic
alternatives.
The first option is very fast: it consists in looking at the norm of some of the “last”

Fourier coefficients and using it as an estimate for the truncation error of the series.
Once the Newton’s iteration has converged on a given mesh, we check the size of these
coefficients. If one of them is larger than a prescribed threshold, we assume that the
interpolation error is too big, and we increase the number of Fourier modes in the direction
of these large coefficients.

The second option is to evaluate the error in (31) on a set of values rA Ă T different

from A. One can use a thinner set rA to produce a better estimate of the invariance δ˚.
This procedure can be computationally expensive. An easier alternative is to consider rA
with the same number of points as A. For instance,

rA “ A ` υ

with υ equal to one half of the distance between points of A in the direction θi P A. In

the Fourier case, rA “ tpk ` 0.5q{nθunθ´1
k“0 should be enough.

Hence, we have a new mesh rA which is interlaced with the initial mesh A. Then, we
check that

max
θiP rA

}Pe ˝ Kpθiq ´ Kpθi ` ωq} ă δ . (32)

If this test is not satisfied, we add more Fourier coefficients and we go back to the
Newton’s iteration given by the Algorithm 5.4. If the test is satisfied, we can either stop
and accept the solution or check it again with a thinner mesh.
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The key is then to avoid checking with thinner meshes during the computation as much
as possible, because it is too costly, and to do just a single check at the end to ensure
the accuracy.

§5.4. Implementation of the algorithm. Once Algorithm 5.4 is coded so that it
becomes a sequence of arithmetic operations (and transcendental functions), it is almost
easy to make it run in extended precision arithmetic, see Appendix D.
There are, however some caveats:

‚ One loses the hardware support.
‚ The hardware optimized libraries have to be replaced by hand coded libraries.
Notably, one cannot use BLAS, LAPACK, or FFTW and they have to be substi-
tuted by explicit algorithms. We have used our own implementations.

‚ In iterative processes, one has to choose the stopping criteria appropriately. As
standard, one writes the stopping criteria as a power of Machine epsilon.

‚ For us, the most important point is that, in order to achieve high accuracy of
the ODE integration with a reasonable step in a reasonable amount of time, one
needs a high order method.

We have used the Taylor’s method, which is based on computing the Taylor’s
expansion of the solution of the equation to a very high order, see Appendix B.

The paper [JZ05a] presents a very general purpose generator of Taylor’s in-
tegrators based on Automatic Differentiation. If one specifies (in a very simple
format) a differential equation, the program taylor (supplied and documented in
[JZ05a]) generates automatically an efficient Taylor solver written in C. The user
can select whether this Taylor solver uses standard arithmetic or extended preci-
sion arithmetic (either GMP or MPFR). It is important that Taylor’s methods can
work well with different versions of the arithmetic.

One important product of the Taylor’s integrator [GJJC`21] is that we obtain
very efficient solvers of the variational equations. We will report on them in
Appendix C, since they are a natural extension of the Taylor’s integrator. We
note that we will not use them in the numerical experiments of this paper, but we
will use them in [CCGdlL20b]. We remark that in mission design, they appear in
the method of differential corrections.

§5.4.1. Using profilers to detect bottlenecks. The computation of invariant tori with the
Newton method that we propose is remarkably fast when the initial guess is good enough.
However, the continuation to the breakdown requires to increase the Fourier modes and
then the computational cost will increase in proportion.
The key step in a continuation process is the correction of the solution for the new

parameter values are being continued. In our case, it is the Newton step. We have used a
C profiler in a single continuation step with multiprecision of 55 digits to realize which are
the most CPU-time consuming parts. We did it for different values of ε P t10´4, 2 ¨10´4u,
η P t10´3, 10´6u, ω P tω1, ω2u, and N P t128, 256u number of Fourier modes getting, in
all of them, similar results.
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In average around 98.1% was dedicated to the Newton step correction, inside this
step around 97.6% was for the evaluation of the ODE (and its variationals) in the ODE
integrator and the correction of the integration stepsize. Inside of it, around 31% was for
the addition of jet transport elements, 25% for multiplication, 18% for assignments, and
6.5% for scalar multiplications.
As consequence, we conclude that the FFT, the solvers of cohomological equations and

the shiftings in Algorithm 5.4 are irrelevant in terms of CPU-time as well as the memory
allocation. The second conclusion is that the ODE integration is the crucial part. This
fact will be exploited and detailed in Section §5.5.

