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SEMI-DISCRETE OPTIMIZATION THROUGH SEMI-DISCRETE OPTIMAL

TRANSPORT: A FRAMEWORK FOR NEURAL ARCHITECTURE SEARCH

NICOLÁS GARCÍA TRILLOS AND JAVIER MORALES

Abstract. In this paper we introduce a theoretical framework for semi-discrete optimization
using ideas from optimal transport. Our primary motivation is in the field of deep learning,
and specifically in the task of neural architecture search. With this aim in mind, we discuss
the geometric and theoretical motivation for new techniques for neural architecture search (in
the companion work [16] we show that algorithms inspired by our framework are competitive
with contemporaneous methods). We introduce a Riemannian-like metric on the space of

probability measures over a semi-discrete space R
d
× G where G is a finite weighted graph.

With such Riemmanian structure in hand, we derive formal expressions for the gradient flow
of a relative entropy functional, as well as second order dynamics for the optimization of said
energy. Then, with the aim of providing a rigorous motivation for the gradient flow equations
derived formally, we also consider an iterative procedure known as minimizing movement scheme
(i.e., Implicit Euler scheme, or JKO scheme) and apply it to the relative entropy with respect to
a suitable cost function. For some specific choices of metric and cost, we rigorously show that
the minimizing movement scheme of the relative entropy functional converges to the gradient
flow process provided by the formal Riemannian structure. This flow coincides with a system
of reaction-diffusion equations on R

d.
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1. Introduction

Let (G,K) be a weighted graph over the finite set G and consider the semi-discrete space
R
d × G; the function K : G × G → [0,∞) is assumed to be symmetric. In this paper we study,

from geometric and variational perspectives, the system of reaction diffusion PDEs:

∂tft(x, g) = ∆xft(x, g) + divx(ft(x, g)∇xV (x, g))

+
∑

g′∈G

[
log ft(x, g) + V (x, g) − (log ft(x, g

′) + V (x, g′))
]
K(g, g′)θx,g,g′(ft(x, g), ft(x, g

′)),(1.1)

for g ∈ G. In the above, V : Rd × G → R is a potential function defined on the semi-discrete
space Rd×G. The function ft, i.e. the solution to the system of PDEs, is a function from R

d×G
into R (alternatively, ft can be thought of as a collection of real valued functions on R

d indexed
by G), and can be interpreted as the density of a probability distribution on R

d × G. Finally,
the mobility function θx,g,g′ : [0,∞) × [0,∞) → [0,∞) serves as “interpolator” for the masses
at the points (x, g) and (x, g′) and in general dictates the rate at which mass can be exchanged
between nodes in G.

In the first part of the paper, we provide a geometric interpretation of system (1.1) by casting
it as a formal gradient flow of a relative entropy functional defined on the space P(Rd × G) of
probability measures on R

d ×G with respect to an appropriate semi-discrete optimal transport
metric, this optimal transport metric is reminiscent to the Wasserstein metric in Euclidean
space in its dynamic form. While the geometric interpretation that we study here is largely
formal, the framework that we introduce is quite rich and allows us to give formal definitions
of geodesic equations and second order dynamics in the space P(Rd × G).

The second perspective that we take has a variational flavor. We introduce a static optimal
transport problem that serves as cost function in a minimizing movement scheme (a.k.a. JKO
scheme) for the relative entropy functional E . Then, we rigorously show that for a mobility
that is independent of the masses to be interpolated (i.e. θx,g,g′ does not depend on ft(x, g) and
ft(x, g

′)), system (1.1) can be recovered as the limit of the minimizing movement scheme as the
time discretization converges to zero; see Theorem 2.14 for a precise statement.

Regardless of the perspective taken, the main conceptual insight stemming from our work is
that the system of equations (1.1) can be interpreted as a gradient flow of relative entropy in
the space of probability measures P(Rd×G). What interests us from this interpretation is that
it allows us to motivate new schemes for the optimization of an objective function of the form
V : Rd×G → R, with applications in machine learning such as neural architecture search in mind
(see the discussion in section 7). The discussion in the next section in the familiar Euclidean
setting will help us motivate the prospects of using semi-discrete optimal transport for semi-
discrete optimization; we also motivate the theoretical results that we seek in this paper by
providing a brief historical background on gradient flows in the space of probability measures.
Our companion paper [16] discusses more concretely how part of the theoretical framework
presented in this work can be used to define scalable neural architecture search algorithms.

1.1. Motivation from Euclidean space: Otto Calculus in P(Rd). Consider an optimiza-
tion problem on R

d of the form
min
x∈Rd

V (x),

where for the sake of exposition V is assumed to be a nice enough differentiable function. Let
us consider the following dynamics on the state space R

d:

(1.2)

{
dx(t) = −∇xV (x(t))dt , t > 0

x(0) = x0,

(1.3)

{
dx(t) = −∇xV (x(t))dt+

√
η
2 dBt, , t > 0

x(0) = x0,
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(1.4)

{
dxj(t) = −Ct∇xV (xj(t))dt+

√
2CtdB

j
t , t > 0 j = 1, . . . , J

Ct :=
1
J

∑J
j=1(x

j(t)− x(t))⊗ (xj(t)− x(t)).

All of the above dynamics can be interpreted as gradient-based continuous time algorithms
for the optimization of the function V . (1.2) is gradient descent. (1.3) is gradient descent
with Brownian noise; in principle useful to help gradient descent scape local minima. (1.4) is
a preconditioned gradient descent with noise. In (1.4) multiple interacting particles are used
to define the preconditioning matrix Ct (in this case the running covariance matrix associated
to the particles). Besides being used for the optimization of the objective V defined on R

d,
equations (1.2), (1.3), and (1.4) share a common underlying structure: they can be associated
to certain gradient flows in the space of probability measures P(Rd) when endowed with an
appropriate optimal transport cost. In what follows we revisit this connection for (1.3) (notice
that while degenerate, (1.2) can be seen as a special case of (1.3)) and refer the interested reader
to [15] for details on how to interpret (1.4).

It is well known that the law of the process x(t) in (1.3) denoted µt solves a Fokker Planck
equation of the form:

(1.5) µ̇t − divx(µt∇xV )− η∆x(µt) = 0, t > 0,

with initial datum µ0, where in the above divx is the divergence operator in R
d, ∇x the gradient

operator, and ∆x the Laplacian operator ∆x := divx ◦ ∇x. In general, equation (1.5) must be
interpreted in weak form.

Mathematicians and physicists have studied Fokker Planck equations for decades, and more
recently, the seminal work of [20] has provided a gradient flow interpretation for these equa-
tions. This interpretation uses the setting of gradient flows in the space of probability measures
endowed with the Wasserstein distance. To be more precise let us first recall the definition of
the Wasserstein distance with quadratic cost for a pair of probability measures µ, ν ∈ P2(R

d)
(i.e. probability measures with finite second moments):

(1.6) W2(µ, ν)
2 := min

π∈Γ(µ,ν)

ˆ

Rd×Rd

|x− y|2dπ(x, y),

where Γ(µ, ν) is the set of couplings between µ and ν. The above definition can be thought of
as describing a static optimal transport problem, where one seeks for an optimal assignment of
sources and targets of mass without specifying how said transport is actually realized dynam-
ically in time. An alternative dynamic reformulation due to Benamou and Brenier [3] states
that

W2(µ, ν)
2 = inf

t∈[0,1] 7→(µt,∇xϕt)

ˆ 1

0

ˆ

Rd

|∇xϕt|2 dµtdt,

where the minimum is taken over all solutions (µt,∇xϕt) to the continuity equation

(1.7) µ̇t + div(µt∇xϕt) = 0,

with µ0 = µ and µ1 = ν. The Benamou-Brenier reformulation highlights the otherwise unclear
dynamic nature of the optimal transport problem (1.6) and it reveals a deeper geometric struc-
ture that we now discuss. First, solutions to the continuity equation t ∈ [0, 1] 7→ (µt,∇xϕt)
which represent the different ways in which one can dynamically transport mass from µ0 to
µ1 can be mathematically interpreted as curves in the space of probability measures. Here,
µt specifies the location of a particle at time t while the potential ϕt : R

d → R is interpreted
as “tangent vector” characterizing an allowed infinitesimal change to the location µt. Second,
the objective function in the Benamou-Brenier problem can be interpreted as the “length” of
a given curve (in this case a kinetic energy). A formal Riemannian metric tensor 〈·, ·〉µ can be
defined according to:

〈ϕ,ϕ′〉µ :=

ˆ

Rd

∇xϕ · ∇xϕ
′dµ

for any two potentials ϕ,ϕ′ : Rd → R (i.e. any two tangent vectors at µ). From the above
discussion one can now see that the Wasserstein distance corresponds to the geodesic distance

3



associated to the above formal metric tensor, and reveals that the metric space (P2(R
d),W2)

can be treated (at least formally) as a Riemannian manifold.
Now, seeing (P2(R

d),W2) as a formal Riemannian manifold allows one to give a heuristic
definition for the gradient flow of a functional E defined on P2(R

d):

(1.8)

{
µ̇(t) = −∇W2E(µ(t))
µ(0) = µ0.

With the Fokker Planck equation in (1.5) in mind let us consider the functional

E(µ) =
ˆ

Rd

V dµ + ηH(µ),

where H is the negative Shannon entropy

H(µ) =

{
´

Rd f log fdx if dµ = f(x)dx,

+∞ othwerwise .

In the Riemannian formalism ∇W2E(µ) must be interpreted as a tangent vector to µ (i.e. a
potential) which serves as Riesz representer to the map of directional derivatives of the energy
E . Namely, for an arbitrary curve t 7→ µt ∈ P2(R

d) which at time t = 0 passes through µ with
tangent vector ϕ one must have

d

dt
E(µt)|t=0 = 〈∇W2E(µ), ϕ〉µ.

The set of heuristic computations used to determine the gradient ∇W2E(µ) from the above
formula is nowadays widely known as Otto Calculus (see chapter 15 in [32]), and in the case of
the relative entropy it gives the formula:

−∇W2E(µ) = −V − η log f,

for every dµ = f(x)dx; a similar computation will be presented in more detail in section 2.3
for the semi-discrete setting explored here. Plugging the above potential back in the continuity
equation, we recover the Fokker Planck equation (1.5). In other words, through heuristic argu-
ments from Riemannian geometry that rely on the geometric structure of the optimal transport
distance W2, the dynamics (1.3) used for optimization of V can be lifted to the space P2(R

d)
where one can give a gradient flow interpretation.

There is a second way of motivating an interpretation of (1.8) which coincides with the one
coming from the Riemannian formalism. To discuss this alternative let us first consider a more
general setting and let us assume that M is an arbitrary topological space, E : M → (−∞,∞]
is an objective function to optimize, C : M×M → [0,∞) is a driving cost function, and τ > 0
is a time step. One can then consider the minimizing movement scheme (also known as JKO
scheme)

(1.9) µk+1 ∈ argmin
µ∈M

E(µ) +
1

2τ
C(µk, µ)

2,

as a discrete time scheme for optimization. Under suitable conditions, in the limit τ → 0 iterates
(1.1) define a function in time describing what one can refer to as a “gradient flow of E” with
respect to the cost function C. Notice that when M = R

d and C is the Euclidean metric,
the above scheme is essentially the variational formulation of implicit Euler iterates (i.e., the
computation of a proximal operator for the function E).

When M = P2(R
d), C is the Wasserstein distance W2, and E = E is the relative entropy,

the iterates µ0, µ1, . . . , µk, . . . (where µ0 is assumed to satisfy E(µ0) < ∞) defined recursively
by the JKO scheme, i.e.

(1.10) µk+1 ∈ argmin
µ∈P2(Rd)

E(µ) + 1

2τ
W 2

2 (µk, µ),
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can be shown to converge as τ → 0, to a solution of the Fokker Planck equation (1.5) (see
[20]). Historically, the JKO scheme (1.10) was the first approach used to give a “gradient flow”
interpretation to the Fokker Planck equation (1.5). In more generality, evolution equations of
the form

µ̇t = divx

(
∇xµt + µt∇xV + µt(∇xU ∗ µt

))
,

are limits of the JKO scheme (1.1) for appropriate functionals defined on P2(R
d) using the

Wasserstein distance as cost function. The gradient flow interpretation via the minimizing
movement scheme allows one to prove entropy estimates and functional inequalities (see [32] for
more details on this area, which is still very active and in constant evolution).

The minimization problem can be stated in a Lagrangian form as the problem of finding

(1.11) µk+1 ∈ argmin
µ∈P2(Rd)

E(µ) +Aτ (µk, µ),

where Aτ (µk, µ) denotes the action of the curve in the tangent bundle of (P2(R
d),W2) with

minimal kinetic energy connecting µk and µ in τ units of time.

In summary, the gradient based dynamics (1.3) used for optimization of an objective V defined
on the state space R

d are closely linked to a gradient flow on the space of probability measures
P(Rd). This gradient flow can be motivated using either the formal Riemannian structure that
the dynamic formulation of optimal transport has, or the minimizing movement scheme with
driving cost taken to be the Wasserstein distance (given that the two interpretations coincide).

1.2. Outline. We organize the rest of the paper as follows. In section 2 we introduce the
main objects studied in the paper and state our main results precisely. We start in section 2.1
introducing the basic analytical objects on graphs used throughout the paper. In section 2.2
we introduce a family of distances on the space of probability measures over R

d × G based on
a dynamic formulation of optimal transport. We highlight the formal Riemannian structure of
the metric introduced and explore the connections between our definition and the literature on
discrete optimal transport. In section 2.3 we use the Riemannian formalism from section 2.2 in
order to motivate a definition for the gradient flow of a relative entropy energy closely related
to the objective function in the semi-discrete optimization problem of interest. In section 2.4
we use the Riemannian formalism once again and motivate a method for optimization of the
relative entropy. In section 2.5 we provide concrete theoretical support for the formal definitions
and computations presented in the earlier sections. In particular, we state our main theoretical
result, which establishes a connection between the formal definitions from section 2.3 and the
minimizing movement scheme discussed in the introduction. To realize the JKO scheme we
introduce a new cost that can be interpreted as a static semi-discrete optimal transport cost.

Section 3 explores metric and geometric properties of the transport distances introduced in
section 2.2 (i.e. the dynamic semi-discrete transport problems). More specifically, in section
3.1 we prove that these “distances” are indeed metrics. Section 3.2 aims at providing concrete
and rigorous support for the heuristic discussion in section 2.2. The discussion in this section
motivates more concretely (and rigorously) the characterization of tangent planes of the space
of probability measures over Rd×G. Section 3.3 presents some heuristic computations justifying
the definition of the accelerated method for optimization presented in section 2.4.

Section 4 studies the static semi-discrete transport problem introduced in section 2.5. This
section is used later on in the paper, but is also of independent interest. We establish a character-
ization for solutions to the static semi-discrete optimal transportation problem that is analogous
to the celebrated result by Brenier characterizing solutions to the quadratic (Euclidean) optimal
transport problem.

Section 5 studies properties of the variational problem used to define the JKO scheme rel-
ative to the static semi-discrete cost. We provide a full characterization of solutions to this
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variational problem. We also establish a maximum principle that is characteristic of Fokker
Plank equations.

In section 6 we put together the results proved in sections 4 and 5 and prove our main
theoretical result Theorem 2.14, i.e. we show the convergence of the JKO scheme proposed in
section 2.5.

We wrap up the paper in section 7 where we provide some conclusions, perspective on future
research directions, and discussion on some of the applications in machine learning that have
motivated this work.

Note: Throughout the paper some computations will be carried out at a formal level. One
of our aims is to stress the importance of the intuition emanating from the formal Riemannian
structure that the dynamic formulation of optimal transport has. After all, it is this Riemannian
formalism that motivates the algorithms that are implemented in our companion paper [16]
for the purposes of neural architecture search (including accelerated methods). The formal
computations (or heuristic arguments) that we present here are, for the most part, accompanied
by rigorous counterparts.

2. Semi-discrete optimal transport and gradient flows

2.1. Some differential operators on graphs. In this section we introduce the discrete differ-
ential operators that will later be used to introduce a semi-discrete optimal transport problem
on R

d × G.
Throughout the paper we assume that (G,K) is connected, meaning that for every g, g′ ∈ G

there exists a path g0, . . . , gm ∈ G with g0 = g, gm = g′ and K(gl, gl+1) > 0 for every l =
0, . . . ,m− 1.

Given a function φ : G → R we define its discrete gradient as the function ∇gφ : G × G → R

∇gφ(g, g
′) := φ(g′)− φ(g).

We use the subscript g in ∇g to distinguish the discrete gradient from the gradient of a function

defined on R
d (where we use the notation ∇x). This distinction will become important later on

when we consider functions φ : Rd × G → R for which we can compute its gradient ∇x as well
as its discrete gradient ∇g.

Given a function h : G × G → R (i.e. a discrete vector field) we define its discrete divergence
as the function divgh : G → R defined by

divg h(g) :=
∑

g′

(h(g, g′)− h(g′, g))K(g, g′).

Discrete gradients and discrete divergences are related to each other via a discrete integration
by parts formula. Namely, a straightforward computation shows that for every h : G × G → R

and φ : G → R it holds

(2.1)
∑

g

divg(h)(g)φ(g) = −
∑

g,g′

h(g, g′)∇gφ(g, g
′)K(g, g′).

In particular if h is of the form h = ∇gψ ·S (where · is interpreted as a coordinatewise product)
for some S : G × G → R, then

(2.2)
∑

g

divg(∇gψ · S)(g)φ(g) = −
∑

g,g′

∇gφ · ∇gψS(g, g
′)K(g, g′).

In the remainder we use the following result establishing existence and uniqueness of solutions
to elliptic graph PDEs.

Proposition 2.1. Suppose that the graph (G,K) is connected. Let φ : G → R be such that
∑

g

φ(g) = 0,

6



and let S : G×G → [0,∞) be a symmetric function which is strictly positive whenever K(g, g′) >
0. Then, there exists a unique solution η : G → R to the graph PDE

(2.3) divg(∇gη · S) = φ

satisfying ∑

g

η(g) = 0.

Moreover, ∑

g,g′

|∇gη(g, g
′)|2S(g, g′)K(g, g′) ≤ 1

λS

∑

g

|φ(g)|2,

where λS represents the first non-zero eigenvalue of the graph Laplacian matrix LS with entries:

LS(g, g
′) := 1g=g′

∑

g′′

2S(g, g′′)K(g, g′′)− 2S(g, g′)K(g, g′).

