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Abstract

In this paper the asymptotic behavior of trajectories of discontinuous vector fields is stud-
ied. The vector fields are defined on a two-dimensional Riemannian manifold M and the
confinement of trajectories on some suitable compact set K of M is assumed. The behavior
of the global trajectories is fully analyzed and their limit sets are classified. The presence
of limit sets having non-empty interior is observed. Moreover, the existence of the so called
sliding motion is allowed on M . The results contemplate a list of possible limit sets as
well the existence of non-recurrent dynamics and the presence of nondeterministic chaos.
Some examples and classes of systems fitting the hypotheses of the main theorems are also
provided in the paper.
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1. Introduction

The theory of discontinuous vector fields
(DVF for short) addresses the study of tra-
jectories which eventually looses smooth-
ness by reaching some boundary region of
the phase portrait. Generally that bound-
ary is taken as a co-dimension one mani-
fold therefore DVF have a close connection
to smooth vector fields defined on mani-
folds with boundaries. Although the last
can somehow be seen as a particular case of
the former, several results dealing with the

boundary contact have inspired and moti-
vated the development of DVF. More specif-
ically, this new theory have been widely
studied throughout the last three decades
thanks to the pioneering work of A. F. Filip-
pov [10], which developed a schematic study
of DVF. It have received special attention
also due to a strong connection with appli-
cations in areas as electronics, mechanics,
control theory, economy, biology, medicine,
among others (see for instance [3, 16, 17, 18]
and references therein).

The dynamic of a DVF is generally more
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Jucá)
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complicated than a smooth vector field be-
cause there are several ingredients of the
vector fields playing some role. In fact, to
fix ideas, even in the simplest case of a DVF
formed by two vector field whose trajecto-
ries are separated by a common frontier,
one must consider not only the dynamic of
each particular vector field but also their in-
teraction to the single common boundary.
Moreover, the trajectories of such vector
fields eventually slide on the boundary by
an amalgamation processes occurring at the
moment of the collision which generates new
trajectories. For that reason the first steps
toward the construction of a consistent the-
ory of DVF require the establishing and val-
idation of new results analogous to classical
ones. In this direction we highlight some
of those results already established into the
discontinuous context in the areas of Sta-
bility [4], Chaos [5, 8], Bifurcation [14, 15],
Closing Lemma [7] and the Peixoto’s Theo-
rem [13].

A particular gap to a whole comprehen-
sion of DVF is the lack of global results.
Effectively in many cases local aspects must
be assumed so local results as the submer-
sion theorem simplify coordinates and con-
sequently calculations are generally more
treatable. In our context, however, no lo-
cal aspects are required but only contact
conditions on a compact portion K of the
phase portrait, that is, the approach is
semi-local. More specifically we consider
DVF defined on a two-dimensional Rieman-
nian manifold M which is locally split into
some regions, each region being delimited
by the connected components of a regular
co-dimension one manifold Σ. Some con-
ditions are imposed to the compact K. For
instance, we shall assume that it contains fi-
nite critical elements and intersects only one
connected component of Σ. We also assume

that K is positive invariant for some trajec-
tory in the sense of the Poincaré-Bendixson
Theorem for smooth vector fields.

The goal of this paper is to study asymp-
totic aspects of a maximal trajectory of a
DVF. More precisely we are interested in
obtaining the limit sets of such trajectories.
The main result of the paper provides a fine
classification of those objects for the class
of DVF we are dealing with. We highlight
that the obtained limit sets may present
chaotic behavior. A preliminary study of
limit sets can be found for the plane in [5].
In such paper the authors allow discontinu-
ities but they do not consider sliding mo-
tion, obtaining then the non-generic situa-
tion where tangency points coincide.

This paper is organized as follows. In
Section 2 we present the fundamental no-
tions of DVF (Subsection 2.1) and we dis-
cuss some extensions of discontinuous vec-
tor fields for transitions between sliding and
escaping regions (Subsection 2.2). In Sec-
tion 3 we present the main results and a
brief discussion of them. In Section 4 we
analyze the behavior of a maximal trajec-
tory contained on a compact set K. We
also establish auxiliaries results concern-
ing pseudo-cycles (Subsection 4.1), mild
pseudo-cycles and chaotic sets (Subsections
4.2 and 4.3) and pseudo-graphs (Subsection
4.3). In Sections 5 we prove the main re-
sults of the paper and Section 6 provides
some features of discontinuous linear vector
fields. Finally in Section 7 we present some
conclusions on the main achievements of the
paper.

2. Preliminaries

2.1. Discontinuous vector fields

Let M be a smooth two-dimensional
Riemannian manifold. From Nash Embed-
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ding Theorem we can assume that M is iso-
metrically embedded into some Euclidean
space Rn. Suppose thatM admits a smooth
function f : M → R having 0 ∈ R as reg-
ular value in such way that Σ = f−1(0)
splits M into two connected disjoint regions
Σ− = {p ∈ M ; f(p) < 0)} and Σ+ = {p ∈
M ; f(p) > 0)}. We call Σ the switching
manifold and we consider the discontinuous
vector fields Z = (X, Y ) on M defined by

Z(p) =

{
X(p), if f(p) ≥ 0,
Y (p), if f(p) ≤ 0,

(1)

where X and Y are smooth vector fields de-
fined on M . As we will see the number of
regions of M split by Σ may be higher than
two but it is sufficient for our purposes (cf.
Remark 2).
Now, in order to study the behavior of tra-
jectories of DVF on Σ we must introduce
some notations. Indeed, given a vector field
X on M and a point p ∈ Σ we consider
the Lie derivatives X.f(p) = 〈X(p),∇f(p)〉
and X i.f(p) = 〈∇X i−1.f(p), X(p)〉, i ≥ 2,
where 〈·, ·〉 is the canonical inner product
on R

n on which M is embedded.
On Σ we distinguish three regions sat-

isfying (X.f(p)) · (Y.f(p)) 6= 0, that is,
transversely to Σ. i) The sewing region Σc

formed by the points p ∈ Σ such that the
trajectory of X (resp. Y ) meet p in finite
future time and the trajectory of Y (resp.
X) meets p in finite past time. ii) The es-
caping region Σe formed by the points p ∈ Σ
such that the trajectories of X and Y meets
p in finite past time. Lastly iii) the sliding
region Σs formed by the points p ∈ Σ such
that the trajectories of X and Y meets p in
finite future time.

The points p ∈ Σ such that X.f(p) = 0
(resp. Y.f(p) = 0) are called tangency
points of X (resp. Y ). They are denoted
by Σt. We say that a tangency point p has

contact of order n ∈ N if the Lie derivatives
Xk.f(p) vanish for k < n and Xn.f(p) 6= 0.
We also classify tangency points according
to the following: letX and Y be two smooth
vector fields on M and suppose that ∇f(p)
points to the interior of the region Σ+ where
Z coincides with X . We say that p ∈ Σ
is an invisible tangency if the contact order
r of a trajectory of X (resp. Y ) passing
through p is even and Xr.f(p) < 0 (resp.
Y r.f(p) > 0). On the other hand, we say
that p ∈ Σ is a visible tangency if the con-
tact order r of a trajectory of X (resp. Y )
passing through p is even and Xr.f(p) > 0
(resp. Y r.f(p) < 0) or it is a tangent point
with odd contact for X (resp. Y ).

For our purposes it is also interesting
to consider a special configuration of tan-
gency point, namely the case where the vec-
tor fields share such a point. We call that
points double tangency points. For a DVF
Z = (X, Y ) we say that a double tangency
is elliptical if it is an invisible tangency for
both X and Y , parabolic if it is a visible
tangency of even order for a vector field and
invisible one for the other and hyperbolic if
the double tangency is visible of even order
for both X and Y . In this paper we also re-
fer to elliptical tangency points between two
sewing regions by tangency point of type I
(see Figure 1). On the other hand, let p ∈ Σ
an invisible tangency forX . If (i) p is on the
boundary of a sliding region and attracts
sliding orbits and (ii) p is a tangency of odd
order for Y then we call p a tangency of
type II (see Figure 2). We notice that if p
satisfies the previous conditions except (ii)
and it is regular for Y then p repels sliding
orbits.
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Figure 1: Types of double tangency points:
elliptical between sewing regions (or tangency
of type I), parabolic and hyperbolic, respec-
tively.

Figure 2: A tangency point of type II. In this
case the double tangency point necessarily have
an odd order contact.

In order to deal with sliding motion in the
DVF we adopted the Filippov convention
according to [10] to define a vector field ZΣ

on Σe ∪ Σs such that ZΣ(p) is the vector
on TpM tangent to Σ obtained by a convex
combination of X(p) and Y (p). That is,

ZΣ(p) =
Xf(p).Y (p)− Y f(p).X(p)

Xf(p)− Y f(p)
. (2)

with p ∈ Σe ∪ Σs.
In this paper we refer to ZΣ as Filippov vec-
tor field. The points p ∈ Σe ∪ Σs such that
ZΣ(p) = 0, that is, p ∈ Σ such that X(p)
and Y (p) are collinear and points to oppo-
site direction are called pseudo equilibrium
of Z. The trajectories of ZΣ may constitute
a trajectory of Z according to the follow-
ing definition. We alert that other conven-
tion could lead to different results, see for
instance [3, 4].

