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Quasistatic hypoplasticity at large strains Eulerian

Tomáš Roub́ıček1 2

Abstract. The isothermal quasistatic (i.e. acceleration neglected) hardening-free plasticity at large
strains is considered, based on the standard multiplicative decomposition of the total strain and
the isochoric plastic distortion. The Eulerian velocity-strain formulation is used. The mass density
evolves too, but acts only via the force term with a given external acceleration. This rather standard
model is then re-formulated in terms of rates (so-called hypoplasticity) and the plastic distortion is
completely eliminated, although it can be a-posteriori re-constructed. Involving gradient theories
for dissipation, existence and regularity of weak solutions is proved rather constructively by a
suitable regularization combined with a Galerkin approximation. The local non-interpenetration
through a blowup of stored energy when elastic-strain determinant approaches zero is enforced and
exploited. The plasticity is considered rate dependent and, as a special case, also creep in Jeffreys’
viscoelastic rheology in the shear is covered while the volumetric response obeys the Kelvin-Voigt
rheology.

Keywords: Finitely-strained plasticity, creep in Jeffreys’ rheology, multiplicative decomposition,
rate formulation, quasistatic, Galerkin approximation, weak solutions.
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1 Introduction

Many materials undergo large inelastic process, specifically plastification or creep. Typically,

beside metals (some of whose exhibit so-called “superplasticity”), it concerns polymers and

particularly geomaterials as rocks, soils, and ice which can exhibit very large inelastic strains

on long time scales. Mechanically, large-strain (sometimes called finite-strain) plasticity or

creep models have been developed during decades, see the monographs [6,7,23–25,27,28,37,

41] and references therein. Following a general idea to express strain-stress responses rather

in terms of rates, like hypo-elasticity being an alternative description to hyperelasticity, a

rate formulation (sometimes called hypoplasticity) has been developed as an alternative to

the classical theory of elasto-plasticity, cf. [13, 29, 33], although the label “hypoplasticity”

has rather free meaning and is used in various ways, even not entirely identical as here, cf.

also [60]. One attribute is that this formulation works without any explicit decomposition of

the strain rate tensor to a reversible and an irreversible parts, although it is implicitly based

on it.

Let us summarize the main ingredients, which are actually quite standard and generally

accepted, and which will be employed:
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— deformation in actual configuration (i.e. Eulerian approach) and corresponding evolu-
tion of the deformation gradient, cf. (2.1) below,

— corresponding transport of mass (i.e. mass conservation), cf. (2.3),

— Lie-Liu-Kröner multiplicative decomposition of the deformation gradient to the elastic
and the inelastic (plastic) strains, cf. (2.4), with the plastic distortion being isochoric,
i.e. having determinant equal 1,

— a stored energy dependent on elastic strain, expected generally nonconvex, frame in-
different, and singular when respecting local non-interpenetration by a blow-up within
infinite compression, i.e. if determinant of the elastic strain goes to zero, cf. (4.2b),

— a dissipation potential acting on the symmetric velocity gradient and on the plastic
distortion rate,

— the evolution based on the mentioned conservation of mass and evolution of the de-
formation gradient, in addition on the momentum equilibrium and on the flow rule of
plastic distortion through the plastic distortion rate, and

— gradient theories, here applied on the dissipative potential.

Ultimately, we focus to an energetics of the models, which will make a solid base for a

rigorous analysis.

Any reference configuration (i.e. the Lagrangian approach as in [14, 32, 38, 44, 45, 59]) is

thus eliminated from the formulation of the problem. This is very natural especially for

materials where such a reference configuration cannot be identified naturally, as e.g. in geo-

logical materials (rocks, soils, ice, etc.) which are permanently evolving on long time scales

and which do not possess any “original” stress-free configuration, cf. e.g. [53]. Rather, they

have a continuously evolving natural configuration, sometimes presented under the name of

“multiple natural configurations” [54,56]. This is one of conventional approaches to inelastic-

ity, dated back to C.Eckart [15], including both creep and plasticity. Rather for explanatory

lucidity, we will present it in detail in Section 2 first a classical way including inelastic (plas-

tic) distortion and the multiplicative decomposition of the deformation gradient. The plastic

isochoricity is build in through the dissipation potential.

Then, in Section 3 we re-formulate the problem in rates and eliminate thus the plastic

distortion, casting thus a hypoplastic model. Such a rate formulation based on velocity

and elastic strain together with the plastic distortion rate is sometimes used in engineering,

although without any rigorous analysis. A conceptual benefit from avoiding the plastic

distortion is elimination of discussions about an intermediate stress free configuration arising

from it, which is felt as a fictitious and physically meaningless. The eliminated plastic

strain can be “reconstructed” a-posteriori. At this point, we involve higher gradients in

the dissipative potential, which allows for a rigorous mathematical analysis, together with

rigorous control of invertibility of elastic strain by the stored energy.

The mentioned energy dissipation balance is used eventually in Section 4 to perform the

analysis of the hypoplastic model by a discretization in space (Galerkin method) together

with some regularization. In this way, existence of weak solutions is proved by a constructive

method, giving also some conceptual numerical algorithm.

To highlight the main attributes of the model and its mathematical treatment, we present
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it as quasistatic with the acceleration (and related inertial forces) neglected and (still non-

constant and evolving) mass density thus occurring only in the bulk-load term. A lot of

nontrivial analytical technicalities, now well understood from compressible fluid dynam-

ics [18, 36], are thus avoided. For the same reason, we present the model isothermally. The

second simplifying assumption (but most frequently adopted in literature) is nonpenetra-

bility of the boundary (i.e. normal velocity zero), which allows also for considering fixed

boundary even for the Eulerian description. In applied sciences, a rough approach to live

with this nonpenetrable boundary is considering time-varying domains embedded into a

fictitious fixed domain and let the material being inhomogeneous, composed from the vis-

coelastoplastic solid and a very soft one. In geodynamical modelling, this trick is sometimes

called the sticky-air approach. Eventually, we will exploit suitable gradient theories to fa-

cilitate the proof of existence of weak solutions to the hypoplastic model. There seems to

be a general agreement that large-strain models ultimately needs some higher gradients to

cope with geometrical nonlinearitites. In engineering models, various gradients are used to

control internal length-scales. Two principle options are usage of higher gradients in the

conservative way (i.e. enhancing the stored energy) or in the dissipative way (i.e. enhancing

the dissipation potential). In Section 3, we will accept the latter option. Of course, various

combinations of both options can be considered, too. Sometimes, even a diffusion is added

into the evolution rule of the deformation gradient [4], which seems only artificial if not used

in a modified form [58, Remark 3] where it might have an interpretation of Brenner’s stress

diffusion [8]; in creep (fluid) models cf. e.g. [9] or for an incompressible case also [1,10,16,39],

although even this is considered disputable.

The main notation used in this paper is summarized in the following table:

v velocity (in m/s),
̺ mass density (in kg/m3),
F deformation gradient,
Fe elastic strain,
Fp inelastic (plastic) distortion,
T Cauchy stress (symmetric - in Pa),
S = ϕ(Fe ) Piola stress (in Pa),
H hyperstress (in Pam),

R
d×d
dev = {A ∈ R

d×d; trA = 0},

ϕ = ϕ(Fe ) stored energy (in J/m3=Pa),
e(v) = 1

2∇v⊤+ 1
2∇v small strain rate (in s−1),

ξ = ξ(e(v)) viscous dissipation potential,
ζ = ζ(Lp ) plastic dissipation potential,

Lp =
.

FpF
−1
p plastic distortion rate (in s−1),

(• )
.

= ∂
∂t

• + (v·∇)• convective time derivative,
g external bulk load (gravity acceleration in m/s2),
f traction load,
R
d×d
sym = {A ∈ R

d×d; A⊤ = A}.

2 Plasticity at large strains classically

In large-strain continuum mechanics, the basic geometrical concept is the time-evolving

deformation y : Ω → R
d as a mapping from a reference configuration Ω ⊂ R

d into a

physical space R
d. The “Lagrangian” space variable in the reference configuration will be
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denoted as X ∈ Ω while in the “Eulerian” physical-space variable by x ∈ R
d. The basic

geometrical object is the deformation gradient F = ∇
X
y.

We will be interested in deformations x = y(t,X) evolving in time, which are sometimes

called “motions”. The important quantity is the Eulerian velocity v =
.

y = ∂
∂t
y + (v·∇)y.

Here and thorough the whole article, we use the dot-notation (·). for the convective time

derivative applied to scalars or, component-wise, to vectors or tensors.

Then the velocity gradient ∇v = ∇
X
v∇

x
X =

.

FF−1, where we used the chain-rule

calculus and F−1 = (∇
X
x)−1 = ∇

x
X. This gives the transport equation-and-evolution for

the deformation gradient as

.

F = (∇v)F . (2.1)

From this, we also obtain the transport equation for the determinant detF as

.

detF = (detF )(div v). (2.2)

The understanding of (2.1) and (2.2) is a bit delicate because it mixes the Eulerian x and

the Lagrangian X ; note that ∇v = ∇xv(x) while standardly F = ∇
X
y = F (X). In

fact, we consider F ◦ξ where ξ : x 7→ y−1(t,X) is the so-called return (sometimes called

also a reference) mapping. Thus F depends on x and (2.1) and (2.2) are equalities for a.a.

x. The reference mapping ξ, which is well defined through its transport equation
.

ξ = 0,

actually does not explicitly occur in the formulation of the problem. Here we will benefit

from the boundary condition v·n = 0 below, which causes that the actual domain Ω does not

evolve in time. The same concerns T in (2.5b) below, which will make the problem indeed

fully Eulerian, as announced in the title itself. Cf. the continuum-mechanics textbooks as

e.g. [23, 40].