Proof. The graph PDE can be written in matrix form as

LSη = −φ,
where φ and η are interpreted as vectors whose coordinates are indexed by the elements in G,
and where the matrix LS is the (unnormalized) graph Laplacian for a weighted graph (G, ω) with
weights ωg,g′ := 2S(g, g′)K(g, g′)–see [8] for the definition of graph Laplacians. The assumptions
on S guarantee that the graph (G, ω) is connected and thus its graph Laplacian LS is a positive
semi-definite matrix with zero eigenvalue of multiplicity one. The assumption on φ guarantees
that it belongs to the orthogonal complement of the null space of LS , and thus is an element of
the range of LS . We conclude that the graph PDE indeed has a unique solution η with average
zero.

Finally, according to (2.2),
∑

g,g′

|∇gη(g, g
′)|2S(g, g′)K(g, g′) =

∑

g

−divg(∇gηS)η(g) = −
∑

g

φ(g)η(g) =
∑

g

LSη(g)η(g),

and thus from Cauchy-Schwartz inequality it follows that

∑

g,g′

|∇gη(g, g
′)|2S(g, g′)K(g, g′) ≤

(
∑

g

|φ(g)|2
)1/2(∑

g

|η(g)|2
)1/2

.

From the fact that the graph (G, ω) is connected it follows that
∑

g

|η(g)|2 ≤ 1

λS

∑

g

LSη(g)η(g),

where λS is the first non-zero eigenvalue of LS. Combining the above two inequalities we obtain
the desired result.

�

2.2. A Riemannian structure for semi-discrete OT. Let us denote by P2(R
d × G) the

space of Borel probability measures on R
d × G with finite second moments. In this section

we introduce a metric W2 on P2(R
d × G) which can be formally interpreted as the geodesic

distance associated to a formal Riemannian structure on P2(R
d ×G). Viewing P2(R

d ×G) as a
Riemannian manifold, in section 2.3 we will be able to give a concrete heuristic interpretation
for the gradient descent equation:

(2.4)

{
µ̇(t) = −∇W2E(µ(t))
µ(0) = µ0,

for a conveniently chosen function E on P2(R
d × G) that depends on the objective function V

in (7.1). Here t 7→ µt describes a path in the space P2(R
d × G).

7



2.2.1. A dynamic optimal transport problem in P2(R
d×G). Motivated by the (Euclidean) Otto

Calculus discussed in section 1.1, in order to define an optimal transport problem in the semi-
discrete setting, we first introduce an appropriate notion of continuity equation. As in the
Euclidean case, semi-discrete continuity equations are used to describe paths in the space
P2(R

d × G).
The definition of a semi-discrete continuity equation depends on the choice of a mobility

function θ which in full generality is a function of the form

θ : Rd × G × G × R+ × R+ −→ R+.

In the remainder we will often write θx,g,g′(s, t) and drop the subscripts when no confusion may
arise from doing so. The mobility function is used to quantify how easy it is to move mass
from a point (x, g) to a point (x, g′) when the amount of mass at each of these points is s
and t respectively. Mobilities as described above are motivated by the literature on discrete
optimal transport. See [7, 22, 23, 24] where discrete optimal transport was first introduced and
[12, 11, 13] for other references where the topic has been developed further. A rigorous passage
to the limit from discrete OT to OT in R

d, at least for certain classes of geometric graphs, has
been explored in [17, 31, 19, 18].

Throughout the paper we will make the following assumptions on θ. These assumptions are
closely related to those in [12, 22] for discrete OT.

Assumption 2.2. The mobility function θ satisfies either:

(A0) θ is non-zero, does not depend on s, t and satisfies the symmetry condition: θx,g,g′ is

equal to θx,g′,g for all x ∈ R
d, g, g′ ∈ G. In addition, θx,g,g is uniformly bounded away

from zero on compact sets of Rd × G × G.
or all of the following

(A1) Symmetry: θx,g,g′(s, t) = θx,g,g′(t, s) for all s, t.
(A2) Differentiability: The function θx,g,g′(·, ·) is differentiable.
(A3) Monotonicity: θx,g,g′(r, t) ≤ θx,g,g′(s, t) for all r ≤ s and all t.
(A4) Positive homogeneity: θx,g,g′(λs, λt) = λθx,g,g′(s, t) for all λ ≥ 0 and all s, t.
(A5) The quantity

Cx,g,g′ :=

ˆ 1

0

1√
θx,g,g′(1− t, t)

dt,

is uniformly bounded above on compact subsets of Rd×G×G, and the quantity θx,g,g′(1, 1)

is uniformly bounded away from zero on compact subsets of Rd × G × G.
Definition 2.3. In what follows, we consider vt : R

d × G → R
d, ht : R

d × G × G → R and
µt ∈ P2(R

d × G). We say that t ∈ [0, T ] 7→ (µt, vt, ht) satisfies the semi-discrete continuity
equation and write

(2.5) µ̇t + divx(vtµt) + divg(htµt) = 0,

if for all smooth test functions ζ ∈ C∞
c (Rd × G) (i.e. ζ(·, g) is C∞

c (Rd) for all g ∈ G) we have

d

dt

ˆ

Rd

∑

g

ζ(x, g)dµt =

ˆ

Rd

∑

g

∇xζ(x, g) · vt(x, g)dµt

+

ˆ

Rd

∑

g,g′

∇gζ(x, g, g
′)ht(x, g, g

′)dµ̂t(x, g, g
′).

(2.6)

In the above expression, for a given µ ∈ P2(R
d × G), we use µ̂ to denote the measure on

R
d × G × G given by

dµ̂(x, g, g′) = θx,g,g′dxdgdg
′

when θ satisfies (A0) in Assumption 2.2 and

dµ̂(x, g, g′) = θ(µg|x(g), µg|x(g
′))dµx(x)dgdg

′.
8



when θ satisfies (A1) − (A5) instead. Here µg|x denotes the conditional distribution of g given
x. Also, here and in the remainder dg represents the measure on G that gives mass one to every
element of G.

Remark 2.4. We notice that when µ has a density with respect to dxdg, i.e.,

dµ(x, g) = f(x, g)dxdg,

then

dµ̂(x, g, g′) = θ(f(x, g), f(x, g′))dxdgdg′.

Indeed, this is immediate if θ satisfies (A0) and otherwise follows from the homogeneity of the
mobility θ, i.e. condition (A4).

Remark 2.5. Let t ∈ [0, T ] 7→ (µt, vt, ht) be a solution to the semi-discrete continuity equation
and suppose that for every t, µt is absolutely continuous with respect to dxdg and has density
ft(x, g). Additionally, suppose that the mappings (t, x, g) 7→ f(t, x, g), (t, x, g) 7→ vt(x, g, g

′)
and (t, x, g) 7→ ht(x, g, g

′) are all smooth. In that case we can see that for every test function
ζ ∈ C∞

c (Rd × G) we have
ˆ

Rd

∑

g

ζ(x, g)
∂

∂t
ft(x, g)dx =

d

dt

ˆ

Rd

∑

g

ζ(x, g)dµt(x, g)

=

ˆ

Rd

∑

g

∇xζ(x, g) · vt(x, g)dµt +
ˆ

Rd

∑

g,g′

∇gζ(x, g, g
′)ht(x, g, g

′)K(g, g′)θ(ft(x, g), ft(x, g
′))dx

= −
ˆ

Rd

∑

g

ζdivx(vtft)dx−
ˆ

Rd

∑

g

ζdivg(ht · f̂t)dx,

where f̂t(x, g, g
′) := θ(ft(x, g), ft(x, g

′)). The last equality follows using integration by parts in
x for the first term and in g for the second term (i.e. identity (2.1)). We conclude that

∂

∂t
ft + divx (vtft) + divg (htf̂)(x, g) = 0, ∀t, x, g.

which justifies the notation (2.5) used in Definition 2.3.

With the above notion of continuity equation in hand, we are now able to introduce the
following dynamic optimal transport problem.

Definition 2.6. Let µ0 and µ1 be two elements in P2(R
d × G). We define

W2(µ0, µ1)
2 := inf

t∈[0,1] 7→(µt,∇xφt,∇gψt)

ˆ 1

0

(
ˆ

Rd

∑

g∈G
|∇xφt(x, g)|2dµt(x, g)

+

ˆ

Rd

∑

g,g′

(∇gψt(x, g, g
′))2K(g, g′)dµ̂t(x, g, g

′)

)
dt,

(2.7)

where the infimum is taken among all solutions to the semi-discrete continuity equation of the
form t ∈ [0, 1] 7→ (µt,∇xφt,∇gψt), where φt : R

d × G → R and ψt : R
d × G → R.

In words, W (µ0, µ1)
2 is obtained by minimizing the total kinetic energy associated to paths

connecting µ0 and µ1. In section 3 we rigorously show that W2 as defined above, is indeed a
metric on the space P2(R

d × G). The precise statement is the following.

Theorem 2.7. Let (G,K) be a connected weighted graph, where K is a symmetric weight matrix
with non-negative entries. Suppose that the mobility function θ : Rd × G × G × R× R → [0,∞)
satisfies Assumptions 2.2. Then, W2 as introduced in Definition 2.6 is a metric on the space
P2(R

d × G).
9



Remark 2.8. In the above definition we have introduced the semi-discrete Wasserstein distance
as an optimization problem over a specific class of solutions to the continuity equation, namely,
solutions whose driving vector fields are gradients of potentials. It is actually possible to show
that removing the restriction to this smaller class of vector fields does not change the definition
given. We have introduced W2 in this way for convenience.

Later on we will show that the class of vector fields can actually be restricted even further (at
least for regular enough measures). In particular the potentials φ and ψ may be taken to be the
same. This observation will be useful when interpreting P2(R

d × G) as a formal Riemannian
manifold with geodesic distance that coincides with W2.

Remark 2.9. The definition given in (2.6) is a particular case of the formal definition given in
[23]. A closely related construction is also explored in [5] under the name of “vector-valued op-
timal transport”, as well as in [6], which introduces an algorithm used to solve applied problems
in color image processing and multi-modality imaging. Here we present some heuristic compu-
tations providing a characterization of tangent planes (see the informal Theorem 2.10 below and
its rigorous counterpart in section 3.2), and a formal computation of the acceleration of curves
which in turn motivates: 1) geodesic equations, and 2) accelerated methods for optimization (see
sections 2.4 and 3.3).

2.2.2. A formal Riemannian structure for (P2(R
d × G),W2). In differential geometry, when

working in the setting of a smooth manifold M, a tangent vector at a given point q is interpreted
as the velocity of a curve in M when passing through q. The collection of tangent vectors at q,
i.e. q’s tangent plane, is typically denoted by TqM. When M is endowed with a Riemannian
structure, one can compute inner products 〈p, p̃〉q between elements p, p̃ ∈ TqM and introduce
a notion of distance between points q, q̃ ∈ M according to

d(q, q̃)2 := inf
t∈[0,1] 7→q(t)

ˆ 1

0
〈q̇(t), q̇(t)〉q(t)dt,

where the infimum ranges over all paths connecting q to q̃.
We now provide some heuristics that motivate how the space (P2(R

d × G),W2) can actually
be interpreted in light of this Riemannian formalism. The first step is an informal statement
that will justify some of the subsequent discussion. A precise (and rigorous) version will be
presented in section 3.2.

Theorem 2.10. Characterization of potentials (informal) Let t → µt, be an arbitrary
curve in P2(R

d×G) with velocity fields generated by the potentials (φt, ψt). Then, we can replace
the potentials with a pair of the form (ϕt, ϕt) such that it acts as a velocity field for the same
curve t→ µt, and has minimal total kinetic energy.

The above suggests that there is some redundancy when considering different potentials φ,ψ
and actually one may take both potentials to be the same. Indeed, such a characterization
allows us to formally identify the tangent plane at a measure µ in P2(R

d × G) as:

TµP2(R
d × G) :=

{
ϕ :

ˆ

Rd×G
|∇xϕ|2dµ(x, g)

+

ˆ

Rd×G×G
[ϕ(x, g′)− ϕ(x, g)]2K(g, g′)dµ̂(x, g, g′) <∞

}
.

(2.8)

endowed with the inner product:

〈ϕ, ϕ̃〉µ :=

ˆ

Rd

∑

g

∇xϕ(x, g) · ∇xϕ̃(x, g)dµ(x, g)

+

ˆ

Rd

∑

g,g′

∇gϕ · ∇gϕ̃K(g, g′)dµ̂(x, g, g′).
(2.9)
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A rigorous definition of the tangent plane is out of the scope of this work. Putting aside all
technicalities, we can observe formally that the semi-discrete Wasserstein distance W2 from
Definition (2.6) can be rewritten as

W 2
2 (µ0, µ1) = inf

ˆ 1

0
〈ϕt, ϕt〉µtdt,

where the inf ranges over solutions to the continuity equation t ∈ [0, 1] 7→ (µt,∇xϕt,∇gϕt)

connecting µ0 with µ1 (i.e., over paths in P2(R
d×G), according to the informal Theorem 2.10):

this formula and its interpretation reveal the Riemannian structure of the metric W2. In the
next subsection we use this Riemannian formalism to motivate a concrete interpretation for
(2.4).

2.3. Computation of gradient flows using the Riemannian formalism. In this section
we use the Riemannian formalism for (P2(R

d × G),W2) discussed in the previous section to
motivate a definition for the gradient of a given energy function E : P2(R

d × G) → R ∪ {∞},
and ultimately give a concrete meaning to the gradient flow ODE (2.4). Looking forward to
our applications, here we will focus on energies of the form

(2.10) E(µ) :=
{
´

Rd

∑
g ϑ(f(x, g), x, g) dx if dµ(x, g) = f(x, g) dxdg

+∞ otherwise,

where ϑ : [0,∞) × R
d × G → R is given by

ϑ(r, x, g) := r log r + V (x, g)r.

We think of the function V : Rd × G → R as the objective of the semi-discrete optimization
problem (7.1). Here we assume for simplicity that V is differentiable in the x coordinate. Notice
that E is a relative entropy and can be written as the sum of the two terms

E(µ) = H(µ) +

ˆ

Rd×G
V (x, g)dµ(x, g),

where H denotes the (negative) entropy of µ when the base measure on R
d × G is the product

measure dxdg. The entropy term H may be multiplied by a positive factor for generality without
that entailing any meaningful changes in the computations below. This choice of energy is
motivated by the discussion presented in section 1.1.

Let us recall that in Riemannian geometry, the gradient of a differentiable function E : M →
R at a point q is defined as a tangent vector ∇ME(q) at q characterized by: for every smooth
curve t ∈ (−ε, ε) 7→ q(t) ∈ M with q(0) = q,

〈∇ME(q), q̇(0)〉q =
d

dt
E(q(t))

∣∣∣∣
t=0

.

In words, the above means that the gradient of a given function E at a given point q on the
Riemannian manifold M serves as Riesz representer (with respect to the inner product at that
point) for the map of directional derivatives of the function E at the point q.

Using the above discussion as motivation we notice that for arbitrary µ ∈ P2(R
d × G) such

that E(µ) < ∞, the gradient of E (with respect to W2) at the point µ must be interpreted as
a potential ϕµ. Our goal is to identify ϕµ. In order to achieve this, we consider t ∈ (−ε, ε) 7→
(µt,∇xψt,∇gψt) an arbitrary curve in P2(R

d×G) which at time t = 0 passes through the point
µ (i.e. µ0 = µ ). We assume dµt = ftdxdg and write f = f0. We want ϕµ to satisfy

(2.11) 〈ϕµ, ψ0〉µ =
d

dt
E(µt)

∣∣∣∣
t=0

.

11



A formal computation shows that

d

dt
E(µt)

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

ˆ

Rd

∑

g

(
log ft + V

)
ftdx

=

ˆ

Rd

∑

g

(
log f0 + 1 + V

)
∂tf0(x, g)dx.

Using the semi-discrete continuity equation the last line can be rewritten as
ˆ

Rd

∑

g

∇x(log f + V ) · ∇xψ0dµ(x, g) +

ˆ

Rd

∑

g,g′

∇g(log f + V ) · ∇gψ0K(g, g′)dµ̂(x, g, g′),

which in turn can be rewritten as 〈log f + V, ψ0〉µ. It follows that ϕµ can be taken to be

(2.12) ∇W2E(µ) := ϕµ = log f + V.

Having found the gradient of E through the above heuristic computations we can now give a
concrete interpretation to (2.4) by plugging in the potential −(log f + V ) in the semi-discrete
continuity equation. In particular, t ∈ [0,∞) → µt in (2.4) is interpreted as

dµt(x, g) = ft(x, g)dxdg,

where ft follows (1.1). Equation (1.1) can be described as a coupled system of reaction-diffusion
equations indexed by g ∈ G. The presence of the last term in (1.1) is responsible for the
coupling of the dynamics. From the transport point of view this coupling term induces mass
to be exchanged between different nodes (and thus the total mass at a single g ∈ G changes in
time). From the optimization point of view, a coupled system implies that information on the
optimization over parameters x for a given node g is used for the optimization of parameters x
for nearby nodes g′ and vice versa.

We finish this section with two examples of mobility functions θ and their corresponding
gradient flows.

Example 2.11. Let W : Rd → R be a function in the Sobolev space W 1,2(Rd) satisfying

(2.13)

ˆ

|x|2e−Wdx <∞.

We define a mass independent mobility θ according to

θx,g,g′(s, t) := e−W (x).

This mobility function satisfies (A0) in Assumptions 2.2. We notice that in the corresponding
optimal transport problem from definition (2.6) the transfer of mass between points (x, g) and
(x, g′) is cheap precisely when W (x) is large. We also notice that the cost of transporting mass
along the graph G does not depend on the actual amount of mass that is initially located at the
nodes of G, a situation that contrasts with the one presented in the next example.

Finally, for this choice of mobility the system of equations (1.1) becomes the system of non-
linear reaction diffusion equations:

∂tf(x, g) = ∆xft(x, g) + divx(ft(x, g)∇xV (x, g)) +
∑

g′∈G

[
log f(x, g) + V (x, g)

− (log f(x, g′) + V (x, g′)
]
K(g, g′)e−W (x).

(2.14)

Example 2.12. Suppose that the mobility θ takes the form

θx,g,g′(s, t) = θlog(s exp(V (x, g)), t exp(V (x, g′))

where θlog is the logarithmic interpolation function:

θlog(a, b) :=
a− b

log(a)− log(b)
=

ˆ 1

0
arb1−rdr.
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For this choice of mobility, the dynamic cost of transporting mass from (x, g) into (x, g′) depends
on the value of the potential V at these points, as well as on the value of the mass that is currently
located at them. In particular, it is more expensive to move mass between these points when the
amount of mass at one of them is close to zero. This mobility function satisfies (A1)− (A5) in
Assumptions (2.2). In this case, equations (1.1) take the form

∂tft(x, g) = ∆xft(x, g) + divx(ft(x, g)∇xV (x, g))

+
∑

g′∈G

[
ft(x, g) exp(V (x, g)) − ft(x, g

′) exp(V (x, g′))
]
K(g, g′).

which is a linear system of reaction diffusion equations.