§5.5. Parallelization. There are several operations in the Algorithm 5.4 that are fully
independent to each other, such as those steps which are done in a table of values of θ
and the solution of the cohomological equations using the Lemma 5.5.
The use of a profiler shows that the main bottleneck, in terms of CPU-time usage, is the

ODE integration involved in Pe, given in (22), and its first order directional derivatives.
A simple concurrent parallelization for each of the different numerical integrations

(previously ensuring that there is non-shared memory between the threads) shows an
evident speed-up with respect to non-concurrent versions. In our case, we run the code
with multiprecision arithmetic, in particular with MPFR, and we must be sure that each
of the parallelized parts work correctly with the multiprecision. In the case ot MPFR we
must initialize the precision and the rounding mode for each of the different CPU’s.
Figure 3 shows the non-parallel execution times and the speed-ups of Algorithm 5.4

using the initial guess from Algorithm 5.6 with η “ 10´6, ε “ 10´4, 135 digits of precision
and different number of modes in the Fourier representation. The figure was done in
an Intel Xeon Gold 5220 CPU at 2.20GHz with 18 CPUs with hyperthreading which
simulates 36 CPUs.
Note that the non-parallel data in Figure 3 is extremely well fit by

T “ 0.430018N ` 4.75918 ,

where T denotes the CPU time in seconds and N the Fourier representation size. This
means that the single core time scales behave (in practice) linearly with the size of the
problem. The logarithmic correction appearing in the theory of the FFT does not seem
to be observable which is due to the fact that the FFT is not the main problem in
the performance of our method. Of course, this is significantly better than the N3 of
Newton’s methods based on inverting matrices.
Algorithm 5.4 also accepts other concurrent computations such as the FFT algorithm

or the solution of the cohomology equations in steps 8 and 12 . The latter did not show
an important speed up, presumably because the time spent in these calculations is not
so important overall (the number of points needed is not so large, due to our reduction
to 1-D).

§5.6. A practical implementation of Algorithm 5.4. As an example of the imple-
mentation of Algorithm 5.4, we provide in Figure 4 the construction of the invariant
attractors for (8) with a small dissipation, say η “ 10´6, and frequencies given by (28)
and (29). Figure 5 gives the results for a higher dissipation, namely η “ 10´3.
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Figure 3. On the left: timings not using parallelization and fit of the
times changing the number of Fourier modes. On the right: Speed-up by
a parallel ODE integration in step 7 of Algorithm 5.4 for different number
of threads and different number of Fourier modes.

Both figures show different invariant attractors when the perturbative parameter ε

changes by using a standard continuation procedure with interpolation. At each of these
continuation steps with respect to ε we apply Algorithm 5.4 with a tolerance 10´35, which
refines the embedding Kε and the eccentricity eε, and we also check the accuracy, see
Section §5.3, to ensure that the numerical solution is accurate enough.
Additionally, we perform an extra refinement at each continuation step to ensure that

the plots in Figures 4 and 5 make the value of x in the range r0, 2πq. More precisely, if

pK̃ε, eεq is the output of Algorithm 5.4, then we assign Kε Ð K̃ε with K1
ε p0q “ 0. That

is, we apply a shift α on K̃ε with α so that the first component of K̃ε at 0 is zero.
The results shown in Figure 4 give evidence of the effectiveness of the method of

constructing invariant attractors, using the reduction to a map and the implementation
of Algorithm 5.4.

