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Motility switching and front-back synchronisation in
polarized cells

Gissell Estrada-Rodriguez∗ Benoit Perthame†

Abstract

The combination of protrusions and retractions in the movement of polarized cells leads to
understand the effect of possible synchronisation between the two ends of the cells. This syn-
chronisation, in turn, could lead to different dynamics such as normal and fractional diffusion.
Departing from a stochastic single cell trajectory, where a “memory effect” induces persistent
movement, we derive a kinetic-renewal system at the mesoscopic scale. We investigate various
scenarios with different levels of complexity, where the two ends of the cell move either indepen-
dently or with partial or full synchronisation. We study the relevant macroscopic limits where
we obtain diffusion, drift-diffusion or fractional diffusion, depending on the initial system. This
article clarifies the form of relevant macroscopic equations that describe the possible effects of
synchronised movement in cells, and sheds light on the switching between normal and fractional
diffusion.

Introduction
Mathematical modelling of cell motility has been largely studied, specially through the use of partial
differential equations (PDEs). Depending on the biological context, cell trajectories can be described
by a persistent random walk [21], where the individual tends to keep moving in the same direction
as observed in [10, 15]. Often, directional persistence is also described as a correlated random walk
where the direction of previous steps influences the direction of next ones.

This type of movement was studied in [12] where, due to the synchronisation of protrusions and
retractions in the front and back of metastatic cells, the authors observed a strong presence of long
runs, interspersed by a sequence of short steps. These characteristics are analogous to Lévy walk
trajectories, where the probability of a long run, i.e. a trajectory in the same direction for a long time,
is non negligible. It was also observed that in non-metastatic cells the front and back movements
are independent and then they follow a classical random walk. In contrast to a Brownian motion,
where the distribution of the individuals’ trajectories follows a Gaussian, Lévy walk trajectories
asymptotically follow a power-law distribution [19, 30]. Moreover, while for the Brownian case the
mean square displacement 〈x2〉 grows linearly with respect to time (〈x2〉 ∼ t), for the Lévy walk
case we have 〈x2〉 ∼ tζ where ζ ∈ (1, 2). The exponent ζ = 2 corresponds to ballistic transport while
ζ = 1 corresponds to normal diffusion. When ζ ∈ (1, 2) we are in the superdiffusive regime. For
the ubiquitous appearance of Lévy walk models in biological systems we refer to [1, 11, 14] at the
cellular level, [7, 25, 26, 27, 29] for animals and [23, 24] for humans.

In this work, we start from the most general description: when front and back can make inde-
pendent, non-synchronised steps to the right and to the left. In this setting, the model records the
persistence time in each direction, thus leading to a complex system which can better be understood
in terms of cell elongation and movement of the center of gravity.
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To reduce the complexity, we assume that the cell length is fixed at the mesoscopic scale under
investigation; the model is now amenable to multi-scale analysis and depending on the switching
rates of both ends, we compute a diffusion coefficient at the macroscopic scale. Such a model with
a given cell length can also be derived from the full system assuming fast switches in the dynamics
of cell elongation compared to those for the movement. We also investigate the synchronisation
between back and front, where we can observe a full range of behaviours. With low persistence,
normal diffusion occurs, possibly with a drift and explicit formulas are computed. They show the
possibility of a “backward diffusion” regime which can be interpreted as instability of the constant
steady state at the kinetic (mesoscopic) scale. More interesting is when persistence is higher, then
fractional diffusion occurs exhibiting the phenomena of long excursions which motivates our study.

When going back to individual cell (microscopic) dynamics, we perform numerical simulations
and, as explained earlier, the long time behaviour quantifies the fractional diffusion in accordance
to the developed theory.

To motivate our modelling, we are going to describe, based on biological evidence presented
in [12], two systems where none or full synchronisation of front and back leads to diffusive or
superdiffusive dynamics, respectively.

Cell persistent movement through front-back synchronisation As previously introduced,
the full synchronisation in space and time of the front and back movements of cells leads to Lévy
walk dynamics, as observed in [12] for the case of metastatic cancer cells. On the other hand, when
the cells’ front and back movements are independent, the trajectories follow a normal diffusion.

The synchronisation is translated into a persistence of the movement in a given direction. This
means that at a given time step, the ends of the cell move forward or backwards simultaneously.
The non-synchronisation is the result of independent movements in the front and back which might
result in an intermittent cell movement pattern, where the cell length can vary. Hence, we assume
that when the steps are not independent, and the cell keeps some “memory” of previous steps
(non-Markovian process), the distribution of persistence length corresponds to a power-law and the
movement is described by a Lévy walk. If the steps are independent, then the trajectories correspond
to a diffusive movement. A more detailed description of this persistent and non-persistent movement
is given in Section 1 (see also Supplementary Information in [12]).