Definition 1. A global trajectory ΓZ(t, p) of
a discontinuous vector field Z is the trace of

a continuous curve obtained by concatena-
tion of trajectories of X and/or Y and/or
ZΣ. A maximal trajectory ΓZ = ΓZ(t, p)
is a global trajectory that cannot be ex-
tended by any concatenation of trajecto-
ries of X, Y or ZΣ. In this case, we call
I = (τ−(p), τ+(p)) the maximal interval of
the solution ΓZ . The positive maximal tra-
jectory Γ+

Z(t, p) is the portion of a maximal
trajectory of ΓZ(t, p) for which t > 0.

Notice that it is possible that we have
τ+(p) = +∞ for a maximal trajectory
ΓZ(t, p) such that ΓZ(t, p) 6= q for t < t0
and ΓZ(t, p) = q for all t ≥ t0 > 0. (See the
tangent point of type II in Figure 2).

Definition 2. Given ΓZ(t, p) a maximal
trajectory of Z, the set

ω(ΓZ(t, p)) = {q ∈ M : ∃ (tn) ⊂ R

with lim
tn→τ+(p)

ΓZ(tn, p) = q}

is called ω-limit set of ΓZ(t, p).

A more detailed presentation of trajectories
of DVF can be found in [14].

Definition 3. Let Z be a discontinuous
vector field. Consider Γ a closed maximal
trajectory of Z such that Γ ∩ Σ 6= ∅ and
assume it contains neither equilibria nor
pseudo-equilibria. Then, we say that Γ is
a pseudo-cycle if

(i) Γ is positively or negatively invariant
and

(ii) Γ does not contain a proper maximal
trajectory.

The last definition is a refinement of the
concept of pseudo cycle usually considered
in the literature. That allow us to explore
the pseudo cycles in a more accurate way.
In particular we distinguish three types of
pseudo-cycles: (a) crossing pseudo-cycles,
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which are those satisfying Γ ∩ Σ ⊂ Σc,
see Figure 3 (a), (b) tangent pseudo-cycles,
when Γ ∩ Σt 6= ∅ and Γ does not present
sliding motion, see Figure 3 (b1−2), and (c)
sliding pseudo-cycles, which are the pseudo-
cycles having sliding motion, see Figure 3
(c1− 3).

Figure 3: Examples of crossing (a), tangent
(b1− 2) and sliding (c1− 3) pseudo-cycles.

Definition 4. A maximal trajectory as in-
troduced in Definition 3 which do not satisfy
one or two of the itens (i) and (ii) is called
a mild pseudo-cycle.

In particular we distinguish three types of
mild pseudo-cycle: (a) mild pseudo-cycle of
type I when only condition (i) fails, (b) mild
pseudo-cycle of type II when only condition
(ii) fails, and (c) mild pseudo-cycle of type
III when both conditions (i) and (ii) fail
(see Figure 4 for some examples).

Figure 4: Examples of mild pseudo-cycles of
type I (a), type II (b) and type III (c).

We shall see in Subsection 4.2 that some
mild pseudo-cycles may present chaotic be-
havior so next we adapt that concept to
DVF. Accordingly, one of the well accepted
definitions of chaos in the literature is the
one assuming topological transitivity, sen-
sitive dependence on initial conditions and
density of periodic orbits. These properties
concerns Devaney’s conditions for the exis-
tence of chaos for smooth systems.
Now let Λ ⊂ M be a compact invari-
ant set for the DVF Z. We say that Z
is topologically transitive on Λ if for any
pair of non-empty, open sets U and V in
Λ, there exist p ∈ U, Γ+

Z(t, p) a positive
maximal trajectory and t0 > 0 such that
ΓZ(t0, p) ∈ V . Moreover we say that Z
exhibits sensitive dependence on Λ if there
exist a fixed r > 0 satisfying r < diam(Λ)
such that for each x ∈ Λ and ǫ > 0 there
exist y ∈ Bǫ(x) ∩ Λ and positive maximal
trajectories Γ+

Z(t, x) and Γ+
Z(t, y) on Λ pass-

ing through x and y, respectively, satisfy-
ing d(Γ+

Z(t, x),Γ
+
Z(t, y)) > r for some t > 0,

where d is the Euclidian distance in R
n

on which the Riemannian manifold M have
been isometrically embedded.

Definition 5. We say that a compact in-
variant set Λ is chaotic for a discontinuous
vector field Z if

a) Z is topologically transitive on Λ;

b) Z exhibits sensitive dependence on Λ
and

c) the periodic orbits of Z are dense on
Λ.

Moreover, we distinguish three situations:
(i) Λ is a chaotic set of type I if it has
empty interior and does not present sliding
motion; (ii) Λ is a chaotic set of type II if
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it has empty interior presenting sliding mo-
tion and (iii) Λ is a chaotic set of type III if
it has non-empty interior.

Next we define pseudo-graphs. These ob-
jects are an important part of Theorem 1
stated in the next section.

Definition 6. Let Z be a discontinuous
vector field. A closed curve Γ is a pseudo-
graph if Γ ∩ Σ 6= ∅ and it is an union of
trajectory-arcs of Z joining equilibrium or
pseudo-equilibrium (see Figure 5).

Figure 5: Examples of pseudo-graphs.

2.2. Extension of Filippov vector fields be-
yond the boundary of Σs,e

In what follows we briefly discuss the ex-
tension of one-dimensional vector fields to
the boundaries of their domains in order to
allow infinitely many transitions over Σ. In-
deed, consider Z as in equation (1) and ZΣ

the associated Filippov vector field defined
on Σs,e. We shall extend the Filippov vector
field to the closure of escaping and sliding
regions, that is, to their adjacent tangency
points if it is possible. Assume that p is the
common boundary between Σs and Σe and
consider

Le,s = lim
q→p

ZΣ(q).

The limit is consider at q ∈ Σe for Le and
q ∈ Σs for Ls. We split the analysis into
two cases:

(a) Le = Ls. In this case we define

L = lim
q→p

ZΣ(q) = Le = Ls,

and therefore ZΣ(p) = L. If L 6= 0
then the Filippov vector field in a
neighborhood of p points to the same
direction than Le,s and therefore the
trajectory flows through p from Σe to
Σs or vice-versa. In other words, p is
a regular point for the extended Filip-
pov vector field. If L = 0 then p is a
pseudo-equilibrium for it.

(b) If Le 6= Ls both being non-zero point-
ing to the same direction, then by
a re-scaling of time of ZΣe

or ZΣs

we obtain the same situation of (a)
and we are done. If the vector fields
ZΣe

and ZΣs

point to opposite direc-
tions, then we cannot extend the Fil-
ippov vector field to p because we ob-
tain an one-dimensional Filippov dy-
namics around an attractor or repul-
sor point. The same happens when
Le = 0 or Ls = 0, i.e., the Filip-
pov vector field cannot be extended
beyond its boundary.

Remark 1. Notice that using the expres-
sion of the Filippov vector field given in (2),
when p ∈ Σ is an equilibrium point of Y or
X then lim

q→p
ZΣ(q) = 0 and therefore p is an

equilibrium point of the extended Filippov
vector field.

3. Main results

3.1. Statement of the main results
In this paper we develop a semi-local study
of DVF through an asymptotic analysis of
trajectories in order to study limit sets and
their properties. First we assume that tra-
jectories transit from and to the switching
manifold Σ until they remain outside Σ or
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inside it. After that we assume that in-
finitely many transitions on Σ occur. Fi-
nally, we explore nontrivial recurrences of
the chaotic sets that we obtained as limit
sets.
In what follows we consider a discontin-
uous vector field Z = (X, Y ) on a two-
dimensional Riemannian manifold M and
K ⊂ M a compact set satisfying some
hypotheses on K and Z. Most ot them
are only adapted from Poincaré-Bendixson
Theorem to the discontinuous context.

(K1) K is contained on some coordinate
neighborhood of M ;

(K2) Σ ∩ K is a smooth curve splitting
K into two disjoint connected compo-
nents, K ∩ Σ+ and K ∩ Σ−;

(Z1) X and Y have a finite number of equi-
librium points on K;

(Z2) Z has only isolated pseudo-
equilibrium points on K ∩ Σ;

(Z3) both X and Y have at most one tan-
gent point on K ∩ Σ.

Remark 2. The hypothesis (K1) is the mo-
tivation for referring to the approach of the
paper as semi-local. However it may not
be quite accurate because some global sce-
narios may be referred as semi-local. We
point, for instance, to the whole Cartesian
plane R

2 or the two-dimensional sphere mi-
nus one point, among others. We also re-
mark that hypothesis (K2) motivates the two
zones presented in equation (1) but one can
define such it for any number of zones.