§5.7. An empirical comparison between the model with time dependent fric-

tion (8) and the average friction (10). In this section we present a comparison
between the numerical results in the model with time-dependent dissipation (8) and
the model with the averaged dissipation (10). In Appendix A we present two rigorous
justifications of the averaging procedure.
In Figure 6, we plot the difference between the drift parameters (namely the eccent-

ricities) of the full and averaged models for the tori with frequencies ω1 and ω2; such
difference is small, say of the order of 10´7, even for parameter values close to break-
down. We also note that the y-axis in Figure 6 is just the difference (without absolute
value) which means that e ą eavg at each of the ε values.
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Figure 4. Invariant attractor of (8) with a fixed dissipation η “ 10´6

after a continuation w.r.t. the perturbative parameter ε. On the left, the
frequency ω is like in (29) and on the right as in (28).

§5.8. Comment for double precision accuracy. The computation with multipreci-
sion is already fast enough thanks to the quadratic convergence of our method. The use
of multiprecision allows to get tori of arbitrary accuracy and, in particular, it helps to
reach values of the parameter close to the breakdown. These calculations can be used to
identify mathematical patterns close to breakdown and to use KAM theory. However,
we can also perform double or even float precision computations for values that are not
close to the breakdown. As one expects, the required time to converge using the New-
ton process presented in this paper, see Algorithm 5.4, is smaller than in multiprecision,
paying the price of accuracy.
The first reason for this speed is because we request less accuracy –around 10´14 for

double precision– which makes the algorithm converge in fewer iterations. The second
reason is that we avoid the possible overhead of using a software package, such as MPFR,
and we can then exploit the hardware optimizations provided by compilers.
After adapting our code to run with double precision we detect that the values of ε for

which our method still converges is around 7.8ˆ10´3 which is far from the ε „ 10´2 using
more accuracy, the speed-up of the parallelization strategy, see §5.5, behaves similarly,
and the time of a continuation step (with one CPU) decreases. It still depends on the
number of Fourier modes and some example of values are reported in Table 1.
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Figure 5. Invariant attractor of (8) with a fixed dissipation η “ 10´3

after a continuation w.r.t. the perturbative parameter ε. On the left, the
frequency ω is like in (29) and on the right as in (28).

N 64 128 256 512 1024 2048
T 0.570 1.132 2.280 4.618 9.329 18.049

Table 1. Example of time T (in seconds) of a continuation step using
double precision, N Fourier modes, no parallelism, η “ 10´3, ω as in (28),
Newton’s tolerance 10´14, and integration tolerance 10´16. The data fit
extremely well with T “ 0.00884N ` 0.0561.

In certain problems, it may be worth optimizing the speed (at the price of accuracy
and programming time). In such cases where speed is the most important consideration,
it may be worth taking advantage of modern computer architectures such as GPU’s. (the
very structured nature of our algorithm makes it a tantalizing possibility). We encourage
these (or any other) developments on the methods presented here.



KAM TORI FOR THE DISSIPATIVE SPIN-ORBIT PROBLEM 27

4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46

0 0
.002

0
.004

0
.006

0
.008

0
.01

0
.012

ˆ10´7

2.340

2.345

2.350

2.355

2.360

2.365

0 0
.002

0
.004

0
.006

0
.008

0
.01

0
.012

ˆ10´7
e

´
e a

v
g

ε

ω1

e
´
e a

v
g

ε

ω2

Figure 6. Difference of the eccentricities of the tori using the averaged
(10) and the non-averaged (8) spin-orbit model in the case of dissipation
η “ 10´6 and for the two frequencies of interest ω1 in (28) on the left and
ω2 in (29) on the right.

§6. Conclusions

There are several important features of the method developed in this paper for the
construction of invariant tori using the return map; we highlight below some of these
features.

‚ The method only requires dealing with functions of a low number of variables.
‚ The iterative step to construct the tori is quadratically convergent.
‚ The operation count and the operation requirements are low.
‚ The most costly step (integration of the equations) is very easy to parallelize
efficiently. Many other steps of the algorithm involve vector operations, Fourier
transforms, which also can take advantage of modern computers but here with
less impact in the performance.