The mass density (in kg/m3) is an extensive variable, and its transport (expressing that

the conservation of mass) writes as the continuity equation ∂
∂t
̺+div(̺v) = 0, or, equivalently,

the mass transport equation

.

̺ = −̺ div v . (2.3)

Introducing a (generally non-symmetric) plastic distortion tensor Fp , a conventional

large-strain plasticity is based on Kröner-Lie-Liu [31, 34] multiplicative decomposition

F = FeFp . (2.4)

The interpretation of Fp is a transformation of the reference configuration into an interme-

diate stress-free configuration, and then the elastic strain Fe transforms this intermediate

configuration into the current actual configuration.

The main ingredients of the model are the (volumetric) stored energy and the dissipation

potential, i.e. the physical unit of the stored energy is Pa=J/m3 and of the dissipation

potential is Pa/s. The stored energy ϕ̂(F ,Fp ) depends naturally on the elastic strain Fe =

4



FF−1
p and possibly also on Fp itself if an isotropical hardening were considered, but not

directly on F . In this section we will consider ϕ̂(F ,Fp ) = ϕ(FF−1
p ). The other ingredient

is the dissipation potential depending on the symmetric velocity gradient e(v) = 1
2
∇v⊤+

1
2
∇v and on the plastic distortion rate

.

FpF
−1
p . We will consider this dissipation potential

as ξ(e(v)) + ζ̂(Fp ,
.

Fp ) with the plastic dissipation potential ζ̂ depending on the plastic

distortion rate, i.e. ζ̂(Fp ,
.

Fp ) = ζ(
.

FF−1
p ) for some potential ζ . If quadratic, these two parts

of the dissipation potential involve linear Kelvin-Voigt-type and Maxwell-type viscosities

into the model, and altogether with the elastic part determined by the stored energy, we

obtain the Jeffreys viscoelastic rheological model in the shear while the volumetric response

obeys the Kelvin-Voigt rheology if Fp is purely isochoric, as in Sections 3 and 4 below. A

quadratic ζ(·) thus describes creep. Yet, ζ may be non-quadratic and even non-smooth at

the rate zero, which models an “activated creep” as in ice or plasticity, or even out of zero

rate as in the Tresca plasticity. This nonsmoothness makes the convex subdifferential ∂ζ

set-valued and thus why we wrote an inclusion “∋” in (2.5d).

The quasistatic evolution system then consists from the mass transport equation, mo-

mentum equilibrium, the deformation gradient transport (2.1), and a flow rule for the plastic

distortion Fp . Specifically, in terms of ϕ̂ and ζ̂ the system for (̺, v,F ,Fp ) reads as:

.

̺ = −̺div v , (2.5a)

divT + ̺g = 0 with T = ϕ̂′
F
(F ,Fp )F

⊤ + ϕ̂(F ,Fp )I+ ξ′(e(v)) (2.5b)
.

F = (∇v)F , (2.5c)

∂ .
Fp

ζ̂(Fp ,
.

Fp ) ∋ −ϕ̂′
Fp
(F ,Fp ) , (2.5d)

where ϕ̂′
F
(F ,Fp ) is the so-called Piola stress and while (2.5d) has the standard structure of

the so-called Biot equation.

In (2.5b), g means a given acceleration (typically the gravity acceleration) while we ne-

glected the inertial force ̺
.

v. This last point substantially simplifies the analytical arguments

below while keeping the main phenomena under our focus in the game, although the absence

of the kinetic energy makes estimation of the bulk force quite technical, cf. (4.3) below. In

particular, although (2.5b) neglects the acceleration
.

v and thus the mentioned inertial force

̺
.

v, the mass ̺ and its transport (2.5a) are still involved. Such models are called quasistatic

(or, in geophysics, sometimes also quasidynamic).

It should be noted that the system (2.5) is truly standard, and can often be found in

literature, at least in its parts. Its structure is, to a large extent, dictated by pursuing

a consistent energetics and the gradient doubly-nonlinear structure. The evolution of Fe

and the multiplicative decomposition (2.5c) is indeed most often considered as a model

for large-strain elastoplasticity and does not need any comments here, as well as the mass

transport (2.5a) and the momentum equilibrium with the Kelvin-Voigt type Cauchy stress.

The conservative (elastic) part of the Cauchy stress ϕ̂′
F
(F ,Fp )F

⊤ + ϕ̂(F ,Fp )I involves also

a pressure contribution since the free energy ϕ is here considered per actual volume (and

not per the referential volume or mass), cf. [58, Rem. 2]; the notation I here and in what
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follows stands for the identity matrix. The symmetry of such Cauchy stress is a standard

consequence of the frame indifference of ϕ which is to be assumed, although we will not

explicitly use it. The form of the rate
.

FpF
−1
p which occurs in the dissipation potential, is

used most often in a position of an inelastic distortion rate, cf. [7,11,12,22,23,35,44,54,64,65],

and is also compatible with the so-called plastic indifference, cf. e.g. [43]. The plastic flow

rule (2.5d) is exactly as in [59], cf. also [32, Sec.9.4]. Sometimes, however, the plastic flow

rule is formulated in the rate Fe

.

FpF
−1
p F−1

e , cf. Remark 3.2 below or, in Lagrangian setting,

as (F⊤
p Fp )

.

=
.

F⊤
p Fp + F⊤

p

.

Fp in [21], too.

To reveal the mentioned energy dissipation balance behind the system (2.5), we complete

it by suitable boundary conditions. An important aspect is to impose impenetrability of the

boundary, which allows also for working on a fix domain even in the Eulerian description.

This also simplifies many analytical arguments and is most often used in literature, too.

Moreover, in our quasistatic case where inertial forces are neglected, we need to fix the

body at a part of the boundary at least viscously. Thus we consider a combination of a

homogeneous Dirichlet combination in the normal direction and the Newton (or Navier)

condition in the tangential direction:

v·n = 0 and [Tn]
t
+ κv

t
= f , (2.6)

where (·)
t
denotes the tangential component of a vector on the boundary Γ and n is the

unit outward normal to Γ . The first condition in (2.6) simplifies considerably the situation

and allows for working on a fixed domain Ω. Then, formally, we obtain the energetics by

testing (2.5b) by v and using (2.5c) tested by S and by testing (2.5d) by
.

FpF
−1
p , while

(2.5a) does not directly contribute to the energetics because the inertial term ̺
.

v has been

neglected. The former test gives

∫

Ω

divT ·v dx =

∫

Γ

(Tn)·v dS −
∫

Ω

T :e(v) dx

=

∫

Γ

(Tn)·v dS −
∫

Ω

(
ϕ̂′
F
(F ,Fp )F

⊤+ ϕ̂(F ,Fp )I+ ξ′(e(v))
)
:e(v) dx

=

∫

Γ

(Tn)·v dS −
∫

Ω

(
ϕ̂′
F
(F ,Fp ):(∇v)F + ϕ̂(F ,Fp )div v + ξ′(e(v)):e(v) dx

=

∫

Γ

(Tn)·v dS −
∫

Ω

ϕ̂′
F
(F ,Fp ):

.

F + ϕ̂(F ,Fp )div v + ξ′(e(v)):e(v) dx

=

∫

Γ

(Tn)·v dS − d

dt

∫

Ω

ϕ̂(F ,Fp ) dx

−
∫

Ω

ϕ̂′
F
(F ,Fp ):(v·∇)F + ϕ̂(F ,Fp )div v + ξ′(e(v)):e(v)− ϕ̂′

Fp
(F ,Fp ):

∂Fp

∂t
dx

=

∫

Γ

(Tn)·v dS − d

dt

∫

Ω

ϕ̂(F ,Fp ) dx−
∫

Ω

(
ϕ̂′
F
(F ,Fp ):(v·∇)F + ϕ̂(F ,Fp )div v

+ ξ′(e(v)):e(v)− ϕ̂′
Fp
(F ,Fp ):

.

Fp + ϕ̂′
Fp
(F ,Fp ):(v·∇)Fp

)
dx

=

∫

Γ

f ·v−κ|v|2 dS − d

dt

∫

Ω

ϕ̂(F ,Fp ) dx−
∫

Ω

ξ′(e(v)):e(v) + ∂ .
Fp

ζ̂(Fp ,
.

Fp ):
.

Fp dx , (2.7)
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where the last equality results when using the inclusion (2.5d) tested by
.

Fp ; actually, such

test generally gives only an inequality but we implicitly rely on certain smoothness of ζ out

of 0 as assumed later in (4.2d). Here we have used several times the matrix algebra

A : (BC) = (B⊤A) : C = (AC⊤) : B (2.8)

for any three square matrices A, B, and C. For the last equality in (2.7), we also used the

calculus
∫

Ω

ϕ̂′
F
(F ,Fp ):(v·∇)F + ϕ̂′

Fp
(F ,Fp ):(v·∇)Fp + ϕ̂(F ,Fp )div v dx

=

∫

Ω

∇ϕ̂(F ,Fp )·v + ϕ̂(F ,Fp )div v dx =

∫

Γ

ϕ̂(F ,Fp )(v·n) dS = 0 , (2.9)

where we employed the Green formula and the boundary conditions v·n = 0. Altogether,

we obtain (at least formally) the expected energy dissipation balance

d

dt

∫

Ω

ϕ̂(F ,Fp )
︸ ︷︷ ︸

stored
energy

dx+

∫

Ω

ξ′(e(v)):e(v) + ∂ .
Fp

ζ̂(Fp ,
.

Fp ):
.