2.4. Hamiltonian dynamics: formal computation of geodesic equations and acceler-
ated methods for optimization. In this section we discuss how a formal Riemannian struc-
ture can be used to introduce accelerated methods for optimization of energies on P2(R

d × G).
We first provide a characterization of the geodesic equations in the space P2(R

d×G), and then
introduce a system of accelerated dynamics for the minimization of the energy E in (2.10). These
two sets of equations are related to certain Hamiltonian systems in P2(R

d × G) which can be
formally defined using a notion of acceleration of curves. Throughout this section we continue
to work at a formal level.

2.4.1. Geodesics. To motivate the characterization of geodesics in P2(R
d×G), let us recall that

when working on a smooth Riemannian manifold M, the local equation satisfied by a geodesic
t 7→ q(t) ∈ M can be written as {

q̇(t) = p(t)

ṗ(t) = 0,

where t 7→ p(t) is understood as a vector field along the curve t 7→ q(t), and its derivative as
the covariant derivative of p along the curve q (using the Levy-Civita connection) written ∇q̇p.
The second equation states that geodesics have zero acceleration, i.e. ∇q̇ q̇ = 0. This system
can be understood as a Hamiltonian system on the tangent bundle T M with Hamiltonian
H(q, p) := 1

2 |p|2q .
Following the above intuition, in section 3.3 we will formally derive for the formal Riemannian

manifold (P2(R
d × G),W2) the system of equations:

{
µ̇t + divx(∇xϕtµt) + divg(∇gϕtµ̂t) = 0

∂tϕt +
1
2 |∇xϕt|2 +

∑
g′
(
∇gϕt

)2
K(g, g′)∂1θx,g,g′(ft(x, g), ft(x, g′)) = 0,

(2.15)

characterizing geodesics in the space (P2(R
d×G),W2); in the above dµ(x, g) = f(x, g)dxdg, and

we interpret ∂1θx,g,g′(s, t) as the derivative in s of the mobility function. The first of the two
equations, i.e. the continuity equation, simply states that the curve t 7→ µt moves with velocity
(∇xϕt,∇gϕt). On the other hand, the left hand side of the second equation can be understood
as the derivative of the velocity along the curve (i.e. the acceleration), and so by setting it to
zero one matches the intuition coming from Riemannian geometry that was discussed earlier.

2.4.2. Second order dynamics . In order to introduce a system of second order dynamics for the
optimization of an energy E like that in (2.10), we once again return to the setting of a smooth
Riemmanian manifoldM and consider the optimization of an objective function q ∈ M 7→ E(q).
The system {

q̇(t) = p(t)

ṗ(t) = −γp(t)−∇ME(q(t)),

can be interpreted as a continuous time accelerated method for the optimization of the objective
E. Here we abuse the use of the term accelerated method slightly given the motivation coming
from the Euclidean setting. Indeed, in the case M = R

d and when the parameter γ is allowed
to depend on time according to γ = γt = 3/t, the above dynamics correspond to the continuous
time analogue of the celebrated Nesterov accelerated method for optimization [30]. For general
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M, the above system may be interpreted again as a dynamical system on the tangent bundle
T M, and can be understood as the flow map induced by a vector field that is the addition of
a Hamiltonian vector field on TM with Hamiltonian H(q, p) = 1

2 |p|2q + E(q) and a dissipative

term that corresponds to the gradient of an energy (q, p) 7→ γ
2 |p|2q for a positive parameter γ > 0.

Following the above intuition, we can introduce an accelerated method for the optimization
of an objective on P2(R

d×G) such as the relative entropy E . For this purpose we use the formal
computation of the gradient of the relative entropy (2.12) from subsection 2.3 as well as the
expression for the acceleration of curves in the formal Riemannian structure (which actually
was already used when introducing the geodesic equation (2.15) and will be formally computed
in section 3.3). We obtain the system:





µ̇t + divx(∇xϕtµt) + divg(∇gϕtµ̂t) = 0

∂tϕt +
1
2 |∇xϕt|2 +

∑
g′
(
∇gϕt

)2
K(g, g′)∂1θx,g,g′(ft(x, g), ft(x, g′))

= −[γϕt(x, g) + log ft(x, g) + V (x, g)];

(2.16)

in the above, we interpret dµ(x, g) = f(x, g)dxdg.

Remark 2.13. Notice that when the interpolation map θ is like the one in Example 2.11 the
expression for the acceleration of a curve with velocity induced by the potentials ϕt reads

∂tϕt +
1

2
|∇xϕt|2.

2.5. Main theoretical result. In the previous sections we have taken a formal Riemannian
approach to make sense of the gradient descent ODE (2.4) when the energy E is the relative
entropy defined in (2.10). In this section we provide a more solid theoretical ground motivating
equations (1.1). For that purpose we will define the gradient flow of E using the minimizing
movement scheme approach that we mentioned at the end of section 1.1. To achieve this, we
first introduce a family of static transport costs that are used to define the iterations (1.1)
(thinking of M = P2(R

d × G)). Our main theoretical result, Theorem 2.14 below, states that
for a suitable static cost (see (2.20) below), and for a suitable choice of mobility θ (the one in
Example 2.11), the resulting minimizing movement scheme converges, as the time discretization
parameter τ goes to zero, toward a solution of the equation formally derived in (2.14).

It is worth highlighting that the minimizing movement scheme that we consider here has the
advantage of being defined in terms of a (static) transport cost that is closer to the Kantorovich
formulation of the classical optimal transport problem (i.e. (1.6)), rather that in terms of the
dynamic problem (2.6). First, the static formulation is computationally cheaper (e.g. using
the entropic regularization methods from [25] which can be used in our context). Additionally,
for the static formulation we will be able to use techniques similar to those developed in [14]
to show that the resulting minimizing movement scheme satisfies a type of maximum principle
characteristic of Fokker Planck equations.

To define our static transportation costs, we first introduce some notation. Given a measure
µ ∈ P2(R

d × G) we will consider the unique collection {µg}g∈G of positive measures over R
d,

such that

(2.17) µ =
∑

g∈G
µg ⊗ δg.

In the remainder we will often deal with absolutely continuous measures dµ(x, g) = f(x, g) dxdg
in P2(R

d×G), and by abuse of notation, in that case we will simply use the density f to denote
the measure µ. For example in the above decomposition, we will use the functions fg : R

d → R,
(i.e. fg(x) = f(x, g)) to denote the measures µg. We now introduce our static transportation
problem which we remark is of interest in its own right.

14



Static semi-discrete transportation problem. Let τ > 0 be a positive time step and let
W be as in Example 2.11. For arbitrary measures µ, σ in P2(R

d × G) we define ADM(µ, σ) to
be the set of pairs (γ, h) (the admissible pairs) that satisfy:

i) γ = {γg}g∈G where each γg is a Borel positive measure on R
d × R

d and whose first
marginal π1♯γg is equal to µg .

ii) h : Rd × G × G → R is antisymmetric in G × G (i.e. for all g, g′ ∈ G, x ∈ R
d we have

h(x, g, g′) = −h(x, g′, g)), and it belongs to

(2.18) L2
W,K(R

d × G × G) :=
{
h ∈ R

d × G × G → R :
∑

g,g′

ˆ

h2gg′e
−WK(g, g′)dx <∞

}
.

iii) For every g ∈ G

(2.19) σg = π2#γg − τ
∑

g′

hgg′(x)K(g, g′)e−W (x).

The last term on the right hand side of the identity (2.19) must be interpreted as the positive
measure on R

d whose density (with respect to the Lebesgue measure) is given by

τ
∑

g′

hgg′(x)K(g, g′)e−W (x).

In the remainder we refer to the measures γg as transport plans and to the functions h as mass
exchange maps.

A static transportation cost between µ, σ is defined by

(2.20) AG,W,τ(µ, σ) := inf
(γ,h)∈ADM(µ,σ)

CW,Kτ (γ, h),

where

(2.21) CW,Kτ (γ, h) :=
∑

g,g′∈G

(
1

2τ

ˆ

Rd

ˆ

Rd

|x− x′|2dγg +
τ

4

ˆ

Rd

h2gg′K(g, g′)e−W dx

)
.

Since the set ADM(µ, σ) may very well be the empty set, we follow the convention that the
infimum of a quantity over an empty set is equal to +∞. We use Opt(µ, σ) to denote the set of
minimizers of (2.20) when AG,W,τ(µ, σ) is finite.

The static semi-discrete optimal transport problem introduced above can be interpreted as
an optimal two stage mass transport process from one distribution over Rd × G to another. In
the first stage, mass is transported along each fiber of Rd (i.e. a set of the form R

d×{g}). In the
second stage, mass gets exchanged along every fiber of G (i.e. a set of the form {x} × G). The
optimal transport plans and optimal exchange maps (and implicitly the optimal intermediate
mass distribution after stage 1), are chosen so as to minimize the sum of two terms: one that
corresponds to aggregate quadratic cost in stage one, and the other that corresponds to an
average of discrete H−1 norms of the mass exchanged during stage two. In section 4 we study
the above semi-discrete (static) transport problem mathematically. In particular, we study
properties of the set ADM(µ, σ) and characterize Opt(µ, σ) in a way that resembles Brenier’s
theorem for optimal transport in Euclidean space. Part of the motivation for the definition of
this static problem comes from the theoretical desire of recovering the system (1.1) as limit of a
JKO scheme relative to some meaningful cost function. While this transport problem is not the
same as the dynamic one from Definition 2.6, we believe that they are actually closely related.
This is a topic that we may explore in future work.

Let us now return to our aim of defining the gradient descent of the relative entropy energy E
using the minimizing movement scheme. We use the cost function 2τAG,W,τ introduced above
to produce the series of iterates in (1.1) for M = P2(R

d × G) and E = E . We will assume that
15



the initial datum µ0 ∈ P2(R
d × G) satisfies E(µ0) < ∞. Moreover, we will impose a further

technical condition and assume that µ0 has a probability density f0 such that

(2.22) λe−V ≤ f0 ≤ Λe−V ,

for some positive constants λ and Λ. Setting µτ0 := µ0, we will then let µτn+1 be a minimizer of

(2.23) σ ∈ P2(R
d × G) 7−→ E(σ) +AG,W,τ(µ, σ),

where we set µ = µτn . In section 5 we study properties of the minimization problem (2.23), and
in particular provide conditions under which minimizers exist (see Proposition 5.6). It will then
be straightforward to see that the resulting iterates must be absolutely continuous with respect
to the measure dxdg, and thus can be written as dµτn(x, g) = f τn(x, g)dxdg. A continuous-time
extension of the above iterates is defined via piecewise constant interpolation in time. Namely,

f τ (t) := f τn+1, t ∈ (nτ, (n+ 1)τ ].

Comparing the minimization problems (1.11) and (2.23), we see our semi-discrete transporta-
tion cost plays the role of the kinetic energy in the Lagrangian formulation of the JKO scheme.

Our main theoretical result is the following:

Theorem 2.14. Suppose that f0 satisfies (2.22),W satisfies the conditions from Example (2.11)
and in addition for some constants λ′,Λ′

(2.24) λ′e−W (x) ≤ e−V (x,g) ≤ Λ′e−W (x).

where V : Rd × G → R is a differentiable function in x that also satisfies
∑

g

ˆ

Rd

|∇xV (x, g)|2e−V (x,g)dx <∞.

Then, for any sequence τk ↓ 0 there exists a subsequence, not relabeled, for which f τk converges
to f in L2(0; tF , L

2
loc(R

d × G))) for any tF > 0, where the map t ∈ [0,∞) → f(t) belongs to

L2
loc([0,∞),W 1,2(Rd × G))) and is a weak solution of (2.14) (see Definition 6.1).
Moreover, for every t > 0

(2.25) λe−V (x,g) ≤ f(t, x, g) ≤ Λe−V (x,g),

for almost every (x, g) in R
d × G, where λ,Λ are the constants in (2.22).

We prove Theorem 2.14 in section 6.

Remark 2.15. The function
f∞(x, g) = ce−V (x,g),

with c chosen so that ∑

g∈G

ˆ

cf∞(x, g) dx = 1,

is an equilibrium point and solves equation (2.14). Consequently, the property described in (2.25)
coincides with a well known maximum principle for the Fokker-Planck equation.

3. Metric and geometric properties of W2

3.1. Proof of Theorem 2.7. 1. Let µ0, µ1 be two elements in P2(R
d×G). First we prove that

the infimum in the definition of W 2
2 (µ0, µ1) is finite by exhibiting one solution to the continuity

equation connecting µ0 and µ1 with finite kinetic energy. One such solution is described as
follows.

Let us first assume that µ0 and µ1 are supported on the set B(0, R)×G for some R > 0. For
each g ∈ G let mg := µ0(R

d × {g}) be the total mass assigned to the fiber Rd × {g} by µ0 and

let µ0g, µ1g be the positive measures over Rd defined by

µ0g(A) := µ0(A× {g}), µ1g(A) := µ1(A× {g}) ∀A ⊆ R
d, Borel.
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Also, let µ̃1 be the first marginal of the measure µ1, i.e.

µ̃1(A) = µ1(A× G), ∀A ⊆ R
d, Borel.

Since the measures µ0g and mgµ̃1 have the same amount of total mass, we can find a solution

t ∈ [0, 1] 7→ (νt,g,∇xφt(·, g)) to the continuity equation on R
d

ν̇t,g + divx(∇xφt(·, g)νt,g) = 0,

satisfying ν0,g = µ0g, ν1,g = mgµ̃1, and
ˆ 1

0

ˆ

Rd

|∇xφt(x, g)|2dνt,g(x)dt <∞.

On the other hand, notice that for every g ∈ G the measure µ1g is absolutely continuous with
respect to µ̃1, and for µ̃1-a.e. x we have

∑

g

dµ1g
dµ̃1

(x) = 1.

For each such x we can find a solution to the discrete continuity equation t ∈ [0, 1] 7→
(γt,x,∇gψt(x, ·))

γ̇t,x + divg(∇gψt(x, ·) · γ̂t,x) = 0

satisfying γ0,x(g) = mg and γ1,x(g) =
dµ1g
dµ̃1

(x) for all g ∈ G, and satisfying

ˆ 1

0

∑

g,g′

|∇gψt(x, g, g
′)|2K(g, g′)dγ̂t,x(g, g

′)dt ≤ C,

for some constant C that only depends on R. Such solution exists due to assumptions (A0) or
(A5) on θ and the fact that discrete optimal transport is well defined in that case (see [22, 12]).

We define

µt :=

{∑
g∈G mgdν2t,g(x)⊗ δg, t ∈ [0, 1/2]∑
g∈G γ(2t−1),x(g)dµ̃1(x)⊗ δg, t ∈ [1/2, 1]

and

φt(x, g) :=

{
φ2t(x, g), t ∈ [0, 1/2]

0, t ∈ [1/2, 1]
ψt(x, g) :=

{
0, t ∈ [0, 1/2]

ψ2t−1(g), t ∈ [1/2, 1]

It is straightforward to verify that t ∈ [0, 1] 7→ (µt,∇xφt,∇gψt) solves the semi-discrete conti-
nuity equation, connects µ0 and µ1, and has finite kinetic energy.

If µ0, µ1 are not compactly supported as assumed above, then pick any µ̃0, µ̃1 compactly
supported satisfying

µ0(R
d × {g}) = µ̃0(R

d × {g}), µ1(R
d × {g}) = µ̃1(R

d × {g}), ∀g ∈ G.
One can then dynamically transport mass from µ0 to µ̃0 restricting the transport to each fiber
R
d × {g} using a continuity equation with finite kinetic energy on each fiber (this is simply

OT in R
d). Then, one can transport dynamically from µ̃0 to µ̃1 (as done above) and finally

transport dynamically from µ̃1 to µ1 restricting the transport to each fiber R
d × {g} (again

doing OT just on R
d).

2. Let us now show thatW2(µ0, µ1) = 0 if and only if µ0 = µ1. First notice that if µ0 = µ1 we
may take φt ≡ 0, ψt ≡ 0 and µt = µ0 for all t ∈ [0, 1]. Then, it is clear that t ∈ [0, 1] → (µt, φt)
solves the continuity equation, has zero kinetic energy, and connects µ0 and µ1, from where it
follows that W 2

2 (µ0, µ1) = 0.
Now let us suppose that W 2

2 (µ0, µ1) = 0. We want to show that µ0 = µ1. Fix an arbitrary
test function ζ : Rd × G → R where ζ(·, g) is smooth and compactly supported for all g ∈ G.
From the condition W2(µ0, µ1) = 0 we see that for every ε > 0 there is a solution to the
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continuity equation t 7→ (µt,∇xφt,∇gψt) connecting µ0 and µ1 with kinetic energy less than ε,
i.e.,

K :=

ˆ 1

0



ˆ

Rd

∑

g

|∇xφt(x, g)|2dµt(g, x) +
ˆ

Rd

∑

g,g′

∇gψt(x, g, g
′)2K(g, g′)dµ̂t(x, g, g

′)


 dt ≤ ε.

Using (2.6) (after integration over t ∈ [0, 1]) for the above test function ζ, we conclude that
∣∣∣∣∣∣

∑

g∈G

ˆ

Rd

ζ(x, g)dµ1(x, g) −
∑

g∈G

ˆ

Rd

ζ(x, g)dµ0(x, g)

∣∣∣∣∣∣
≤ Cζ

√
K ≤ Cζ

√
ε

where Cζ is a constant that only depends on the test function ζ. Given that ε was arbitrary we
can conclude that ∑

g∈G

ˆ

Rd

ζ(x, g)dµ1(x, g) =
∑

g∈G

ˆ

Rd

ζ(x, g)dµ0(x, g).

Finally, since ζ was an arbitrary smooth compactly supported test function we deduce that
µ0 = µ1.

3. Next, we show that W2(µ0, µ1) =W2(µ1, µ0). To see this, simply notice that any solution
t ∈ [0, 1] 7→ (µt,∇xφt,∇gψt) to the continuity equation starting at µ0 and ending at µ1, can be
reverted in time t ∈ [0, 1] → (µ1−t,−∇xφ1−t,−∇gψ1−t) producing in this way a solution to the
continuity equation that starts at µ1 and ends at µ0, and has the exact same kinetic energy as
the original curve.