‚ The method is well adapted to the rather anisotropic regularity of KAM tori and,
in the smooth direction, takes advantage of the developments in integration of
ODE’s.

‚ The method is reliable, since it is backed by rigorous a-posteriori theorems.
‚ The condition numbers required are evaluated in the approximate solution and
do not involve global assumptions on the flow such as twist.

‚ From the theoretical point of view, the a-posteriori theorems give a justification of
other heuristic methods that produce approximate solutions including asymptotic
expansions and averaging methods.
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Appendix A. Justification of averaging methods

In this section, we study the relation between the time dependent spin-orbit model (8)
and the model (9) in which the dissipation is averaged.
Superficially, the relation between the two models and their attractors seems to be

problematic even in the perturbative regime, since the existence of quasi-periodic solu-
tions makes assertions for all the time and conventional averaging methods make asser-
tions only for times which are inverse powers of the perturbation.
We will present two arguments showing that, indeed for the problem of the existence of

quasi-periodic tori, the averaging method produces an accurate result. The first argument
(Section A.1 will apply to very general models, but will produce results for KAM tori.
The second method (Section A.2 will be very specific for the spin-orbit problem but will
provide information for all orbits.
We note, however, that our method produces not only a rigorous estimate on the error

of the averaging method, but also suggests other approximations that are more accurate
than the usual procedure of averaging only the dissipation (see Section A.2). Our results
show that, if besides averaging the dissipation, one changes slightly the conservative forces
(we give explicit formulas), one gets results that are more accurate than just averaging
the friction.
In this section we will consider a differential equation of the form

d2xptq
dt2

` aptqdxptq
dt

` F pxptq, tq “ 0 . (33)

In the perturbative case, we will have that there is a small parameter in the time
dependence aptq “ µαptq.

A.1. Perturbative arguments based on a-posteriori theorems. We first observe
that the key to our result is the study of the time-one map of the vector field.
If the return maps of two vector fields are close (in a smooth enough norm) and they

satisfy the non-degeneracy conditions, the solutions of the invariance equation (26) for
the two systems are close.

To detail this remark, let us consider two Poincaré maps P
pAq
e and P

pCq
e , depending on

a drift term e and satisfying some non-degeneracy conditions; for example, we can take

P
pAq
e as the Poincaré map of the averaged system and P

pCq
e as the Poincaré map of the

complete, non-averaged system.
Let pKA, eAq be an approximate solution of the invariance equation as in (27) with a

small error term EA:

P pAq
eA

˝ KApθq ´ KApθ ` ωq “ EApθq .

Assume that the maps P
pCq
e , P

pAq
e are close (in a suitable norm); then pKA, eAq is an

approximate solution for P
pCq
e ; in fact, we have that

P pCq
eA

˝ KApθq ´ KApθ ` ωq “ pP pCq
eA

´ P pAq
eA

q ˝ KApθq ` P pAq
eA

˝ KApθq ´ KApθ ` ωq
“ pP pCq

eA
´ P pAq

eA
q ˝ KApθq ` EApθq ” ECpθq
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with EC small. Using the KAM theory given in [CCdlL13a], there exists pKC , eCq such
that

P pCq
eC

˝ KCpθq ´ KCpθ ` ωq “ 0 ;

besides, the results in [CCdlL13a] show that KC is close to KA and eC is close to eA.
The importance of this remark is that to obtain the distance of the maps, we only

need to estimate the difference between the evolution for a time 2π. In the perturbative
regime, when the oscillation is of size µ controlling the distance between the solution of
the averaged and non-averaged systems is well within the reach of standard averaging
methods [Hal80, SVM07] (which deal well with times Opµ´1q, much larger than 2π).