The aim of this article is to derive macroscopic equations that characterise these dynamics,
starting from a kinetic description of the individual movement. To study this behaviour we propose
the following setting. We consider that a cell is approximated by a one dimensional system of two
identical point masses attached by an elastic cord. Each point mass is going to represent the front
and back of the cell and the elastic cord represents the cell length. We aim to describe the trajectories
of the whole system as in Figure 1. Each mass is considered as a material point that takes discrete
(in space and time) infinitesimally small steps to the left or to the right with a certain probability.
For the non-synchronisation case (Figure 1a) we consider the independent movement of the front
(represented by y) and back (represented by x) and the cell length change, where `c is the length
at rest (see Subsection 2.1). While studying the synchronised movement leading to superdiffusion,
since the front and back simultaneously move in the same direction at each time, we only consider
the change in position of the centre of mass, represented by x in Figure 1b. Since the cell length is
fixed in this case, we do not take it into account.

Outline of the paper In Section 1 we present a detailed description of the individual movement
as well as the main modelling assumptions. In Section 2 we introduce a general model where front
and back movements are not synchronised. We also discuss some general notions as conservation
of particles and realistic cell length for the model. Section 3 presents a simplified version of the
previous model where we fix the cell length at the mesoscopic scale. We derive macroscopic equations
depending on the switching rates at the ends of the cell. This model is also obtained by considering
a fast switching dynamics in the full system as described in Subsection 3.1. In Section 4 we consider
the system with synchronised front and back movement. We study the diffusive regime, when the
persistence is low, and the superdiffusive regime in the opposite case (Section 5). Here we also
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show the possibility of a “backwards diffusion” regime. Finally, in Section 6 we perform numerical
simulations at the individual level to compare with the developed theory.

1 Description of mathematical model
Front-back non-synchronisation In this case, the front and back movements are independent
but with probabilities sampled from the same probability distribution. We consider that the front
(y) gives a step ky of size δ at a given time τ , and similarly for the back x. The cell length is given by
|y− x| where `c denotes the equilibrium length. If the whole system is moving to the right initially,
the cell front is allowed to reverse direction and move to y − δ with probability qky = τpky or it
can keep moving in the same direction with probability q̃ky = 1 − τpky . Similarly, the back of the
cell can move in the positive direction x + δ with probability q̃kx = 1 − τpkx or reverse direction
with probability qkx = τpkx . The length of the cell varies in a specific range so that we preserve the
physical properties, as described later in Section 2.1.

Front-back synchronisation For this case, since the front and back of the cell move simulta-
neously, i.e. at each time step they move to the left or to the right one step size with the same
probability, the cell length is fixed at all times and we can consider the whole system as a point par-
ticle. The elastic cord can be considered as a solid road of fixed length and we study the movement
of the center of mass only as in Figure 1b.

Analogous to the previous description, if we assume that the system is initially moving to the
right, then it can reverse direction to x− δ with probability qk = τpk or it can keep moving forward
to x+ δ with a probability q̃k = 1− τpk. Every time the cell changes direction we set k = 0 and we
start counting again. The probability of keep moving without reversing will algebraically decrease
with k.

(a) Non-synchronisation. (b) Synchronisation

Figure 1: Schematics of the front-back cell movement.

Note: From now on, we use the notation pk when k is discrete (see also Subsection 6.1) and p(k)
when k is continuous.

Reversing direction probability As described earlier, the rate at which the cell changes di-
rection from left to right movement, given by pk, depends on the number of steps k given in that
direction. The reversing rate is associated with a probability ψ(k), which is given by

ψ(k) = e−
∫ k
0
p(k∗) dk∗ . (1)

This function ψ is often referred to as the survival probability, i.e., it gives the probability that the
event of interest, in this case the reverse in direction, has not occurred for k steps. Equation (1)
means that the probability of moving for k steps without changing is equal to the exponential of the
cumulative reversing frequency. As indicated in [12], for the case of metastatic cells this probability
decays algebraically with k, therefore, here we consider that

ψ(k) =
( k0

k0 + k

)µ
for µ ∈ (1, 3) . (2)

The reversing direction rate p(k) can also be expressed as the ratio

p(k) =
φ(k)

ψ(k)
=
−∂kψ(k)

ψ(k)
, (3)

3



where φ(k) is a probability density function. The above expression means that the reversing rate
at step k equals the density of the event divided by the probability of keep moving in the same
direction for k steps.

2 Non-synchronised movement description
We assume that the probabilities of the protrusions and retractions are independent from each other
and therefore we have four different scenarios as in Figure 2. We denote by α(t, x, y, kx, ky) and
β(t, x, y, kx, ky) the cells that are moving to the right and left, respectively, and by δ(t, x, y, kx, ky)
and γ(t, x, y, kx, ky) the cells that only change their length by elongation and contraction. Moreover,
the steps at the cell front, denoted by ky, are independent from the steps at the back, kx, and
consequently, we have to take into account the rates pαx , pαy , pβx , pβy , pγx, pγy , pδx and pδy. These rates
do not only depend on kx and ky but also on the distance |x− y| to preserve the cell physical size,
as we discuss in Section 2.1. When the front and back of the cell change direction simultaneously,
px = py, we denote the corresponding switching rates as pα, pβ , pγ , pδ.