4. Lastly we prove the triangle inequality. First we observe that after a standard reparametriza-
tion (of time) by arc-length it follows that for every µ, µ̃ ∈ P2(R

d × G) and every T > 0,

W2(µ, µ̃) = inf
t∈[0,T ] 7→(µt,∇xφt,∇gψt)

ˆ T

0

(
ˆ

Rd

∑

g∈G
|∇xφt(x, g)|2dµt(x, g)

+

ˆ

Rd

∑

g,g′

(∇gψt(x, g, g
′))2K(g, g′)dµ̂t(x, g, g

′)

)1/2

dt,

(3.1)

where the inf ranges over all solutions t ∈ [0, T ] 7→ (µt,∇xφt,∇gψt) to the semi-discrete conti-
nuity equation with µ0 = µ and µT = µ̃

Let now µ0, µ1, µ2 be arbitrary elements in P2(R
d × G). From (3.1), for any ε > 0 we

may consider t ∈ [0, 1] 7→ (µt,∇xφt,∇gψt) and t ∈ [0, 1] 7→ (µ̃t,∇xφ̃t,∇gψ̃t) solutions to the
semi-discrete continuity equation satisfying µ0 = µ0, µ1 = µ1 = µ̃0, µ̃1 = µ2 and

ˆ 1

0


1

2

∑

g

ˆ

Rd

|∇xφt(x, g)|2dµt(x, g) +
ˆ

Rd

∑

g,g′

∇gψt(x, g, g
′)2K(g, g′)dµ̂t(x, g, g

′)




1/2

dt

≤W2(µ0, µ1) + ε,

ˆ 1

0


1

2

∑

g

ˆ

Rd

|∇xφ̃t(x, g)|2dµ̃t(x, g) +
ˆ

Rd

∑

g,g′

∇gψ̃t(x, g, g
′)2K(g, g′)dˆ̃µt(x, g, g

′)




1/2

dt

≤W2(µ1, µ2) + ε.

We then consider

γt :=

{
µt, t ∈ [0, 1]

µ̃t−1, t ∈ [1, 2]

and the potentials

αt(x, g) :=

{
φt(x, g), t ∈ [0, 1]

φ̃t−1(x, g), t ∈ [1, 2]
βt(x, g) :=

{
ψt(x, g), t ∈ [0, 1]

ψ̃t−1(x, g), t ∈ [1, 2].
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It follows that t ∈ [0, 2] 7→ (γt,∇xαt,∇gβt) solves the semi-discrete continuity equation, connects
µ0 and µ2, and satisfies

ˆ 2

0


1

2

∑

g

ˆ

Rd

|∇xφ̃t(x, g)|2dµ̃t(x, g) +
ˆ

Rd

∑

g,g′

∇gψ̃t(x, g, g
′)2K(g, g′)dˆ̃µt(x, g, g

′)




1/2

dt

≤W2(µ0, µ1) +W1(µ1, µ2) + 2ε.

From (3.1) it follows that W2(µ0, µ2) ≤W2(µ0, µ1)+W2(µ1, µ2)+2ε. Since ε > 0 was arbitrary
the result now follows.

3.2. Tangent plane characterization. In this section we provide concrete conditions under
which the statement of Theorem 2.10 can be made rigorous. The bottom line is that the
arguments presented in this section motivate the formal characterization for the tangent plane
TµP2(R

d × G), i.e. infinitesimal curves on P2(G × R
d) passing through µ. The main result of

this section can be interpreted as a minimal selection principle for the potentials (φ,ψ) driving
a given solution to the continuity equation. Some of the results proved below will be used again
later on when we get to analyze the static semi-discrete transport problem from section 2.5.

Throughout this section we work with measures of the form dµ(x, g) = f(x, g)dxdg for a
density function f satisfying basic boundedness conditions. We also use the following spaces of
potentials:

(3.2) Φ :=

{
ε ∈ L2

c(R
d × G) s.t.

ˆ

Rd

ε(x, g)dx = 0 ∀g,
∑

g

ε(x, g) = 0 a.e. x ∈ R
d

}
,

where L2
c(R

d×G) stands for the space of L2(Rd×G) functions with compact support (i.e. almost
everywhere equal to zero outside a set of the form B(0, R)× G), and also

Φ⊥ :=

{
ϕ ∈ L2

loc(R
d × G) s.t.

ˆ

Rd

∑

g

ϕ(x, g)ε(x, g)dx = 0, ∀ε ∈ Φ

}
.

Lemma 3.1. Let f : Rd × G → R be a probability density such that in every compact subset
of R

d × G is bounded and bounded away from zero. Let φ,ψ be two potentials belonging to
L2
loc(R

d × G) for which
ˆ

Rd

∑

g

|∇xφ(x, g)|2f(x, g)dx+

ˆ

Rd

∑

g,g′

|∇gψ(x, g, g
′)|2K(g, g′)f̂(x, g, g′)dx <∞.

Consider the minimization problem:

(3.3) inf
φ̃,ψ̃∈L2

loc
(Rd×G)

ˆ

Rd

∑

g

|∇xφ̃(x, g)|2f(x, g)dx +

ˆ

Rd

∑

g,g′

|∇gψ̃(x, g, g
′)|2K(g, g′)f̂(x, g, g′)dx

subject to

divx(f∇xφ̃) + divg(f̂∇gψ̃) = divx(f∇xφ) + divg(f̂∇gψ),

where the equality must be interpreted in the sense of distributions.
Then, there exists a minimizing pair φ̃, ψ̃ for the above problem. In addition, any minimizing

pair must satisfy φ̃− ψ̃ ∈ Φ⊥.

Proof. 1. Let us start by proving the existence of minimizers. First we consider the slightly
modified problem

(3.4) inf
φ̃,h

ˆ

Rd

∑

g

|∇xφ̃(x, g)|2f(x, g)dx +

ˆ

Rd

∑

g,g′

|hgg′(x)|2K(g, g′)f̂(x, g, g′)dx

subject to

divx(f∇xφ̃) + divg(f̂ · h) = divx(f∇xφ) + divg(f̂∇gψ),
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where the minimization is now over pairs (φ̃, h) for φ̃ as in problem (3.3) and h ∈ L2
loc(R

d×G×G)
an antisymmetric function on G × G (i.e. hgg′(x) = −hg′g(x) for every x, g, g′). Existence of
solutions to (3.4) follows immediately from the direct method of the calculus of variations. From

a solution (φ̃, h) to problem (3.4) we now construct a solution to (3.3). Fix x ∈ R
d. Thanks to

Proposition 2.1 there exists a solution ψ̃(x, ·) = ψ̃x to the graph PDE

divg(∇gψ̃xf̂x) = divg(hxf̂x),

which satisfies
∑

g ψ̃x(g) = 0. Following the proof of Proposition 2.1 and using the fact that∑
g ψ̃x(g) = 0 we can conclude that there exists a constant Cx > 0 for which

(3.5)
∑

g

|ψ̃(x, g)|2 ≤ Cx
∑

g,g′

|∇gψ̃(x, g, g
′)|2K(g, g′)f̂(x, g, g′).

The constant Cx can be assumed to be uniform on compact subsets of Rd thanks to the as-
sumptions on θ and the fact that in each compact subset of Rd × G the function f is assumed
to be bounded and bounded away from zero. Using (2.1) we obtain

∑

gg′

|∇gψ̃x|2K(g, g′)f̂x(g, g
′) = −

∑

g

divg(∇gψ̃xf̂x)ψ̃x = −
∑

g

divg(hxf̂x)ψ̃x

=
∑

gg′

∇gψ̃x · hxK(g, g′)f̂x(g, g
′),

and thus, from Cauchy-Schwartz inequality
∑

gg′

|∇gψ̃x(g, g
′)|2K(g, g′)f̂x(g, g

′) ≤
∑

gg′

|hx(g, g′)|2K(g, g′)f̂x(g, g
′).

The above implies that (φ̃,∇gψ̃) is also a solution to (3.4). Given that ψ̃ is in L2
loc thanks to

(3.5), we deduce that (φ̃, ψ̃) is a minimizing pair for (3.3).

2. Let (φ̃, ψ̃) be an arbitrary minimizing pair. Let ε be an arbitrary element in Φ and pick a
specific measurable representative for it (which we also denote by ε). For each fixed g consider
the PDE (in x)

(3.6) ε(·, g) = divx(f(·, g)∇xη(·, g)).
Existence of a solution η(·, g) in L2

loc(R
d) follows from standard arguments in the theory of

elliptic PDEs, given that ε has compact support and that in each compact subset of Rd × G f
is bounded and bounded away from zero. Also, let x be a Lebesgue point for all the functions
ε(·, g), and consider the graph PDE

(3.7) − ε(x, ·) = divg(f̂x · ∇gβ(x, ·)).
This equation has a unique solution (that we denote by β(x, ·)) that averages to zero according
to Lemma 2.1 (given that ε(x, ·) has average zero). Moreover, the function β can be seen to be
in L2

loc using the inequalities from Proposition 2.1.
Now, for each s ∈ R consider the perturbed potentials:

φs(x, g) := φ̃(x, g) + sη(x, g),

ψs(x, g) := ψ̃(x, g) + sβ(x, g),

and notice that

divx(f∇xφs) = divx(f∇xφ̃) + sdivx(f∇xη) = divx(f∇xφ̃) + sε

divg(f̂ · ∇gψs) = divg(f̂ · ∇gψ̃) + sdivg(f̂ · ∇gβ) = divg(f̂ · ∇gψ̃)− sε,

so that in particular, for every s ∈ R, the pair (φs, ψs) is admissible in the minimization of
(3.3). Let K : R → R be the function

K(s) :=
∑

g

ˆ

Rd

|∇xφs|2f(x, g)dx +
∑

g,g′

ˆ

Rd

(ψs(x, g) − ψs(x, g
′))2K(g, g′)f̂(x, g, g′)dx,
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which is minimized at s = 0 by definition of (φ̃, ψ̃). Computing d
dsK(s) and evaluating at s = 0,

we deduce that

0 =
∑

g

ˆ

Rd

∇xη(x, g) · ∇xφ̃(x, g)f(x, g)dx

+

ˆ

Rd

∑

g,g′

(β(x, g) − β(x, g′))(ψ̃(x, g) − ψ̃(x, g′))K(g, g′)f̂(x, g, g′)dx

=
∑

g

ˆ

Rd

ε(x, g)φ̃(x, g)dx −
ˆ

Rd

∑

g

ε(x, g)ψ̃(x, g)dx

=
∑

g

ˆ

Rd

ε(x, g)(φ̃(x, g) − ψ̃(x, g))dx

where the second equality follows from the fact that η(·, g) solves (3.6) and β(x, ·) solves (3.7).
Since ε ∈ Φ was arbitrary, it follows that φ̃− ψ̃ belongs to Φ⊥ as we wanted to show.

�

Lemma 3.2. For any ϕ in Φ⊥ there exists ϕ1 : R
d → R in L2

loc(R
d) and ϕ2 : G → R such that

ϕ(x, g) = ϕ1(x) + ϕ2(g), ∀g ∈ G, a.e. x ∈ R
d.

Conversely, if ϕ admits the above decomposition then ϕ ∈ Φ⊥.

Proof. Let ϕ ∈ Φ⊥ and fix a Lebesgue point x0 for all the functions ϕ(·, g̃). Let
ϕ2(g̃) := ϕ(x0, g̃), g̃ ∈ G.

Observe that from Fubini’s theorem any function that is independent of x belongs to Φ⊥, and
thus, ϕ2 must be contained in Φ⊥. Define now the function

ϕ1(x̃, g̃) := ϕ(x̃, g̃)− ϕ2(g̃).

To complete our proof we must show that ϕ1 does not depend on g̃. For this purpose, let x be
an arbitrary Lebesgue point for all the functions ϕ(·, g̃). Fix g, g′ ∈ G. Let r > 0 and consider
the test function

(3.8) εr := ξrx,g − ξrx,g′ − ξrx0,g + ξrx0,g′ ,

where ξrx,g : R
d × G → R is given by

ξrx,g(x̃, g̃) :=
1

|B(x, r)|1B(x,r)(x̃)1{g̃=g}.

Notice that by construction εr is contained in Φ. Also, since ϕ and ϕ2 are contained in Φ⊥, ϕ1

is contained in Φ⊥ too. Hence,

0 =
∑

g

ˆ

Rd

εr(x̃, g̃)ϕ1(x̃, g̃)dx̃

=
1

|B(x, r)|

ˆ

B(x,r)
ϕ1(x̃, g)dx̃ − 1

|B(x, r)|

ˆ

B(x,r)
ϕ1(x̃, g

′)dx̃

− 1

|B(x0, r)|

ˆ

B(x0,r)
ϕ1(x̃, g)dx̃ +

1

|B(x0, r)|

ˆ

B(x0,r)
ϕ1(x̃, g

′)dx̃.

We may now take r → 0 and use the fact that x0 and x were assumed to be Lebesgue points
for the functions ϕ(·, g) and ϕ(·, g′) (thus also for ϕ1) to conclude that

0 = ϕ1(x, g) − ϕ1(x, g
′)− ϕ1(x0, g) + ϕ1(x0, g

′).

By construction ϕ1(x0, g) = ϕ1(x0, g
′) = 0. Consequently, we deduce that

ϕ1(x, g) = ϕ1(x, g
′).
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Since x, g and g′ were arbitrary, we conclude that ϕ can be written as the sum of a function of
x only and a function of g only.

The converse statement is a direct consequence of Fubini’s theorem.
�

Remark 3.3. Notice that from the proof of Lemma 3.2 it actually follows that if ϕ ∈ L2
loc(R

d×G)
is such that

∑
g

´

Rd ϕ(x, g)ε(x, g)dx for all ε of the form (3.8) then ϕ can be written as ϕ(x, g) =

ϕ1(x) + ϕ2(g) (and in particular it follows that ϕ ∈ Φ⊥). We will use this observation in
Proposition 4.5.

We may now combine the previous two lemmas to deduce the following minimum selection
principle providing concrete support to Theorem 2.10.

Proposition 3.4. Under the same assumptions on f from Lemma 3.1, there exists a minimizing
pair for problem (3.3) of the form (ϕ,ϕ).

Proof. Consider an arbitrary minimizing pair for problem (3.3). By Lemma 3.1 we know that

this pair must satisfy φ̃− ψ̃ ∈ Φ⊥, and by Lemma 3.2 we can conclude that

φ̃− ψ̃ = ϕ1 + ϕ2,

for some ϕ1 : R
d → R in L2

loc(R
d × G) and ϕ2 : G → R. Consider now the function

ϕ(x, g) := φ̃(x, g) − ϕ2(g)

and notice that we can also write it as

ϕ(x, g) = ψ̃(x, g) + ϕ1(x).

It follows that

∇xϕ = ∇xφ̃, ∇gϕ = ∇gψ̃.

Due to the above relationship it follows that (ϕ,ϕ) is admissible for the optimization problem

(3.3) and that it achieves the same value as that of the minimizing pair (φ̃, ψ̃). Therefore, (ϕ,ϕ)
solves (3.3).

�

3.3. A formal computation of the acceleration of a curve in P2(R
d×G): geodesic equa-

tions and accelerated methods for optimization. In this section, we present a heuristic
argument that motivates the discussion in section 2.4. The heuristics are based on the formal
computation of the acceleration of a given curve in P2(R

d × G).
Let us recall that the covariant derivative ∇q̇(t) along a smooth curve t 7→ q(t) on a smooth

Rimennian manifold M is a mapping taking vector fields into vector fields along the curve q.
This mapping makes sense of the idea of differentiation of a vector field t 7→ p(t) along the
curve in a way that is compatible with the Riemannian structure of M. We will now recall
a formula from Riemannian geometry that characterizes ∇q̇ q̇ (the covariant derivative of the
velocity of the curve, i.e. the acceleration of the curve) in terms of variations of the kinetic
energy. For that purpose we let t ∈ [0, T ] 7→ q(t) be a fixed smooth curve in M. We recall that
a (smooth) proper variation of the curve q is a smooth function α : (s, t) ∈ (−ε, ε)× [0, T ] → M
satisfying α(0, t) = q(t) for all t ∈ [0, T ] and α(s, 0) = q(0), α(s, T ) = q(T ) for all s ∈ (−ε, ε).
In particular, the maps t ∈ [0, T ] 7→ α(s, t) can be understood as describing nearby curves to
the original curve q, and in that light, the vector field v(t) = ∂

∂sα(0, t) known as the variational
field of α (which is a vector field along the curve q) describes an infinitesimal deformation of
the curve maintaining its endpoints anchored. A well known result in Riemannian geometry
(e.g. Proposition 2.4 in Chapter 9 in [9]) states that:

(3.9)
d

ds

∣∣∣∣
s=0

(
1

2

ˆ T

0

∣∣∣∣
∂

∂t
α(s, t)

∣∣∣∣
2

q(t)

dt

)
= −

ˆ T

0
〈v(t),∇q̇ q̇〉q(t) dt.
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Since in the above one can take arbitrary variations of q, the previous expression indeed char-
acterizes ∇q̇q̇ completely: regardless of the smooth proper variation taken, the first variation
of the kinetic energy (the left hand side) must match the right hand side which is expressed in
terms of the corresponding variational field and the acceleration of the curve ∇q̇ q̇.

Using the above discussion as motivation, let us now consider a curve t ∈ [0, T ] 7→ ft ∈
P2(R

d × G) and let us provide a formal definition for its acceleration; here and in what follows
we identify a measure dµ(x, g) = f(x, g)dxdg with its density, and let (∇xϕt,∇gϕt) be the
velocity of the curve at time t. Let (s, t) ∈ (−ε, ε) × [0, T ] 7→ (fs,t,∇xϕs,t,∇gϕs,t) be a proper
variation of t 7→ ft. Namely, we assume (f0,t, ϕ0,t) = (ft, ϕt) for all t, and fs,0 = f0, fs,T = fT
for all s ∈ (−ε, ε). We use ψs,t to denote a potential associated to the curve s ∈ (−ε, ε) 7→ fs,t.
The map t ∈ [0, T ] 7→ ψt := ψ0,t can then be interpreted as the corresponding variational field
of the varition (s, t) 7→ fs,t. We assume all functions are smooth, and smooth in s and t so that
we can take derivatives in x, s, t at will.

Relative to the proper variation introduced above we define

F (s) :=
1

2

ˆ T

0



∑

g

ˆ

Rd

|∇xϕs,t|2fs,t(x, g)dx +

ˆ T

0

∑

g,g′

ˆ

Rd

|∇gϕs,t|2f̂s,t(x, g, g′)dx


 dt,

for s ∈ (−ε, ε), which according to (2.9) can also be written as

1

2

ˆ T

0
〈ϕs,t, ϕs,t〉fs,tdt.

We show that
(3.10)

d

ds
F (s)

∣∣∣∣
s=0

= −
ˆ T

0

〈
ψt, ∂tφt +

1

2
|∇xϕt|2 +

∑

g′

|∇gϕt(·, ·, g′)|2∂1θ(ft(·, ·), ft(·, g′))
〉

ft

dt,

which when compared to (3.9) motivates the definition of the acceleration of the curve t ∈
[0, T ] 7→ (ft,∇xϕt,∇gϕt) at time t as the potential:

(x, g) ∈ R
d × G 7→ ∂tϕt(x, g) +

1

2
|∇xϕ(x, g)|2 +

∑

g′

|∇gϕt(x, g, g
′)|2∂1θ(ft(x, g), ft(x, g′)).