Fp

︸ ︷︷ ︸
bulk dissipation rate

dx

+

∫

Γ

κ|v|2︸ ︷︷ ︸
boundary

dissipation rate

dS =

∫

Ω

̺ g·v
︸︷︷︸

power of
external load

dx+

∫

Γ

f ·v
︸︷︷︸

power of
traction load

dS . (2.10)

Actually, a usual assumption is that the inelastic deformation Fp only concerns shear and

does not affect volume variations. We call it isochoric and it means not only that that detFp

is positive (to make Fp invertible) but even that detFp = 1. Yet, the constraint detFp = 1 is

not affine and, if it would be ensured by the conservative part (i.e. through the stored energy

φ) and thus explicitly involved into (2.5) together with a corresponding Lagrange multiplier,

the analytical treatment of such a differential-algebraic-type system would become extremely

difficult and likely impossible. One modelling option is to consider this isochoric constraint

only approximately by casting a hardening-like term acting on detFp to ensure that detFp

is positive and close to 1; cf. [14, 32, 45, 59] for a Lagrangian formulation. Another option

is, instead of the control of detFp in the stored energy (implementing thus the isochoricity

only approximately), to implement the isochoricity exactly in the dissipative part relying on

the calculus

.

detFp = CofFp :
.

Fp = (detFp )F
−⊤
p :

.

Fp = (detFp )tr(
.

FpF
−1
p ) (2.11)

and by considering

ζ : Rd×d → [0,+∞] is convex, ζ(0) = 0, ζ
(
R

d×d\Rd×d
dev

)
= +∞ (2.12)

together with precribing the contraint detFp = 1 on the initial condition; cf. also [23,

Sect. 91.3]. Then (2.5d) ensures tr(
.

FpF
−1
p ) = 0 and, by (2.11), detFp = 1 provided the

7



initial inelastic deformation is isochoric. It is important that the trace-free constraint in

(2.12) is linear, in contrast to the non-affine constraint detFp = 1.

Let us however emphasize that the rigorous analysis of the system (2.5) would need still

gradients in the dissipation potential, which we will use in the following sections, cf. (3.7)

below, but which we intentionally ignored in (2.5) in order to explain the main structure of

the model without unnecessary technicalities.

Remark 2.1 (A gradient structure of (v,F )). Implicitly, we have in mind the situation

when (v,F ) is a gradient in the sense that (v,F ) = [(·).,∇]y of some deformation y which,

however, does not explicitly occur in (2.5). Indeed, an existence of some y so that F = ∇
X
y

and v =
.

y is not automatic even if F is a gradient of some deformation at an initial time.

Rather, we can always construct the return mapping ξ mentioned above by solving the simple

transport equation
.

ξ = 0 with the initial condition ξ(0)=identity. Then F = (∇xξ)
−1 and,

if ξ(t) : Ω → Ω is injective, the underlying deformation is y(t) = ξ−1(t). This global

injectivity seems not automatic, however; cf. also [58, Rem. 7].

3 Rate form of plasticity – hypoplasticity

We will now express the original model (2.5) in terms of the energies ϕ and ζ instead

of ϕ̂ and ζ̂. By this way, the plastic distortion Fp will be eliminated from the model,

although it will be possible to reconstruct it if the initial condition is known. The plasticity

evolution will be formulated exclusively in terms of plastic distortion rate Lp , cf. (3.5)

below, called here hypoplasticity in parallel how a rate formulated hyperelasticity is called

hypo-elasticity [62]. Actually, formulating the model in terms of Fe and Lp instead of the

multiplicative decomposition, was explicitly advocated in [7, p.249], emphasizing that Fp

bears no physical relevance.

Moreover, we will eliminate the equation for the mass transport (2.5a), although it will

stay implicitly contained in the model. Relying on (2.2), one can determine the density ̺

instead of the transport equation for mass density (2.3) from the algebraic relation

̺ =
̺0

detF
(3.1)

where ̺0 is the mass density in the reference configuration. Indeed, one has the calculus

.

̺

̺
=

(
̺0

.(
1

detF

)
+

.

̺0
detF

)
detF

̺0
= −

.

detF

detF
= −div v (3.2)

because
.

̺0 = 0 and because, analogously to (2.11), we have

.

detF = CofF :
.

F = (detF )F−⊤:
.

F

= (detF )I:
.

FF−1 = (detF )I:∇v = (detF )div v ; (3.3)

8



here we used also (2.1) and the matrix algebra (2.8). Thus, the last equality in (3.2) is

the transport equation (2.2) while (3.2) itself is just the continuity equation (2.3). This

would allow (and is actually often used) for elimination of the continuity equation (2.5a) in

Section 2.

Here, assuming again (2.12) and isochoricity of the initial plastic distortion and, thus,

having detFp = 1 during the whole evolution, we have detF = det(FeFp ) = detFe detFp =

detFe and (3.1) can be written as

̺ =
̺0

detFe
. (3.4)

Moreover, applying the material derivative on (2.4) and using (2.5c), we obtain (∇v)F =
.

F =
.

FeFp + Fe

.

Fp and, multiplying it by F−1 = F−1
p F−1

e , eventually we obtain

∇v =
.

FeF
−1
e︸ ︷︷ ︸

elastic
distortion

rate

+ Fe

.

FpF
−1
p︸ ︷︷ ︸

plastic
distortion
rate =: Lp

F−1
e , (3.5)

cf. e.g. [5,7,12,22–25,27,28,35,42,54,55,64,65]; the terms “distortion rates” are due to [22,23]

while sometimes Lp is called a “plastic dissipation tensor” [7] or “velocity gradient of purely

plastic deformation” in [35], etc.

Interestingly, in terms of plastic distortion rate Lp , we will not see explicitly the plastic

distortion Fp and, multiplying (3.5) by Fe , we obtain an evolution rule for Fe even without

any explicit occurrence of F−1
e , namely

.

Fe = (∇v)Fe − FeLp . (3.6)

Mainly for analytical reasons, we will enhance the dissipation potential from Sect. 2 by

generally non-quadratic gradient terms as

ξ(e(v)) + ζ(Lp ) +
ν

p
|∇e(v)|p + µ

q
|∇Lp |q (3.7)

with some (presumably small) coefficients ν, µ > 0, cf. Remark 3.1 below. In the next

Section 4, we will need both the gradient-term exponents sufficiently big, namely p > d and

q > d.

The stress ϕ̂′
F
(F ,Fp )F

⊤
p in (2.5b) is to be written in terms of ϕ by the calculus

ϕ̂′
F
(F ,Fp )F

⊤ =
[
ϕ(FF−1

p )
]′
F
F⊤ = ϕ′(Fe )F

−⊤
p (FeFp )

⊤ = ϕ′(Fe )F
⊤
e .

When writing the plastic flow rule (2.5d) in terms of Lp as a purely “algebraic” relation

without any explicit reference to the relation Lp =
.

FpF
−1
p and using (3.1) together with

the isochoric-inelasticity concept, we obtain the hypo-elastoplastic system as

divΣ + ̺g = 0 with ̺ =
̺0

detFe

, Σ = T − divH,

9



and T = SF⊤
e + ϕ(Fe )I+ ξ′(e(v))

where S = ϕ′(Fe ) and H = ν|∇e(v)|p−2∇e(v) , (3.8a)
.

Fe = (∇v)Fe − FeLp , (3.8b)

∂ζ(Lp )− div(µ|∇Lp |q−2
∇Lp ) ∋ F⊤

e S . (3.8c)

The right-hand side in (3.8c), being a driving stress for the plastification process, can be

identified as the Eshelby stress [5,11,17,42]; actually, the Eshelby stress standardly contains

also a pressure part like does also the elastic Cauchy stress ϕ′(Fe )F
⊤
e + ϕ(Fe )I but such a

pressure would not affect the isochoric plastic evolution. Again, the form of this stress is

dictated essentially in order to achieve the desired energy dissipation balance (2.10), i.e. now

(3.14) below.

The system (3.8) is to be completed by suitable boundary conditions counting also the

gradient terms arising from the enhanced dissipation potential (3.7), say

v·n = 0 ,
[
Σn−div

S
(Hn)

]
t
+ κv

t
= f , ∇e(v):(n⊗n) = 0 , and ∇Lp ·n = 0 , (3.9)

where the (d−1)-dimensional surface divergence is defined as

divS = tr(∇S) with ∇Sv = ∇v − ∂v

∂n
n , (3.10)

where tr(·) is the trace of a (d−1)×(d−1)-matrix and ∇Sv is the surface gradient of v.

The energetics behind the model (3.8) can be revealed by testing (3.8a) by v, and (3.8b)

by S (or, more precisely, testing (3.5) by SF ⊤
e ), and (3.8c) by Lp . Using the Green formula

and (3.5) tested by SF ⊤
e , we obtain from the Cauchy stress T :

∫

Ω

divT ·v dx =

∫

Γ

v·Tn dS −
∫

Ω

(SF⊤
e ):∇v + ϕ(Fe )div v + ξ′(e(v)):e(v) dx

=

∫

Γ

v·TndS −
∫

Ω

ϕ′(Fe )F
⊤
e :
( .
Fe+FeLp

)
F−1
e + ϕ(Fe )div v + ξ′(e(v)):e(v) dx

=

∫

Γ

v·TndS −
∫

Ω

ϕ′(Fe ):
.

Fe + F⊤
e ϕ′(Fe ):Lp + ϕ(Fe )div v + ξ′(e(v)):e(v) dx

=

∫

Γ

v·TndS − d

dt

∫

Ω

ϕ(Fe ) dt−
∫

Ω

∂ζ(Lp ):Lp + µ|∇Lp |q + ξ′(e(v)):e(v) dx , (3.11)

where we also used the matrix algebra (2.8) for ϕ′(Fe )F
⊤
e :(

.

