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Abstract This work studies the linear approximation of high-dimensional dy-
namical systems using low-rank dynamic mode decomposition (DMD). Search-
ing this approximation in a data-driven approach is formalized as attempting
to solve a low-rank constrained optimization problem. This problem is non-
convex and state-of-the-art algorithms are all sub-optimal. This paper shows
that there exists a closed-form solution, which is computed in polynomial
time, and characterizes the `2-norm of the optimal approximation error. The
paper also proposes low-complexity algorithms building reduced models from
this optimal solution, based on singular value decomposition or eigen value
decomposition. The algorithms are evaluated by numerical simulations using
synthetic and physical data benchmarks.

Keywords Reduced models · low-rank approximation · constrained opti-
mization · dynamical mode decomposition

1 Introduction

1.1 Context

The numerical discretization of a partial differential equation parametrized by
its initial condition often leads to a very high dimensional system of the form:

{
xt(θ) = ft(xt−1(θ))

x1(θ) = θ
, t = 2, . . . , T, (1)

where xt(θ) ∈ Rn is the state variable, ft : Rn → Rn, and θ ∈ Rn denotes an
initial condition. In some context, e.g., for uncertainty quantification purposes,
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one is interested by computing a set of trajectories corresponding to different
initial conditions θ ∈ Θ ⊂ Rn. This may constitute an intractable task due to
the high dimensionality of the space embedding the trajectories. For instance,
in the case where ft is linear, the complexity required to compute a trajectory
of model (1) scales in O(Tn2), which is prohibitive for large values of n or T .

To deal with these large values, reduced models approximate the trajecto-
ries of the system for a range of regimes determined by a set of initial condi-
tions [6]. A common assumption is that the trajectories of interest are well ap-
proximated in a low-dimensional subspace of Rn. In this spirit, many tractable
approximations of model (1) have been proposed, in particular the well-known
Petrov-Galerkin projection [30]. However, these methods require the knowledge
of the equations ruling the high-dimensional system.

Alternatively, there exist data-driven approaches. In particular, linear in-
verse modeling [29], principal oscillating patterns [13], or more recently, dy-
namic mode decomposition (DMD) [5,8,17,20,22,32,34] propose to approxi-
mate the unknown function ft by a linear and low-rank operator. This linear
framework has been extended to quadratic approximations of ft in [7]. Al-
though linear approximations are in appearance restrictive, they have recently
sparked a new surge of interest because they are at the core of the so-called ex-
tended DMD or kernel-based DMD [3,25,35,36,38]. The latter decompositions
characterize accurately non-linear behaviours under certain conditions [21].

Reduced models based on low-rank linear approximations substitute func-
tion ft by a matrix Âk ∈ Rn×n with r = rank(Âk) ≤ n as{

x̃t(θ) = Âkx̃t−1(θ), t = 2, . . . , T,

x̃1(θ) = θ,
(2)

where {x̃t(θ)}Tt=1 denotes an approximation of the trajectory {xt(θ)}Tt=1 of
system (1). The complexity for the evaluation of a trajectory approximation
with (2) will be refered to as on-line complexity. A low on-line complexity is
obtained by exploiting the low rank of matrix Âk. A scaling in O(Tr2 + rn)
is reached if the reduced model is parametrized by matrices R, L ∈ Cn×r and
S ∈ Cr×r such that trajectories of (2) correspond to the recursion

x̃t(θ) = Rzt, t = 2, . . . , T,

zt = Szt−1, t = 3, . . . , T,

z2 = Lᵀθ.

(3)

The equivalence of systems (2) and (3) is obtained for T ≥ 2 by setting ÂT−1k =
RST−2Lᵀ. In particular, consider a factorization of the form

Âk = PQᵀ with P,Q ∈ Rn×r. (4)

This factorization is always possible by computing the singular value decompo-
sition (SVD) Âk = UÂk

ΣÂk
V ᵀ
Âk

and identifying P = UÂk
and Qᵀ = ΣÂk

V ᵀ
Âk

.

Factorization (4) implies that trajectories of (2) are obtained with system (3)
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setting R = P , L = Q and S = QᵀP . Another factorization of interest relies
on the eigenvalue decomposition (EVD)

Âk = DΛD−1, with D,Λ ∈ Cn×n, (5)

where Λ is a Jordan-block matrix [11] of rank r. Using the “economy size”
EVD yields a system of the form of (3). Indeed, it is obtained by making the
identification L = (ξ1 · · · ξr) and R = (ζ1 · · · ζr), where ξi ∈ Cn and ζi ∈ Cn
are the i-th left and right eigenvectors of Âk (equivalently the i-th column of
(D−1)ᵀ and D), and identifying S to the first r × r block of Λ multiplied by
Lᵀ.

The on-line complexity to compute this recursion is still O(Tr2 + rn).
But assuming that Âk is diagonalizable1, we have S = diag(λ1, · · · , λr) and
system (3) becomes

x̃t(θ) =

r∑
i=1

ζiνi,t,

νi,t = λt−1i ξᵀi θ, for i = 1, . . . , rank(Âk)

, t = 2, . . . , T, (6)

where λi ∈ C is the i-th (non-zero) eigenvalue of Âk. This reduced-model pos-
sesses a very desirable on-line complexity of O(rn), i.e., linear in the ambient
dimension n, linear in the reduced-model intrinsic dimension r and indepen-
dent of the trajectory length T .

The key of reduced modeling is to find a “good” tradeoff between the on-
line complexity and the accuracy of the approximation. As shown previously,
the low on-line computational effort is obtained by a proper factorization of the
low-rank matrix Âk. Thus, in an off-line stage, it remains to i) search Âk within
the family of low-rank matrices which yields the “best” approximation (2),
ii) compute the SVD or EVD based factorization of Âk. We will refer to the
computational cost associated to these two steps as off-line complexity.