Notice that in turn, the above definition motivates the geodesic equations given in (2.15), as
well as the (continuous time) accelerated scheme in (2.16) for the optimization of the relative
entropy defined in (2.10) (using the expression for its gradient that we found in section (2.3))
in light of the discussion in section 2.4.
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We now formally obtain (3.10). First,

d

ds
F (s) =

ˆ T

0

∑

g

ˆ

Rd

(∇x∂sϕs,t · ∇xϕs,t)fs,t(x, g)dt

+

ˆ T

0

∑

g,g′

ˆ

Rd

(∇g∂sϕs,t · ∇gϕs,t)K(g, g′)f̂s,t(x, g, g
′)dt

+
1

2

ˆ T

0

∑

g

ˆ

Rd

|∇xϕs,t|2∂sfs,t(x, g)dt +
1

2

ˆ T

0

∑

g,g′

ˆ

Rd

|∇gϕs,t|2K(g, g′)∂sf̂s,t(x, g, g
′)dt

=

ˆ T

0

∑

g

ˆ

Rd

(∇x∂sϕs,t · ∇xϕs,t)fs,t(x, g)dt

+

ˆ T

0

∑

g,g′

ˆ

Rd

(∇g∂sϕs,t · ∇gϕs,t)K(g, g′)f̂s,t(x, g, g
′)dt

+
1

2

ˆ T

0

∑

g

ˆ

Rd

|∇xϕs,t|2∂sfs,t(x, g)dt

+

ˆ T

0

∑

g,g′

ˆ

Rd

|∇gϕs,t|2K(g, g′)∂1θ(fs,t(x, g), fs,t(x, g
′))∂sfs,t(x, g)dt.

(3.11)

On the other hand, integration by parts and the fact that ∂sϕ(0, s) = 0 and ∂sϕ(s, T ) = 0 for
all s (because the variation is proper) lead to

ˆ T

0
∂tϕs,t(x, g)∂sfs,t(x, g)dt = −

ˆ T

0
ϕs,t(x, g)∂s∂tfs,t(x, g)dt

= − d

ds

(
ˆ T

0
ϕs,t∂tfs,tdt

)
+

ˆ T

0
∂sϕs,t∂tfs,tdt.

After integration over x, g and using the continuity equation, the above implies

ˆ T

0

∑

g

ˆ

Rd

∂tϕs,t(x, g)∂sfs,t(x, g)dxdt

= − d

ds



ˆ T

0



∑

g

ˆ

Rd

|∇xϕs,t|2fs,tdx+
∑

g,g′

ˆ

Rd

|∇gϕs,t|2f̂s,tdx


 dt




+

ˆ T

0

∑

g

ˆ

Rd

∂sϕs,t∂tfs,tdxdt

= −2
d

ds
F (s)

+

ˆ T

0

∑

g

ˆ

Rd

(∇x∂sϕs,t · ∇xϕs,t)fs,t(x, g)dt +

ˆ T

0

∑

g,g′

ˆ

Rd

(∇g∂sϕs,t · ∇gϕs,t)f̂s,t(x, g, g
′)dt.

(3.12)

Combining (3.11) and (3.12) we deduce that d
dsF (s) can be written as:

−
ˆ T

0

ˆ

Rd

∑

g


∂tϕs,t +

1

2
|∇xϕs,t|2 +

∑

g′

|∇gϕs,t|2K(g, g′)∂1θ(fs,t(x, g), fs,t(x, g
′)


 ∂sfs,t(x, g)dxdt.

Finally, at s = 0 we have ∂sfs,t = −divx(∇xψtft) − divg(∇gψtf̂t), and thus (3.10) follows
combining the above with the semi-discrete continuity equation.
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4. Properties of minimizing pairs of the static semi-discrete optimal transport
problem

In this section we study the minimizers of the static semi-discrete transportation problem
that we introduced in section 2.5. Some of the results presented in this section will be used in
the sequel while others are of interest on their own. We seek to reproduce the result of Brenier
[1, Theorem 1.26] that characterizes optimal transport maps in the Euclidean setting in terms
of convex functions. Our characterization is presented in Proposition 4.5. We begin by studying
the existence of optimal pairs.

Lemma 4.1. (Existence of optimal pairs) Let µ, σ ∈ P2(R
d × G) and suppose that

W G,W,τ
2 (µ, σ) <∞. Then, the set Opt(µ, σ) (i.e. the set of solutions to (2.20)) is non-empty.

Proof. Let us consider a minimizing sequence of admissible pairs {(γn, hn)}∞n=1 and note that
since AG,W,τ (µ, σ) <∞ we have that, passing to a subsequence if necessary, we can assume that
the second moments of {γn}∞n=1, and the norm of {hn}∞n=1 in the weighted space L2

W (Rd×G × G)
are equibounded (see (2.18)). Consequently, since L2

W (Rd × G × G) is a Hilbert space, the
existence of a minimizer follows by a standard lower compactness/lower semicontinuity and
weak convergence argument (see [1, Theorem 1.2]). Indeed, since the constraint (2.19) is linear,
we can pass it to the limit by weak convergence of γn and hn in duality with smooth functions
with compact support. �

Notice that if µ = σ then W G,W,τ
2 = 0 < ∞. The following lemma will not be used in the

sequel, but provides other examples of µ and σ for which one can prove that W G,W,τ
2 (µ, σ) <∞.

Lemma 4.2. Let µ, σ ∈ P2(R
d × G) be absolutely continuous w.r.t. dxdg and assume that σ’s

density belongs to the space:

(4.1) L2
W (Rd × G) :=

{
f : Rd × G → R s.t.

∑

g∈G

ˆ

|fg|2eW dx <∞
}
.

Then, W G,W,τ
2 (µ, σ) <∞.

Proof. We begin by showing that the cost AG,W,τ (µ, σ) is finite. Let f and f̃ be the densities
for µ and σ respectively, and define

mg :=

ˆ

Rd

fg(x)dx, g ∈ G,

f̃(x) :=
∑

g

f̃g(x), x ∈ R
d.

Notice that for every g ∈ G the positive measures fg and mgf̃ have the same total mass, and

thus there exists a coupling γg between them. In particular, π1♯γ = fg, π2♯γ = mgf̃ and also
ˆ

Rd×Rd

|x− x̃|2dγg <∞.

Now, notice that for every x ∈ R
d we have
∑

g

(mgf̃(x)− f̃g(x)) = 0.

Therefore, we may use Proposition 2.1 in order to find η(x, ·) satisfying
(4.2) mgf̃(x)− f̃g(x) =

∑

g′

(η(x, g) − η(x, g′))K(g, g′), ∀g ∈ G,

as well as

(4.3)
∑

g,g′

|η(x, g) − η(x, g′)|2K(g, g′) ≤ C
∑

g

|mgf̃(x)− f̃g(x)|2e2W (x),
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for some constant C that only depends on the weighted graph (G,K). We let

hgg′(x) :=
eW (x)

τ
(η(x, g) − η(x, g′)), x ∈ R

d, g, g′ ∈ G

and notice that from (4.2) it follows that

σg = π2♯γg − τ
∑

g′

hgg′(x)K(g, g′)e−W (x).

We observe that h is clearly antisymmetric in G × G, and thanks to (4.3) and the fact that

f̃ ∈ L2
W (Rd × G) also satisfies

∑

gg′

ˆ

Rd

h2gg′e
−WK(g, g′)dx <∞.

The bottom line is that (γ, h) ∈ ADM(µ, σ) and CW,Kτ (γ, h) <∞. It follows thatW G,W,τ
2 (µ, σ) <

∞. �

Remark 4.3. To provide an example where the cost is infinite suppose that G consists of two
elements g1, g2 and K(g1, g2) > 0. Let µ be the measure with representation µg1 = δx1 for some

x1 ∈ R
d and µg2 = 0 (i.e. all mass is in g1), and let σ be the measure with σg1 = 0 and σg2 = δx2

for some x2 ∈ R
d. We show that ADM(µ, σ) = ∅. Indeed, if there existed an admissible pair,

from (2.19) we would have that

δx2 = σg2 = π2♯γg2 − τhg2g1(x)K(g1, g2)e
−W (x)dx = −τhg2g1(x)K(g1, g2)e

−W (x)dx.

In other words, we would conclude that δx2 admits a density w.r.t. Lebesgue measure.

The main ingredient necessary to prove the main result of this section, i.e. Proposition 4.5,
is a set of variational inequalities satisfied by optimal pairs. We obtain such inequalities by
computing the first variation of minimizing pairs under suitable perturbations. We do this in
the next lemma. Before stating this result let us first introduce some notation that will be
used in the remainder of the section. We let µ, σ be as in Lemma 4.1 and assume that σ has a
density. To a given minimizing pair (γ, h) we associate the density

(4.4) f̄g(x) := σg(x) + τ
∑

g′

hgg′K(g, g′)e−W ,

which corresponds to the density of the measure π2♯γg. An immediate observation is that each

γg is an optimal plan for the OT problem between µg and π2♯γg for the cost c(x, y) = |x−y|2
2τ .

Given that π2♯γg has a density, we know that there exists a unique map Sg : R
d → R

d such that
(Sg, Id)#f̄g = γg (see [1][Theorem 6.2.4 and Remark 6.2.11], for example). We will use the maps
{Sg}g∈G to state the variational inequalities satisfied by minimizers of the static semi-discrete
transportation problem. This set of inequalities serves as analogue to the notion of cyclical
monotonicity that appears in the classical (Euclidean) optimal transport setting.

Lemma 4.4. (Variational inequalities) Let µ and σ satisfy the hypothesis of Lemma 4.1
and suppose that in addition σ has a density w.r.t. dxdg. Let (γ, h) be an element in Opt(µ, σ).
Then, the following properties hold:

• For any g in G and any y in R
d, suppose we have two sequences {gl}Ml=0 and {g′l}M

′

l′=0 in
G, that satisfy both:
a) The two sequences describe paths in the graph with the same initial and final end-

points, i.e, we have that g0 = g′0, gM = g′M ′ ,K(gl, gl+1) > 0, and K(g′l, g
′
l+1) > 0.

b) The point y is a Lebesgue point for all the functions hgl−1gl and hg′l−1,g
′

l
.

Then,

(4.5)

M∑

l=1

hgl−1gl(y) =

M ′∑

l′=1

hg′
l−1g

′

l
(y).
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• Fix g and g′ satisfying K(g, g′) > 0 and assume that y is a Lebesgue point for Sg which
also belongs to the support of π2♯γg, and that y′ is a Lebesgue point for Sg′ which also
belongs to the support of π2♯γg′ . Then,

(hgg′(y
′)− hgg′(y)) +

[ |y′ − Sg(y)|2
2τ

− |y − Sg(y)|2
2τ

]

+

[ |y − Sg′(y
′)|2

2τ
− |y′ − Sg′(y

′)|2
2τ

]
≥ 0.

(4.6)

Proof. Let us start with a small outline describing the main ideas behind the proof.
Heuristic Proof: We begin analyzing (4.6). The idea is to perturb γg by transporting a

small amount of mass from (Sg(y), g) into (y′, g) instead of transporting it to (y, g). On the
other hand, γg′ is perturbed by transporting a small amount of mass from (S(y′), g′) into (y, g′)
instead of transporting it to (y′, g′). By modifying the plans γg and γg′ , we create a transport
cost differential

(4.7)

[ |y′ − Sg(y)|2
2τ

− |y − Sg(y)|2
2τ

]
+

[ |y − Sg′(y
′)|2

2τ
− |y′ − Sg′(y

′)|2
2τ

]
,

per unit of mass transported. To balance the above perturbation in the transportation and
remain with an admissible pair we must also perturb hy′(gg

′) and hy′(g
′g) so that the extra

amount of mass created by the transportation perturbation gets removed from (y′, g) and put
into (y′, g′).We must also perturb hy(g

′g) and hy(gg′) so that the extra amount of mass created
by the transportation perturbation gets removed from (y, g′) and put into (y, g). Modifying the
mass exchange function h in this way creates a mass exchange cost differential of

hgg′(y
′)− hgg′(y),

per unit of mass transported. The resulting modified pair is still admissible, and by optimality
of the original pair (γ, h), it must be the case that

(hgg′(y
′)− hgg′(y)) +

[ |y′ − Sg(y)|2
2τ

− |y − Sg(y)|2
2τ

]

+

[ |y − Sg′(y
′)|2

2τ
− |y′ − Sg′(y

′)|2
2τ

]
≥ 0,

which is precisely (4.6).

To deduce (4.5) we consider two sequences {gl}Ml=1 and {g′l}M
′

l=1 satisfying the given conditions

a) and b) for some y in R
d. We send some extra mass from the point (y, g0) to the point (y, g1)

by increasing hy(g0g1). Then we take the extra mass at (y, g1) and send it to (y, g2) by increasing
hy(g1g2). We can continue in this fashion until we reach the point (y, gM ) = (y, g′M ′). At this
stage we will have a deficit of mass at the point (y, g1) and an excess of mass at the point
(y, g′M ′) and we will pay an excess exchange cost given by:

M∑

l=1

hgl−1gl(y),

per unit of mass transported. We can balance the previous perturbation by reversing the mass
exchange along the sequence {g′l}M

′

l=1. Namely, for each pair g′l, g
′
l+1 we reduce the mass sent

from (y, g′l) to (y, g′l+1) by decreasing hg′
l
g′
l+1

(y). Doing this we save

M ′∑

l=1

hg′
l−1g

′

l
(y)

in terms of the cost. By optimality we must have

M∑

l=1

hgl−1gl(y) ≥
M ′∑

l=1

hg′
l−1g

′

l
(y).
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We can then switch the roles of the sequences and obtain the opposite inequality and from this
deduce (4.5).

Let us now make the previous ideas rigorous.
Rigorous proof: 1. We begin with the proof of (4.5). Let us fix two positive real numbers

r, ε > 0 . We perturb our minimizer (γ, h) by considering a new mass exchange function:

hr,εgl−1gl
(ŷ) :=

{
hgl−1gl(ŷ) if ŷ ∈ Bc

r(y)

hgl−1gl(ŷ) +
ε

τK(gl−1,gl)e−W (ŷ) if ŷ ∈ Br(y),

hr,ε
g′
l−1g

′

l

(ŷ) :=

{
hg′

l−1g
′

l
(ŷ), if ŷ ∈ Bc

r(y)

hg′
l−1g

′

l
(ŷ)− ε

τK(g′
l−1,g

′

l
)e−W (ŷ) if ŷ ∈ Br(y),

hr,εglgl−1 = −hglgl−1
and hr,ε

g′
l
g′
l−1

= −hg′
l
g′
l−1

to maintain the asymmetry, and finally hr,εgg′ = hgg′

whenever (g, g′) is not one of the consecutive pairs in the sequences. In the above we use Br(y)
to denote the Euclidean ball of radius r centered at y.

It is straightforward to see that the pair (γ, hr,ε) is admissible, and thus by the optimality of
(γ, h) we have Cτ (γ, h) ≤ Cτ (γ, h

r,ε), which simplifies to

0 ≤ τ

2

M∑

l=1

ˆ

Br(y)

((
hgl−1gl +

ε

τK(gl−1, gl)e−W (ŷ)

)2

− (hgl−1gl)
2

)
K(gl−1, gl)e

−W (ŷ)dŷ

+
τ

2

M ′∑

l=1

ˆ

Br(y)



(
hg′

l−1g
′

l
− ε

τK(g′l−1, g
′
l)e

−W (ŷ)

)2

− (hg′
l−1g

′

l
)2


K(g′l−1, g

′
l)e

−W (ŷ)dŷ.

Dividing by ε and letting ε→ 0 yields

0 ≤
ˆ

Br(y)

(
M∑

l=1

hgl−1gl(ŷ)−
M ′∑

l=1

hg′
l−1g

′

l
(ŷ)

)
dŷ.

Dividing by the volume of Br(y), letting r → 0, and recalling that y was assumed to be a
Lebesgue point for all the functions hgl−1gl and hg′l−1,g

′

l
we conclude that

M∑

l=1

hgl−1gl(y) ≥
M ′∑

l=1

hg′
l−1g

′

l
(y).

Switching the roles of the sequences we obtain the reverse inequality. (4.5) follows.
2. Let us now consider (y1, g1) and (y2, g2) such that K(g1, g2) > 0, y1 is a Lebesgue point

of Sg1 and belongs to the support of π2♯γg1 , y2 is a Lebesgue point of Sg2 and belongs to the
support of π2♯γg2 , and y1 6= y2. Fix ε > 0, and let r be a small enough positive number so that
Br(y1)∩Br(y2) = ∅. We now construct measures γr,εg1 , γ

r,ε
g2 and a function hr,εg1g2 which we use to

formalize the perturbation argument provided in the heuristic proof. To define these measures
and function we first need to introduce some objects.

Let us start by defining

m1 := γg1(R
d ×Br(y1)), m2 := γg2(R

d ×Br(y2)).

Notice that both numbers are nonzero given that y1 belongs to the support of π2♯γg1 and y2
belongs to the support of π2♯γg2 . To ease the notation we use µ̄g1 and µ̄g2 to denote the positive
measures

µ̄g1 := π2♯γg1 = f̄g1dx, µ̄g2 := π2♯γg2 = f̄g2dx,

and consider also the positive measures µ̄g1 |Br(y1) and µ̄g2 |Br(y2) defined by

µ̄g1 |Br(y1)(A) := µ̄g1(A ∩Br(y1)), µ̄g2 |Br(y2)(A) := µ̄g2(A ∩Br(y2)),
for all Borel subsets A of Rd.

Let us consider the maps T y2
y1 (y) := (y − y1 + y2) and T y1

y2 (y) := (y − y2 + y1). Also,
let T1 : Br(y1) → Br(y1) be an optimal transport map (for the quadratic cost) between the
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measures T y1
y2 ♯(

m1
m2
µ̄g2 |Br(y2)) and the measure µ̄g1 |Br(y1) (measures that can be checked to have

the same total mass), and let T2 : Br(y2) → Br(y2) be an optimal transport map between the
measures T y2

y1 ♯(µ̄g1 |Br(y1)) and the measure m1
m2
µ̄g2 |Br(y2).

We can now define the measures γr,εg1 and γr,εg1 by

γr,εg1 (A× C) := γg1(A× C)− εγg1(A× (C ∩Br(y1)))
+ ε(Sg1 , T2 ◦ T y2

y1 )♯µ̄g1 |Br(y1)(A× C),

and

γr,εg2 (A× C) := γg2(A× C)− ε
m1

m2
γg2(A× (C ∩Br(y2)))

+ ε(Sg2 , T1 ◦ T y1
y2 )♯(

m1

m2
µ̄g2 |Br(y2))(A× C),

for all A,C Borel subsets of Rd. For g that is neither g1 nor g2 we set γr,εg = γg. Notice that
π1♯γ

r,ε
g1 = µg1 and π2♯γ

r,ε
g2 = µg2 .