FeF
−1
e ) = ϕ′(Fe )F

⊤
e F−⊤

e :
.

Fe =

ϕ′(Fe ):
.

Fe and for ϕ′(Fe )F
⊤
e :(FeLpF

−1
e ) = ϕ′(Fe ):(FeLp ) = F ⊤

e ϕ′(Fe ):Lp . In comparison

with Sect. (2), note that ∂ .
Fp

ζ̂(Fp ,
.

Fp ):
.

Fp = ∂ζ(Lp ):Lp . The pressure term is to be treated

similarly as in (2.9) by the calculus

∫

Ω

ϕ′(Fe )

(
∂Fe

∂t
+ (v·∇)Fe

)
+ ϕ(Fe ) div v dx

=

∫

Ω

∂

∂t
ϕ(Fe ) +∇ϕ(Fe )·v + ϕ(Fe )div v dx =

d

dt

∫

Ω

ϕ(Fe ) dx+

∫

Γ

ϕ(Fe )(v·n︸︷︷︸
= 0

) dS. (3.12)
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The further contribution from the hyperstress gives, using Green formula over Ω twice and

the surface Green formula over Γ , that

∫

Ω

div2H·v dx =

∫

Γ

v·divHn dS −
∫

Ω

divH:∇v dx

=

∫

Ω

H ..
.
∇

2v dx+

∫

Γ

n·H:∇v − v·divHn dS

=

∫

Ω

H ..
.
∇

2v dx+

∫

Γ

H:(n⊗n) + n·H:∇Sv − v·divHn dS

=

∫

Ω

ν|∇e(v)|p dx+

∫

Γ

H:(n⊗n)−
(
div

S
(n·H) + divHn

)
·v dS , (3.13)

where we used the decomposition of ∇v into its normal and tangential parts, i.e. written

componentwise ∇vi = (n·∇vi)n+∇Svi.

Merging the boundary integrals in (3.11) and in (3.13) and using the boundary condition

(Σn − div
S
(Hn))

t
+ κv

t
= f , we thus obtain (at least formally) the energy dissipation

balance

d

dt

∫

Ω

ϕ(Fe )
︸ ︷︷ ︸
stored
energy

dx+

∫

Ω

ξ′(e(v)):e(v) + ∂ζ(Lp ):Lp + ν|∇e(v)|p + µ|∇Lp |q︸ ︷︷ ︸
dissipation rate

dx

+

∫

Γ

κ|v|2︸ ︷︷ ︸
boundary

dissipation rate

dS =

∫

Ω

̺g·v
︸︷︷︸

power of
external load

dx+

∫

Γ

f ·v
︸︷︷︸

power of
traction load

dS . (3.14)

If one is interested in an “a posteriori” reconstruction of the plastic distortion Fp , one

should prescribe also an initial condition Fp |t=0 = Fp ,0 and, by re-arranging (3.5), to use

the plastic-strain evolution rule

.

Fp = LpFp . (3.15)

Only at this “a posteriori” point, one should consider the assumption detFp ,0 = 1 on which

the system (3.8) relied when arising from (2.5).

Remark 3.1 (Gradient theories in rates). So-called gradient theories in continuum mechan-

ical models are very standard, determining some internal length scales and often facilitating

mathematical analysis. They can be applied to the stored energy or to the dissipative po-

tential, i.e. they contribute to the conservative or to the dissipative parts of the model.

Here we used the latter option in (3.7). The first gradient term leads to the hyperstress

H in the momentum equation (3.8a) and is compliant with the so-called 2nd-grade non-

simple fluid concept devised by E. Fried and M.Gurtin [20] and, earlier and even more

generally and nonlinearly, as multipolar fluids by J.Nečas at al. [2, 3, 49–52], following ideas

of R.A.Toupin [61] and R.D. Mindlin [47] for elastic solids. The further gradient term in

(3.7) gives rise to div(µ|∇Lp |q−2
∇Lp ) in the plastic-rate evolution (3.8c). This causes a

certain “dynamical” hardening involves a certain length scale to the plastic distortion but,
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does not make spurious hardening effects during long lasting plastification or creep, unlike

the conventional kinematic or isotropic hardening in the conservative part. Similarly, in

Lagrangian formulation, [14] used the plastic distortion rate in ∆ ∂
∂t
Fp .

Remark 3.2 (An alternative model). There is not a general agreement on an interpre-

tation of the additive split of the rate in (3.5). One can also work with the plastic rate

as Lp = Fe

.

FpF
−1
p F−1

e , cf. [6, Sect.10.4], [7, Formula (7.1.4)], [30, Formulae (2.5)–(2.7)],

or [63, Formulae (95)–(96)]. This gives the elastic-strain evolution rule
.

Fe = (∇v−Lp )Fe in-

stead of (3.6), cf. [7, Sect.7.1], and the right-hand side of the plastic flow rule (3.8c) is −SF ⊤
e

instead of the Eshelby stress −F⊤
e S. The dissipation potential should act on this alternative

Lp . The plastic distortion can be reconstructed, instead of (3.15), by
.

Fp = F−1
e LpFeFp .

This alternative model can capture the zero plastic spin, provided the plastic spin is un-

derstood as the skew-symmetric part of Lp because the driving (Cauchy) stress SF⊤
e is

symmetric. Sometimes, the plastic spin is however understood as the skew-symmetric part

of Lp when the splitting (3.5) is used, cf. [23, Sect. 91.3]. For the discussion according both

variant see [7, Sect.7.1] or [48, Sect.4]. Actually, for small elastic deformations where Fe ∼ I,

both variants do not differ much from each other.

4 Analysis – weak solutions of (3.8)

We will provide a proof of existence and certain regularity of weak solutions. It should be

emphasized that, even with the nonlinear dissipative gradient terms which have regularizing

effects, it is quite nontrivial.

We will use the standard notation concerning the Lebesgue and the Sobolev spaces,

namely Lp(Ω;Rn) for Lebesgue measurable functions Ω → R
n whose Euclidean norm is

integrable with p-power, and W k,p(Ω;Rn) for functions from Lp(Ω;Rn) whose all derivative

up to the order k have their Euclidean norm integrable with p-power. We also write briefly

Hk = W k,2. The notation p∗ will denote the exponent from the embedding W 1,p(Ω) ⊂
Lp∗(Ω), i.e. p∗ = dp/(d−p) for p < d while p∗ ≥ 1 arbitrary for p = d or p∗ = +∞ for p > d.

Moreover, for a Banach space X and for I = [0, T ], we will use the notation Lp(I;X) for

the Bochner space of Bochner measurable functions I → X whose norm is in Lp(I) while

W 1,p(I;X) denotes for functions I → X whose distributional derivative is in Lp(I;X). Also,

C(·) and C1(·) will denote spaces of continuous and continuously differentiable functions.

A highly applicable assertion was originally devised for situations when F = ∇y with

y ∈ W 2,p(Ω;Rd) but actually it holds in more general situations, as used also in [32,45,46,59]:

Lemma 4.1 (T.J.Healey and S.Krömer [26]). Let κ > rd/(r−d) for some r > d. Then,

for any C < +∞, there is ǫ > 0 such that, for any F ∈ W 1,r(Ω;Rd×d) with detF > 0 a.e.

on Ω, it holds

‖F ‖W 1,r(Ω;Rd×d) +

∫

Ω

1

(detF )κ
dx ≤ C ⇒ detF ≥ ǫ on Ω .
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To devise a weak formulation of the initial-boundary-value problem for the system (3.8),

we use also by-part integration in time and the Green formula also for
.

Fe in the evolution

rule (3.8b) tested by a smooth S̃ with S̃(T ) = 0 together v·n = 0, we obtain

∫ T

0

∫

Ω

.

Fe :S̃ dxdt =

∫ T

0

∫

Ω

(
∂Fe

∂t
+ (v·∇)Fe

)
:S̃ dxdt =

∫ T

0

∫

Γ

(v·n)(Fe :S̃) dSdt

−
∫ T

0

∫

Ω

Fe :
∂S̃

∂t
+ (div v)Fe :S̃ + Fe :((v·∇)S̃) dxdt−

∫

Ω

Fe,0:S̃(0) dx .

Actually, Fe :
∂
∂t
S̃+Fe :((v·∇)S̃) can be written “elegantly” as

.

S̃ but it combines the testing

S̃ with the solution v and we will better not use such a “too compact” form.

Definition 4.2 (Weak solutions to (3.8)). A triple (v,Fe ,Lp ) ∈ L2(I;W 2,p(Ω;Rd)) ×
L∞(I;Lr(Ω;Rd×d)) × L∞(I;W 1,q(Ω;Rd×d

dev )) will be called a weak solution to the system

(3.8) with the boundary conditions (3.9) and the initial condition Fe |t=0 = Fe,0 if v·n = 0,

detFe > 0 a.e. such that ̺ = ̺0/ detFe ∈ L∞(I×Ω), and the integral identities

∫ T

0

∫

Ω

(
ϕ′(Fe )F

⊤
e + ξ′(e(v))

)
:∇ṽ − ϕ(Fe )(div ṽ) + ν|∇e(v)|p−2∇e(v) ..

.
∇e(ṽ) dxdt

+

∫ T

0

∫

Γ

κv·ṽ dSdt =

∫ T

0

∫

Ω

̺g·ṽ dxdt +

∫ T

0

∫

Γ

f ·ṽ dSdt (4.1a)

and

∫ T

0

∫

Ω

(
Fe :

∂S̃

∂t
+
(
(div v)Fe+(∇v)Fe−FeLp

)
:S̃

+ Fe :((v·∇)S̃)

)
dxdt = −

∫

Ω

Fe,0:S̃(0) dx (4.1b)

hold for any ṽ and S̃ smooth with ṽ·n = 0, ṽ(T ) = 0, and S̃(T ) = 0, and also the variational
inequality

∫ T

0

∫

Ω

ζ(L̃p ) +
µ

q
|∇L̃p |q − F⊤

e S:(L̃p−Lp ) dxdt ≥
∫ T

0

∫

Ω

ζ(Lp ) +
µ

q
|∇Lp |q dxdt (4.1c)

holds for any L̃p ∈ L∞(I;W 1,q(Ω;Rd×d
dev )).