A standard choice is to select Âk inducing the best trajectory approxima-
tion in the `2-norm sense, for initial conditions in the set Θ ⊂ Rn: matrix
Âk in (2) targets the solution of the following minimization problem for some
given k ≤ n:

arg min
A:rank(A)≤k

∫
θ∈Θ

T∑
t=2

‖xt(θ)−At−1θ‖22, (7)

where ‖ · ‖2 denotes the `2-norm. Since we focus on data-driven approaches,
we assume that we do not know the exact form of ft in (1) and we only have
access to a set of representative trajectories {xt(θi)}Tt=1, i = 1, ..., N so-called
snapshots, obtained by running the high-dimensional system for N different
initial conditions {θi}Ni=1 in the set Θ. Using these snapshots, we consider a

1 Diagonalizability is guaranteed if all the non-zero eigenvalues are distinct. However, this
condition is only sufficient and the class of diagonalizable matrices is larger [18].
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discretized version of (7), which corresponds to the constrained optimization
problem studied in [5,20,37]: matrix Âk now targets the solution

A?k ∈ arg min
A:rank(A)≤k

N∑
i=1

T∑
t=2

‖xt(θi)−Axt−1(θi)‖22, (8)

where we have substituted At−1θi in (7) by Axt−1(θi) and where we have
approximated the integral by an empirical average over the snapshots.

Problem (8) is non-convex due to the presence of the rank constraint
“rank(A) ≤ k”. As consequence, it has been considered as intractable in several
contributions of the litterature and numerous procedures have been proposed
to approximate its solution (see next section). In this paper, we show that
problem (8) is in fact tractable and admits a closed-form solution which can
be evaluated in polynomial-time.

1.2 Problem Statement and Contributions

This work deals with the off-line construction of reduced models of the form
of (3). It focuses on the following questions:

1. Can we compute a solution of problem (8) in polynomial time?
2. How to compute efficiently a factorization of this solution, and in particular

its EVD?

Let us make some correspondences with the terminology used in the DMD
literature [5,8,17,20,22,32,34] in order to reformulate these two questions in
the jargon used in this community. The “low-rank DMD” of system (1) refers
to the EVD of the solution A?k of problem (8), or equivalently to the param-

eters of reduced model (6) in the case where Âk = A?k is diagonalizable.2

Using this terminology, the two above questions can be summarized summa-
rized as follows: can we compute exactly and with a polynomial complexity the
low-rank DMD of system (1)? In this paper, we show that the answer to this
question is positive and provide some numerical procedures to attain this goal.

Solver for problem (8). In the last decade, there has been a surge of
interest for low-rank solutions of linear matrix equations, see e.g., [10,19,23,
24,27,31]. This class of problems includes (8) as an important particular case.
Problems in this class are always non-convex due to the rank constraint and
computing their solutions in polynomial time is often out of reach. Neverthe-
less, certain instances of these problems with very special structures admit
closed-form solutions [9,26,28]. In this work, we show that (8) belongs to this
class of problems and provide a closed-form solution which can be computed
in polynomial time. Prior to this work, many authors have proposed tractable
procedures to compute approximations of the solution to problem (8) [5,20,

2 The “DMD” of system (1) refers to the EVD of the solution of problem (8) without the
low-rank constraint.



Low-Rank Dynamic Mode Decomposition: 5

25,34,37,38] or to related problems [17]. We review these contributions in Sec-
tion 3.1 and discuss their complexity.

Factorization of the solution. The second problem concerns the com-
putation of the factorization of the form (4) or (5) of the solution A?k ∈ Rn×n.
A brute-force computation of a factorization of a matrix in Rn×n, in par-
ticular an EVD, is prohibitive for large values of n. In this work, we propose
low-complexity algorithms computing such factoization of A?k. This follows the
line and extends previous works [20,34,36], as detailed in Section 3.2.

In summary, the contribution of this paper is twofold. First, we provide a
closed-form solution to (8). We also design an algorithm computing a factor-
ized form of this solution with a linear complexity in the ambient dimension.
Second, we provide an algorithm computing the EVD of this optimal solution,
which does not imply an increase in complexity.

The paper is organized as follows. In Section 3, we provide a review of
techniques approximating and factorizing the solution of problem (8). In Sec-
tion 4, we present the proposed approach. Finally, in Section 5, we study the
performance obtained with the proposed algorithms in synthetic and physical
setups and compare with state-of-the-art.

2 Notations

All along the paper, we make extensive use of the economy-size SVD of a
matrix M ∈ Rp×q with p ≥ q: M = UMΣMV

ᵀ
M with UM ∈ Rp×q, VM ∈ Rq×q

and ΣM ∈ Rq×q so that Uᵀ
MUM = V ᵀ

MVM = Iq and ΣM is diagonal, where the
upper script ·ᵀ refers to the transpose and Iq denotes the q-dimensional identity
matrix. The columns of matrices UM and VM are denoted UM = (u1M · · ·u

q
M )

and VM = (v1M · · · v
q
M ) while ΣM = diag(σM,1, · · · , σM,q) with σM,i ≥ σM,i+1

for i = 1, . . . , q − 1. The Moore-Penrose pseudo-inverse of matrix M is then
defined as M† = VMΣ

†
MU

ᵀ
M , where Σ†M = diag(σ†M,1, · · · , σ

†
M,q) with

σ†M,i =

{
σ−1M,i if σM,i > 0

0 otherwise
.

The orthogonal projector onto the span of the columns (resp. of the rows) of

matrix M is denoted by PM = MM† = UMΣMΣ
†
MU

ᵀ
M (resp. PMᵀ = M†M =

VMΣ
†
MΣMV

ᵀ
M ) [11].

We also introduce additional notations to derive a matrix formulation of the
low-rank estimation problem (8). We gather consecutive elements of the i-th

snapshot trajectory between time t1 and t2 in matrixX
(i)
t1:t2 = (xt1(θi) · · ·xt2(θi))

and form large matrices X,Y ∈ Rn×m with m = N(T − 1) as

X = (X
(1)
1:T−1 · · ·X

(N)
1:T−1) and Y = (X

(1)
2:T · · ·X

(N)
2:T ).

In order to be consistent with the SVD definition and to keep the presentation
as simple as possible, this work assumes that m ≤ n. However, all the result
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presented in this work can be extended without any difficulty to the case where
m > n by using an alternative definition of the SVD.

3 State-Of-The-Art Approximations

We begin by presenting state-of-the-art methods solving approximatively the
low-rank minimization problem (8). In a second part, we make an overview
of state-of-the-art algorithms computing factorizations of these approximated
solutions of the form of (4) or (5).