We now establish the main results of the
paper.

Theorem 1. Consider a DVF Z = (X, Y )
on a two-dimensional Riemannian manifold

M and let K ⊂ M be a compact subset of
M . Assume that the hypotheses (Ki)

2
i=1 and

(Zj)
3
j=1 are fulfilled and that Z has a pos-

itive maximal trajectory Γ+
Z(t, p) contained

on K. Then the ω-limit set of ΓZ(t, p) is
one of the following objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iii) a graph of X or Y ;

(iv) a pseudo-equilibrium of Z;

(v) a (crossing, tangent or sliding)
pseudo-cycle of Z;

(vi) a mild pseudo-cycle of type I, II or III
of Z;

(vii) a pseudo-graph of Z;

(viii) a tangency point of type I or II;

(ix) a chaotic set of type III.

We highlight some points concerning The-
orem 1. First, the sliding pseudo-cycles
may have distinct topological types. For
instance, some of the sliding pseudo-cycles
we obtain are contained on Σ+ (or Σ−) and
possess only a segment of slide. However,
we also obtain sliding limit cycles occupy-
ing both Σ+ and Σ− as well as occupying
two disjoint sliding regions. We also notice
that in statement (ix) of Theorem 1 it may
occur a ω-limit set having nonempty interior
and other interesting topological properties.
The next result describes such features.

Theorem 2. Let Z be a DVF such as
in Theorem 1 and assume that Z has a
parabolic or hyperbolic tangency point p0 ∈
∂(Σe ∪ Σs) on the‘ interior of K. Assume
that there exist a strictly increase sequence
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of times ti > 0 such that ΓZ(ti, p) ∈ Σs and
ΓZ(ti+1, p) ∈ Σe. Then Z admits a chaotic
set Λ of type III as ω-limit of a maximal tra-
jectory in such way that every point q on its
interior satisfies the following statements:

(a) there exist a periodic orbit of Z on Λ
passing through q;

(b) there exist a dense orbit of Z on Λ
passing through q;

(c) q is a non-trivial recurrent point on Λ;

(d) q is a non-trivial non-wandering point
on Λ.

In order to prove Theorems 1 and 2 it is im-
portant to state the following result which
is a generalization of Theorem 1 of [5].

Fundamental Lemma. Consider a DVF
Z = (X, Y ) on a two-dimensional Rieman-
nian manifold M and let K ⊂ M be a com-
pact subset of M . Assume that the hypothe-
ses (Ki)

2
i=1 and (Z1) are fulfilled and Z has

a positive maximal trajectory Γ+
Z(t, p) con-

tained on K. If there exist t0 > 0 such that
ΓZ(t, p) /∈ Σe ∪ Σs, ∀t > t0, then the ω-
limit set of ΓZ(t, p) is one of the following
objects:

(i) an equilibrium of X or Y ;

(ii) a periodic orbit of X or Y ;

(iii) a graph of X or Y ;

(iv) a crossing pseudo-cycle of Z;

(v) a mild pseudo-cycle of type II of Z;

(vi) a pseudo-graph of Z;

(vii) a tangency point of type II.

On the other hand, if ΓZ(t, p) ∈ Σe ∪Σs for
t sufficiently large then ω(ΓZ(t, p)) is one of
the following objects:

(viii) a pseudo-equilibrium of Z or

(ix) a tangency point of type II.

Remark 3. In order to prove Theorems 1
and 2 we will consider a positive maximal
trajectory Γ+

Z(t, p) contained on K in such
way that there exists sn → τ+(p) and tn →
τ+(p) satisfying ΓZ(sn, p) ∈ Σe ∪ Σs and
ΓZ(tn, p) /∈ Σ. In other words, we will as-
sume that ΓZ(t, p) visits and leaves Σe ∪ Σs

infinitely many times. Otherwise we may
apply the Fundamental Lemma straightfor-
wardly. Moreover, we notice that the classi-
cal planar Poincaré-Bendixson Theorem ap-
plies for smooth vector fields X on compact
sets contained on a coordinate neighbor-
hood of M . Indeed its expression induced
by a chart on some open neighborhood of R2

is a smooth vector field topologically equiv-
alent to X .

3.2. Brief discussions

The results presented in this section aims
to extend the study of limit sets for discon-
tinuous vector fields defined on manifolds
under the presence of sliding motion. In
a generic context the existence of sliding
is mandatory because otherwise a coinci-
dence of tangency points must take place
(see for instance the work on structural sta-
bility in [10]). Once sliding implies some
non-determinism in trajectories, a chaotic
regime may appear. This situation is par-
ticularly observed when some arc of trajec-
tory connects both sliding and escape as
stated in Theorem 2. In particular, some
non-trivial minimal sets can emerge as re-
ported in [? ]. As far as the authors know,
a better understanding of those sets is far
from be achieved.
Although hypothesis preceding Theorem 1
are mainly due to Poincaré-Bendixson The-
orem as commented before, they also avoid
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the presence of non-trivial minimal sets, we
refer to (K2) and (Z3). We illustrate the
meaning of them in the following two ex-
amples. We start by highlighting hypothe-
sis (K2).

Example 1. Consider the following planar
linear DVF with three linearity zones

Z(x, y) =

{
(−y − 1, x), if‖(x, y)‖ ≥ 1,
(−2y, x), if‖(x, y)‖ ≤ 1.

(3)

[h]

Figure 6: A non-trivial minimal set of a pla-
nar discontinuous linear vector field with three
linearity zones.

There exists two discontinuity lines, namely
Σ1 = {−1} × R ⊂ R

2 and Σ2 = {1} ×
R ⊂ R

2, we call Σ = Σ1 ∪ Σ2. More-
over, it is easy to see that Σ can be split
into intervals of the form Σc

1 = {−1} ×
[(−∞,−1)∪(0,+∞)], Σe

1 = {−1}×(−1, 0),
Σc

2 = {1}× [(−∞,−1)∪ (0,+∞)] and Σs
2 =

{1} × (−1, 0). The Filippov vector field on
Σe

1 and Σs
2 is then ZΣ(x, y) = (0, x).

Let Λ be the set on R
2 delimited by the

curves Γi, i = 1 . . . , 5, where Γ1, Γ3 and
Γ5 are arc of trajectories of Y connecting
p1 = (−1, 0) to p2 = (1, 0), p3 = (−1,−2)
to p4 = (1,−2) and p2 to p1, respectively; Γ2

and Γ4 are arc of trajectories of X connect-
ing p1 to p3 and p4 to p2, respectively (see
Figure 6). The following result describes the
behavior on Λ.

Proposition 1. The non-empty set Λ pro-
vided in Example 1 satisfies the following
properties:

(1) it is chaotic for system (3);

(2) it is a minimal set.

Moreover, there exist a trajectory Γ̃ of (3)
for which Λ is its ω−limit set.

The proof os Proposition 1 is presented at
the end of Section 5.
Next example introduces a class of DVF sat-
isfying hypothesis (Z3). In particular, we
remark that this hypothesis is important to
avoid the existence of non-trivial minimal
sets as obtained in [5] and [5]. A generaliza-
tion of the example is presented at Section
6.

Example 2 (Relay Systems). The class
of relay systems is considered in control the-
ory, friction phenomena and other areas
(see for instance [1], [3], [11] and references
therein). According to [3] a planar relay sys-
tem is a DVF that can be written in the gen-
eral form

Xsgn(y) :





ẋ = Ax+Bu,
y = CTx,
u = sgn(y),

(4)

where

A =

(
a11 a12
a21 a22

)
, B =

(
b1
b2

)
and

C =

(
c1
c2

)

are real matrices. The sign function induces
a separation region which in this case is the
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straight line y = 0. Indeed, it is easy to see
that X1 and X2 have at most one tangent

point located at
(

b2
c2
a21, 0

)
and

(
−b2
c2

a21, 0
)
,

respectively. Therefore the class of relay
systems has at most two tangent points with
y = 0.

Remark 4. Finally we remark that the
shape of the switching manifold Σ does not
play any role throughout this paper. Still, it
will useful to introduce a fixed parametriza-
tion of the curve Σ ∩K, so consider

σ : [α, β] ⊂ R → Σ ∩K,

withe α < 0 < β. We assume that Σ ∩ K
has the natural ordering given by the iden-
tification Σ∩K = [α, β]. Moreover, for our
purposes we only consider tangent points on
Σ∩K of even order. Otherwise the trajecto-
ries crosses Σ always in the same direction
as the regular case being the last situation
considered along the paper.