Before stating the main analytical result, let us summarize the data qualification (for

some ǫ > 0):

Ω a smooth bounded domain of Rd, d = 2, 3 (4.2a)

ϕ ∈ C1(GL+(d)), ϕ(F ) ≥ ǫ/(detF )κ, (4.2b)

ξ ∈ C1(Rd×d
sym) convex , ξ(0) = 0 , sup

R
d×d
sym

|ξ′(·)|/(1 + | · |p−1) < ∞ , (4.2c)

ζ : Rd×d → [0,+∞] satisfy (2.12), ∀L ∈ R
d×d
dev : λ 7→ ζ(λL) is differentiable at λ = 1,

∃q0 ≥ 1 : inf
R
d×d
dev \{0}ζ(·)/| · |q0 > 0 and sup

R
d×d
dev

|∂ξ(·)|/(1 + | · |q−1) < ∞ , (4.2d)

13



κ ∈ L∞(Γ ) , essinf κ > 0 , ν > 0 , µ > 0 , (4.2e)

g ∈ L2κ/(κ−2)(I;Lκ
′

(Ω;Rd)) , f ∈ L2(I×Γ ;Rd) , (4.2f)

Fe,0 ∈ W 1,r(Ω;Rd×d) with ess infΩ detFe,0 > 0, (4.2g)

̺0 ∈ L∞(Ω) ∩W 1,1(Ω) with ess infΩ̺0 > 0 . (4.2h)

where GL+(d) = {F ∈ R
d×d; detF > 0} denotes the orientation-preserving general linear

group. As we admit q0 = 1 in (4.2d), the “essential part” of the dissipation potential

(3.7) can be degree-1 homogeneous, which would lead to a rate-independent plasticity like

e.g. [21, 38, 43, 45] although all other dissipative mechanisms stay rate dependent.

Proposition 4.3 (Existence and regularity of weak solutions). Let min(p, q) > d and the

assumptions (4.2) hold for κ > rd/(r−d) with some r > d. Then:

(i) there exist a weak solution according Definition 4.2 such that also ∂
∂t
Fe ∈

L2(I;Lr(Ω;Rd×d)) and ∇Fe ∈ L∞(I;Lr(Ω;Rd×d×d)). Moreover, it conserves energy
in the sense that the energy dissipation balance (3.14) integrated over time interval
[0, t] with the initial condition Fe |t=0 = Fe,0 holds.

(ii) If also Fp ,0 ∈ Ls(Ω;Rd×d) with some s > 1 and detFp ,0 = 1 a.e. on Ω, then the
corresponding plastic distortion Fp reconstructed as a unique weak solution to (3.15)
belongs to L∞(I;Ls(Ω;Rd×d)) and detFp = 1 a.e. on I×Ω.

(iii) If also Fp ,0 ∈ W 1,s(Ω;Rd×d
dev ) with some s > 1, then the plastic distortion Fp belongs

to L∞(I;W 1,s(Ω;Rd×d
dev )) ∩ W 1,p(I;Ls(Ω;Rd×d

dev )) and the deformation gradient F =
FeFp ∈ L∞(I;W 1,min(s,s∗r/(s∗+r))(Ω;Rd×d)) with ∂

∂t
F ∈ L2(I;Ls∗r/(s∗+r)(Ω;Rd×d)) +

Lp(I;Ls(Ω;Rd×d)), and ess infI×Ω detF > 0.

Proof. For clarity, we will divide the proof into nine steps.

Step 1: a regularization and discretization. Let us first make formally the a priori estimates

which follow from the energetics (3.14) when use the assumptions (4.2) for κ > rd/(r−d)

with some r > d and min(p, q) > d and the Healey-Krömer Lemma.

The only difficult term is ̺g·v on the right-hand side of (3.14), which can be estimated

by Hölder’s and Young’s inequalities as

∫

Ω

̺g·v dx =

∫

Ω

̺0
detFe

g·v dx ≤
∥∥∥∥

̺0
detFe

∥∥∥∥
Lκ(Ω)

∥∥v
∥∥
L∞(Ω;Rd)

∥∥g
∥∥
Lκ′ (Ω;Rd)

≤ Cǫ

(
1 +

∥∥∥ ̺0
detFe

∥∥∥
κ

Lκ(Ω)
+
∥∥g
∥∥2κ/(κ−2)

Lκ′ (Ω;Rd)

)
+ ǫ
∥∥∇e(v)

∥∥p
Lp(Ω;Rd×d×d)

+ ǫ
∥∥v|Γ

∥∥2
L2(Γ ;Rd)

, (4.3)

where we used ‖v‖L∞(Ω;Rd) ≤ C(‖∇e(v)‖
Lp(Ω;Rd×d×d)

+ ‖v|Γ‖L2(Γ ;Rd)
); here a Korn-Poincaré

inequality with the Navier boundary condition for v is exploited; for even a stronger variant

exploiting only an L2-norm of the deviatoric part of e(v) with L1-norm of the instead

of the Lp-norm of ∇e(v) cf. [19, Theorems 10.16–10.17]. The term ‖̺0/ detFe ‖κLκ(Ω) in

(4.3) can thus be treated by the Gronwall inequality relying on the blow-up assumption

ϕ(F ) ≥ ǫ/(detF )κ in (4.2b). Of course, we choose ǫ > 0 sufficiently small so that the
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last and the penultimate terms in (4.3) can be absorbed in the left-hand side of the energy

balance. From (3.14), we thus obtain

‖v‖L2(I;W 2,p(Ω;Rd)) ≤ C with ‖∇e(v)‖Lp(I×Ω;Rd×d×d) ≤ C , (4.4a)

‖Lp ‖Lq0 (I×Ω;Rd×d
dev )

≤ C with ‖∇Lp ‖Lq(I×Ω;Rd×d×d) ≤ C . (4.4b)

and
∫
Ω
ϕ(Fe (t)) dx bounded uniformly in time. The exponent 2 in the L2-estimate (4.4a) is

due to the linearity of the Navier boundary condition and thus due to the only quadratic
growth of the term κ|v|2 in (3.14). The former estimate in (4.4a) together with the qualifi-
cation (4.2g) of the initial condition Fe,0 can then be exploited for the estimation as (4.11)
and (4.18) below to obtain W 1,r-regularity of Fe . The usage of Lemma 4.1 gives 1/ detFe (t)
bounded in L∞(Ω). Altogether, for some ε > 0, we obtain

‖Fe ‖L∞(I;W 1,r(Ω;Rd×d)) ≤ C with essinf I×Ω detFe > ε . (4.4c)

As r > d, (4.4c) implies also

|Fe | <
1

ε
, ϕ(Fe ) <

1

ε
, and |ϕ′(Fe )| <

1

ε
a.e. on I×Ω ; (4.4d)

without loss of generality, we may take ε > 0 small enough so that both (4.4c) and (4.4d)
hold with the same ε. Thus, |ϕ′(Fe )F

⊤
e | ≤ 1/ε2 and |F⊤

e ϕ′(Fe )| ≤ 1/ε2. Moreover, from
(3.8c) by comparison realizing that the Eshelby stress on the right-hand side is bounded on
I×Ω, we can even improve the time integrability of (4.4b) as

‖Lp ‖L∞(I;W 1,q(Ω;Rd×d
dev ))

≤ C . (4.4e)

Then, taking this ε > 0 from (4.4c,d), we make a regularization of the right-hand side

of the momentum equation and the Cauchy and the Eshelby stresses and, for k ∈ N, a

parabolic regularization of the evolution equation (3.8b) for Fe . Altogether, we devise the

regularized system as

divΣ + ̺g = 0 with ̺ =
̺0

max(detFe , ε)
and Σ = T − divH,

where T =
SF⊤

e

1 + (|SF⊤
e | −1/ε2)+

+
ϕ(Fe )I

1 + (ϕ(Fe )−1/ε)+
+ ξ′(e(v))

with S = ϕ′(Fe ) and H = ν|∇e(v)|p−2∇e(v) , (4.5a)
.

Fe = (∇v)Fe − FeLp + k−1div(|∇Fe |r−2
∇Fe ) , (4.5b)

∂ζ(Lp )− div(µ|∇Lp |q−2
∇Lp ) ∋

F⊤
e S

1 + (|F⊤
e S|−1/ε2)+

(4.5c)

with (·)+ = max(·, 0). The boundary conditions (3.9) must now be complemented by some

boundary condition for the regularizing term in (4.5b), say n·∇Fe = 0. Of course, we will be

interested in weak solutions to (4.5) with these boundary conditions and the initial condition
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for Fe . The corresponding weak formulation a’la Definition 4.2 is quite straightforward and

we will not explicitly write it, also because it is obvious from its Galerkin version (4.6)

below. The philosophy of the regularization (4.5) is that the estimation of (4.5a) and (4.5b,c)

decouples and simultaneously the a priori estimates are the same as the formal estimates

(4.4) and, when taking ε > 0 small to comply with (4.4c,d), the ε-regularization becomes

eventually inactive, cf. Step 7 below. Moreover, the parabolic regularization of the flow rule

(4.5b) can be suppressed, cf. Step 6.