3.1 Tractable Approximations to Problem (8)

Using the notations introduced in Section 2, problem (8) can be rewritten as

A?k ∈ arg min
A:rank(A)≤k

‖Y −AX‖2F , (9)

where ‖ · ‖F refers to the Frobenius norm. A detailed review of the following
state-of-the-art approximations of A?k is provided in our technical note [15].

Truncation of the unconstrained solution. A first approximation con-
sists in removing the low-rank constraint in problem (9). As pointed out by
Tu et al. in [34], the problem then boils down to a least-squares problem

arg min
A

‖Y −AX‖2F , (10)

admitting the closed-form solution YX†. Matrix YX† also solves the con-
strained problem (9) in the case where k ≥ m and in particular for k = m,
i.e.,

A?m = YX†. (11)

This solution relies on the SVD of X: A?m = YVXΣ
†
XU

ᵀ
X, which is computed

with a complexity of O(m2(m + n)) [11]. An approximation of the solution
of (9) satisfying the low-rank constraint rank(A) ≤ k with k < m is then
obtained by a truncation of the SVD or the EVD of A?m using k terms.

Approximation by low-rank projected DMD. The “projected DMD”
proposed by Schmid [32] is an approximation of A?m, which assumes that the
columns of A?mX are in the span of X. This assumption is used by Jovanovic
et al. [20] to approximate A?k for k < m. Their approach yields the so-called
“low-rank projected DMD” approximation of (9) which takes the following
form

A?k ≈ UXỸkΣ
†
XU

ᵀ
X, (12)

where Ỹk denotes the SVD representation of matrix Ỹ = Uᵀ
XYVX truncated to

k terms. Similar low-dimensional parametrizations of the optimal solution A?k
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are used to compute the so-called “optimized DMD” in [5] or “optimal mode
decomposition” in [37]. The computation of low-rank projected DMD relies on
the SVD of X ∈ Rn×m and Ỹ ∈ Rm×m and thus involves a complexity of
O(m2(m+ n)) [11].

Approximation by sparse DMD. Jovanovic et al. also propose in [20]
a two-stage approach which consists in searching a k terms approximation of
the EVD of an unconstrained projected DMD, i.e., the EVD of UXỸ Σ

†
XU

ᵀ
X.

The optimal truncated EVD is efficiently computed solving a relaxed convex
optimization problem taking advantage of the EVD of Ỹ Σ†X ∈ Rm×m. The
overall complexity of this procedure scales as O(m2(m+ n)).

Approximation by total-least-square DMD. This approximation is
proposed by Hemati et al. [17]. Using the projector PKᵀ,k = VK,k(VK,k)ᵀ where
the columns of VK,k ∈ Rm×k are the right singular vectors associated to the
k largest singular values of matrix K =

[
Xᵀ Yᵀ

]ᵀ ∈ R2n×m, the total-least-
square DMD (TLS DMD) approximation takes the form of

A?k ≈ YPKᵀ,kX
†. (13)

This method relies on the SVD of K ∈ R2n×m and X ∈ Rn×m and has thus
a complexity of O(m2(m+ n)).

Approximation by convex relaxation. Some works propose to approx-
imate (9) by a regularized version of the unconstrained problem (10), using
Tikhonov penalization [25] or penalization enforcing structured sparsity [38].
However, these choices of regularizers do not guarantee in general that the so-
lution is low-rank. In contrast, the solution of (9) may under certain theoretical
conditions [24,19] be recovered by the following quadratic program

A?k ≈ arg min
A∈Rn×n

‖Y −AX‖2F + αk‖A‖∗,

= arg min
A∈Rn×n

min
B∈Rn×n

‖Y −AX‖2F + αk‖B‖∗ s.t. A = B (14)

where ‖ · ‖∗ refers to the nuclear norm (or trace norm) of the matrix, i.e.,
the sum of its singular values. In optimization problem (14), αk ∈ R+ repre-
sents an appropriate regularization parameter determining the rank k of the
solution. Program (14) is a convex optimization problem [27] which can be
efficiently solved using modern optimization techniques, such as the alternate
directions of multipliers method (ADMM) [2]. The algorithms solving (14)
typically involve per iteration a complexity of O(m(m2 + n2)).

3.2 Factorizations of Approximations of A?k

In this section, we provide an overview of some state-of-the-art methods to
compute factorizations of the form of (4) or (5) for the approximations of A?k
presented above.
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We first note that a brute-force computation of the SVD or EVD of a
matrix in Rn×n leads in general to a prohibitive computational cost since it
requires a complexity of O(n3). Hopefully, the factorizations (4) or (5) are
computable with a complexity of O(m2(m + n)), in most cases mentioned
above.

In particular, in the case of low-rank projected DMD, a straightforward
factorization of the form of (4) is P = UX and Qᵀ = ỸkΣ

†
XU

ᵀ
X. In the case of

sparse DMD, the latter factorization holds by substituting Ỹk by the “sparse”
approximation of Ỹ . Another straightforward factorization of the form of (4)
is intrinsic to the ADMM procedure, which uses an SVD to compute the
regularized solution.

Concerning EVD factorization, in the case of the truncated approach, Tu
et al. propose an algorithm scaling in O(m2(m + n)) [34]. In the context of
low-rank projected DMD or sparse DMD, Jovanovic et al. propose a proce-
dure of analogous complexity, which approximates the first m eigenvectors,
and then estimate the related eigenvalues by solving a convex optimization
problem [20]. In the case of TLS DMD, the diagonalization of a certain matrix
in Rm×m suffices to obtain the sought EVD factorization.

In summary, on the one hand, we saw in Section 3.1 that all existing algo-
rithms compute in general sub-optimal solutions of problem (9). On the other
hand, the literature does not provide a “turnkey” algorithm for factorizing
the optimal solution A?k in the form of (4) or (5), with a reduced complexity
of O(m2(m + n)). In the next section, we show how to compute an optimal
solution A?k and compute efficiently its factorization.

4 The Proposed Approach

In this section, we provide a closed-form solution to problem (9). Algorithms
are then proposed to compute and factorize this solution in the form of (4)
or (5).