4. Global analysis and auxiliaries re-
sults

This section is devoted to analyze the possi-
ble limit sets arising in the context of The-
orem 1. In order to highlight the different
kind of objects we are going to deal with,
we split the study into some particular cases
starting with the pseudo-cycles.
From now on we assume that trajectories of
the DVF composing a maximal trajectory
ΓZ(t, p) are contained on the compact set
K for positive values of t and satisfy the
following hypotheses according to Remarks
3 and 4.

H1: Γ+
Z(t, p) leaves Σs,e and returns to it

infinitely many times;

H2: the tangent points of Z with Σ ∩ K
have even order.

We notice that these are non-empty as-
sumptions such we will see on Section 6. We
also notice that occurring H1 one may de-
fine a map from Σ to itself , see for instance
[6], so the first return on Σ takes place. This
notion is often used throughout this paper.

4.1. Pseudo-cycles

In this subsection we fully describe how a
pseudo-cycle (of crossing, tangent or sliding
type) emerges as ω-limit set of a maximal
trajectory as stated in Theorem 1. In par-
ticular, the approach we consider allow us
to better comprehend the topological struc-
ture of pseudo cycles as well as their asymp-
totic behavior.
Since the crossing pseudo-cycles were ad-
dressed in the Fundamental Lemma, next
we will restrict our attention to the tan-
gent and sliding pseudo-cycles obtained as
ω−limit sets for a maximal trajectory of a
DVF that satisfy the hypothesis of Theorem
1 as well as H1 and H2 above.
We remark the considered identification of
Σ ∩K with the interval [α, β] ⊂ R contain-
ing 0 in its interior, according to Remark
4.

4.1.1. The regular-tangent case

Lemma 1. Assume that hypotheses of The-
orem 1, H1 and H2 hold, X has a tangent
point p− on the interior of Σ ∩K and Y is
transversal to Σ on K. Then ω(ΓZ(t, p)) is
either a tangent or a sliding pseudo-cycle.

Proof. Without loss of generality we take
p− = 0. Since H2 holds we avoid odd tan-
gency points so the following possibilities
can occur.

(i) Σc ∩K = [α, 0) and Σe ∩K = (0, β];

(ii) Σe ∩K = [α, 0) and Σc ∩K = (0, β];

(iii) Σc ∩K = [α, 0) and Σs ∩K = (0, β];
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(iv) Σs ∩K = [α, 0) and Σc ∩K = (0, β].

Consider p ∈ K. First we assume that
statement (i) holds. Since H1 holds, we get
Γ+
Z(t, p) ∩ Σ ⊂ Σe ∪ {0} being 0 a visible

tangency point for X and a regular one for
Y . Moreover, the trajectory Γ+

Z(t, p) only
returns to Σ by the tangency point 0, oth-
erwise such a trajectory would not return to
Σ. So let q−1 ≥ 0 be the point on Σ such that
the negative trajectory of X starting at 0
meets Σ (see Figure 3). Since we are assum-
ing infinitely many returns to Σ it follows
that Γ+

Z(t, p) only leaves Σe by q−1 . Conse-
quently we obtain a tangent pseudo-cycle of
Z if q−1 = 0 (whose intersection with Σ is the
tangency point 0) or a sliding pseudo-cycle
of Z if q−1 > 0 and we are done.
It is easy to see that statement (ii) leads
to the analogous situation. Similarly, the
proof of statements (iii) and (iv) is treated
in the same way by reversing time in the
trajectory ΓZ(t, p).

4.1.2. The tangent-tangent case assuming
p− 6= p+

Now each vector field X and Y contribute
with tangency points p− and p+ on the in-
terior of Σ ∩K, respectively. Without loss
of generality, assume that p− < p+. Now
we have the following configurations of Σ
(we will to consider them in the proofs of
Lemmas 2 and 3):

(i) Σc∩K = [α, p−)∪(p+, β] and Σs∩K =
(p−, p+);

(ii) Σc∩K = [α, p−)∪(p+, β] and Σe∩K =
(p−, p+);

(iii) Σs ∩K = [α, p−), Σc ∩K = (p−, p+)
and Σe ∩K = (p+, β];

(iv) Σe ∩K = [α, p−), Σc ∩K = (p−, p+)
and Σs ∩K = (p+, β].

We also split the analysis according to the
visibility or not of p− and p+. Since H1

holds the invisible-invisible case cannot oc-
cur. In fact, if p− and p+ are invisible tan-
gency points then either ΓZ(t, p) ∈ Σs or
ΓZ(t, p) /∈ Σ for t sufficiently large since
there is at most one tangent point of X or
Y with Σ ∩ K. Then we only analyze the
cases where at least one tangency point p−

or p+ is visible.

The invisible-visible sub-case.

Lemma 2. Assume that hypotheses of The-
orem 1, H1 and H2 hold and both X and
Y have non coincident tangency points p−

and p+, respectively, on the interior of K ∩
Σ having opposite visibility. In this case
ω(ΓZ(t, p)) is a crossing, a tangent or a slid-
ing pseudo-cycle.

Proof. Without loss of generality we sup-
pose that p− is an invisible tangency point
and p+ is a visible one. Assume that state-
ment (i) holds. Since H1 holds there exist
a value t̃ > 0 satisfying ΓZ(t̃, p) = p+ and a
point p+1 ≤ p+ which is the first return on
Σ in such way that the positive trajectory
of Y from p+ meets Σ. (See Figure 7). We
have three situations:

• If p+1 ∈ (p−, p+] then the regular-
tangent case in the previous subsec-
tion applies. So we obtain a tangent
or sliding pseudo-cycle of Z if p+1 = p+

or p− < p+1 < p+, respectively. (See
Figure 7 (a)).

• If p+1 = p− then the Filippov vec-
tor field connects p− to p+ since H1

holds. Therefore pseudo-equilibria be-
tween p− and p+ cannot occur in this
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situation. In this case we obtain a
sliding pseudo-cycle. (See Figure 7
(b)).

• If p+1 < p− and setting ΓZ(t0, p) = p+1
from H1 it follows that ΓZ(t, p) re-
turns to Σ at p+2 ∈ (p−, p+] for some
t > t0 following X . If p− < p+2 < p+

then the last bullet applies and we ob-
tain a sliding pseudo-cycle. If p+2 = p+

then ΓZ(t, p) is a tangent pseudo-cycle
touching Σ at two points, one of them
a sewing one and other the tangency
point p+.

Figure 7: The invisible-visible case of state-
ment (i).

Statement (ii) is treated analogously to the
previous case by reversing time on the tra-
jectory ΓZ(t, p). Lastly, assume that state-
ments (iii) or (iv) hold. In those cases, if
ΓZ(t0, p) ∈ Σs then ΓZ(t, p) /∈ Σe for t > t0
since we are considering the invisible-visible
sub-case. In fact, if p− is an invisible tan-
gency point and p+ is a visible one it follows
that ΓZ(t, p) ∩ Σ ⊂ [p+, β] ⊂ Σe for t suffi-
ciently large. Then the tangent-transversal
case applies and therefore we obtain the
same possibilities for limit set obtained in
that situation. Interchanging the visibility
of p− and p+ we obtain analogous conclu-
sions.

The visible-visible sub-case.

Lemma 3. Assume that hypotheses of The-
orem 1, H1 and H2 hold, X and Y have
non coincident tangency points p− and p+

on the interior of K ∩Σ, respectively, being
both visible. Then ω(ΓZ(t, p)) is a crossing,
a tangent or a sliding pseudo-cycle.

Proof. Let p be a point on K. Assume that
statement (i) hold. From hypotheses H1

and since both p+ and p− attract trajecto-
ries of the Filippov vector field there exist
at least one pseudo equilibrium point be-
tween p− and p+. Moreover the trajectory
of a point q ∈ Σs only leaves Σ by X at p−

or by Y at p+. Suppose that ΓZ(t, p) leaves
Σs at p− = ΓZ(t̃, p) for some t̃ > 0 and let
p−1 ≥ p− be on Σ be the first point where
the positive trajectory of X from p− meets
Σ.
Now we have three situations to consider
in terms of the tangency points. We start
assuming p−1 ≥ p+ (see Figure 8). Let
p−2 ∈ Σ be the first point such that the
positive trajectory of Y from p−1 meets Σ.
Then p− < p−2 ≤ p+ since ΓZ(t, p) by
H1. In fact if p−2 ≤ p− then ΓZ(t, p) only
touches Σ in sewing points for sufficiently
large values of t and therefore the Funda-
mental Lemma applies. Moreover, clearly
the situation p−2 > p+ cannot occur given
the statement (i). If p−2 = p− then we ob-
tain a tangent pseudo-cycle whose intersec-
tion with Σ is the tangency point p− and the
tangency point p−1 = p+ or a sewing point
p−1 > p+. We get:

• If p−2 = p+ then we obtain a tangent
pseudo-cycle whose intersection with
Σ is the tangency point p+.