Then we make a conformal Galerkin approximation of (4.5a) by using a nested finite-

dimensional subspaces {Vk}k∈N whose union is dense in W 2,p(Ω;Rd); note that they are

indexed by the same k ∈ N as used in (4.5b). Separately, we make a Galerkin approximation

of (4.5b) and (4.5c) by using other nested finite-dimensional subspaces {Wl}l∈N whose union

is dense in W 1,max(q,r)(Ω;Rd×d), using another index l ∈ N. Also, the trace-free functions

from {Wl}l∈N are dense in in the space {L ∈ W 1,q(Ω;Rd×d); tr(L) = 0}. Without loss of

generality, we may assume v ∈ V1 and Fe,0 ∈ W1.

The approximate solution of the regularized system (4.5) will be denoted by (vkl,Fe,kl,Lp,kl) :

I → Vk ×Wl ×Wl. Specifically, such a triple should satisfy the following integral identities

∫ T

0

∫

Ω

(
ϕ′(Fe,kl)F

⊤
e,kl

1 + (|ϕ′(Fe,kl)F
⊤
e,kl|−1/ε2)+

+ ξ′(e(vkl))

)
:∇ṽ +

ϕ(Fe,kl)div ṽ

1 + (ϕ(Fe,kl)−1/ε)+

+ ν|∇e(vkl)|p−2∇e(vkl)..
.
∇e(ṽ) dxdt +

∫ T

0

∫

Γ

κvkl·ṽ dSdt

=

∫ T

0

∫

Ω

̺0g

max(detFe,kl, ε)
·ṽ dxdt +

∫ T

0

∫

Γ

f ·ṽ dSdt , (4.6a)

and

∫ T

0

∫

Ω

(
Fe,kl:

∂S̃

∂t
+
(
(div vkl)Fe,kl+(∇vkl)Fe,kl−Fe,klLp,kl

)
:S̃

+ Fe,kl:((vkl·∇)S̃)− 1

k
|∇Fe,kl|r−2

∇Fe,kl ..
.
∇S̃

)
dxdt = −

∫

Ω

Fe,0:S̃(0) dx (4.6b)

for any ṽ ∈ L∞(I;Vk) and S̃ ∈ L∞(I;Wl) with ṽ·n = 0, ṽ(T ) = 0, and S̃(T ) = 0, and also
the variational inequality

∫ T

0

∫

Ω

ζ(L̃p ) +
µ

q
|∇L̃p |q −

F⊤
e,klϕ

′(Fe,kl)

1 + (|F⊤
e,klϕ

′(Fe,kl)|−1/ε2)+
:(L̃p−Lp,kl) dxdt

≥
∫ T

0

∫

Ω

ζ(Lp,kl) +
µ

q
|∇Lp,kl|q dxdt (4.6c)

should hold for any L̃p ∈ L∞(I;Wl), tr(L̃p ) = 0 a.e. on I×Ω.

Existence of this solution is based on the theory of systems of ordinary differential equa-

tions first locally in time, and then by successive prolongation on the whole time interval

based on the L∞-estimates below.

16



Step 2: first a priori estimates. The basic test of the Galerkin approximation of (4.5) can

be done by (vkl,Fe,kl,Lp,kl). In particular, for (4.5b), we use the estimate

d

dt

∫

Ω

1

2
|Fe,kl|2 dx+

1

k

∫

Ω

|∇Fe,kl|r dx

≤
∫

Ω

(
(∇vkl)Fe,kl − (vkl·∇)Fe,kl − Fe,klLp,kl

)
:Fe,kl dx

=

∫

Ω

(∇vkl)Fe,kl:Fe,kl +
div vkl

2
|Fe,kl|2 − Lp,kl:(F

⊤
e,klFe,kl) dx

≤
(
3

2
‖∇vkl‖L∞(Ω;Rd×d) + ‖Lp,kl‖L∞(Ω;Rd×d)

)
‖Fe,kl‖2L2(Ω;Rd×d) ; (4.7)

here we used also the calculus (for F = Fe,kl and v = vkl)

∫

Ω

(v·∇)F :F dx =

∫

Γ

|F |2(v·n) dS

−
∫

Ω

F :(v·∇)F + (div v)|F |2 dx = −1

2

∫

Ω

(div v)|F |2 dx (4.8)

together with the boundary condition v·n = 0. By the Gronwall inequality exploiting the

first left-hand-side term which does not contain the factor 1/k, we obtain the estimate

∥∥Fe,kl

∥∥
L∞(I;L2(Ω;Rd×d))

≤ ‖Fe,0‖L2(Ω;Rd×d))e
‖∇vkl‖L1(I;L∞(Ω;Rd×d))

+‖Lp,kl‖L1(I;L∞(Ω;Rd×d)) . (4.9)

Thus, by this test, we obtain

‖vkl‖L2(I;W 2,p(Ω;Rd)) ≤ C , (4.10a)

‖Fe,kl‖L∞(I;L2(Ω;Rd×d)) ≤ C with ‖∇Fe,kl‖Lr(I×Ω;Rd×d×d) ≤ C
r
√
k , (4.10b)

‖Lp,kl‖L∞(I;W 1,q (Ω;Rd×d
dev )) ≤ C . (4.10c)

Particularly, let us note that the regularized force ̺0g/max(detFe,kl, ε) is a priori bounded

in L2κ/(κ−2)(I;Lκ′

(Ω;Rd)), cf. (4.2f), and that the constant C in (4.10a) depends on ε but

not on k, l, because also the conservative (elastic) part of the regularized Cauchy stress in

(4.5a) and also the Eshelby stress in (4.5c) are bounded independently of Fe , and therefore

each of the equations in (4.5) can be estimated separately.

Step 3: second a priori estimates. In Step 1, we could also estimate ∂
∂t
Fe,kl + (vkl·Fe,kl −

(∇vkl)Fe,kl + Fe,klLp,kl by comparison from (4.10b) in Lr′(I;W 1,r(Ω;Rd×d)∗), but it would

not be enough for (4.17) below and thus for making the test in Step 5 legitimate. To get a

better estimate, we can also test the Galerkin approximation of (4.5b) by ∂
∂t
Fe,kl. By Hölder

and Young inequalities, we can estimate

∫

Ω

∣∣∣∣
∂Fe,kl

∂t

∣∣∣∣
2

dx+
1

rk

d

dt

∫

Ω

|∇Fe,kl|r dx

≤
∫

Ω

(
(∇vkl)Fe,kl − (vkl·∇)Fe,kl − Fe,klLp,kl

)
:
∂Fe,kl

∂t
dx
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≤
(
‖∇vkl‖L∞(Ω;Rd×d) + ‖Lp,kl‖L∞(Ω;Rd×d)

)2
‖Fe,kl‖2L2(Ω;Rd×d)

+ Cr‖vkl‖2L∞(Ω;Rd)

(
1 + ‖∇Fe,kl‖rLr(Ω;Rd×d)

)
+

1

2

∥∥∥∥
∂Fe,kl

∂t

∥∥∥∥
2

L2(Ω;Rd×d)

(4.11)

with some Cr ∈ R; here we used that surely r > 2. Using the already obtained estimates

(4.10) and the Gronwall inequality, we obtain

∥∥∥∂Fe,kl

∂t

∥∥∥
L2(I×Ω;Rd×d))

≤ Cek/k and ‖∇Fe,kl‖L∞(I;Lr(Ω;Rd×d×d)) ≤ Cek/r . (4.12)

Note that here the Gronwall inequality uses not the first but the second left-hand-side term

which contains the factor 1/k so that both estimates in (4.12) are k-dependent.

Step 4: limit passage with l → ∞. Now, by the Banach selection principle, we extract a

subsequence and some (vk,Fe,k,Lp,k) : I → Vk ×W 1,r(Ω;Rd×d)×W 1,q(Ω;Rd×d
dev ) such that

vkl → vk weakly* in L2(I;W 2,p(Ω;Rd)), (4.13a)

Fe,kl → Fe,k weakly* in L∞(I;W 1,r(Ω;Rd×d)) ∩ H1(I;L2(Ω;Rd×d)), (4.13b)

Lp,kl → Lp,k weakly* in L∞(I;W 1,q(Ω;Rd×d
dev )) . (4.13c)

By the Aubin-Lions theorem, we have also Fe,kl → Fe,k strongly in Lc(I×Ω;Rd×d) with any
c < ∞; recall that r > d. Thus, by the continuity of the corresponding Nemytskĭı (or here
simply superposition) mappings, also the regularized Eshelby stress converges

F⊤
e,klϕ

′(Fe,kl)

1 + (|F⊤
e,klϕ

′(Fe,kl)|−1/ε2)+
→

F⊤
e,kϕ

′(Fe,k)

1 + (|F⊤
e,kϕ

′(Fe,k)|−1/ε2)+
strongly in Lc(I×Ω;Rd×d).

As the right-hand side of the discretized plasticity-rate inclusion (4.5c) converge strongly, by
the uniform monotonicity of its left-hand side, we have also

Lp,kl → Lp,k strongly in Lc(I;W 1,q(Ω;Rd×d
dev )) with any c < ∞ . (4.13d)

By the mentioned continuity of the corresponding Nemytskĭı mappings, we have also

̺kl =
̺0

max(detFe,kl, ε)
→ ̺0

max(detFe,k, ε)
= ̺k strongly in Lc(I×Ω) with any c < ∞

and similarly the regularized elastic part of the Cauchy stress in (4.5a) converges strongly:

T ε,kl =
ϕ′(Fe,kl)Fe,kl

1 + (|ϕ′(Fe,kl)Fe,kl|−1/ε2)+
+

ϕ(Fe,kl)I

1 + (ϕ(Fe,kl)−1/ε)+

→ ϕ′(Fe,k)Fe,k

1+(|ϕ′(Fe,k)Fe,k|−1/ε2)+
+

ϕ(Fe,k)I

1+(ϕ(Fe,k)−1/ε)+
= T ε,k strongly in Lc(I×Ω;Rd×d).