4.1 Closed-Form Solution to (9)

Let the columns of matrix UZ,k =
(
u1Z · · · ukZ

)
∈ Rn×k be the left singular

vectors {uiZ}ki=1 associated to the k largest singular values of matrix

Z = YPXᵀ ∈ Rn×m, (15)

where we recall that PXᵀ = VXV
ᵀ
X and consider the projector

PZ,k = UZ,kUZ,k
ᵀ. (16)

Matrix (16) appears in the closed-form solution of (9), as shown in the follow-
ing theorem. We detail the proof in Appendix A.
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Theorem 1 Problem (9) admits the following solution

A?k = PZ,kYX†. (17)

Moreover, the optimal approximation error can be expressed as

‖Y −A?kX‖2F =

m∑
i=k+1

σ2
Z,i + ‖Y(Im − PXᵀ)‖2F . (18)

In words, Theorem 1 shows that problem (9) is simply solved by computing
the orthogonal projection of the solution of the unconstrained problem (10),
onto the subspace spanned by the first k left singular vectors of Z. The `2-norm
of the error is simply expressed in terms of the singular values of Z, and the
square norm of the projection of the rows of Y onto the orthogonal of the image
of Xᵀ. If X is full row-rank, we then obtain the simplifications PXᵀ = Im and
Z = Y. In this case, the second term in the right-hand side of (18) vanishes
and the approximation error reduces to ‖Y − A?kX‖2F =

∑m
i=k+1 σ

2
Y,i. The

latter error is independent of matrix X and is simply the sum of the square
of the m− k smallest singular values of Y. This error also corresponds to the
optimal error for the approximation Y by a matrix of rank at most k in the
Frobenius norm [9].

It is worth mentioning that we propose in [14] a generalization of The-
orem 1 to separable infinite-dimensional Hilbert spaces. This generalization
characterizes the solution of low-rank approximations in reproducing kernel
Hilbert spaces (where n = ∞) at the core of kernel-based DMD [16,36], and
characterizes the solution of the DMD counterpart (where m = ∞) to the
continuous POD problem presented in [30, Theorem 6.2].

4.2 Algorithm Evaluating A?k

Algorithm 1 Computation of A?k, a solution of (9)

inputs: (X,Y).

1) Compute the SVD of X = VXΣ
†
XU

ᵀ
X

2) Compute Z = YVXΣXΣ
†
XV

ᵀ
X.

3) Compute the SVD of Z to obtain the projector PZ,k.

4) Compute A?k = PZ,kYVXΣ
†
XU

ᵀ
X.

output: A?k.

The design of an algorithm computing the solution (17) is straightforward:
evaluating A?k consists in making a product of easily-computable matrices. The
proposed procedure is summarized in Algorithm 1.

Steps 1) to 3) of Algorithm 1 implies the computation of the SVD of matri-
ces X,Z ∈ Rn×m, and matrix multiplications involving m2 vector products in
Rn or Rm. The complexity of these first three steps is therefore O(m2(m+n)).
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Algorithm 2 EVD of A?k or low-rank DMD

inputs: (X,Y).
1) Compute step 1 to 3 of Algorithm 1 and use (19) to obtain W .
2) Let r = rank(A?k) and solve for i = 1, . . . , r the eigen-equations

(W ᵀUZ,k)wri = λiw
r
i and (UZ,k

ᵀW )w`i = λiw
`
i ,

where wri , w
`
i ∈ Ck and λi ∈ C such that |λi+1| ≥ |λi|.

3) Compute for i = 1, . . . , r the right and left eigenvectors

ζi = UZ,kw
r
i and ξi = Ww`i . (20)

4) Rescale the ξi’s so that ξi
T ζi = 1.

outputs: L = (ξ1 · · · ξr), R = (ζ1 · · · ζr), S = diag(λ1, · · · , λr).

Computing explicitly each entry of A?k ∈ Rn×n in step 4) of Algorithm 1 then
requires a complexity of O(n2k), which is prohibitive for large n. However,
as detailed in the next section, this last step is not necessary to factorize the
optimal solution A?k in the form of (4) or (5).

4.3 Algorithms Factorizing A?k

Given the closed-form solution (17), we present in what follows how to compute
from X and Y a factorization of the optimal solution A?k in the form of (4) or
(5). We will need matrix

W = (UZ,k
ᵀYX†)ᵀ ∈ Rn×k. (19)

Factorization of the form of (4). By performing the first three steps
of Algorithm 1 and then making the identifications P = UZ,k and Q = W ,
we obtain a factorization of A?k of the form of (4). As mentioned in the in-
troduction, trajectories of (2) can then be computed with system (3) setting
R = UZ,k, L = W and S = W ᵀUZ,k. The method relies on the first three
steps of Algorithm 1 and on the computation of matrix W . The three steps in
Algorithm 1 imply a complexity of O(m2(m + n)) while the computation of
W requires a complexity of O(nk2). Since k ≤ m, the off-line complexity to
build the factorization (4) from X and Y scales as O(m2(m + n)), which is
the same order of complexity as the procedures described in Section 3.

Factorization of the form of (5). According to the previous factoriza-
tion of the form of (4), A?k is the product of matrix UZ,k in Rn×k with matrix
W ᵀ in Rk×n. Therefore, using standard matrix analysis, we expect the eigen-
vectors of A?k to belong to a k-dimensional subspace [11]. As shown in the next
proposition, the non-zero eigenvalues of A?k are obtained by EVD of certain
matrices in Rk×k. The proof of this proposition is given in Appendix C.
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Proposition 1 Assume A?k is diagonalizable. The elements of {ζi, ξi, λi}
rank(A?

k)
i=1

generated by Algorithm 2 are the right eigenvectors, the left eigenvectors and
the eigenvalues of the economy size EVD of A?k.

In words, Proposition 1 shows that Algorithm 2 computes the EVD of A?k
by diagonalizing two matrices in Rk×k. The complexity to build this EVD from
snapshots X and Y is O(m2(m+n)). More precisely, as mentioned previously,
performing the first three steps of Algorithm 1 (i.e., step 1) of Algorithm 2)
requires a number of operations scaling as O(m2(m + n)); the complexity of
step 2) is O(k3) since it performs the EVDs of k×k matrices; step 3) involves
r × n vector products in Rm while step 4) involves r vector products in Rn,
with r ≤ k ≤ m. Overall, the complexity of Algorithm 2 is dominated by step
1) and the EVD of A?k can be evaluated with a computational cost of the order
of O(m2(m+ n)).