• If p− < p−2 < p+ then p−2 can-
not be located between two pseudo-
equilibrium points once H1 holds.
Consequently the Filippov vector field
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connects p−2 to either p− or p+. The
first case is exhibited in the Figure 8
(a). In the second case the positive
trajectory of Y connects p+ to Σs at
p+1 ≥ p−2 (see Figure 8 (b)). In the
first case we obtain a sliding pseudo-
cycle. In the second case we obtain a
sliding pseudo-cycle topologically dif-
ferent from the first one, or a tangent
pseudo-cycle whose intersection with
Σ is the tangency point p+.

Figure 8: The case p−1 ≥ p+.

Now we assume p− < p−1 < p+. As be-
fore, in this case the Filippov vector field
must connect p−1 to either p− or p+. In the
first situation the analysis is the same of
the regular-tangent case. In the second one
there exist p+1 ≤ p+ the first point on Σ such
that the positive trajectory of Y from p+

meets Σ. If p+1 < p− then the positive tra-
jectory of X connects p+1 to p+2 ∈ (p−1 , p

+]
since H1 holds. In this case we obtain a
sliding pseudo-cycle if p− < p+2 < p+ or a
tangent pseudo-cycle if p+2 = p+ (see Fig-
ure 9 (a)). On the other hand, if p+1 = p−

then we obtain a sliding pseudo-cycle (see
Figure 9 (b)). If p− < p+1 < p+ then the
Filippov vector field connects p+1 to either
p− or p+ (see Figure 9 (c) for the first case)
and we obtain a sliding pseudo-cycle. Fi-
nally, if p+1 = p+ then we obtain a tangent
pseudo-cycle whose intersection with Σ is
the tangency point p+ so we are done.

If p−1 = p− we obtain a tangent pseudo-cycle
whose intersection with Σ is the tangency
point p−.

Figure 9: The case p− < p−1 < p+ where
the Filippov vector field connects p−1 to p+.
(a) p+1 < p−, (b) p+1 = p− and (c) p+1 > p−

and Filippov vector field connects p+1 to p−.

The statement (ii) is treated analogously to
the previous case by reversing time in the
trajectory ΓZ(t, p). Finally, if statements
(iii) or (iv) hold, then we have ΓZ(t, p) /∈ Σe

for t > t0 when ΓZ(t0, p) ∈ Σs. In this
situation the tangent-transversal case ap-
plies.

4.1.3. The tangent-tangent case assuming
p− = p+

Lemma 4. Assume that hypotheses of The-
orem 1, H1 and H2 hold, X and Y have co-
incident tangency points on K ∩ Σ, p− =
p+. Then ΓZ(t, p) can be taken such that
ω(ΓZ(t, p)) is a crossing pseudo-cycle.

Proof. Without loss of generality suppose
that p− = p+ = 0. Now we get the follow-
ing possible configurations:

(i) Σc ∩K = [α, β] \ {0};

(ii) Σs ∩K = [α, 0) and Σe ∩K = (0, β];

(iii) Σe ∩K = [α, 0) and Σs ∩K = (0, β].
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If statement (i) holds the crossing pseudo-
cycles are obtained as in the Fundamen-
tal Lemma. So assume that statement (ii)
holds. We claim that in this case there is no
pseudo-cycle. Indeed let Γ be a closed maxi-
mal trajectory of Z such that Γ∩Σ 6= ∅. As-
sume that it does not contain neither equi-
libria nor pseudo-equilibria. We will show
that Γ is neither positively nor negatively
invariant and therefore it does not satisfies
condition (i) of Definition 3.
Notice that the trajectories of the Filippov
vector field ZΣ on [−ε, 0) and (0, ε] have the
same direction for ε > 0 sufficiently small.
If Γ ∩ Σs 6= ∅ then Γ is not negatively in-
variant because Γ is a meager set while the
saturation of a sliding segment in past time
has non empty interior. If Γ ∩ Σe 6= ∅ then
the previous argument applies and Γ is not
positively invariant. If (Γ∩Σs)∪(Γ∩Σe) = ∅
then 0 is a visible tangent point for at least
one vector field X or Y . Since the Filip-
pov vector field is extendable beyond the
boundary of Σe,s we have that Γ is neither
negatively nor positively invariant. It fol-
lows that Γ is not a pseudo-cycle. The case
in that statement (iii) holds is entirely anal-
ogous.

4.2. Mild Pseudo-cycles and Chaotic Sets of
Type I and II

In this section we study the mild pseudo-
cycles of type I, II and III and its relation
with chaotic sets for a DVF as in Theorem
1.

Proposition 2. Every mild pseudo-cycle of
type II or III is chaotic of type I or II.

Proof. Let Γ be a mild pseudo-cycle of type
I or II, that is, (i) Γ is a closed maximal
trajectory of Z, (ii) Γ ∩ Σ 6= ∅, (iii) Γ does
not contain neither equilibria nor pseudo-

equilibria and (iv) Γ contains a proper max-
imal trajectory.
Since (i) holds we have that int(Γ) = ∅.
Now we must prove that (a) Z is topologi-
cally transitive on Γ, (b) Z exhibits sensitive
dependence on Γ and (c) the periodic orbits
of Z are dense.
Being Γ itself a closed maximal trajectory
then (c) holds. To prove (a) and (b) let

Γ̃ ⊂ Γ be a proper maximal trajectory and
consider p ∈ Γ̃ a point such that there
is no uniqueness of trajectory in Γ, so (a)
holds. Moreover, let γ1(t, p) = Γ and

γ2(t, p) = Γ̃ be these maximal trajectories,
with γ1(0, p) = γ2(0, p) = p. Then, we
have that 2r = sup

t>0
d(γ1(t, p), γ2(t, p)) > 0.

Given x ∈ Γ if y ∈ Γ is sufficiently close
to x we get ΓZ(t, p) = p = ΓZ(t, p) for
t sufficiently close to t. Therefore we ob-
tain the sensitive dependence in Γ from
d(γ1(t, p), γ2(t, p)) > r for some t > 0.

Lemma 5. Assume that hypotheses of The-
orem 1, H1 and H2 hold and X and Y have
coincident tangency points p− and p+ on
K∩Σ. Then ΓZ(t, p) can be taken such that
ω(ΓZ(t, p)) is a mild pseudo-cycle of type I,
II or III.

Proof. Without loss of generality suppose
that p− = p+ = 0. Since this is the unique
tangency point of Z with Σ on K being
of even order for both vector fields X and
Y , we have the following possible configura-
tions:

(i) Σc ∩K = [α, β] \ {0};

(ii) Σs ∩K = [α, 0) and Σe ∩K = (0, β];

(iii) Σe ∩K = [α, 0) and Σs ∩K = (0, β].

Since H1 holds, statement (i) cannot occur.
Suppose that statement (ii) holds. Again
from H1 the double tangency 0 cannot be
elliptic. In fact, if 0 is an elliptic tangency
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point then it attracts the Filippov trajec-
tory on Σe and repels its on Σs. Since 0
is the unique tangent point on Σ ∩ K and
the positive trajectory of Γ = ΓZ(t, p) is
contained entirely on K, H1 is not satisfied,
that is, it cannot occur infinitely many tran-
sitions of Γ with Σ by Σe ∪ Σs. Therefore 0
is a parabolic or hyperbolic tangent point.
Notice that the Filippov vector field on
[−ε, 0) and (0, ε] have the same direction
for ε > 0 sufficiently small. We split the
analysis into the following cases:

(1) Γ+
Z(t, p) visits Σ

s ∪Σe a finite number
of times;

(2) Γ+
Z(t, p) visits Σs a finite number of

times and visits Σe an infinite number
of times;

(3) Γ+
Z(t, p) visits Σs an infinite number

of times and visits Σe a finite number
of times;

(4) Γ+
Z(t, p) visits both Σs and Σe an infi-

nite number of times.

Suppose that situation (1) occurs. Since
H1 holds there exist t0 > 0 such that
ΓZ(t, p)∩Σ = {0} for t > t0 and Γ+

Z(t+t0, p)
is a periodic orbit of X or Y or a union be-
tween them. In the first two cases we ob-
tain a mild pseudo-cycle of type I and in the
third case we obtain a mild pseudo-cycle of
type III (see Figure 10 (c)).

Figure 10: Examples of mild pseudo-cycles.