(4.14)

For the limit passage in the Galerkin approximation of (4.5a) for l → ∞ (which still

will remain discretized as k is considered fixed in this step), we need the Minty trick or,
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having here the strong monotonicity of the hyperstress term, we use just strong convergence

of ∇e(vkl). In fact, as we do not consider any acceleration and thus do not have ∂
∂t
vkl

under control in the quasistatic case, we will anyhow need strong convergence of ∇vkl later

in Step 6 for the convective term (v·∇)Fe . So, using the Galerkin approximation of the

momentum equation tested by vkl − vk, we can estimate

νcp‖∇e(vkl−vk)‖pLp(I×Ω;Rd×d×d)
≤
∫ T

0

∫

Ω

((
ξ′(e(vkl))−ξ′(e(vk))

)
:e(vkl−vk)

+ ν
(
|∇e(vkl)|p−2∇e(vkl)− |∇e(vk)|p−2∇e(vk)

)
..
.∇e(vkl−vk)

)
dxdt

=

(∫ T

0

∫

Ω

(
̺klg·(vkl−vk)− ν

(
|∇e(vk)|p−2∇e(vk)

)
..
.∇e(vkl−vk)

−
(
T ε,kl + ξ′(e(vk))

)
:∇(vkl−vk)

)
dxdt +

∫ T

0

∫

Γ

f ·(vkl−vk) dSdt

)
→ 0 (4.15)

with some cp > 0 related to the inequality cp|G − G̃|p ≤ (|G|p−2G − |G̃|p−2G̃)..
.
(G − G̃)

holding for p ≥ 2. We also use (4.14) and that ∇(vkl−vk) → 0 weakly in Lp(I×Ω;Rd×d), so

that
∫ T

0

∫
Ω
T ε,kl:∇(vkl−vk) dxdt → 0, and also the growth assumption (4.2c) which ensures

ξ′(e(vk)) ∈ Lp(I×Ω;Rd×d). Thus we obtain the desired strong convergence of ∇e(vkl) in

Lp(I×Ω;Rd×d×d).

The limit passage in the quasilinear parabolic evolution equation (4.5b) in its Galerkin

approximation (4.6b) is very standard when realizing that (∇vkl)Fe,kl −Fe,klLp,kl converges

to (∇vk)Fe,k−Fe,kLp,k strongly in Lp(I;Lq∗(Ω;Rd×d)) while (vkl·∇)Fe,kl → (vk·∇)Fe,k only

weakly* in L∞(Lr(Ω;Rd×d)) but this is enough when tested by F̃e,kl −Fe,kl → 0 strongly in

L1(I;Lr′(Ω;Rd×d)) with some approximation F̃e,kl ∈ L1(I;Wl) strongly converging to Fe,k

for l → ∞; the strong convergence Fe,kl → Fe,k is due to the Aubin-Lions theorem and the

estimates (4.12); here we rely on that surely 1/r + 1/r∗ < 1.

The limit passage in the Galerkin approximation of (4.5c) written as the variational

inequality (4.6c) can be made easily by a weak convergence and by the weak lower semicon-

tinuity of the functional Lp 7→
∫ T

0

∫
Ω
ζ(Lp ) + µ|∇Lp |q/q dxdt.

Step 5: third a priori estimates. Since now
∥∥∥∂Fe,k

∂t
+ (vk·∇)Fe,k − (∇vk)Fe,k + Fe,kLp,k

∥∥∥
L2(I×Ω;Rd×d)

≤ Cek/r , (4.16)

by comparison we also obtain
∥∥div(|∇Fe,k|r−2

∇Fe,k)
∥∥
L2(I×Ω;Rd×d)

≤ kCek/r . (4.17)

Although this estimate blows up when k → ∞, we have now at least the information that

div(|∇Fe,k|r−2
∇Fe,k) ∈ L2(I×Ω;Rd×d). It is now important that we have (4.5b) continuous,

i.e. non-discretized. Therefore, we can legitimately use div(|∇Fe,k|r−2
∇Fe,k) as a test. Since

min(p, q) > d, we have min(p, q)−1 + (r∗)−1 + (r′)−1 ≤ 1, and thus by the Hölder and Young

inequalities, we can estimate

d

dt

∫

Ω

1

r
|∇Fe,k|r dx+

1

k

∫

Ω

|div(|∇Fe,k|r−2
∇Fe,k)|2 dx
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=

∫

Ω

∇
(
(vk·∇)Fe,k − (∇vk)Fe,k − Fe,kLp,k

)
..
.(|∇Fe,k|r−2∇Fe,k

)
dx

=

∫

Ω

|∇Fe,k|r−2(∇Fe,k⊗∇Fe,k):e(vk)−
1

r
|∇Fe,k|rdiv vk

−
(
(∇vk)∇Fe,k + (∇2vk)Fe,k +∇Fe,kLp,k + Fe,k∇Lp,k

)
..
.(|∇Fe,k|r−2∇Fe,k

)
dx

≤ Cr

(
‖∇vk‖L∞(Ω;Rd×d) + ‖Lp,k‖L∞(Ω;Rd×d)

)
‖∇Fe,k‖rLr(Ω;Rd×d×d)

+ Cr

(
‖∇2vk‖Lp(Ω;Rd×d×d)+ ‖∇Lp,k‖Lq(Ω;Rd×d×d)

)
‖Fe,k‖Lr∗(Ω;Rd×d)‖∇Fe,k‖r−1

Lr(Ω;Rd×d×d)

≤ Cr

(
‖∇vk‖L∞(Ω;Rd×d) + ‖Lp,k‖L∞(Ω;Rd×d)

)
‖∇Fe,k‖rLr(Ω;Rd×d×d)

+ CrN
(
‖∇2vk‖Lp(Ω;Rd×d×d)+ ‖Lp,k‖L2(Ω;Rd×d)

)
‖Fe,k‖L2(Ω;Rd×d)

(
1+‖∇Fe,k‖rLr(Ω;Rd×d×d)

)

+ CrN
(
‖∇2vk‖Lp(Ω;Rd×d×d)+ ‖∇Lp,k‖Lq(Ω;Rd×d×d)

)
‖∇Fe,k‖rLr(Ω;Rd×d×d) , (4.18)

where we used min(p, q) > d also for the embedding of ∇vk and Lp,k into L∞(Ω;Rd×d) and

where we further used the calculus (to be used for F = Fe,k)

∫

Ω

∇
(
(v·∇)F

)
:|∇F |r−2∇F dx

=

∫

Ω

|∇F |r−2(∇F⊗∇F ):e(v) + (v·∇)∇F ..
.|∇F |r−2∇F dx

=

∫

Γ

|∇F |rv·n dS +

∫

Ω

(
|∇F |r−2(∇F⊗∇F ):e(v)

− (div v)|∇F |r − (r−1)|∇F |r−2∇F ..
.
(v·∇)∇F

)
dx

=

∫

Γ

|∇F |r
r

v·n dS +

∫

Ω

|∇F |r−2(∇F⊗∇F ):e(v)− (div v)
|∇F |r
r

dx .

Here ∇F⊗∇F denoted the symmetric matrix [∇F⊗∇F ]ij =
∑d

k,l=1
∂

∂xi
F kl

∂
∂xj

F kl. Again,

the boundary integral vanishes in (4.18) if v·n = 0. For the last inequality in (4.18), we have

used ‖Fe,k‖Lr∗(Ω;Rd×d)
≤ N(‖Fe,k‖L2(Ω;Rd×d)+‖∇Fe,k‖Lr(Ω;Rd×d×d)) where N is the norm of the

embedding W 1,r(Ω) ⊂ Lr∗(Ω) if W 1,r(Ω) is endowed with the norm ‖ ·‖L2(Ω)+‖∇·‖Lr(Ω;Rd).

Thus one can apply the Gronwall inequality to (4.18) and the estimates (4.10b) and

(4.12) can be strengthened. Specifically, using the already obtained estimates (4.9) and

having assumed Fe,0 ∈ W 1,r(Ω;Rd×d), one obtains the estimates

‖∇Fe,k‖L∞(I;Lr(Ω;Rd×d×d)) ≤ C and (4.19a)

‖div(|∇Fe,k|r−2
∇Fe,k)‖L2(I×Ω;Rd×d) ≤ C

√
k . (4.19b)

Besides, although the former estimate in (4.12) on ∂
∂t
Fe,k is not inherited also on the limit,

we have by comparison from ∂
∂t
Fe,k = (∇vk)Fe,k − (vk·∇)Fe,k + k−1div(|∇Fe,k|r−2

∇Fe,k) in
its Galerkin approximation (4.6b) a weaker estimate

∥∥∥∂Fe,k

∂t

∥∥∥
L2(I;L2(Ω;Rd×d)+W 1,r

K
(Ω;Rd×d)∗)

≤ C for k ≥ K , (4.19c)
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where W 1,r
K (Ω;Rd×d)∗ is considered endowed with the seminorm

| · |K = sup
‖F‖

W1,r(Ω;Rd×d)
≤1, F∈WK

∫

Ω

∇ · ...∇F dx .

It is important that C in (4.19c) can be taken independent of K ∈ N.