5 Numerical Evaluation

In what follows, we evaluate five different trajectory approximations x̃t(θ)
obtained by reduced model of the form of (6), obtained by EVD factorizations
of different low-rank matrix approximations Âk. The assessed low-rank matrix
factorizations are listed below.

– Optimal approximation: the EVD of the optimal solution A?k, provided
by Algorithm 2.

– Approximation by truncated DMD [34]: the k-th order truncation of
the EVD of the unconstrained problem solution A?m given in (11).

– Approximation by low-rank projected DMD [20]: the EVD of the
k-th order approximation (12).3

– Approximation by TLS DMD [17]: the EVD of (13).
– Approximation by convex relaxation: the EVD of the solution (14),

the latter is computed by an ADMM procedure, where the regularization
parameter αk is adjusted to obtain a rank equal to k.

Rather than evaluating the error norm of the approximation, i.e., the cost
of the target problem (7), we are interested in the ability of the different al-
gorithms to minimize the cost of the proxy (9) for this problem. Therefore,
the performance is measured in terms of the normalized reconstruction error
norm ‖Y − ÂkX‖F ‖Y‖−1F as a function of k. Besides, in the analysis perspec-
tive adopted most often in the DMD literature [17,20,32,34], we are interested
in evaluating the ability of the algorithms to compute accurately the EVD of
A?k. In particular, we quantify for a given k the deviation of the set of the

k largest estimated eigenvalues λ(Âk) ∈ Ck, from the non-zero optimal ones
λ(A?k) in terms of the normalized error norm ‖λ(Âk)− λ(A?k)‖2‖λ(A?k)‖−12 .

3 We do not evaluate the sparse DMD approach since the error norm induced by this
method will always be greater than the one induced by low-rank projected DMD, see details
in [15].
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We begin by evaluating the performance of the low-rank approximations
on a different toy models in Section 5.1. We then assess their performance for
the reduction of a Rayleigh-Bénard convective system [4] in Section 5.2. We
finally evaluate the influence of noise on the estimation accuracy in Section 5.3.

5.1 Synthetic Experiments with Toy Models

We set n = 50, N = 30 and set the trajectory length in (1) to T = 2. Entries of

matrices X, i.e., the initial condition θ, are such that X =
∑rank(X)
i=1 ϕiϕ

ᵀ
i with

rank(X) ≤ m and where the ϕi’s are n-dimensional independent samples of
the standard normal distribution. Matrix Y is then generated using model (1)
and three different choices for ft:

– setting i): ft(xt−1) = Gxt−1, where G is chosen such that GX ∈ span(X),
– setting ii): ft(xt−1) = Fxt−1,
– setting iii): ft(xt−1) = F (xt−1 + x3t−1).

Matrix F introduced above is a random matrices of rank m defined as
F =

∑m
i=1 ϕiϕ

ᵀ
i , where the ϕi’s represents a set of n-dimensional independent

samples of the standard normal distribution. We define implicitly matrix G of
rank m by drawing the parameters of the so-called companion matrix [32] with
independent samples of the standard normal distribution. The notation x3t−1
denotes that each entry of vector xt−1 has been raised to the power 3. The first
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Fig. 1 Reconstruction error norm as a function of k for setting i), ii) and iii) (for
rank(X) = m and rank(X) = m − 6) using our optimal approximation or state-of-the-
art approximations. See details in Section 5.1.
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Fig. 2 Eigenvalue error norm as a function of k for setting i), ii) and iii) (for rank(X) = m
and rank(X) = m− 6) using our optimal approximation or state-of-the-art approximations.
See details in Section 5.1.

setting is a linear system satisfying the sub-space assumption GX ∈ span(X),
on which low-rank projected DMD relies. The two next settings do not make
this assumption and simulate respectively linear and cubic dynamics. The
performance of the five methods in terms of reconstruction and eigenvalue
errors are displayed in Figure 1 and 2.

In accordance with our theoretical results, the proposed algorithm yields
the smallest error norms in all the scenarios. Moreover, in accordance with
Theorem 1, as long as we have a full-rank matrix X, the optimal solution
reaches a zero reconstruction error for k ≥ m with m = N(T−1) = 30 (we have
considered N = 30 snapshots and T = 2 successive states). The deterioration
of the reconstruction error norm for the approximation by truncated DMD
shows that a two-stage approach is sub-optimal. However, this deterioration is
moderate in these toy experiments. Moreover, the experiments show that the
approximation by low-rank projected DMD achieves the optimal performance
as long as the sub-space assumption holds, i.e., for setting i). If this assumption
is not satisfied, i.e., in setting ii) and iii), we observe a poor performance of this
projected approach for k > 10. On the contrary to low-rank projected DMD,
TLS DMD performs poorly in the case whereGX ∈ span(X), i.e., for setting i),
while it yields a quasi-optimal error norm in the other settings. Furthermore,
we observe that the approximation provided by a convex relaxation approach
differs significantly from A?k in all the considered settings, as indicated by the
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error norm for k < m. This suggests that the theoretical conditions necessary
to recover A?k by convex relaxation do not hold here. Finally, as expected in the
case where rank(X) = m, the linear operator used to generate the snapshots
is accurately recovered by our optimal approximation and truncated DMD,
TLS DMD and ADMM for k ≥ m. In the case where rank(X) = m − 6, we
observe (in good agreement with Theorem 1) that the optimal approximation
error is lower bounded by ‖Y(Im − PXᵀ)‖2F for k ≥ m.

The eigenvalue error plots show that low-rank projected DMD and TLS
DMD are optimal respectively in setting i) and setting ii)- iii), as long as X
is full rank. However, in other circumstances these methods are sub-optimal
for k < m. Interestingly, we observe that eigenvalues are well estimated by all
the methods in all settings when k ≥ m, although low-rank projected DMD
exhibits a high reconstruction error in settings ii)- iii). These toy experiments
show that even if eigenvalues are well estimated, related eigenvectors can be
flawed.