Now, suppose that situation (2) occurs.
Then there exist t0 > 0 such that ΓZ(t, p) /∈
Σs for t > t0. Since there are infinitely
many transitions of ΓZ(t, p) from and to Σ,
the returns of ΓZ(t, p) to Σ with t > t0 oc-
cur through the visible tangency point 0.
If ΓZ(t, p) returns to 0 by X or Y there is
q±1 ∈ Σe the point for which the past of 0
by X or Y meets Σ. Moreover, at least one
of the points q−1 or q+1 belong to Σe and, for
t > t0 we have that ΓZ(t, p) leaves Σe only
by q−1 according to X or by q+1 according
to Y , see Figures 10 (a) and (b). The tan-
gent point 0 attracts the trajectories of the
Filippov vector field on Σs and repels them
on Σe in a neighborhood of 0 in this case.
Thus we obtain a mild pseudo-cycle of type
I if there exist only one of q−1 or q+1 and a
mild pseudo-cycle of type III if there exists
both q−1 and q+1 . The case (3) is analogous
by reversing orientation on time.
Finally, suppose that situation (4) occurs.
Let p′s and p′e be the frontier of the com-
pact set K ∩ Σ in Σs in Σe, respectively.
Fix ps = max{p̃s, p

′

s} and pe = min{p̃e, p
′

e},
where p̃s ∈ Σs and p̃e ∈ Σe are the near-
est pseudo-equilibrium points of 0. If there
is no pseudo-equilibrium on K ∩ Σ then
ps = p′s and pe = p′e, respectively. Therefore
ΓZ(t, p)∩Σs ⊂ [ps, 0), ΓZ(t, p)∩Σe ⊂ (0, pe]
and the extended Filippov vector field con-
nects ps to pe in future time. Thus we can
take Γ+

Z(t + t0, p) as being a closed trajec-
tory, for some t0 > 0, that is neither posi-
tively nor negatively invariant. Follows that
ω(ΓZ(t, p)) is a mild pseudo-cycle of type II
or III and we are done.

4.3. Chaotic set of type III and pseudo-
graphs

In this section we study the chaotic sets of
type III and those pseudo-graphs that are
ω-limit of some maximal trajectory in the
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sense of Theorem 1.
Suppose that (Σs ∪ Σe) ∩ K 6= ∅. Let Ωg

be the set of pseudo-graphs and Ω∗ ⊂ Ωg be
the subset of pseudo-graphs contained on K
that are ω-limit of some maximal trajectory
of Z whose positive part is contained on K.
That distinction is necessary because some
pseudo-graphs are not w−limit of any tra-
jectory.
Next result provides a partial description of
the elements of Ω∗.

Proposition 3. Assume that hypotheses of
Theorem 1 hold and let Γ ∈ Ω∗ such that
Γ ∩ (Σs ∪ Σe) 6= ∅, that is, Γ is a pseudo-
graph of Z on K which is the ω-limit of a
maximal trajectory of Z with sliding motion.
Then, X and Y have coincident tangency
points p− = p+ on K.

Proof. Initially suppose there exist q ∈ Γ ∩
Σs. Since Γ = ω(ΓZ(t, p)) there exist a
sequence pn = ΓZ(tn, p) converging to q,
where tn → τ+(p) when n → +∞. Notice
that there exist a neighborhood Vq of q such
that every point in Vq meets Σs in future fi-
nite time. So take qn = ΓZ(t

∗

n, pn) ∈ Σs

with t∗n > 0. Since pn → q we get qn → q.
Moreover, the future of all points qn for n
sufficiently large visits a visible tangency
point, that we suppose without loss of gen-
erality to be p−. So it follows that there
are no pseudo-equilibria between q and p−.
If p− 6= p+ then Σs does not connects with
Σe and the trajectory ΓZ(t, p) is regular pe-
riodic whose ω-limit is itself and therefore
ω(ΓZ(t, p)) is not a pseudo-graph. An ana-
logue contradiction is obtained for a pseudo-
graph Γ intersecting Σe by reversing time
or in the regular-tangent case. Therefore
X and Y have coincident tangency points
p− = p+ on K.

Next result is a partial converse of 3.

Lemma 6. Assume that hypotheses of The-
orem 1, H1 and H2 hold and X and Y have
coincident tangency points p− and p+ on
K ∩ Σ. Then ΓZ(t, p) can be taken such
that ω(ΓZ(t, p)) is a chaotic set Λ of type
III. Moreover, if G = ∂Λ ∪ [Λ ∩ Σ] con-
tains any equilibrium or pseudo-equilibrium,
then G is a pseudo-graph and ΓZ(t, p) can be
taken such that ω(ΓZ(t, p)) = G.

Proof. We will split the proof into four
steps. Initially we will construct the set Λ
(Step 1) and then we show that there exists
maximal trajectories in such that Λ and G
are their ω-limit sets (Steps 2 and 3, respec-
tively). Finally we show that Λ is a chaotic
set of type III (Step 4).

Step 1: Construction of Λ.
Without loss of generality suppose that
p− = p+ = 0. Notice that from hypotheses
H1, 0 cannot be an elliptic tangency point
as we verify in the beginning of the proof
of Lemma 4. Then we will construct the
set Λ assuming that 0 is parabolic. The hy-
perbolic case will follow naturally from this
case. Let ps and pe be points such as in
the end of the proof of Lemma 4 and let
q+e ∈ (0, pe] be determined as follows (see
Figure 11). If q ∈ (0, q+e ) then the future of
q by the flow of Y meets [ps, 0) ∈ Σs, say
at q+, and notice it cannot occur to the an-
other initial condition q > q+e on Σe (except
possibly if q+e = pe). Notice also that the
region delimited by the arc of trajectory of
Y with boundary q ∈ (0, q+e ) and q+ joining
the segment [q+, q] ⊂ Σ contains no equilib-
rium point of Y . The portion of Λ contained
on Σ+ is then defined as being the closure
of the union of these regions.
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Figure 11: Chaotic set of type III.

Now we proceed to describe the portion of Λ
contained on Σ− containing the visible tan-
gency point. If neither the past or future
of the tangency point 0 by X meets [ps, pe],
then Λ∩Σ− = ∅. Suppose that the past of 0
byX meets (0, pe) at q

−

1 and let q−e ∈ [q−1 , pe]
be defined as follows. If q ∈ (q−1 , q

−

e ) then
the future of q by X meets [ps, 0), say at
q−. Again, it cannot happen to the another
initial condition q > q−e (except possibly if
q−e = pe). Notice that in this case there is
no equilibrium point in the region on Σ−

delimited by the arc of trajectory of X with
boundaries q and q− joining the segments
[q−, 0] ∪ [q−1 , q

−

e ] (see Figure 11). The por-
tion of Λ contained on Σ− is then defined
as being the closure of the union of these
regions.
In case the future of 0 by the trajectory of
X meets (ps, 0), say at p−s , the approach is
similarly to the previous one by looking to
the past of trajectories with initial condition
on [ps, q

−

s ).

Step 2: Λ is the ω-limit of some max-
imal trajectory achieving the hypoth-
esis of Lemma 5.
From the previous construction we see that
0 ∈ Λ is the common boundary between
the sliding and the escaping region. More-
over, for any interior points r, s of Λ there
exists tr > 0, ts < 0 and trajectories Γr

Z

and Γs
Z such that Γr

Z(tr, r) = Γs
Z(ts, s) = 0.

Hence any two points on the interior can be
connected by an arc of some maximal tra-
jectory. Therefore the closure of Λ is the
ω−limit set of a maximal trajectory.

Step 3: ∂Λ is the ω-limit of some max-
imal trajectory achieving the hypoth-
esis of Lemma 5.
Consider an arbitrary point p ∈ Λ and se-
quences {pn} ⊂ (0, q+e ) and {qn} ⊂ (0, q−e )
converging to q+e and q−e , respectively. Con-
sider also the maximal trajectory ΓZ(t, p)
given as follows. Starting at p, there ex-
ist t0 > 0 such that ΓZ(t0, p) = 0. Due to
the recurrence through 0 there exists two
sequences 0 < t0 < s1 < t1 < s2 < t2 <
· · · < sn < tn < · · · with tn → ∞ such that
ΓZ(sn, p) = pn, ΓZ(tn, p) = qn. Therefore
ΓZ(t, p) leaves Σ

e by Y at pn for t = sn. By
continuity of trajectories respect to initial
conditions and using the compactness of Λ
it follows that ΓZ(t, p) can be taken such
that ω(ΓZ(t, p)) = G ⊂ ∂Λ ⊂ Λ. Moreover,
if G contains no equilibrium or pseudo equi-
librium we have that it is a pseudo-graph.

Step 4: Λ is a chaotic set of type III.
Let U and W be non-empty open subsets of
Λ. For a point p ∈ U there exist a positive
time t0 > 0 such that ΓZ(t0, p) = 0. Since
the positive trajectories of Z contained on Λ
starting at 0 are dense on Λ by construction,
there exist t1 > 0 such that ΓZ(t1, 0) ∈ W .
Then ΓZ(t0 + t1, p) ∈ W . Therefore Λ
is topologically transitive. Analogously we
show the density of periodic orbits on Λ.
For the sensitive dependence of Z on int(Λ),
we notice that for x sufficiently close to y
on int(Λ), there exist a time t > 0 suffi-
ciently close to s > 0 such that ΓZ(t, x) =

ΓZ(s, y) = p0. If r =
1

2
diam(Λ) then there

exists trajectories ΓZ(t, x) and ΓZ(t, y) of Z
such that d(ΓZ(T, x),ΓZ(T, y)) > r for some
T > 0. Moreover, clearly the interior of Λ
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is non-empty.