Step 6: limit passage with k → ∞. We use the Banach selection principle as in Step 4

now also taking (4.19a) into account instead of the latter estimate in (4.12) which was not

uniform in k. Thus, for a subsequence and some (v,Fe ,Lp ), we have

vk → v weakly* in L2(I;W 2,p(Ω;Rd)), (4.20a)

Fe,k → Fe weakly* in L∞(I;W 1,r(Ω;Rd×d))), (4.20b)

Lp,k → Lp strongly in Lc(I;W 1,q(Ω;Rd×d
dev )) with any c < ∞ . (4.20c)

Moreover, exploiting (4.20b) together with the estimate (4.19c), by the Aubin-Lions theorem

generalized for time derivatives controlled in Hausdorff locally convex spaces [57, Lemma 7.7]

we obtain also Fe,k → Fe strongly in Lc(I×Ω;Rd×d) for any 1 ≤ c < +∞ to be used

analogously as we did in Step 4.

The momentum equation (4.5a) (still regularized by ε and discretised) and the plastic-

rate inclusion (4.5c) are to be treated like in Step 4; in fact, (4.15) is to be slightly modified

by using some approximation ṽk of the limit v valued in the Galerkin finite-dimensional

space so that vk−ṽk is a legitimate test for the Galerkin approximation of the momentum

equation (4.5a) and such that ∇e(ṽk) → ∇e(v) strongly in Lp(I×Ω;Rd×d×d). Due to

(4.19b), we have k−1div(|∇F k|r−2
∇F k) = O(

√
1/k) → 0 in L2(I×Ω;Rd×d) and thus this

regularizing term in the elastic-strain evolution equation (4.5b) disappears in the limit. The

rest is a linear equation in terms of Fe , while its coefficients vk, ∇vk, and Lp,k converge

strongly. Altogether, we showed that (v,Fe ,Lp ) is a weak solution of a problem like (4.5)

but regularized only by ε > 0, i.e. the last term in (4.5b) is omitted.

Step 7: the original problem. Let us note that the limit Fe lives in L∞(I;W 1,r(Ω)) ∩
H1(I;W 1,r(Ω)∗) and this space is embedded into C(I×Ω) if r > d. Therefore Fe and its

determinant evolve continuously in time, being valued respectively in C(Ω;Rd×d) and C(Ω).

Let us recall that the initial condition Fe,0 complies with the bounds (4.4c,d) and we used

this Fe,0 also for the ε-regularized system. Therefore Fe satisfies these bounds not only at

t = 0 but also at least for small times. Yet, it means that the ε-regularization is nonactive

and (v,Fe ,Lp ) solves, at least for a small time, the original nonregularized system for which

the a priori bounds (4.4) hold. Here we used Lemma 4.1. By the continuation argument,

we may see that the ε-regularization remains therefore inactive within the whole evolution

of (v,Fe ,Lp ) on the whole time interval I.

Step 8: energy balance. It is now important that the tests and then all the subsequent

calculations leading to (3.14) integrated over a current time interval [0, t] are really legitimate.

Since∇e(v) ∈ Lp(I×Ω;Rd×d×d), we have div2(ν|∇e(v)|p−2
∇e(v)) ∈ Lp′(I;W 2,p(Ω;Rd)∗)

in duality with v. Also divξ′(e(v)) ∈ Lp′(I;W 1,p∗(Ω;Rd)∗) is in duality with v due to the
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growth condition (4.2c) and ̺0g/ detFe + div(ϕ′(Fe )F
⊤
e + ϕ(Fe )I) is even better. Further,

by comparison, ∂
∂t
Fe = (∇v)Fe −(v·∇)Fe −FeLp ∈ Lp(I;Lr(Ω;Rd×d))+Lq(I×Ω;Rd×d) ⊂

Lmin(p,q)(I;Lmin(r,q)(Ω;Rd×d)). Therefore, it is surely in duality with the Piola stress S =

ϕ′(Fe ) ∈ L∞(I×Ω;Rd×d). Also, by comparison from (3.8c), div(µ|∇Lp |q−2
∇Lp ) ∈ ∂ζ(Lp )+

F⊤
e S is a bounded set in Lq′(I;L∞(Ω;Rd×d

dev )), cf. the growth condition in (4.2d). Therefore,

it is in duality with Lp ∈ Lq(I;W 1,q(Ω;Rd×d
dev )). Here we note that, due to (4.2d), ∂ζ is

possibly multivalued but, due to (4.2d), the plastic dissipation rate ∂ζ(Lp ):Lp is, in fact,

always a single-valued function in L1(I×Ω).

Therefore, the calculations (3.11)–(3.13) are legitimate.

Step 9: additional information – plastic distortion. The corresponding plastic distortion Fp

satisfies the evolution rule
.

Fp = LpFp , cf. (3.15). Then, for the W 1,s-estimate, it suffices

to apply the same procedure as we did for (3.8b) modified and even simplified since there

is no term like (∇v)Fp , i.e. we regularize as the linear transport-evolution equation
.

Fp =

LpFp + kdiv(|∇Fp |s−2|∇Fp ) and use the calculus like (4.7), (4.11), and (4.18). Actually,

for the mere Ls-estimate with s = 2, it suffices to use only the first estimate (4.7) while, for

Ls-estimate with s 6= 2, the estimate (4.7) is to be modified for a test by |Fp |s−2Fp in the

spirit of (4.18). Moreover, LpFp ∈ L∞(I;Ls∗(Ω;Rd×d)) and (v·∇)Fp ∈ Lp(I;Ls(Ω;Rd×d))

so that we have ∂
∂t
Fp = LpFp − (v·∇)Fp ∈ Lp(I;Ls(Ω;Rd×d)).

The same arguments can be applied to the evolution-and-transport equation of detFp ,

cf. (2.11). Due to (2.12), trLp = 0 so that (2.11) reduces to

.

detFp = 0 . (4.21)

If detFp ,0 is constant, then (4.21) reduces to ∂
∂t
(detFp ) = 0, so that detFp stays equal to

this constant during the whole evolution. In particular it holds for detFp ,0 = 1.

Eventually, for the deformation gradient F = FeFp ∈ L∞(I;Ls∗(Ω;Rd×d)), we have

also ∇F = ∇FeFp + Fe∇Fp ∈ L∞(I;Lmin(s,s∗r/(s∗+r))(Ω;Rd×d×d)) and ∂
∂t
F = ( ∂

∂t
Fe )Fp +

Fe
∂
∂t
Fp ∈ L2(I;Ls∗r/(s∗+r)(Ω;Rd×d)) + Lp(I;Ls(Ω;Rd×d)). As detFp = 1 and detFe stays

away from 0, the same holds for detF = detFe .

Remark 4.4 (Classical solutions). In fact, we proved that all the terms in the transport-

evolution equations (3.8b) and, under the assumptions of Proposition 4.3(iii), also (3.15)

are surely in L1(I×Ω;Rd×d). Thus these equations are satisfied even a.e. on I×Ω. If

ϕ is twice continuously differentiable, div(ϕ′(Fe )F
⊤
e + ϕ(Fe )I) ∈ L∞(I;Lr(Ω;Rd)) due to

the regularity of ∇Fe ∈ L∞(I;Lr(Ω;Rd×d)). If also ζ is twice continuously differentiable,

then also div(ζ ′(e(v)) ∈ Lp(L∞(Ω;Rd)). Then, by comparison, div2(ν|∇e(v)|p−2
∇e(v)) ∈

Lp(I;Lr(Ω;Rd)) and therefore also the momentum equation (3.8a) holds a.e. on I×Ω. If

the plastic-distortion-rate inclusion (3.8c) is understood on the linear subspace trLp = 0,

then also div(µ|∇Lp |q−2
∇Lp ) ∈ Lq′(I×Ω;Rd×d) and also the inclusion (3.8c) holds a.e. on

I×Ω. This is more than the weak formulation (4.1). Recovery of the boundary conditions

a.e. on I×Γ would need still more regularity, however.
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Remark 4.5 (Uniqueness). For a given v and Lp , the weak solution of the transport-

evolution equations (3.8b) is unique. The highest-order terms of the momentum equation

(3.8a) and the plastic-distortion-rate inclusion (3.8c) are strictly monotone but, anyhow, the

uniqueness of a weak solution to the whole system (3.8) seems problematic. The troublesome

attribute is that the conservative part of the Cauchy stress ϕ′(Fe )F
⊤
e +ϕ(Fe )I as well as the

Eshelby stress F⊤
e ϕ

′(Fe ) are highly nonmonotone.
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[14] E. Davoli, T. Roub́ıček, and U. Stefanelli. A note about hardening-free viscoelastic models in
Maxwellian-type rheologies. Math. Mech. of Solids, 26:1483–1497, 2021.

[15] C. Eckart. The thermodynamics of irreversible processes IV. The theory of elasticity and
anelasticity. Phys. Rev., 73:373–382, 1948.

[16] T. Eiter, K. Hopf, and A. Mielke. Leray-Hopf solutions to a viscoelastic fluid model with
nonsmooth stress-strain relation. Nonlin. Anal., Real World Appl. 65:103491, 2022..

[17] M. Epstein and G.A. Maugin. Remarks on the universality of the Eshelby stress. Math. Mech.
Solids, pages 137–143, 2010.

[18] E. Feireisl. Dynamics of Viscous Compressible Fluids. Oxford Univ. Press, Oxford, 2004.
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[26] T.J. Healey and S. Krömer. Injective weak solutions in second-gradient nonlinear elasticity.
ESAIM: Control, Optim. & Cal. Var., 15:863–871, 2009.
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[39] J. Málek, V. Pr̊uša, T. Skřivan, and E. Süli. Thermodynamics of viscoelastic rate-type fluids
with stress diffusion. Phys. Fluids, 30, 023101:1–23, 2018.

[40] Z. Martinec. Principles of Continuum Mechanics. Birkhäuser/Springer, Switzerland, 2019.
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Methods in Mathematical Physics, pages 111–119, Wiesbaden, 1994. Vieweg+Teubner.
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