A.2. Non-perturbative arguments based on elementary scaling of variables

and of time. In this section, we present a completely elementary (non perturbative)
technique to justify the averaging method.
We just observe that if x satisfes (33) then, for any non-zero (smooth) function γptq,

the function yptq defined by xptq “ γptqyptq satisfies:

γptqd
2yptq
dt2

` p2γ1ptq ` aptqγptqqdyptq
dt

` pγ2ptq ` aptqγ1ptqqyptq ` F pγptqyptq, tq “ 0 . (34)

Let ā be the average value of aptq; if we choose

γptq “ exp

ˆ
´1

2

ż t

0

papsq ´ āq ds
˙

, (35)

which is a periodic function, the equation (34) becomes:

d2yptq
dt2

` ā
dyptq
dt

` Gpyptq, tq “ 0 , (36)

where

Gpy, tq –
γ2ptq ` aptqγ1ptq

γptq y ` 1

γptqF pγptqy, tq . (37)

Hence, the function y satisfies the equation with an average dissipation (and a different
F ). Notice that γp0q “ γp2πq “ 1, so that

xp0q “ yp0qγp0q
xp2πq “ yp2πqγp2πq

y1p0q “ x1p0q ` 1

2
pap0q ´ āqxp0q

y1p2πq “ x1p2πq ` 1

2
pap2πq ´ āqxp2πq .

(38)

We can think of (38) as a change of variables in phase space from px, x1q to py, y1q.
The return map for the averaged equation (36) in the variables py, y1q is equivalent to the
orginal problem.
Hence, we can read off the original return map as the return map of the averaged

equation under a change of variables.
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Note that, as standard in the averaging method, the relation between the averaged
equations and the true ones is mainly a change of variables and a modification to the
equations. Note, that in our very simple equations, the equivalence is exact.
In the perturbative case, we obtain that γ “ 1 `Opεq and that the function G in (37)

satisfies G ´ F “ Opεq; also the change of variables between px, x1q and py, y1q is Opεq
close to the identity.
Our treatment shows that models with average dissipation should involve also a change

of variables and a modification of the forces.

Appendix B. Taylor’s integration methods

Taylor’s method is one of the most common numerical integration techniques of an
initial value problem of an ordinary differential equation of the form

9z “ F pz, tq,
zpt0q “ z0 .

(39)

The Taylor’s method is competitive, in speed and accuracy, with respect to other stand-
ards methods. The main drawback is that the Taylor’s method is an explicit method, so
it has all limitations of these kind of schemes, for example it is non-appropriate for stiff
systems.
The idea behind the Taylor’s method is very simple. Given the initial condition zpt0q “

z0, the value zpt1q, with t1 “ t0 `h, is approximated by the Taylor series of zptq at t “ t0.
The Taylor series is truncated up to an order, say N , to try to ensure the absolute/relative
tolerances requested during the numerical integration. Therefore, to get the solution z1
at time t “ t1 from the solution z0 at time t “ t0 we consider the expression

z1 “ z1 ` z
r1s
0 h ` z

r2s
0 h2 ` ¨ ¨ ¨ ` z

rNs
0 hN , (40)

where z
rks
0 , k “ 1, . . . , N , represents the normalized derivative at order k computed at t0,

i.e.,

z
rks
0 “ 1

k!

dkz

dtk
pt0q .

Using the coefficients of the Taylor’s expansion in (40) one can estimate the range of h
where the Taylor series is valid (up to a tolerance). This fact makes the Taylor’s method
suitable for multi-precision arithmetic.
The computation of the derivatives might be a difficult task, which can be lightened

by using automatic differentiation (see, for instance, [RC96, GW08]), thus providing very
efficient implementations of Taylor’s method as illustrated in [JZ05b] to which we refer
for full details. We recall that automatic differentiation provides a recursive computation
of operations on polynomials, which implies the manipulation of formal power series.
We also mention that jet transport (see Appendix E), namely automatic differenti-

ation with respect to initial data and parameters, can be used in Taylor’s method to
approximate the high order variational flow as it has been proved in [GJJC`21].
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Appendix C. Variational equations for the spin-orbit problem

In this section we provide the formulae for the computation of the variational equations
with respect to coordinates and parameters, motivated by the fact that - even if not used
in the present paper - they are useful in different contexts, like the parameterization
of invariant objects, estimates based on derivatives of the flow, computation of chaos
indicators.