5.2 Physical Experiments

Rayleigh-Bénard model [4] constitutes a benchmark for convective system
in geophysics. Convection is driven by two coupled partial differential equa-
tions ruling the evolution of temperature and vorticity. After discretization of
these equations on the cell [0, 1]× [0, 1/2], we obtain a discrete system of the
form of (1) with xt ∈ Rn, n = 1024. The regime of the convective system
is parametrized by two quantities: the Rayleigh number Ra ∈ R+ and the
Prandtl number Pr ∈ R+. The initial condition θ = h(ϑ) is parametrized by
a vector ϑ ∈ R4, through the non-linear function h : R4 → R1024, see details
in [15]. Entries of the vector ϑ are sampled uniformly on (a bounded sub-
domain of) R4, yielding the samples {ϑi}i. Then the first eigenvectors of the
proper orthogonal decomposition of the set {h(ϑi)}i are used to form an hyper-
cube of dimension d = 10. Finally, the set of initial conditions {θi}i are ob-
tained by uniform sampling on this hyper-cube. For a particular parametriza-
tion of the initial condition, Ra and Pr, the non-linear Rayleigh-Bénard system
can simplify into a linear Taylor vortex evolution [33]. A precise description
of the Rayleigh-Bénard model, its parametrization and discretization is pro-
vided in [15]. Three datasets of m = 50 snapshots of the discretized system
trajectories are computed by numerical simulation:

– setting iv): N = 50 trajectories of the linear Taylor vortex with T = 2,
– setting v): N = 5 trajectories of the linear Taylor vortex with T = 11,
– setting vi): N = 5 trajectories of the non-linear Rayleigh-Bénard system

with T = 11.

The performance of the different algorithms in terms of reconstruction
error is plotted as a function of k in Figure 3 in the case of these three set-
tings. We first comment on results obtained in setting iv). The error obtained
by the optimal approximation in this linear setting with T = 2 appears to
vanish for k ≥ d, i.e., a dimensionality greater than the initial condition
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Fig. 3 Reconstruction error norm as a function of k for settings iv), v) and vi) using our
optimal approximation or state-of-the-art approximations. See details in Section 5.2.

dimensionality. This is consistent with Theorem 1. Indeed, we know by the
definition (15) that rank(Z) ≤ rank(Y); then, dealing with a linear model im-
plies that rank(Y) ≤ rank(X); as T = 2 we have rank(X) = d and therefore
rank(Z) ≤ d which yields

∑m
i=d+1 σ

2
Z,i = 0; in addition we observe that the

term ‖Y(Im−PXᵀ)‖2F ≈ 2.e−8 can be neglected in our experiments. It follows
from the theorem that the optimal error vanishes for k ≥ d. The approximation
by truncated DMD is associated to an important error which vanishes only
for k = m, i.e., for a dimensionality equal to the number of snapshots. Con-
cerning the approximation by low-rank projected DMD, it produces a fairly
good solution up to k ≤ 8. However, the approximation becomes clearly sub-
optimal for greater dimensions and produces an non-negligible error, even for
large values of k. TLS DMD yields for k < 10 an approximation slightly less
accurate than the one we propose, while the performances of the two methods
are indistinguishable for k ≥ 10. The approach by convex relaxation produces
fairly good results, however with a performance significantly lower than other
state-of-the-art methods.

In setting v), we have longer sequences (T > 2) so that we have rank(X) ≥
d. Although the dynamic is linear, no conclusion can be drawn anymore from
Theorem 1, except that the optimal approximation vanishes for k ≥ m. How-
ever, our optimal approximation yields an error which nearly vanishes for
k ≥ d. This shows that, for this linear model, trajectories concentrate near the
subspace spanned by the initial condition. This explains the quasi-optimality
of the approximation by low-rank projected DMD, which relies on a strong
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assumption of linear dependence of snapshots. An approximation by truncated
DMD is again clearly sub-optimal and behaves analogously to setting iv). The
performance of TLS DMD is in this setting nearly optimal, while convex re-
laxation is disappointing up to some extent.

In the more realistic geophysical setting vi), we see that the optimal perfor-
mance achieved by our approximation is far from being reached by approxima-
tions by truncated of low-rank projected DMD. Nevertheless, the approxima-
tion obtained by TLS DMD is again nearly optimal. As in the linear settings,
we observe that the optimal error is small for k ≥ d. On the other hand,
we clearly notice that the assumption used in the approximation by low-rank
projected DMD does not hold for this non-linear models and produces an im-
portant error, even for large values of k. We observe the poor performance of
an approximation by truncated DMD or using convex relaxation.

5.3 Robustness to Noise
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Â
k
X

k F
kY

k F
fo

r
se

tt
in

g
vi

i)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

optimal
truncated DMD [Tu14]
projected DMD [Jovanovic12]
TLS DMD [Hemati17]

k
0 2 4 6 8 10

kY
!

Â
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Fig. 4 Error norm as a function of k for setting vii) and viii) using our optimal approxi-
mation or state-of-the-art approximations. See details in Section 5.3.

In the following, we intend to evaluate the ability of the different methods
to extract the eigenvectors in (6) in the presence of noise. To this aim, we build
a new dataset of N = 5 long trajectories with T = 11 (so that we get m = 50
snapshots) satisfying (6) with r = 3. The eigenvectors and eigenvalues in the
set {(ξi, ζi, λi)}3i=1 are computed using Algorithm 2 in the context of setting
vi). In other words, matrices X and Y are generated using (1) and the model
ft(xt−1) = Fxt−1 where

F =
(
ζ1 ζ2 ζ3

)
diag(λ1, λ2, λ3)

(
ξ1 ξ2 ξ3

)ᵀ
. (21)

We then consider the two following snapshots configurations:

– setting vii): the original matrices X and Y,
– setting viii): a noisy version of matrices X and Y, where we have cor-

rupted the snapshots with a zero-mean Gaussian noise so that the peak
signal-to-noise ratio4 is 20 dB.

4 The peak signal-to-noise ratio is defined as 20 log10
maxt,i ‖xt(θi)‖∞

σ
, where σ denotes

the standard deviation of the standard normal distribution.
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Results are displayed in Figures 4 and 5. As expected the optimal approx-
imation error vanishes in the noiseless setting in the case where k ≥ r. We
observe only a slight increase of the error in the presence of noise. This shows
the robustness of the proposed method. Besides, we remark that the error
norm obtained with TLS DMD or with the proposed optimal approach are
indistinguishable in both, the noiseless and noisy settings. The approximation
by low-rank projected DMD in the noiseless case reproduces almost exactly
the optimal behaviour, while its performance slightly deteriorates for k ≥ 2 in
the noisy case. The quasi-optimal performance of this method in the noiseless
setting shows that the assumption of linear dependence of snapshots is nearly
valid. This assumption no longer holds when snapshots are corrupted by noise.
The approximation by truncated DMD is clearly sub-optimal in the noiseless
setting. More importantly, the performance of this method becomes dramatic
in the presence of noise: the error difference with the optimal one is of the
order of more than a decade.