Finally, we define

hr,εg1g2(y) := hg1g2(y) +
ε

τK(g1, g2)e−W (y)

(
m1

m2
fg2(y)1Br(y2)(y)− f g1(y)1Br(y1)(y)

)

and set hr,εg2g1 = −hr,εg1g2 , and hr,εgg′ = hgg′ for pairs g, g′ different from g1g2. It is straighforward

to check that hr,ε ∈ LW,K2 (Rd × G × G) and that for every g ∈ G

σg = π2♯γ
r,ε
g − τ

∑

g′

hgg′K(g, g′)e−W .

That is, (γr,ε, hr,ε) ∈ ADM(µ, σ) and thus by optimality of (γ, h) we deduce that Cτ (γ, h) ≤
Cτ (γ

r,ε, hr,ε). This inequality simplifies to

ε

ˆ

Br(y1)

[ |Id− Sg1 |2
2τ

−
|T2◦T y2

y1 − Sg1 |2
2τ

]
f̄g1 dy

≤ ε
m1

m2

ˆ

Br(y2)

[ |T1◦T y1
y2 − Sg2 |2
2τ

− |Id− Sg2 |2
2τ

]
f̄g2 dy

+
τ

2

ˆ

Br(y1)

[
(hg1g2 −

ε

τK(g1, g2)e−W
f̄g1)

2 − h2g1g2

]
K(g1, g2)e

−W dy

+
τ

2

ˆ

Br(y2)

[
(hg1g2 +

ε

τK(g1, g2)e−W
m1

m2
f̄g2)

2 − h2g1g2

]
K(g1, g2)e

−W dy.

If we divide by ε and let ε→ 0 we obtain

ˆ

Br(y1)

[ |Id− Sg1 |2
2τ

−
|T2◦T y2

y1 − Sg1 |2
2τ

]
f̄g1 dy

≤ m1

m2

ˆ

Br(y2)

[ |T1◦T y1
y2 − Sg2 |2
2τ

− |Id− Sg2 |2
2τ

]
f̄g2 dy

−
ˆ

Br(y1)
hg1g2 f̄g1 dy +

m1

m2

ˆ

Br(y2)
hg1g2 f̄g2 dy.
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Consequently, dividing by m1 and expanding we obtain

1

m1

ˆ

Br(y1)

[ |Id− Sg1 |2
2τ

− |T y2
y1 − Sg1 |2

2τ
+R2(y)

]
f̄g1 dy

≤ 1

m2

ˆ

Br(y2)

[ |T y1
y2 − Sg2 |2

2τ
− |Id− Sg2 |2

2τ
+R1(y)

]
f̄g2 dy

− 1

m1

ˆ

Br(y1)
hg1g2 f̄g1 dy +

1

m2

ˆ

Br(y2)
hg1g2 f̄g2 dy,

(4.8)

where

1

m1

ˆ

Br(y1)
|R2(y)|f̄g1 dy =

1

m1

ˆ

Br(y1)

∣∣∣∣
|T y2
y1 − Sg1 |2

2τ
−

|T2◦T y2
y1 − Sg1 |2
2τ

∣∣∣∣f̄g1 dy

=
1

2τm1

ˆ

Br(y1)
|〈T y2

y1 − T2◦T y2
y1 ,T y2

y1 + T2◦T y2
y1 − 2Sg1〉|f̄g1 dy

≤ r

τ

1

m1

ˆ

Br(y1)
|T y2
y1 + T2◦T y2

y1 − 2Sg1 |f̄g1dy,

and by a similar computation

1

m2

ˆ

Br(y2)
|R1(y)|f̄g2 dy ≤ r

τ

1

m2

ˆ

Br(y2)
|T y1
y2 + T1◦T y1

y2 − 2Sg2 |f̄g2dy.

We now use the above estimates and let r ↓ 0 in (4.8) to deduce (4.6) (with (y, g) = (y1, g1) and
(y′, g′) = (y2, g2)). �

Before proceeding with our characterization of optimal pairs let us first recall some useful
definitions from the classical optimal transport theory. First, given a symmetric c : R

d×R
d →

R, we say that a function ϕ : R
d → R is c-concave, if it can be written as

ϕ(y) = inf
x∈Rd

c(x, y)− ψ(x), ∀y ∈ R
d,

for some ψ : R
d → R. The c-transform of a given ϕ is the function ϕc defined by

(4.9) ϕc(x) := inf
y∈Rd

c(x, y) − ϕ(y),

and its c-superdifferential is the set

(4.10) ∂c+ϕ :=

{
(x, y) ∈ R

d × R
d : ϕc(x) + ϕ(y) = c(x, y)

}
.

To characterize minimizers of Problem 2.4, in the proposition below we will use the quadratic
cost

c(x, y) :=
1

2τ
|x− y|2.

We will also use the spaces Φ and Φ⊥ defined in (3.2).

Proposition 4.5. (Characterization of optimal pairs) Let µ, σ be absolutely continuous

with respect to dxdg and assumme that W G,W,τ
2 (µ, σ) < ∞. Also, let (γ, h) be in ADM(µ, σ)

and assume that µg’s density and f̄g as defined in (4.4) are strictly positive for every g in G.
Then, the following are equivalent

i. Cτ (γ, h) is minimal among all pairs in ADM(µ, σ).
ii. There exist functions φ,ψ : R

d × G → R satisfying the following properties:
a) For every g in G, the plan γg is supported on ∂c+φg, for some c-concave function

φg(·) = φ(·, g).
b) For Lebesgue almost every point y ∈ R

d the function ψy(·) = ψ(y, ·) satisfies

(4.11) ψy(g
′)− ψy(g) = hgg′(y), ∀g, g′ with K(g, g′) > 0.

c) The difference φ− ψ belongs to Φ⊥ as defined in (3.2).
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iii. We can find a single potential ϕ : R
d×G → R satisfying properties a), b), and c) from

item ii.

Proof. 1. Optimality of (γ, h) implies that γg is an optimal coupling between µg and π2♯γg for
every g, and thus the proof that i. =⇒ ii.a) follows directly from the classical (Euclidean)
optimal transport theory (see [1, Theorem 1.13]). To prove that i. =⇒ ii.b), let us fix y0 in R

d

and g0 in G and define

ψ(y0, g) :=
M∑

l=1

hgl−1gl(y0),

for some sequence {gl}Ml=0 starting at g0, with K(gl, gl+1) > 0, and for which gM = g. Such
sequence exists given that (G,K) was assumed to be connected. On the other hand, observe that
by (4.5) the potential ψ is well defined (i.e. does not depend on the actual sequence connecting
g0 and g). In particular, we also have

ψ(y0, g
′) =

M∑

l=1

hgl−1gl(y0) + hgg′(y0).

ii.b) now follows.
We proceed to show that i. =⇒ ii.c). According to Remark 3.3 it suffices to show that the

difference ψ − φ is orthogonal to any ε of the form (3.8)

ε = ξry′,g − ξry′,g′ − ξry,g + ξry,g′ ,

for arbitrary y, y′, g, g′ and r > 0. To show this we proceed as follows.
Fix g, g′ with K(g, g′) > 0. We first claim that the function

ugg′(y) := ψg′(y)− ψg(y) + φg(y)− φg′(y).

is a.e. constant, where ψ is as in item ii.b). To see this, notice that from Brenier’s theorem for
the classical optimal transport problem with the (rescaled) quadratic cost the following holds:
the functions φg, φg′ can be written as

φg(y) = −βg(y) +
|y|2
2τ

, φg′(y) = −βg′(y) +
|y|2
2τ

,

for convex functions βg and βg′ , and the maps Sg and Sg′ are a.e. equal to τ∇yβg and τ∇yβg′
respectively. In particular, we can write

ugg′(y) = ψg′(y)− ψg(y)− βg(y) + βg′(y), y ∈ R
d.

Now, for a given pair y, y′ ∈ R
d, we have ugg′(y) ≥ ugg′(y

′) or ugg′(y
′) ≥ ugg′(y). Suppose for

the moment that the first inequality holds. In that case,

(4.12) βg(y)− βg′(y)− βg(y
′) + βg′(y

′) ≤ ψg′(y)− ψg(y) + ψg(y
′)− ψg′(y

′).

After simplification, item ii.a) and (4.6) imply

(4.13) ψg′(y)− ψg(y) + ψg(y
′)− ψg′(y

′) ≤ −〈y′ − y,∇yβg(y)〉 − 〈y − y′,∇yβg′(y
′)〉,

for a.e. y, y′. Combining (4.12) and (4.13), and recalling the definition of ugg′ we obtain

|ugg′(y)− ugg′(y
′)| ≤ βg(y

′)− (βg(y) + 〈y′ − y,∇yβg(y)〉)
+ βg′(y)− (βg′(y

′) + 〈y − y′,∇yβg′(y
′)〉).(4.14)

Notice that if instead ugg′(y
′) ≥ ugg′(y) we would have obtained the same inequality as the

one above changing the roles of g and g′ on the right hand side, so we do not lose generality
in assuming the former inequality. Given that along every straight line ℓ the functions βg, βg′
are convex, their distributional second derivatives (along ℓ) are characterized in terms of Radon
positive measures, implying that along almost every line ℓ in R

d the right hand side in (4.14)
is O(|y − y′|), and in particular ugg′ is a locally Lipschitz function along ℓ. Furthermore, along
almost every line in ℓ and for almost every y, y′ on that line, the right hand side of (4.14) is
o(|y − y′|) (given that Radon measures can only have at most a countable number of point
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masses). This implies that the locally Lipschitz function ugg′ (restricted to ℓ) has derivative
a.e. equal to zero, thus implying that the function is constant along almost every line ℓ. From
this it follows that ugg′ is almost everywhere constant in R

d. The bottom line is that for almost

every y, y′ ∈ R
d we have

(
ψg′(y

′)− ψg(y
′)− ψg′(y) + ψg(y)

)
−
(
φg′(y

′)− φg(y
′)− φg′(y) + φg(y)

)
= 0.

From the above it now follows that

ˆ

Rd

∑

g̃

(ψ(y, g̃)− φ(y, g̃))ε(y, g̃) dy = 0,

for ε as in (3.8). This concludes the proof.
2. We now show that ii. implies iii. By Lemma (3.2) we can find ϕ1 : R

d → R in L2
loc(R

d)
and ϕ2 : G → R such that

φg(y)− ψy(g) = ϕ1(y) + ϕ2(g).

Let us define

ϕ(y, g) := φg(y)− ϕ2(g) = ψy(g) + ϕ1(y).

Clearly, we have that

ϕ(y, g′)− ϕ(y, g) = ψy(g
′)− ψy(g).

Thus ii.b), follows. On the other hand, since φg is c-concave, φg(·) − ϕ2(g) is c-concave too.
Also, it is straightforward to verify that the superdifferential of φg(y) and φg(y)− ϕ2(g) agree.
In particular, ii.a) holds for the potential ϕ.

3. To prove that iii. =⇒ i., let (γ̃, h̃) be any element of ADM(µ, σ). Then, using item ii.a),
(2.19), (4.9), and (4.10), we have that

Cτ (γ, h) =
∑

g∈G

[
ˆ

Rd×Rd

c(x, y)dγg +
τ

4

∑

g′∈G

(
ˆ

h2gg′(y)K(g′, g)e−W dy

)]

=
∑

g∈G

[
ˆ

Rd×Rd

(ϕcg(x) + ϕg(y))dγg +
τ

4

∑

g′∈G

(
ˆ

h2gg′(y)K(g′, g)e−W dy

)]

=
∑

g∈G

[
ˆ

Rd

ϕcgdµg +

ˆ

Rd

ϕgdσg + τ
∑

g′∈G

ˆ

(
ϕg(y)(hgg′(y))K(g′, g)e−W

)
dy

+
τ

4

∑

g′∈G

(
ˆ

h2gg′(y)K(g′, g)e−W dy

)]

=
∑

g∈G

[
ˆ

Rd×Rd

(ϕcg(x) + ϕg(y))dγ̃g + τ
∑

g′∈G

(
ˆ

ϕg(y)
(
hgg′(y)− h̃gg′(y)

)
K(g′, g)e−W dy

)

+
τ

4

∑

g′∈G

(
ˆ

h2gg′(y)K(g′, g)e−W dy

)]

≤
∑

g∈G

[
ˆ

Rd×Rd

c(x, y)dγ̃g +
∑

g′∈G

τ

2

(
ˆ (

ϕg(y)− ϕg′(y)
)(
[hgg′(y)− h̃gg′(y)]K(g′, g)e−W dy

)

+
τ

4

∑

g′∈G

(
ˆ

h2gg′(y)K(g′, g)e−W dy

)]
,
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where in the last line we have used the antisymmetry of h and h̃. Now, from item ii.b) and the
above inequality we obtain

Cτ (γ, h) ≤
∑

g

ˆ

Rd×Rd

c(x, y)dγ̃g +
τ

4

∑

g,g′

(
ˆ

h̃2gg′(y)K(g′, g)e−W dy

)

+
τ

4

∑

g,g′

(
ˆ

(h2gg′(y)− h̃2gg′(y))K(g′, g)e−W dy

)

+
∑

g,g′

τ

2

(
ˆ (

hgg′(y)
)(
h̃gg′(y)− hgg′(y)

)
K(g′, g)e−W dy

)

≤ Cτ (γ̃, h̃).

�

5. Properties of JKO minimizers and maximum principle

In this section we prove a series of preliminary results characterizing solutions to the op-
timization problem (2.23). In Proposition 5.3 we show that the iterates of the minimizing
movement scheme satisfy a maximum principle that is characteristic of the Fokker Plank equa-
tion. In Proposition 5.6 we show that the corresponding potential ϕ generating the associated
optimal transport map and optimal exchange function from Proposition 4.5 agrees with (2.12),
i.e. with the formula for the gradient of E suggested by the formal computation from section 2.2.

We begin by showing that minimizers of (2.23) exist.

Lemma 5.1. (Existence of minimizers to (2.23)). Let µ be a measure in P2(R
d ×G) with

the property that E(µ) <∞. Then, there exists a minimizer µτ ∈ P2(R
d × G) of

(5.1) σ → E(σ) +AW,G,τ (µ, σ).

Moreover, such a minimizer is absolutely continuous with respect to the measure dxdg.

Proof. Since the entropy of µ is finite, by considering the competitor σ = µ we deduce that the
infimum in (5.1) if finite as well. Now, consider a minimizing sequence of measures {σn}∞n=1,
with corresponding optimal pairs {(γn, hn)}∞n=1 in ADM(µ, σn). Then, by construction, the
second moments of {γn}∞n=1 and the norm of {hn}∞n=1 in the weighted space L2

W (Rd × G × G)
are equibounded. Thus, following the argument of Lemma 4.1 we can guarantee the existence of
a pair (γ, h) such that up to subsequence not relabeled, γn converges weakly to γ, hn converges
weakly (in L2

W ) to h and
lim inf
n→∞

Cτ (γ
n, hn) ≥ Cτ (γ, h).

From
σng = π2#γ

n
g − τ

∑

g′

hngg′(x)K(g, g′)e−W ,

and the weak convergence of the sequences {(γn, hn)}∞n=1, we deduce that

µτ := lim
n→∞

π2#γ
n
g − τ

∑

g′

hngg′(x)K(g, g′)e−W

= π2#γg − τ
∑

K(g′,g)>0

hgg′(x)K(g, g′)e−W .

Consequently, the pair (γ, h) belongs to AMD(µ, µτ ). Finally, the inequality

lim inf
n→∞

E(σn) ≥ E(µτ ),

is a consequence of the weak convergence of σn towards µτ and the weak lower semi continuity
of the relative entropy. The desired result follows. �
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In the next lemma we prove a set of variational inequalities satisfied by minimizers of (2.23).
These inequalities are the main ingredient necessary to attain the main results of this section,
i.e. Propositions 5.3 and 5.6. We obtain these inequalities by computing the first variation of
minimizing pairs under suitable perturbations.

Proposition 5.2. (Variational inequalities of JKO minimizers). Let µ and µτ be as
in Lemma 5.1, and let fτ be µτ ’s density. Let {γg}g and h be the optimal transport plans and
optimal exchange functions for the static semi-discrete optimal transport between µ and σ = µτ .
The following inequalities hold:

• Let y ∈ R
d be a Lebesgue point for the function hg1g2 where K(g1, g2) > 0, and suppose

that (y, g2) is an element in the support of fτ . Then,

(5.2) log fτ (y, g1) + V (y, g1)− [log fτ (y, g2) + V (y, g2)] ≥ hg1g2(y).

• Let y1 be a Lebesgue point for Sg and suppose that (y1, g), (y2, g) belong to the support
of fτ . Then,

(5.3) log fτ (y2, g) + V (y2, g)− [log fτ (y1, g) + V (y1, g)] +
|Sg(y1)− y2|2

2τ
≥ |Sg(y1)− y1|2

2τ
.

• Let (x, y) be an element in the support of γg for some g in G, and suppose that x and y
belong to the support of fτ,g. Then,

(5.4) log fτ (x, g) + V (x, g) − [log fτ (y, g) + V (y, g)] ≥ |x− y|2
2τ

.

Proof. Let us start with a small outline describing the main ideas behind the proof.
Heuristic Proof: We begin by proving (5.2). For this purpose we consider the following

perturbation of the optimal pair (γ, h). The idea is to stop exchanging a small amount of mass
between (y, g1) and (y, g2). By doing this we save

hg1g2(y) + log fτ (y, g2) + 1 + V (y, g2),

in terms of the mass exchange cost and the entropy, and we pay an extra

log fτ (y, g1) + 1 + V (y, g1),

in terms of the entropy of the excess mass we now have in (y, g1). Thus, (5.2) follows by opti-
mality.

We proceed to the proof of (5.3). We perturb γg as follows. Instead of transporting a small
amount of the mass from (Sg(y1), g) into (y1, g) we transport it to (y2, g). By doing this, we
create a transport cost differential

|y2 − Sg(y1)|2
2τ

− |y1 − Sg(y1)|2
2τ

.

The resulting excess mass in (y2, g) and deficit of mass in (y1, g) create an entropy differential
of

log fτ (y2, g) + V (y2, g)− [log fτ (y1, g) + V (y1, g)].

Thus, (5.3) follows by optimality.

Finally, to prove (5.4) we take a pair (x, y) in the support of γg where both x, y are assumed
to belong to the support of fτ,g. Now, by setting y = y1 and x = S(y1) = y2 in inequality (5.3)
we have

log fτ (x, g) + V (x, g) − [log fτ (y, g) + V (y, g)] ≥ |y − x|2
2τ

.