C.1. Variational equations. The variation with respect to the initial conditions of (15)
involves the Jacobian whose elements are given by

a11 “ 0, a21 “ ´2ε
a

rpu; eqcpβ; u, eq,

a12 “ 1, a22 “ e
a

rpu; eq sin u ´ η

ˆ
a

rpu; eq

˙5 (41)

with cpβ; u, eq defined in (14).
The variations with respect to the initial conditions for the system (15) or for the

system (8) are not the same, although some properties such as the determinant or the
eigenvalues of the 2π-time map are preserved. The explicit relation between the two
variations is given by

Bx
Bx0

ptq “ Bβ
Bβ0

puq, Bx
By0

ptq “ Bβ
Bγ0

puqp1 ´ e cosu0q,

By
Bx0

ptq “ Bγ
Bβ0

puq 1

1 ´ e cosu
,

By
By0

ptq “ Bγ
Bγ0

puq1 ´ e cosu0

1 ´ e cosu
,

(42)

where px0, y0q “ pβ0, γ0{p1 ´ e cos u0qq. The relation (42) must be interpreted as follows:
after the integration of (15) and its first variational equations, which uses the terms in
(41), from time u0 to u and with initial condition pβ0, γ0q P r0, 2πqˆR, then the variation
with respect to the initial condition px0, y0q in (8) from the initial time t0 “ u0 ´ e sin u0

to the final time t “ u ´ e sin u is given by the relations in (42).
Note that (42) is simplified when u0 “ 0 and u “ 2π.

C.2. Variational equations with respect to the parameters. The variational equa-
tions with respect to the parameters ε and η of the system (15) are quite straightforward
as well as their relations in terms of the variables px, yq. They are given by the following
expressions:

Bx
B‹

ptq “ Bβ
B‹

puq and
By
B‹

ptq “ Bγ
B‹

puqa
r
, ‹ P tε, ηu . (43)

However, the case for the parameter e in (15) requires a little bit more of work and its
relation with respect to the coordinates px, yq also involves more terms which we make
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explicit below:

Bx
Be ptq “ Bβ

Be puq ´ Bβ
Bγ0

puq γ0 cosu0

1 ´ e cosu0

` γpuqa
r
sin u

`
„ Bβ

Bu0

puq ` Bβ
Bγ0

puq γ0e sin u0

1 ´ e cosu0


sin u0

1 ´ e cosu0

,

By
Be ptq “ Bγ

Be puqa
r

` γpuqpa
r

q2 cosu ´ Bγ
Bγ0

puqa
r

γ0 cosu0

1 ´ e cosu0

`
„Bγ

Bupuq ´ γpuqa
r
e sin u


pa
r

q2 sin u

`
„ Bγ

Bu0

puq ` Bγ
Bγ0

puqa
r

γ0e sin u0

1 ´ e cosu0


sin u0

1 ´ e cosu0

.

(44)

Note that (44) is simplified when u0 “ 0 and u “ 2π.

C.3. High order variational equations. In many cases the first order variational
equations are straightforward and one can explicitly write them down in the numerical
integrator. However, high order variational equations are cumbersome and the use of jet
transport becomes highly recommended, see [GJJC`21]. The jet transport is also useful
in the study of other structures such as stable manifolds (which will not be considered
here).
Jet transport uses automatic differentiation (see [GW08]), which manipulates mul-

tivariate polynomials to carry out the truncated Taylor’s approximation containing (in
the case of jet transport) the higher order variational flow, see [GJJC`21] for a precise
formulation. We also refer to Appendix B for a discussion of a polynomial manipulator
up to degree 2.
In the case of the spin-orbit problem given by (15), the polynomial manipulator must

at least contain the sum, product, sine, cosine, and power operations. All of them
have explicit recurrence expressions ([Knu97, HCF`16]). By the use of the polynomial
manipulator, expressions such as (44) for higher orders are automatically obtained.