Note that cases (a) and (b) in Figure 2 are analogous to the synchronisation case later discussed
in Section 4.

Figure 2: Non-synchronised movement where the cell moves to the right (a), to the left (b) or changes
its length by stretching (c) and shrinking (d).

In full generality, the number density of each cell population is described by the following systems
coupled through the boundary terms,

(∂t + v∂x + v∂y + ∂kx + ∂ky )α = −(pαx + pαy )α−pαα ,
α(t, x, y, kx = 0, ky) =

∫∞
0
pγxγ dkx ,

α(t, x, y, kx, ky = 0) =
∫∞

0
pδyδ dky ,

α(t, x, y, kx = 0, ky = 0) =
∫∞

0

∫∞
0
pββ dkx dky ,

(4)


(∂t − v∂x − v∂y + ∂kx + ∂ky )β = −(pβx + pβy )β−pββ ,
β(t, x, y, kx = 0, ky) =

∫∞
0
pδxδ dkx ,

β(t, x, y, kx, ky = 0) =
∫∞

0
pγyγ dky ,

β(t, x, y, kx = 0, ky = 0) =
∫∞

0

∫∞
0
pαα dkx dky ,

(5)


(∂t − v∂x + v∂y + ∂kx + ∂ky )γ = −(pγx + pγy)γ−pγγ ,
γ(t, x, y, kx = 0, ky) =

∫∞
0
pαxα dkx ,

γ(t, x, y, kx, ky = 0) =
∫∞

0
pβyβ dky ,

γ(t, x, y, kx = 0, ky = 0) =
∫∞

0

∫∞
0
pδδ dkx dky ,

(6)


(∂t + v∂x − v∂y + ∂kx + ∂ky )δ = −(pδx + pδy)δ−pδδ ,
δ(t, x, y, kx = 0, ky) =

∫∞
0
pβxβ dkx ,

δ(t, x, y, kx, ky = 0) =
∫∞

0
pαyα dky ,

δ(t, x, y, kx = 0, ky = 0) =
∫∞

0

∫∞
0
pγγ dkx dky .

(7)

The above systems of equations describe the different jumping combinations represented in Figure 2.
For instance, in the case of population α, if x changes direction with certain rate pαx , then we have
a transition from population α to γ (Figure 2 (a)→(c)), which is given by γ(t, x, y, kx = 0, ky).
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Similarly, if y changes direction in population α we have a change from α to δ, and the individu-
als that leave population α appear in δ(t, x, y, kx, ky = 0). The reverse process also happens and
transitions from population γ to α (cells appear at α(t, x, y, kx = 0, ky)) and from δ to α (cells
appear at α(t, x, y, kx, ky = 0)) are also considered. When the jumping direction changes at x and
y simultaneously then it always happens that populations switch directly from α←→ β and γ ←→ δ.

Notation: For simplicity of notation, in the rest of the paper we use∫∫
(·) =

∫ ∞
0

∫ ∞
0

(·) dkx dky .

In the following we are going to check some physical properties that the systems (4)-(7) must satisfy.

Coordinates of the center of mass and cell elongation At a first stage, a desirable property
is that cell polarization is preserved, that means x < y all along the movement assuming it is true
initially. To examine the conditions which enforce this property it is easier to use the coordinates
of the center of mass and the distance between back and front. For that we let x+y

2 = X and
y − x = z, the cell length. From now on, and for simplicity in the notation, we keep the same
functions α, β, γ, δ that will depend on the new variables (t,X, z, kx, ky). From the system (4)-(7)
we get

(∂t + 2v∂X + ∂kx + ∂ky )α = −(pαx + pαy )α− pαα , (8)

(∂t − 2v∂X + ∂kx + ∂ky )β = −(pβx + pβy )β − pββ , (9)

(∂t + v∂z + ∂kx + ∂ky )γ = −(pγx + pγy)γ − pγγ , (10)

(∂t − v∂z + ∂kx + ∂ky )δ = −(pδx + pδy)δ − pδδ , (11)

with the boundary conditions in kx, ky,

α(·, kx = 0, ky) =

∫ ∞
0

pγxγ dkx , α(·, kx, ky = 0) =

∫ ∞
0

pδyδ dky , α(·, kx = 0, ky = 0) =

∫∫
pββ ,

(12)

β(·, kx = 0, ky) =

∫ ∞
0

pδxδ dkx , β(·, kx, ky = 0) =

∫ ∞
0

pγyγ dky , β(·, kx = 0, ky = 0) =

∫∫
pαα ,

(13)

γ(·, kx = 0, ky) =

∫ ∞
0

pαxα dkx , γ(·, kx, ky = 0) =

∫ ∞
0

pβyβ dky , γ(·, kx = 0, ky = 0) =

∫∫
pδδ ,

(14)

δ(·, kx = 0, ky) =

∫ ∞
0

pβxβ dkx , δ(·, kx, ky = 0) =

∫ ∞
0

pαyα dky , δ(·, kx = 0, ky = 0) =

∫∫
pγγ .