Remark 5. We see that Λ cannot be a
minimal set since it is either non-invariant
or there always exist a non-empty invariant
proper subset.

As an immediate consequence of the previ-
ous discussion we have the following result:

Proposition 4. Assume that hypotheses of
Theorem 1 hold and that Z is chaotic on the
compact set K. Then,

(i) there exist a parabolic or hyperbolic
(double) tangency point on K;

(ii) Σc ∩K = ∅;

(iii) there exist a maximal trajectory
ΓZ(t, p) and a strictly increase se-
quence of times tn, sn > 0 such that
ΓZ(tn, p) ∈ Σe and ΓZ(sn, p) ∈ Σs.

In particular, Proposition 4 states that, un-
der the hypotheses of Theorem 1, if a DVF
is chaotic them it is structural unstable.
It holds due to the connection of tangency
points on Σ which is clearly destroyed by
suitable small perturbations.

5. Proof of the main results

Now we synthesize the analysis on the pre-
vious section in order to establish the proof
of the main results of the paper.

Proof of Fundamental Lemma. From Re-
mark 3 it is sufficient we consider the
planar DVF case. First assume that
ΓZ(t, p) ∩ Σe ∪ Σs 6= ∅. In this case, by
using the proof provided in [5] we get that
ω(ΓZ(t, p)) is one of items from (i) to (vii).
Assume now that ΓZ(t, p) /∈ Σe ∪ Σs, ∀t >
t0. Since we are interested in limit sets we
only need to consider t ∈ R arbitrarily large,

therefore we also get items (i) to (vii) in the
last situation.
On the other hand, given a fixed T ∈ R, if
ΓZ(t, p) ∈ Σe∪Σs, ∀t > T and since Γ+

Z(t, p)
is contained on a compact set it follows that
ω(ΓZ(t, p)) must accumulate in a point on
q ∈ Σs ∪ Σe. If such a point belongs to
Σs ∪ Σe then it is a pseudo-equilibrium, so
we get statement (viii). If q belongs to the
boundary of Σs ∪ Σe then q must be a tan-
gency point. From that point we could con-
catenate other trajectories of X or Y to q
unless q is an invisible tangency point for a
vector field and a visible tangency of odd or-
der to another, being q reached in finite pos-
itive time in the last situation. Under this
configuration if q is an attractor point to the
sliding segment, then it is a tangency of type
II. Therefore we have statement (ix). If q
is a repeller so by the previous argument it
should accumulate in a pseudo-equilibrium
point and we are done.

Proof of Theorem 1. Let K ⊂ M be a non-
empty compact set contained on a coordi-
nate neighborhood of M and take p ∈ K
such that the positive maximal trajectory
Γ+
Z(t, p) is contained on K. From Remark

3 it is sufficient to consider K ⊂ R
2. First

assume that ΓZ(t, p) /∈ Σe ∪ Σs for t suffi-
ciently large. If the orbit does not touch
Σ again then according to Fundamental
Lemma ω(ΓZ(t, p)) is either an equilibrium,
a periodic orbit or a graph of Y or X so
we get items (i), (ii) and (iii). Otherwise
ω(ΓZ(t, p)) is either a crossing pseudo-cycle,
a pseudo-graph, a mild pseudo cycle of type
II or a tangency of type I of Z, so now we get
(partially) items (v)− (viii). On the other
hand, if ΓZ(t, p) ∈ Σe ∪ Σs for t sufficiently
large then again according to Fundamen-
tal Lemma ω(ΓZ(t, p)) is either a pseudo-
equilibrium of Z or a tangency of type II so
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we get items (iv) and (viii).
Suppose now that for any T > 0 there ex-
ists s, t > T such that ΓZ(s, p) ∈ Σe ∪ Σs

and ΓZ(t, p) /∈ Σ. Notice that under this
assumption (a) the existence of at least one
tangency point is guaranteed on Σ ∩K for
X or Y or both and (b) when there exist
two distinct tangency points they cannot
be simultaneously invisible (see Subsection
4.1.2). Moreover, by hypothesis these vec-
tor fields have at most one tangency point
on Σ ∩ K. Then analyzing X and Y on
Σ ∩K we obtain four different situations:
• 1) X has a tangency point and Y is regu-
lar (or reciprocally). In this case by Lemma
1 we have that ω(ΓZ(t, p)) is a tangent or
a sliding pseudo-cycle contained entirely in
Σ+ or Σ− so we get item (v) of the theorem.
• 2) X and Y have non coincident tangency
points of opposite visibility. In this case by
Lemma 2 the ω(ΓZ(t, p)) is either a crossing
or tangent or sliding pseudo-cycle then we
get item (v).
• 3) X and Y have non coincident visible
tangency points. In this case by Lemma 3
the ω(ΓZ(t, p)) is either a crossing or tan-
gent or sliding pseudo-cycle therefore we get
item (v).
• 4) X and Y have coincident tangency
points In this case the ω(ΓZ(t, p)) is either a
crossing pseudo-cycle (Lemma 4) or a mild
pseudo-cycle of type I, II or III (Lemma 5)
or a chaotic set of type III or it is a pseudo-
graph of Z (Lemma 6). In these cases we
get items (v), (vi), (ix) and (vii), respec-
tively., The four previous cases contemplate
all the objects listed in Theorem 1 and so
the proof is ended.

As commented in Section 3 the pseudo-
cycles and pseudo-graphs listed in Theorem
1 may have different topological types. In-
deed, the pseudo cycles obtained in case 1)

of the proof are contained on Σ+ or Σ− and
their intersection with Σ have only one com-
ponent. On the other hand, the pseudo-
cycles obtained in case 2) are contained on
either Σ+ or Σ− or in both Σ± and their
intersection with Σ has again one compo-
nent. The pseudo-cycles obtained in case
3) of the proof are contained on Σ+ or Σ−

or in both Σ±. However, now the intersec-
tion of the pseudo-cycle with Σ has one or
two components. Concerning the pseudo-
graphs, those obtained from Fundamental
Lemma have neither sliding nor escaping
segments while the pseudo-graphs from case
4) have both type of regions simultaneously.
In any case, it is easy to see that those ob-
ject have distinct topological types.

Proof of Theorem 2. By subsection 4.3
there is a non-minimal chaotic set Λ of
type III for Z. Given p ∈ int(Λ) there
exists t0, t1 > 0 such that ΓZ(t0, p) = p0
and ΓZ(t1, p0) = p. Then every point
in int(Λ) is periodic. In particular the
periodic orbits of Z are dense in Λ.
Moreover, since there exist a dense tra-
jectory in Λ passing through p0, it follows
that there exist a dense trajectory in
Λ passing through p ∈ int(Λ). Since
ΓZ(t0, p) = p0 with t0 > 0 it also follows
that ω(ΓZ(t, p)) = ω(ΓZ(t, p0)) = Λ and
therefore p ∈ int(Λ) is a non-trivial recur-
rence point. Finally, for all V neighborhood
of p and t0 > 0 there exist t > t0 such
that ΓZ(t, p) ∈ V , where ΓZ(t, p) is a
dense trajectory on Λ. Therefore, p is a
non-trivial non wandering point.

It remains to prove Proposition 1 which we
do next.

Proof of Proposition 1. First notice that Λ
is compact and invariant by construction.
Moreover, notice that for every point p ∈ Λ
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there exist a maximal trajectory ΓZ(t, p)
passing through (−1, 0) in future time. Also
for each q ∈ Λ there exist a maximal trajec-
tory ΓZ(s, (−1, 0)) passing through q in fu-
ture time. Then for each p, q ∈ Λ there exist
a value s+ t > 0 such that ΓZ(s+ t, p) = q.
That proves statement (2). In particular, Γ
is topologically transitive and the periodic
orbits are dense on it. To prove the sen-
sitive dependence we now take x ∈ Λ and
fix r = (1/2)diamΛ. If y ∈ Λ is sufficiently
close to x then there exist t sufficiently close
to s such that ΓZ(t, y) = ΓZ(s, x) = (−1, 0).
Then there exist positive global trajectories
Γ+
x and Γ+

y passing through x and y, respec-
tively, satisfying d(Γ+

x (T ),Γ
+
y (T )) > r for

some T > 0 statement (3) is proved. Fi-
nally, since every arbitrary point of Λ can
be connect to itself by some orbit we can
perform a suitable concatenation Γ̃ to con-
clude the last part of the Proposition.

6. Limit sets of some discontinuous
linear vector fields

Discontinuous linear vector fields have been
widely studied due to its theoretical and
practical importance. Moreover, this class
of Filippov systems is particular interesting
because one can easily find its solutions. Re-
gardless, in what follows we see that linear
DVF not only verify the conditions of The-
orem 1 but the ω-limit set of a maximal tra-
jectory may be a chaotic set of type III.
Let Z = (X, Y ) be a planar discontinuous
linear vector field with Σ = {(0, y) : y ∈ R}
and X±(x, y) = A±(x, y)T + b±, being

A± =

(
a±11 a±12
a±21 a±22

)
and b± = (b±1 , b

±

2 )
T .