Rigorous proof: We only prove (5.2). The proof of (5.3) follows exactly as in Proposition
3.7 from [14] and the proof of (5.4) follows the same lines as Lemma 4.4.
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Let y ∈ R
d be a Lebesgue point for the function hg1g2 and suppose that (y, g2) is an element

in the support of fτ . Let r and ε be positive numbers. We perturb the minimizing pair (γ, h)
by considering the new mass exchange function hr,εg1g2 : R

d → R defined by

hr,εg1g2(ŷ) =

{
hg1g2(ŷ), if ŷ ∈ Bc

r(y)

hg1g2(ŷ)−
εfτ,g2(ŷ)

τK(g1,g2)e−W (ŷ) if ŷ ∈ Br(y),

hr,εg2g1 := −hr,εg2g1 and hr,εgg′ = hgg′ whenever (g, g′) is not (g1, g2) or (g2, g1). Observe that this

produces a competitor µr,ετ whose densities are given by

f r,ετ,g1(ŷ) =

{
fτ,g1(ŷ), if ŷ ∈ Br(y)

c

fτ,g1(ŷ) + εfτ,g2(ŷ) if ŷ ∈ Br(y)
, f r,ετ,g2(ŷ) =

{
fτ,g2(ŷ), if ŷ ∈ Br(y)

c

(1− ε)fτ,g2(ŷ) if ŷ ∈ Br(y),

and fτ,g = f r,ετ whenever g is not g1 or g2. From the minimality of µτ we get that

∑

g

ˆ

Rd

ϑ(fτ , ŷ, g)dŷ + Cτ (γ, h) ≤
∑

g

ˆ

ϑ(f r,ετ , ŷ, g)dŷ + Cτ (γ, hr,ε),

which simplifies to
ˆ

Br(y)

[
ϑ
(
fτ,g1(ŷ), ŷ, g1

)
+ ϑ

(
fτ,g2(ŷ), ŷ, g2

)
+
τ

2
h2g1g2(ŷ)K(g1, g2)e

−W (ŷ)

]
dŷ

≤
ˆ

Br(y)

[
ϑ
(
fτ,g1(ŷ) + εfτ,g2(ŷ), ŷ, g1

)
+ ϑ

(
(1− ε)fτ,g2(ŷ), ŷ, g2

)

+
τ

2

(
hg1g2(ŷ)−

εfτ,g2(ŷ)

τK(g1, g2)e−W (ŷ)

)2

K(g1, g2)e
−W (ŷ)

]
dŷ.

Reordering terms, we obtain
ˆ

Br(y)

[
ϑ
(
fτ,g1(ŷ), ŷ, g1

)
− ϑ

(
fτ,g1(ŷ) + εfτ,g2(ŷ), ŷ, g1

)]
dŷ

≤
ˆ

Br(y)

[
ϑ
(
(1− ε)fg2(ŷ), ŷ, g2

)
− ϑ

(
fτ,g2(ŷ), ŷ, g2

)

+
τ

2

[(
hg1g2(ŷ)−

εfτ,g2(ŷ)

τK(g1, g2)e−W (ŷ)

)2

− h2g1g2(ŷ)

]
K(g1, g2)e

−W (ŷ)

]
dŷ.

Dividing by ε and letting ε→ 0 yields
ˆ

Br(y)

[
− log fτ,g1(ŷ)− 1− V (ŷ, g1)

]
fτ,g2(y)dy

≤
ˆ

Br(y)

[
− log fτ,g2(ŷ)− 1− V (ŷ, g2)− hg1g2(ŷ)

]
fτ,g2(ŷ)dŷ.

Dividing by
´

Br(y)
fτ,g2(ŷ)dŷ, and letting r → 0 we obtain the desired inequality. �

In the next proposition we prove that minimizers of (2.23) satisfy a maximum principle that
is characteristic of Fokker Planck equations.

Proposition 5.3. (Consistent barriers) Suppose that µ and µτ are as in Lemma 5.1. Sup-
pose in addition that µ’s density satisfies:

λe−V (x,g) ≤ f(x, g) ≤ Λe−V (x,g),

for every (x, g). Then, fτ satisfies

(5.5) λe−V (x,g) ≤ fτ (x, g) ≤ Λe−V (x,g),

as well.
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Proof. We only prove the lower bound in (5.5) since the argument for the upper bound is
completely analogous. Let us define the set

A := {(x, g) : λe−V (x,g) > fτ (x, g)},

and consider the auxiliary positive measure

dµλ = λe−V (x,g)dxdg.

Suppose for the sake of contradiction that

µλ(A) > 0.

Then

µ(A) ≥ µλ(A) > µτ (A),

and thus the set A has to lose mass during the transportation. Consequently, at least one of
the following facts should hold:

i. There exist g ∈ G and y a Lebesgue point of Sg such that (Sg(y), g) ∈ A and (y, g) 6∈ A.
ii. There exist a pair of nodes g, g′ with K(g, g′) > 0 and x a density point of hgg′ for which

(x, g) and (x, g′) belong to the support of fτ , hgg′(x) > 0, (x, g) ∈ A and (x, g′) 6∈ A.

Let us show that in both cases we reach a contradiction.
Case i: In this case, we apply (5.3) with y1 = y and y2 = Sg(y) to obtain that

log fτ (y, g) + V (y, g) +
1

2τ
|Sg(y)− y|2 ≤ log fτ (Sg(y), g) + V (Sg(y), g).

Now, observe that the assumption that (y, g) 6∈ A implies that the left-hand side of the above
inequality is bigger than log λ, whereas the assumption that (Sg(y), g) ∈ A implies the right-
hand side is strictly smaller than log λ. Thus, we reach a contradiction.

Case ii: In this case we apply (5.2) with g2 = g′, g1 = g and y = x, to obtain that

0 < hgg′(x) ≤ log fτ (x, g) + V (x, g) − log fτ (x, g
′)− V (x, g′).

Moreover, our assumption that (x, g′) 6∈ A and (x, g) ∈ A implies that the right hand side is
negative. Thus, we reach a contradiction. �

As a byproduct of the above proposition, we obtain a uniform control on the distance traveled
by the transported mass.

Lemma 5.4. (Transportation bound) Let µ, µτ , λ, and Λ be as in Proposition 5.3. Then,
there exists C > 0 such that for all g ∈ G

|y − x| ≤ C
√
τ ∀(x, y) ∈ supp(γg),

where we recall γ = {γg}g∈G is the set of optimal plans between µ and µτ . The constant C can

be taken to be C =
√
2(log(Λ)− log(λ)).

Proof. The estimate follows by combining (5.4) with Proposition 5.3. �

In the next lemma we show that the target density fτ and the transported density

f̄τ (x, g) = fτ (x, g) + τ
∑

g′

hgg′(x)K(g, g′)e−W (x),

are comparable. Recall that f̄τ,g is nothing but the density of the positive measure π2♯γg.
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Lemma 5.5. (Positivity of the transported mass) Let µ, µτ , λ, and Λ be as in Proposition
5.3, and let λ′,Λ′ be as in (2.24). Finally, let f̄τ be defined as above. Then, there exists a positive
constant τ0 := τ0(λ,Λ, λ

′,Λ′) < 1/2 such that for any τ in (0, τ0) we have that f̄τ > 0, i.e. the
support of π2#γg is all of Rd for all g ∈ G. Moreover, we have that

(5.6)
C

1− τ
<
f̄τ,g
fτ,g

< C(1 + τ),

for any τ in (0, τ0) for some constant C that only depends on λ,Λ, λ′,Λ′.

Proof. To prove (5.6), we note that thanks to (5.2) and (5.5), we have that the mass exchange
function h is uniformly bounded in terms of λ and Λ. Additionally, (5.5) and the assumption
(2.24) imply that the quotient of e−W and fτ is uniformly bounded as well. Hence, the desired
result follows. �

In the next proposition we show that the potential ϕ that generates the optimal transport
map and exchange function between µ and µτ for µ satisfying the conditions from Proposition
5.3 (see item iii. in Proposition 4.5) agrees with the negative of (2.12) which is the gradient of
the relative entropy suggested by the formal Riemannian structure from section 2.2.

Proposition 5.6. (The gradient of the relative entropy and JKO minimizers) Let µ,
µτ , λ, and Λ be as in Proposition 5.3, let λ′,Λ′ be as in (2.24), and let τ0 > 0 be as in Lemma
5.5. Then, for every τ in (0, τ0) we have:

i. For each g in G the optimal transport plan γτ,g is given by

(5.7) γτ,g = (Sg, Id)#
(
fτ,g + τ

∑
hτ,gg′K(g, g′)e−W

)
,

where the corresponding optimal transport map Sg satisfies

(5.8)
Sg(y)− y

τ
fτ (y, g) = ∇xfτ (y, g) + fτ (y, g)∇xV (y, g),

for almost every y in R
d.

ii For each pair g, g′ with K(g, g′) > 0 and for almost every x in R
d, the optimal exchange

function hτ,gg′ satisfies

(5.9) hτ,gg′(x) =
[
log fτ (x, g) + V (x, g) − log fτ (x, g

′)− V (x, g′)
]
.

Proof. We begin by noting that thanks to Lemma 5.5 and Proposition 5.3 we have that the
support of fτ,g and π2#γg is Rd for any g in G, i.e. fτ > 0 and f̄τ > 0. We will use this fact
together with the variational inequalities from Proposition 5.2.

1. Let us begin by showing i.
Observe that due to (5.3) for any (x, y) in the support of γg we have

log fτ,g(z) + V (z, g) − log fτ,g(y)− V (y, g) +
|x− z|2

2τ
≥ |x− y|2

2τ
,

for almost every z in R
d. Expanding the squares and rearranging terms we obtain that

log fτ,g(z)+V (z, g)+
|z|2
2

≥ log fτ,g(y)+V (y, g)+
|y|2
2

+ 〈x
τ
, z− y〉 for almost every z in R

d.

Such an inequality implies that, up to redefining fτ,g in a set up measure zero, the function

Φg(z) = log fτ,g(z)+V (z, g)+ |z|2
2 is convex and for almost every y in R and every pair (x, y) in

the support of the optimal transport plan γτ,g we have that x
τ is contained in the subdiffrential

of Φg at y. Following the notation from [2, Section 3.1] , we shall denote such a subdiffentrial
by ∂−Φ(y). Finally, since convex function are almost everywhere differentiable, we have that
for almost every y the set ∂−Φg(y) is a singleton and

∇z=yΦg =
x

τ
.
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Moreover using the almost everywhere differentiability of Φg we get that z → log fτ,g(z)+V (z, g)
is almost everywhere differentiable and

∇z=y

(
log fτ,g(z) + V (z, g) +

|z|2
2

)
=
x

τ

which implies that

τ∇y(log fτ,g + Vg) = x− y.

Notice that combining the above equation with Lemma 5.4 we obtain that log fτ,g + Vg has a
uniformly bounded gradient. Consequently, i follows.
2. Let us now show ii. Using (5.2) we obtain

log fτ (x, g
′) + V (x, g′)− [log fτ (x, g) + V (x, g)] ≥ hg′g(x),

for almost every x in R
d. Interchanging g and g′ we obtain the opposite inequality and thus the

desired identity. Here, once more we have used the fact that Proposition 5.3 and Lemma 5.4
imply that fτ > 0 and f̄τ > 0. �

As a direct consequence of the above proposition, we obtain the following result:

Corollary 5.7. (Sobolev regularity) Let µ, µτ , λ, and Λ be as in Proposition 5.3, let λ′,Λ′

be as in (2.24), and let τ0 > 0 be as in Lemma 5.5. Then, for every τ in (0, τ0), fτ,g is contained

in the weighted Sobolev space W 1,2(Rd, eW ) for every g in G. Moreover,

(5.10)
∑

g∈G

ˆ

Rd

|fτ (x, g)|2eWdx ≤ C1

∑

g∈G

ˆ

Rd

e−W (x)dx,

(5.11) τ
∑

g∈G

ˆ

Rd

|∇xfτ (x, g)|2eW dx ≤ C2

[
E(µ)− E(µτ ) + τ

]
,

for some constant C1 that only depends on λ,Λ, λ′,Λ′, and a constant C2 that only depends on
λ,Λ, λ′,Λ′ and the quantity

[∇xV ]e−V :=
∑

g

ˆ

Rd

|∇xV (y, g)|2e−V (y,g)dy.

Proof. The fact that fτ,g belongs to L2(Rd, eW ) follows from (5.3), (2.24), and the fact that
e−W was assumed to be integrable.

Now, note that by optimality

E(µτ ) + Cτ (µ, µτ ) ≤ E(µ).

Consequently, using (5.8) and the definition of the transportation cost, we deduce that

τ

2

∑

g∈G

ˆ

|∇x log fτ (y, g) +∇xV (y, g)|2f̄τ (y, g)dy ≤ E(µ)− E(µτ ).

Hence, using (5.5), (5.6) and (2.24) we obtain

τ
∑

g∈G

ˆ

|∇xfτ (y, g)|2e−W dy ≤ C

(
E(µ)− E(µτ ) + τ

)
,

for some constant C that only depends on λ,Λ, λ′,Λ′ and the quantity [∇xV ]e−V . �
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6. Convergence of the JKO scheme: Proof of Theorem 2.14

Let us start by defining precisely the notion of weak solution to equation (2.14).

Definition 6.1. We say that a weakly continuous curve of measures {µt}t≥0 in P2(R
d×G) with

associated probability density functions {f(t, ·, ·)}t≥0 is a weak solution with initial condition f0
(2.14) if

f(0, x, g) = f0(x, g), ∀(x, g) ∈ R
d × G

and

∑

g

(
ˆ

Rd

ζgfg(s, x)dx−
ˆ

Rd

ζgfg(r, x)dx

)
=

ˆ s

r

(∑

g

ˆ

Rd

[
∆xζg − 〈∇xVg,∇xζg〉

]
fg(t, x)dx

+
1

2

∑

g,g′

ˆ

Rd

[ζg′ − ζg][log fg′(t, x) + Vg′ − log fg(t, x)− Vg]K(g, g′)e−W (x)dx

)
dt,

for every r, s, in [0,∞), and every test function ζ in C∞
c (Rd × G).

With all the preliminary results from section 5 we can now proceed to the proof of Theorem
2.14.

Proof of Theorem 2.14.

1. JKO scheme produces an approximate solution. Let f0 be an initial datum
with finite energy E(f0) < ∞ satisfying (2.22). Let τ0 be as in Lemma 5.5, Proposition 5.6,
and Corollary 5.7. Let τ ∈ (0, τ0), and for every n ∈ N let (γτn, h

τ
n) be the minizing pair of

transporting f τn into f τn+1, where the f τn are the densities iteratively constructed as in (2.23).

Let Sτn,g be the optimal transport map associated to γτn,g as in (5.7), and let f̄ τn be the density

of the measure π2♯γ
τ
n,g, i.e. the transported density. We recall that f̄ τn,g can be written as

f̄ τn,g = f τn+1,g + τ
∑

g′

hτn,gg′K(g, g′)e−W .

Notice that by iterating Proposition 5.3 we have

λe−Vg ≤ f τn,g ≤ Λe−Vg ∀n ∈ N,

and by Lemma (5.5)

C

1− τ
<

f̄ τn,g
f τn+1,g

< C(1 + τ).

Finally, recall that the discrete time sequence f τn can be extended to continuous time by setting

f τ (t) := f τn+1 for t ∈
(
nτ, (n+ 1)τ ],

We will now show that the curve t 7→ f τ (t) can be interpreted as an approximate solution to
equation (2.14).

Let ζ ∈ C∞
c (Rd × G) be an arbitrary test function. Then,
ˆ

Rd

ζg f
τ
n+1,g(y)dy −

ˆ

Rd

ζgf
τ
n,g(x)dx =

ˆ

ζg(y)dγ
τ
n,g(x, y)−

ˆ

ζg(x)dγ
τ
n,g(x, y)

+ τ
∑

g′∈G

ˆ

Rd

ζgh
τ
n,gg′K(g′, g)e−W dy.

(6.1)
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Using the fundamental theorem of calculus and (5.8), we deduce
ˆ

Rd×Rd

ζg(y)dγ
τ
n,g(x, y)−

ˆ

Rd×Rd

ζg(x)dγ
τ
n,g(x, y)

=

ˆ

Rd×Rd

(
ζg(y)− ζg(x)

)
dγτn,g(x, y)

=

ˆ

Rd×Rd

(
ζg(y)− ζg(S

τ
n,g(y))

)
f̄ τn,g(y)dy

=

ˆ

Rd×Rd

(ζg(y)− ζg(S
τ
n,g(y))f

τ
n+1,g(y) dy +R1(τ, n, g)

= −
ˆ

Rd

〈∇xζg, S
τ
n,g − Id〉f τn+1,g(y) dy +R2(τ, n, g) +R1(τ, n, g)

= −τ
ˆ

Rd

〈∇xζg,∇xf
τ
n+1,g + f τn+1,g∇xVg〉 dy +R(τ, n, g),

where the error term is given by

R(τ, n, g) = R1(τ, n, g) +R2(τ, n, g)

= τ

ˆ

Rd

(ζg − ζg ◦ Sτn,g)
∑

g′

hτn,gg′K(g, g′)e−W dy

+

ˆ

Rd

ˆ 1

0

(
〈∇xζg ◦ ((1− s)Sτn,g + sId), Id − Sτn,g〉 − 〈∇xζg, Id− Sτn,g〉

)
f τn+1,g(y)dsdy.

Plugging back in (6.1) and using (5.9), we deduce that

∑

g

ˆ

Rd

ζg f
τ
n+1,g(y)dy −

∑

g

ˆ

Rd

ζg f
τ
n,g(x)dx = −τ

∑

g

ˆ

Rd

〈∇xζg,∇xf
τ
n+1,g + f τn+1,g∇xVg〉 dy

+
τ

2

∑

g,g′

ˆ

Rd

(ζg − ζg′)
[
log f τn+1(x, g) + V (x, g) − log f τn+1(x, g

′)− V (x, g′)
]
K(g, g′)e−W dy

+
∑

g

R(τ, n, g).