Appendix D. Different models of computer arithmetic

The Algorithm 5.4 can be implemented with multi precision arithmetic. The idea is
that there are different models of computer arithmetic implementation. It is very easy to
switch between different models using features of modern languages such as overloading.
We recall that computers deal only with representable numbers, which are just a (finite)

subset of the real numbers and whose elements have the form

˘ m ¨ βe´t , (45)

where m P r0, βt´1s is an integer called mantissa, β is the base or radix (typically β “ 2),
t is a positive integer denoting the precision and s P rsmin, smaxs is also an integer called
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the exponent. Typical values in the double precision arithmetic following the IEEE 754
standard2 are β “ 2, t “ 53, smin “ ´1021, and smax “ 1024.
Performing arithmetic operations on representable numbers, very often yields numbers

that are not representable. Sometimes, the results are in the middle of representable
numbers and then, one assigns the result to one of the neighboring numbers. This is
called rounding. There are several rules that are in common use: rounding to nearest,
rounding down, rounding up, rounding towards zero, rounding away to zero. There are
operations that yield a number that is far from any representable number (e.g., adding the
largest representable number to itself). One usually represents those as Inf. Of course,
one needs to have rules on how to deal with Inf (e.g., does one distinguish between
positive/negative infinity). Finally, there operations that do not make sense, such as
division by zero.
In the IEEE 754 standard, it is specified that there is a so called control word. The

bits of the control word specify the rounding modes and how to treat infinity.
Finally, we just note that, when the result of two numbers is very close to zero, rounding

leads to a great loss of precision. IEEE 754 has introduced also the denormalized numbers
which make the gaps near zero smaller, even if they require specialized rules to be handled.
We also note that the IEEE 754 standard specifies the calculations of some transcend-

ental functions subject to the same rules of rounding.
Nowadays, the IEEE 754 standard is implemented in hardware. Both in CPU’s and in

many GPU’s. Many important libraries (BLAS/ATLAS, FFTW3) take advantage of the
availability of hardware and obtain advantages in speed. Having very reliable rounding
modes that satisfy identities allows to improve also the accuracy. For example, there
are algorithms that sum a sequence of numbers with a roundoff error independent of the
length of the sequence to be summed. One can also use interval arithmetic that provides
rigorous estimates of the arithmetic operations.
Nowadays, there exist libraries that provide the same capabilities indicated above

(representable numbers of the standard form, rounding modes, etc.), but with a number
of digits that can be selected at run time; for example, MPFR [FHL`07] (which is the one
we have used) or some other.
Using modern programming techniques such as overloading, it is not difficult to write

versions of our programs for the arithmetic using the hardware or in MPFR and select the
precision.
It is important to remark that in a parallel scenario, one must be sure that the global

variables used in these libraries are initialized in each of the different threads. In partic-
ular, in the MPFR case, one needs to initialize the precision and the rounding for each of
the threads, otherwise the output will differ from the non-parallel version.

Appendix E. A goodness test for jet transport

Let 9x “ fpt, xq an ODE in Rd with flow denoted by ϕpt; xq. The test consists in
running three integrations with two different integrators.

2We omit the discussion of “denormalized numbers”, perhaps the aspect of IEEE 754 that generated
the most controversy.
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First, we run x0 `s with an integrator with jet transport of order, say N , up to a time,
say 1. The output is the jet ypsq of order N .
Second, we choose a unitary vector v and a scalar h (typically small, say h “ 10´7)

and we define the quantity

ch “ }yphq ´ ϕp1; x0 ` hvq} ,

which is expected to behave as ch « chN`1 for some c ą 0.
The third and last run is to repeat the second one, but now with h{2 to get the quantity

ch{2.
Finally, it must happen that

ch

ch{2
« 2N`1. (46)

Therefore, the test is successful when log2pch{ch{2q « N ` 1, being N the order of jets in
the first integration.
Notice that (46) may suffer loss of precision if h is too small. Therefore, one needs to

choose a suitable h by systematically trying several choices.
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(S’Agaró, 1995), volume 533 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 430–
434. Kluwer Acad. Publ., Dordrecht, 1999.
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