The deterioration is clearly visible in Figure 5. This figure displays the
different approximations of eigenvector ζ3 re-arranged in the form of a spatial
map. In the presence of noise, the spatial structure of ζ3 is completely rubbed
out using an approximation by truncated DMD. Eigenvector ζ3 is fairly re-
covered using our optimal approximation and roughly estimated using an ap-
proximation by low-rank projected DMD. Surprisingly, although TLS DMD
yields a quasi-optimal approximation error norm, the structure of eigenvector
ζ3 is completely rubbed out, in a very similar manner to low-rank projected
DMD.

6 Conclusion

This work shows that we can compute in polynomial time an optimal solution
of the non-convex problem related to low-rank linear approximation. As shown
in Theorem 1, a closed-form solution is in fact the orthogonal projection of
the unconstrained problem solution onto a specific low-dimensional subspace.
The theorem also provides a closed-form characterization of the optimal ap-
proximation error. Based on these results, we show in Proposition 1 that the
EVD of this optimal solution can be obtained directly from the snapshots
with a complexity of O(m2(m+n)). This off-line complexity is the same as for
state-of-the-art sub-optimal methods. Finally, we illustrate through numerical
simulations in synthetic and physical setups, the gain brought by using this
optimal approximation.

A Proof of Theorem 1

We begin by showing the first part of the theorem, namely that A?k = UZ,kUZ,k
ᵀYX† is a

solution of (9). We first prove in this paragraph the existence of a minimizer of (9). Let us
show that we can restrict our attention to a minimization problem over the set

A = {Ã ∈ Rn×n : rank(Ã) ≤ k, Im(Ãᵀ) ⊆ Im(X)}.
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Indeed, any matrix A ∈ {Ã ∈ Rn×n : rank(Ã) ≤ k} can be decomposed in two components:
A = A‖+A⊥ where A‖ belongs to the set A, such that columns of A‖ are orthogonal to those
of A⊥, i.e., A⊥(A‖)ᵀ = 0. From this construction, we have that rows of A⊥ are orthogonal
to rows of X. Using this decomposition, we thus have that ‖Y − AX‖2F = ‖Y − A‖X‖2F .

Moreover, because of this orthogonal property, we have that rank(A) = rank(A‖)+rank(A⊥)
so that rank(A‖) ≤ rank(A). In consequence, if A is a minimizer of (9), then A‖ is also
a minimizer since it leads to same value of the cost function and since it is admissible:
rank(A‖) ≤ rank(A) ≤ k. Therefore, it is sufficient to find a minimizer over the set A.

Now, according to the Weierstrass’ theorem [2, Proposition A.8], the existence is guar-
anteed if the admissible set A is closed and the objective function ‖Y − AX‖2F is coercive.
Let us prove these two properties. We first show that A is closed. According to [12, Lemma
2.4], the set of low-rank matrices is closed. Moreover, it is well-known that a linear subspace
of a normed finite-dimensional vector space is closed [1, Chapter 7.2], so that the set of
matrices A = {Ã ∈ Rn×n : Im(Ãᵀ) ⊆ Im(X)} is closed. Since A is the intersection of two
closed sets, we deduce that A is closed. Next, we show coercivity. Let us consider the SVD
of any A ∈ A: A = UAΣAV

ᵀ
A , where ΣA = diag(σA,1 · · ·σA,k). From the definition of the

Frobenius norm, we have for any A ∈ A, ‖A‖F = (
∑k
i=1 σ

2
A,i)

1/2. We have that ‖A‖F →∞
if a non-empty subset of singular values, say {σA,j}j∈J , tend to infinity. Therefore, we have

lim
‖A‖F→∞:A∈A

‖Y −AX‖2F = lim
‖A‖F→∞:A∈A

‖Y‖2F − 2 trace(Y ᵀAX) + ‖AX‖2F ,

= lim
‖A‖F→∞:A∈A

‖AX‖2F = lim
‖A‖F→∞:A∈A

‖ΣAV ᵀ
AX‖2F ,

= lim
σA,j→∞:A∈A,j∈J

n∑
j=1

σ2
A,j‖X

ᵀvjA‖
2
2 =∞.

The second equality is obtained because the dominant term when ‖A‖F → ∞ is the
quadratic one ‖AX‖2F . The third equality follows from the invariance of the Frobenius

norm to unitary transforms while the last equality is obtained noticing that ‖XᵀvjA‖2 6= 0

because vjA ∈ Im(X) since A ∈ A. This shows that the objective function is coercive over the
closed set A. Thus, using the Weierstrass’ theorem, this shows the existence of a minimizer
of (9) in A and thus in {Ã ∈ Rn×n : rank(Ã) ≤ k}. We will no longer restrict our attention
to the domain A in the following and come back to the original problem (9) implying the
set of low-rank matrices.

Next, problem (9) can be rewritten as the unconstrained minimization

A?k ∈ arg min
A=PQᵀ:P,Q∈Rn×k

‖Y −AX‖2F . (22)

In the following we will use the first-order optimality condition of problem (22) to char-
acterize its minimizers. A closed-form expression for a minimizer will then be obtained be
introducing an additional orthonormal property. The first-order optimality condition and
the additional orthonormal property are presented in the following lemma, which is proven
in Appendix B.

Lemma 1 Problem (22) admits a solution such that

P ᵀP = Ik (23)

XYᵀP = XXᵀQ. (24)

To find a closed-form expression of a minimizer of (22), we need to rewrite condition (24).
We prove that this condition is equivalent to

PXᵀYᵀP = XᵀQ. (25)

Indeed, we show by contradiction that (24) implies that, for any solution of the form PQᵀ,
there exists Z ∈ Rm×k such that

PXᵀYᵀP + Z = XᵀQ, (26)
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with columns of Z in ker(X). Indeed, if PXᵀYᵀP + Z 6= XᵀQ, then by multiplying both
sides on the left by X we obtain PXXYᵀP + XZ = PXXYᵀP 6= XXᵀQ. Since PX is the
orthogonal projector onto the subspace spanned by the columns of X, the latter relation
implies that XYᵀP 6= XXᵀQ which contradicts (24). This proves that (24) implies (26).