(6.2)

Let us now estimate the error terms. First, using (5.9) and the bounds on f τn+1,g we can
bound the transfer functions hτn,gg′ by a constant that only depends on λ and Λ, and then use
Lemma 5.4 to obtain

(6.3) |R(τ, n, g)| ≤ C1‖∇xζg‖L∞(Rd)

(
τ

3
2 +

ˆ

Rd

|Id− Sτn,g|2f τn+1,g(y)dy

)
,

for some constant C1 := C1(λ,Λ). Now, from the fact that f τn+1,g and f̄
τ
n,g are comparable, and

from the definition of f τn+1,g and the transport cost W G,W,τ
2 it follows that

∑

g

ˆ

|Id− Sτg,n|2f τn+1,gdy ≤ C2

∑

g

ˆ

|Id− Sτg,n|2f̄ τn,gdy ≤ C2τ
(
E(f τn)− E(f τn+1)

)
.

where C2 := C2(λ,Λ, λ
′,Λ′). Thus, combining the above inequalities with (6.3) we deduce that

N−1∑

n=M

∑

g

∣∣R(τ, n, g)
∣∣ ≤ C3max

g
‖∇xζg‖L∞(Rd)

(
τ3/2(N −M) + τ

[
E(f τM )− E(f τN )

])

≤ C3max
g

‖∇xζg‖L∞(Rd)

(
τ3/2(N −M) + τE(f0)

)
,

(6.4)

for all M ≤ N − 1, where C3 := C3(λ,Λ, λ
′,Λ′).
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Let us now fix 0 ≤ r < s. We add up (6.2) from M = ⌈r\τ⌉ to N − 1 = ⌈s\τ⌉ − 1 (assuming
that τ is small enough so that M ≤ N − 1) to get that

∑

g

ˆ

Rd

ζgf
τ
g (s, x) dx−

∑

g

ˆ

Rd

ζgf
τ
g (r, x) dx

=

ˆ τ⌈s\τ⌉

τ⌈r\τ⌉

(
−
∑

g

ˆ

Rd

〈∇xζg,∇xf
τ
g (t, x) + f τg (t, x)∇xVg〉dx

+
1

2

ˆ

Rd

∑

g,g′

(ζg′ − ζg)
[
log f τg′(t, x) + Vg′ − log f τg (t, x)− Vg

]
K(g, g′)e−W dx

)
dt

+

N−1∑

n=M

∑

g

R(τ, n, g)

=

ˆ τ⌈s\τ⌉

τ⌈r\τ⌉

(∑

g

ˆ

Rd

[
∆xζg − 〈∇xζg,∇xVg〉

]
f τg (t, x) dx

+
1

2

ˆ

Rd

∑

g,g′

(ζg′ − ζg)
[
log f τg′(t, x) + Vg′ − log f τg (t, x)− Vg

]
K(g, g′)e−W dx

)
dt

+

N−1∑

n=M

∑

g

R(τ, n, g).

(6.5)

From (6.4) it is clear that as τ → 0 the error term in the above expression vanishes. Therefore,
if we can show that as τ → 0 (along a sequence) the curve t 7→ f τ (t) converges to a limiting
curve t 7→ f(t) which is weakly continuous, and that this convergence is strong enough so that
in particular we can pass to the limit in all the terms in the above expression, then we will have
shown that the curve t 7→ f(t) is indeed a weak solution to (2.14).

2. Compactness. Let us consider a sequence {τk}k of positive numbers converging to zero.
Without the loss of generality we can assume that τk ≤ τ0 for all k. Our goal is to show that we
can pass to the limit in (6.5). For this purpose we use the Aubin-Lions Theorem (see Theorem
5 in [28]). We introduce some notation first.

Let us fix tF > 0. For h > 0 we define the translates

Thf
τk(t) := f τk(t+ h).

Also, for R > 0 we let UR := BR × G, where BR is the the open ball in R
d with radius R

centered at the origin. Let p be a positive number such that p > d + 1. Consider the Sobolev
spaces W 1,2(BR) and W

2,p(BR), and denote by W−2,p(UR) the dual of W 2,p(BR). Notice that

W 1,2(BR) →֒ L2(BR) →֒W−2,p(BR),

where the first embedding is compact and the second one is continuous; notice also that
W 2,p(BR) embeds continuously into C1(BR).

We show the following:

a) For every g ∈ G, {f τkg }k is bounded in L2(0, tF ;W
1,2(BR)).

b) For every g ∈ G, ‖Thf τkg − f τkg ‖L2(0,tF−h;W−2,p(BR)) → 0 as h→ 0, uniformly for all k.

Theorem 5 in [28] will then imply that for every g ∈ G, {f τkg }k is precompact in L2(0, tF ;L
2(BR)).

2a. Observe that by iterating the bounds from Corollary 5.7 along f τkn we deduce that

(6.6)

ˆ

BR

|f τkg (t, x)|2 dx ≤ C4, ∀t ≥ 0,∀k ∈ N

as well as

(6.7)

ˆ tF

0

(
ˆ

BR

|∇xf
τk
g (t, x)|2 dx

)
dt ≤ C4(E(f0) + tF ), ∀k ∈ N,
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where the constant C4 depends only on λ,Λ, λ′,Λ′, R,W, |G|. From the above inequalities it
follows that for every g ∈ G, the sequence {f τkg }k∈N is bounded in L2(0, tF ;W

1,2(BR)) (and

also in L2(0, tF ;L
2(BR))). Moreover, for every t ≥ 0 the sequence {f τkg (t)}k∈N is bounded in

L2(BR).
2b. Let h be smaller than tF . For t ∈ [0, tF − h) set Nk = ⌈ t+hτk ⌉ − 1 and Mk = ⌈ t

τk
⌉. Notice

that if Nk < Mk then Thf
τk
g (t) = f τkg (t), and so we may assume that Mk ≤ Nk. For any given

ζg ∈W 2,p(BR), we have
ˆ

BR

ζg(x)(Thf
τk
g (t, x) − f τkg (t, x)) dx

=

Nk∑

n=Mk

ˆ

BR

ζg f
τk
n+1,g(x)dx−

ˆ

BR

ζg f
τk
n,g(x)dx

=

Nk∑

n=Mk

ˆ

BR×BR

(ζg(y)− ζg(x)) dγ
τk
n,g(x, y)− τk

∑

g′

ˆ

BR

ζgh
τk
n,gg′e

−Wdx

=

Nk∑

n=Mk

ˆ

BR×BR

ˆ 1

0
〈∇ζg(x+ s(y − x)), y − x〉 ds dγτkn,g − τk

∑

g′

ˆ

BR

ζgh
τk
n,gg′e

−W dx

≤ C6

Nk∑

n=Mk

‖ζg‖C1(BR)

(
ˆ

Rd×Rd

|y − x|2 dγτkn,g
) 1

2

+C5τk||ζg||W 2,p(BR)

≤ C7||ζ||W 2,p(BR)

Nk∑

n=Mk

[(
ˆ

Rd×Rd

|y − x|2 dγτkn,g
) 1

2

+ τk

]
.

In the above the constant C5 depends only on λ,Λ and W , C6 depends only on R, and C7 :=
C5 +C6. We have used the fact that W 2,p(BR) embeds continuously into C1(UR), and we have
also used the bounds on the exchange function hτkn from (5.9) together with the lower and upper
bounds for the density f τkn,g. Consequently,

||Thf τkg (t)− f τkg (t)||W−2,p(BR)

= sup
||ζg||W2,p(BR)=1

ˆ

BR

ζg
(
Thf

τk
g (t, y)− f τkg (t, y)

)
dy

≤ C7

(
τk(Nk −Mk) +

(
τk(Nk −Mk)

) 1
2

( Nk∑

n=Mk

[(
ˆ

Rd×Rd

|y − x|2
τk

dγτkn,g

))1
2

≤ C7

(
h+

√
h

[ Nk∑

n=Mk

E(f τkn )− E(f τkn+1)

] 1
2
)

≤ C7

(
h+

√
h

[
E(f τkMk

)− E(f τkNk+1)

]1/2)

≤ C8

(
h+

√
h

[
E(f0)

]1/2)

(6.8)

Here, we used Jensen’s inequality, and the definition of f τkn,g. This shows

||Thf τkg − f τkg ||
L
2
(0,tF−h;W−2,p(BR))

→ 0, as h→ 0,

uniformly in k.
From 2a) and 2b) it now follows that for every g ∈ G, the sequence {f τkg }k∈N is precompact

in L2(0, tF ;L
2(BR)) (Theorem 5 in [28]). In particular, there exist a subsequence of {τk}k

(which we do not relabel) and an element fg ∈ L2(0, tF ;L
2(BR)) such that f τkg → fg as k → ∞
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in L2(0, tF ;L
2(BR)). On the other hand, from (6.6) and (6.7) it follows that for almost every

t ∈ [0, tF ] the sequence {f τkg (t)}k is bounded in W 1,2(BR) and thus precompact in L2(BR) and

in W−2,p(BR). We can then use this fact and (6.8) to conclude from Arzela-Ascoli theorem
that {f τkg }k converges in C(0, tF ;W

−2,p(BR)) (in fact in C1/2−ε for any ε) to fg. Moreover, a
standard diagonal argument sending R→ ∞ along a sequence, allows us to assume without the
loss of generality, that for every g ∈ G, f τkg → fg in L2(0, tF ;L

2
loc(R

d)), as well as f τkg → fg in

C(0, tF ;W
−2,p
loc (Rd)), as k → ∞.

3. Properties of t ∈ [0, tF ) 7→ f(t). We claim that for every t ∈ [0, tF ) we have

λe−Vg ≤ fg(t) ≤ Λe−Vg .

Indeed, notice that from (6.6) it follows that for every t ∈ [0, tF ), the sequence {f τkg (t)}k∈N is

bounded in L2(BR) (for every R) and thus it must have a weakly converging subsequence in

L2(BR). Due to the fact that f τkg → fg in C(0, tF ;W
−2,p
loc (Rd)), said subsequence must converge

weakly to fg(t) in L
2(BR). Since each of the f τkg (t) satisfies the desired lower and upper bounds

in BR, it follows that fg(t) satisfies the same bounds in BR. Since R was arbitrary we conclude

that fg(t) satisfies the desired bounds in the whole R
d.

Now we claim that for every t ∈ [0, tF )

∑

g

ˆ

Rd

fg(t, x)dx = 1.

Indeed, this is a direct consequence of the lower and upper bounds obtained above and the
fact that for every t ∈ [0, tF ) f

τk
g (t) converges in W−2,p

loc (Rd) towards fg(t). In particular, we
conclude that the curve t ∈ [0, tF ) 7→ f(t, ·, ·) is indeed a curve of probability measures on

R
d × G. Moreover, the fact that fg ∈ C(0, tF ;W

−2,p
loc (Rd)) and the upper and lower bounds

on the densities fg(t) imply that the curve t ∈ [0, tF ) 7→ f(t) (seen as a curve of probability
measures) is weakly continuous (here interpreted as weak convergence of probability measures).

It remains to show that the curve is a weak solution to (2.14).
4. Weak solution of (2.14). Let ζ ∈ C∞

c (Rd × G), and let 0 ≤ r < s < tF .

From the convergence f τkg → fg in C(0, tF ;W
−2,p
loc (Rd)) it follows

(6.9)

ˆ

Rd

ζgf
τk
g (s, x) dx−

ˆ

ζgf
τk
g (r, x) dx→

ˆ

ζgfg(s, x) dx−
ˆ

ζgfg(r, x) dx.

Now, using the fact that f τkg (t) → fg(t) in L2
loc(R

d) for almost every t ∈ [0, tF ), and using
the upper and lower bounds for f τkg (t) and fg(t) we conclude that

ˆ

Rd

∑

g′∈G
(ζg − ζg′)(log f

τk
g (t, x) + Vg − [log f τkg′ (t, x) + Vg′ ]e

−W dx

→
ˆ

Rd

∑

g′∈G
(ζg − ζg′)(log fg(t, x) + Vg − [log fg′(t, x) + Vg′ ])e

−W dx,

(6.10)

for almost every t ∈ [0, tF ), and

(6.11)

ˆ

Rd

[
∆xζg − 〈∇xζg,∇xVg〉

]
f τkg (t, x) dx→

ˆ

Rd

[
∆xζg − 〈∇xζg,∇xVg〉

]
fg(t, x) dx,

for almost every t ∈ [0, tF ).
Now, from the upper and lower bounds on f τkg , it follows that for every t ∈ [0, tF )
ˆ

|
∑

g′∈G
(ζg − ζg′)(log f

τk
g (t, x) + Vg − [log f τkg′ (t, x) + Vg′ ])|e−W dx ≤ C10||ζ||L∞(Rd),
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for a constant C10 that only depends on λ,Λ, |G|, W , and also
ˆ

Rd

|
[
∆xζg − 〈∇xζg,∇xVg〉

]
|f τkg (t, x) dx ≤ ||∆xζg||L∞(Rd) + C11||∇xζg||L∞(Rd×G)([∇xV ]e−V )1/2,

for a constant C11 that depends only on λ,Λ, λ′,Λ′. We recall that [∇xV ]e−V is the quantity
defined in Corollary 5.7.

Using the above two inequalities and (6.10), (6.11), we can invoke the dominated convergence
theorem twice, and then combine with (6.9) in order to conclude that we can pass to the limit
in (6.5). From this it follows that t 7→ f(t) is a weak solution to (2.14).

�

7. Summary and discussion on applications

In this paper we introduce two types of optimal transport problems in the semi-discrete setting
and then study gradient flows of relative entropy functionals with respect to these semi-discrete
transport costs. The first problem uses a dynamic formulation a la Benamou-Brenier, and a
formal Riemannian structure can be associated to it. The Riemannian formalism is used to
motivate systems of equations representing a gradient descent scheme for the minimization of a
relative entropy functional; the Riemannian formalism can also be used to motivate accelerated
methods for optimization. With the second optimal transport problem (the static one) we seek
to more rigorously introduce the notion of gradient flow of the relative entropy functional by
considering a minimizing movement scheme of the relative entropy with respect to this cost.
Theorem 2.14 establishes an equivalence between the gradient flow equation formally derived
through the Riemannian formalism of the first transport cost and the rigorous definition of
gradient flow using the minimizing movement scheme with respect to the second transport cost.

There are several theoretical research directions that emanate from our work. First, we
believe that it is worth establishing a closer relationship between the two semi-discrete optimal
transport problems introduced in the paper (the static and dynamic formulations). Secondly,
it is worth emphasizing that our main result on the convergence of the minimizing movement
scheme from section 2.5 towards the gradient flow heuristically motivated using the Riemannian
formalism was only proved for mobilities that are independent of the mass exchanged among
nodes in the graph. We believe that it is worth obtaining a more general result that justifies
the connection between these two gradient flows even further.

In the remainder of the paper we discuss some thoughts on the main application motivating
this work.

7.1. From semi-discrete optimal transport to neural architecture search. In machine
learning, a neural network is a graph g (the architecture) whose nodes are arranged into layers
with edges connecting nodes at different layers. A collection of free parameters (or weights) x
is associated with the nodes and edges in the graph. The network architecture g, together with
the numerical values of its associated parameters x, determine a series of transformations that,
when composed, define a mapping of input vectors (input data) into output vectors (labels).
Training a given neural network g essentially means tuning the corresponding parameters x so
as to achieve a small mismatch between predicted and observed outputs associated with given
training inputs. In other words, the training of a neural network g is the optimization of an
objective function (a loss function) over the free parameters x.

In neural architecture search the goal is to find an architecture g that, once trained, gives the
best performance possible when predicting data outputs. From a simplistic perspective, this
problem can be stated as solving:

(7.1) min
(x,g)∈Rd×G

V (x, g).

where V is thought of as a loss function that typically depends on observed data as well as
on additional regularization terms. The variable x (the parameters of a network) can be in-
terpreted as a R

d-valued vector (for d large enough but fixed for simplicity), whereas g can be
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interpreted as an element in a finite family of architectures G (which in principle may be quite
large). In short, in neural architecture search the optimization is over both the architecture
space G and over the parameters. The tensorized representation of the problem is certainly
an oversimplification because, in reality, the parameters x associated to an architecture g do
not have an obvious correspondence with the parameters of a different architecture g′ (and in
fact their dimensions do not even have to match). We will not elaborate much further on this
simplification and here we just limit ourselves to saying that while unreasonable when G is
interpreted as the whole space of architectures, the tensorized representation of problem 7.1 is
useful when one restricts to a local graph of architectures where one has access to morphisms
or correspondences between the parameters of different architectures (just like restricting the
optimization of a function defined on a curved manifold to a local chart).

There is an enormous literature on neural architecture search methodologies and some of its
applications (see [34] for a brief overview on the subject), but essentially most methods found
in the literature fall into two main groups. The first group builds on ideas from reinforcement
learning as in [35] which uses optimization tools like those described in [33]. The second major
group is based on evolutionary algorithms [29, 27], where one specifies rules for merging and
mutation of different architectures in search of “stronger” architectures. A third type of method-
ology is the morphism-based hill-climbing strategy from [10]. There, the authors propose an
iterative scheme that alternates between training for a fixed time a group of architectures that
are determined by a morphism family and then moving in the space of architectures according
to the relative performance improvement in such training time. In all the methodologies listed
above, the main objective is to avoid the full training of multiple neural networks (something
that would be computationally forbidding), either by building surrogate objective functions that
are easier to evaluate, by training networks for a fixed amount of time, or by learning to predict
which architectures are more likely to give better results. Many techniques in the literature are
based on the above strategies. To name a few: [26, 21, 36, 21, 4, 34].

In this sprawling landscape of methods and techniques for neural architecture search, math-
ematicians can bring to the table principled ideas and structures for the development of new
algorithms or the improvement of existing ones. Take for example the hill-climbing algorithm
from [10] where it is key to tune the amount of time that neural networks have to be trained
for. It is intuitively clear that setting a fixed time for training is not ideal as in that way one
forces all models to be treated the same regardless of their sizes or architectures. In our paper
[16] we elaborate on this issue and propose a method where the training time of architectures is
dynamically chosen as dictated by an evolving particle system that is inspired by the gradient
flow perspective developed in this paper. All along, our intention was to give meaning to the
notion of gradient descent for the optimization of an objective in the space R

d × G, i.e. how
to propose a gradient based method for semi-discrete optimization (with neural architecture
search as main application in mind). As discussed in section 1.1, in the Euclidean setting there
is a well known connection between gradient flows in the space of measures and dynamics in
the base space. In the semi-discrete setting, this connection is sought through particle methods.
Particle methods are one way to project to the space R

d × G the dynamics that were lifted
to the space of probability measures P(Rd × G) to make sense of a gradient based scheme. In
[16] all the nuances that have to be resolved to make this conceptual idea feasible for neural
architecture search are discussed.

We hope that the theoretical, methodological and implementation questions briefly described
here are able to motivate further research in the mathematics and computer science communi-
ties.
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[16] N. Garćıa-Trillos, F. Morales, , and J. Morales. Traditional and accelerated gradient descent for neural
architecture search. In preparation, 2020.

[17] N. Gigli and J. Maas. Gromov-Hausdorff convergence of discrete transportation metrics. SIAM J. Math.

Anal., 45(2):879–899, 2013.
[18] P. Gladbach, E. Kopfer, and J. Maas. Scaling limits of discrete optimal transport. SIAM Journal on Math-

ematical Analysis, 52(3):2759–2802, 2020.
[19] P. Gladbach, E. Kopfer, J. Maas, and L. Portinale. Homogenisation of one-dimensional discrete optimal
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