Assume that det(A±) 6= 0 so X or Y have
only one equilibrium which we assume to
be located outside Σ. Note that these are

generic assumptions. Also, notice that for
p = (0, y) ∈ Σ we have X±.f(p) = a±12y+b±1 ,
and X2

±
.f(p) = a±12(a

±

22y + b±2 ). Conse-
quently there exist at most one tangency
point for X or Y at p± =

(
0,−b±1 /a

±

12

)

if a±12 6= 0. It is easy to check that p±

is either a fold point of X or Y or a tan-
gency point of infinite order. Moreover the
pseudo-equilibria are isolated. Therefore Z
satisfies the hypotheses of Theorem 1 so
the ω-limit set of any maximal trajectory
ΓZ(t, p) contained on a compact set is one
of the possibilities from (i) to (ix) of Theo-
rem 1 excepted by (iii).
We can also provide a more detailed version
of Proposition 4 in terms of the parameters
of the system. Indeed, with the notations
introduced previously we obtain the follow-
ing result.

Proposition 5. If a linear DVF Z =
(X, Y ) has chaotic behavior then the follow-
ing statements hold (simultaneously):

(i) Y and X have coincident tangency
points, that is, a−12b

+
1 − a+12b

−

1 = 0;

(ii) the double tangency is parabolic or hy-
perbolic, that is, a−12b

−

2 − a−22b
−

1 < 0 or
a+12b

+
2 − a+22b

+
1 > 0, respectively;

(iii) Σc = ∅, that is, a+12a
−

12 < 0.

To exemplify the richness of discontinuous
linear vector fields we now consider Z =
(X, Y ) separated by the straight line Σ =
{(0, y) : y ∈ R}, where

X(x, y) =

(
−
1

2
x− y − 1, x+

1

2
y + 2

)
and

Y (x, y) = (x+ y + 1,−2x− y − 2).

The equilibrium points are centers located
at (−2, 0) for X and at (−1, 0) for Y . Set-
ting Σ = f−1(0) with f(x, y) = x we get
Xf(0, y) = −y − 1 and Y (0, y) = y + 1.
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So both vector fields X and Y have tan-
gency points at (0,−1) which is visible forX
and invisible for Y . Since Xf(0, 1) < 0 and
Y f(0, 1) > 0 it follows that Σe = (−1,+∞)
and Σs = (−∞,−1). A simple calculation
shows that the Filippov vector field is given
by ẋ = 0, ẏ = −y/4. Therefore (0, 0) is
the unique pseudo-equilibrium point. More-
over, it can be extended beyond the tan-
gency point (0,−1) which in this case be-
comes an attractor equilibrium point for the
extended Filippov system (see Figure 12).
Now we construct the chaotic set of type
III as follow: let Λ̃ ⊂ R

2 be the subset de-
limited by the following curves

Γ1 : the orbit of X connecting the pseudo-
equilibrium (0, 0) to Σs;

Γ2 : the orbit of Y connecting (0, 0) to Σs;

Γ3 : the periodic orbit passing through the
tangency point (0,−1) according to
X .

Figure 12: A positively minimal set realized
by a linear DVF.

That lead us to the following result.

Proposition 6. Λ̃ is a chaotic set of type
III and it is a positively minimal set.

Proof. The fact that Λ̃ is a chaotic set of
type III follows from step 4 in the proof

of the Lemma 6. Besides, Λ̃ is clearly a
non empty, compact and positively invari-
ant set. In order to see that Λ̃ is indeed min-
imal, we notice that if p ∈ int(Λ) then no
positive maximal trajectory Γ+

Z(t, p) reaches
the pseudo-equilibrium (0, 0) and therefore
Γ+
Z(t0, p) is contained on the interior of Λ.

On the other hand, if q ∈ ∂Λ then the satu-
ration of q in future time is the whole Λ ex-
cept possibly by a segment on its boundary.
Thus Λ̃ cannot contain any non empty, com-
pact and positively invariant proper subset,
that is, Λ̃ is a positively minimal set.

7. Conclusions

In this paper we studied some objects
emerging from the theory of DVF as ω-
limit of a maximal trajectory ΓZ(t, p) on
two-dimensional Riemannian manifolds. In
particular we introduce new objects which
actually are a sophistication of some known
concepts. More precisely, we distinguish
pseudo-cycles from mild pseudo-cycles and
we study three different types of chaotic
sets. Such a refinement is necessary once
structural unstable situations may occur as
ω-limit even in simple contexts as the lin-
ear one. In particular for the linear case,
we provide some classes for which the main
results of the paper applies.
We also observed the absence of nontrivial
minimal sets under the hypotheses of The-
orem 1 because generally invariance cannot
be guaranteed unless we assume (i) more
tangency points (consequently more sliding
and escaping regions) or (ii) more regions
defining the DVF. Besides that, we identi-
fied the existence of orientable minimality
and chaos.
It is important to highlight that the global
study performed throughout this paper al-
low us to identify not only ω−limit sets
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but also the own structure of trajectories
in a more embracing scenario. For instance,
besides the facts concerning minimal sets,
chaos and transitivity, we detect the exis-
tence of homoclinic and heteroclinic con-
nections, several different types of limit sets
(crossing, tangential or having sliding) as
well new objects as tangency points of type
II where trajectories may also accumulate.
Finally we call the attention to a potential
application of the global analyzes performed
in this paper addressing bifurcation theory.
Indeed, let Z = (X, Y ) be a DVF such that
each vector fields X and Y contribute with
one tangency point of even order, p− and
p+ with p− 6= p+. Assume that these tan-
gency points are connected through a maxi-
mal trajectory. This trajectory is a tangen-
tial pseudo cycle having two tangent points
on it and a pseudo-equilibrium of saddle
type inside (see Figure 13). One can study
the bifurcation of sliding limit cycles of dif-
ferent topological types by breaking the fold
connections. Indeed, the limit cycles may
occupy one or two zones as well as they can
be formed by one or two arcs of sliding. The
same occurs in other configurations studied
in the paper. To understand such bifur-
cations and to provide their unfolding is a
hard task that have been under explored in
the literature despite the exhaustive num-
ber of phenomena modeled by DVF.

Figure 13: Two fold visible-visible connec-
tion.
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[11] I. Flügge-Lotz, Discontinuous automatic con-
trol. Princeton University Press, Princeton, N.
J., 1953.

[12] E. Freire, E. Ponce, and F. Torres, “Canoni-
cal discontinuous planar piecewise linear sys-
tems,” SIAM J. Appl. Dyn. Syst., vol. 11, no.
1, pp. 181–211, 2012.

[13] O. M. L. Gomide and M. A. Teixeira,
“On structural stability of 3D Filip-
pov systems: A semi-local approach,”
arxiv.org/abs/1708.05989.

[14] M. Guardia, T. M. Seara, and M. A. Teix-
eira, “Generic bifurcations of low codimension
of planar Filippov systems,” J. Differ. Equa-
tions, vol. 250, no. 4, pp. 1967–2023, 2011.

[15] Y. A. Kuznetsov, S. Rinaldi, and A. Gragnani,
“One-parameter bifurcations in planar Filip-
pov systems,” Internat. J. Bifur. Chaos Appl.
Sci. Engrg., vol. 13, no. 8, pp. 2157–2188, 2003.

[16] R. Thul and S. Coombes, “Understanding car-
diac alternans: a piecewise linear modeling
framework,” Chaos, vol. 20, no. 4, p. 13,45102,
2010.

[17] A. Tonnelier and W. Gerstner, “Piecewise lin-
ear differential equations and integrate-and-
fire neurons: insights from two-dimensional
membrane models,” Phys. Rev. E, vol. 67, no.
2, p. 16,21908, 2003.

[18] V. I. Utkin, “Sliding mode control: mathemat-
ical tools, design and applications,” in Non-
linear and optimal control theory, vol. 1932,
Springer, Berlin, 2008, pp. 289–347.

23


	1 Introduction
	2 Preliminaries
	2.1 Discontinuous vector fields
	2.2 Extension of Filippov vector fields beyond the boundary of s,e

	3 Main results
	3.1 Statement of the main results
	3.2 Brief discussions

	4 Global analysis and auxiliaries results
	4.1 Pseudo-cycles
	4.1.1 The regular-tangent case
	4.1.2 The tangent-tangent case assuming p-=p+
	4.1.3 The tangent-tangent case assuming p-=p+

	4.2 Mild Pseudo-cycles and Chaotic Sets of Type I and II
	4.3 Chaotic set of type III and pseudo-graphs

	5 Proof of the main results
	6 Limit sets of some discontinuous linear vector fields
	7 Conclusions