Now, since columns of the two terms in the left-hand side of (26) are orthogonal and
since columns of the matrix in the right-hand side are in the image of Xᵀ, we deduce that
the only admissible choice is Z with columns belonging both to ker(X) and Im(Xᵀ), i.e., Z
is a matrix full of zeros. Therefore, we obtain the necessary condition (25).

We have shown on the one hand that (24) implies (25). On the other hand, by multiplying
on the left both sides of (25) by X, we obtain (24) (XPXᵀ = X because XX† is the
orthogonal projector onto the space spanned by the columns of X). Therefore the necessary
conditions (24) and (25) are equivalent.

We are now ready to characterize a minimizer of (9). According to Lemma 1, we have

min
A∈Rn×n:rank(A)≤k

‖Y −AX‖2F

= min
(P̃ ,Q̃)∈Rn×k×Rn×k

‖Y − P̃ Q̃ᵀX‖2F s.t.

{
P̃ ᵀP̃ = Ik

XYᵀP̃ = XXᵀQ̃
, (27)

= min
(P̃ ,Q̃)∈Rn×k×Rn×k

‖Y − P̃ Q̃ᵀX‖2F s.t.

{
P̃ ᵀP̃ = Ik

PXᵀYᵀP̃ = XᵀQ̃
,

= min
P̃∈Rn×k

‖Y − P̃ P̃ ᵀYPXᵀ‖2F s.t. P̃ ᵀP̃ = Ik, (28)

= min
P̃∈Rn×k

‖(Y − P̃ P̃ ᵀY)PXᵀ + Y(Im − PXᵀ )‖2F s.t. P̃ ᵀP̃ = Ik,

= min
P̃∈Rn×k

‖Z− P̃ P̃ ᵀZ‖2F + ‖Y(Im − PXᵀ )‖2F s.t. P̃ ᵀP̃ = Ik. (29)

The second equality is obtained from the equivalence between (24) and (25). The third
equality is obtained by introducing the second constraint in the cost function and noticing
that projection operators are always symmetric, i.e., (PXᵀ )ᵀ = PXᵀ , while the last equality
follows from the definition of Z given in (15) and the orthogonality of the columns of the
two terms. Problem (29) is a proper orthogonal decomposition problem with the snapshot
matrix Z. The solution of this proper orthogonal decomposition problem is the matrix UZ,k

(with orthonormal columns) defined in Section 4.1, see e.g., [30, Proposition 6.1]. We thus
obtain from (28) that

min
A∈Rn×n:rank(A)≤k

‖Y −AX‖2F = ‖Y − UZ,kUZ,k
ᵀYPXᵀ‖2F = ‖Y − PZ,kYPXᵀ‖2F . (30)

Furthermore, we verify that A?k = UZ,kW
ᵀ with W = (Xᵀ)†YᵀUZ,k is a minimizer of (22).

Indeed, since XXᵀW = XXᵀ(Xᵀ)†YᵀUZ,k = XYᵀUZ,k, we check that (UZ,k,W ) is ad-
missible for problem (27). We also check using (25) that ‖Y − UZ,kW

ᵀX‖2F = ‖Y −
PZ,kYPXᵀ‖2F , i.e., that (UZ,k,W ) reaches the minimum given in (30). In consequence,
we have shown that problem (22), and equivalently problem (9), admit the minimizer
A?k = UZ,kW

ᵀ = PZ,kYX†.

It remains to prove the second part of the theorem, namely the characterization of the
approximation error. The sought result follows from standard proper orthogonal decompo-
sition analysis. Indeed, according to [30, Proposition 6.1] the first term of the cost function
in (29) evaluated at A?k is ‖Z− PZ,kZ‖2F =

∑m
i=k+1 σ

2
Z,i.

B Proof of Lemma 1

We begin by proving that any minimizer of (22) can be rewritten as PQᵀ where P ᵀP = Ik.
Indeed, the existence of the SVD of Ã for any minimizer Ã ∈ Rn×n guarantees that

‖Y − ÃX‖2F = ‖Y − UÃΣÃV
ᵀ
Ã
X‖2F ,
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where UÃ ∈ R
n×k possesses orthonormal columns. Making the identification P = UÃ and

Q = VÃΣÃ we verify that ‖Y− ÃX‖2F = ‖Y−PQᵀX‖2F and that P possesses orthonormal
columns. Next, any solution PQᵀ of (22) should satisfy the first-order optimality condition
with respect to the j-th column denoted qj of matrix Q, that is

2[−XYᵀpj +

k∑
i=1

(pᵀi pj)XXᵀqi] = 0,

where the j-th column of matrix P is denoted pj . In particular, a solution with P pos-
sessing orthonormal columns should satisfy XYᵀpj = XXᵀqj , or in matrix form XYᵀP =
XXᵀQ. �

C Proof of Proposition 1

We have A?k = PZ,kYX† = UZ,kW
ᵀ which implies that

W ᵀUZ,k = UZ,k
ᵀYX†UZ,k = UZ,k

ᵀPZ,kYX†UZ,k = UZ,k
ᵀUZ,kW

ᵀUZ,k.

Using the definition of ζi’s and ξi’s in (20), since the wri ’s and w`i ’s are the right and left
eigenvectors of W ᵀUZ,k, we verify that

A?kζi = UZ,kW
ᵀUZ,kw

r
i = UZ,kλiw

r
i = λiζi,

and that
(A?k)ᵀξi = Q̂UZ,k

ᵀWw`i = Wλiw
`
i = λiξi.

Finally, ξᵀi ζi = 1 is a sufficient condition so that ξᵀi A
?
kζi = λi. �
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Fig. 5 Amplitudes related to temperature (left columns) and vorticity (right columns) of
the right eigenvectors of matrix F of rank 3 defined in (21): ground truth and estimation
obtained in the noisy setting viii) with our optimal approximation, with an approximation
by truncated DMD, with an approximation by projected DMD or with an approximation
by total-least square DMD. See details in Section 5.3.
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