(15)

Here (·) denotes the dependence on (t,X, z). In order to guarantee that z > 0 is preserved, we also
need to ensure that δ(X, z = 0, kx, ky) = 0 (similarly γ(X, z = 0, kx, ky) = 0), which means that the
jump rate pδx+pδy →∞ as z → 0 and

∫ ·
0
(pδx+pδy)(z) dz =∞. Using the notation in (19), this means

that
∫ ·

0
µδ(z) dz =∞.

Conservation of particles Integrating with respect to kx and ky we define the macroscopic
density

ᾱ(t,X, z) =

∫∫
α(·, kx, ky) , (16)

and similarly for β̄, γ̄ and δ̄. Moreover, integrating with respect to kx and ky equations (8)-(11)
and adding them together we obtain the following macroscopic conservation equation

∂t(u+ w) + 2v∂Xj + v∂zm = 0 . (17)
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Here u(t,X, z) = ᾱ + β̄ is the moving population, w(t,X, z) = γ̄ + δ̄ is the resting population,
j(t,X, z) = ᾱ− β̄ is the mean direction of motion and m(t,X, z) = γ̄− δ̄ is the mean extension rate.

2.1 Biologically relevant switching probabilities
The switching rate is not going to depend only on the persisting steps kx and ky but also on the cell
length z. Using (2) and (3) we can write the general expression

p(k) =
µ

1 + k
. (18)

For the non-synchronised movement this rate is given by, for population α (and similarly for the
rest),

pαx(kx) =
µα(z)

1 + kx
, pαy (ky) =

µα(z)

1 + ky
. (19)

The dependence of µ on z guarantees that we keep a realistic cell length as we will discuss below.
For the synchronised case, since the cell does not change shape, we consider the switching rate given
by (18).

As described in [12] the length of a cell can only vary in a certain range. Considering that the
resting length is `c = |y − x|, we define Lmax = 3.5`c and Lmin = 0.5`c and the switching rates
satisfy the following properties,

pαx =

{
ε if z � Lmax ,
µα(z)
1+kx

if z � Lmin ,
pαy =

{
µα(z)
1+ky

if z � Lmax ,

ε if z � Lmin ,
(20)

pβx =

{
µβ(z)
1+kx

if z � Lmax ,

ε if z � Lmin ,
pβy =

{
ε if z � Lmax ,
µβ(z)
1+ky

if z � Lmin ,
(21)

and finally,

pγx =

{
µγ(z)
1+kx

if z � Lmax ,

ε if z � Lmin ,
pγy =

{
µγ(z)
1+ky

if z � Lmax ,

ε if z � Lmin ,
(22)

pδx =

{
ε if z � Lmax ,
µδ(z)
1+kx

if z � Lmin ,
pδy =

{
ε if z � Lmax ,
µδ(z)
1+ky

if z � Lmin .
(23)

Here ε is a small parameter. Let us take for instance the case when cells are moving right
(population α). In the limit when z � Lmax, since we want to preserve the physical length of the
cell, the front has to change direction with a higher rate (pαy ) while the back should keep moving in
the same direction (small pαx). On the other hand, in the limit when z � Lmin the back of the cell
has to switch direction (pαx) while the front should keep moving without changing (small pαy ). The
opposite happens when the cell is moving to the left (population β).

For the case when the cell is at rest (γ and δ), if z � Lmax for the case of the population γ, the
switching rate has to be very high at both ends so that the cell recovers the resting length `c. If
z � Lmin, then pγx, pγy are very small. The opposite happens in the case of the population δ.

3 Simplified system with resting population
The systems (8)-(11) are very complex to analyse since they involve different dynamics such as
left and right movement for four different populations, and additionally, the change in cell length.
Therefore, in this section we consider a simplified model of three populations: cells moving left
(β), cells moving right (α) and resting cells (γ0). The population γ0 represents the average of the
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populations γ and δ described before assuming the mean cell length is constant, thus ignoring the
variable z. The dynamics are described now by{

ε2∂tαε + εv∂xαε + ∂kαε = −p(k)αε ,

αε(t, 0, x) = ζβ
∫∞

0
p(k)βε dk + ζγγε0(t, x, 0) ,

(24){
ε2∂tβε − εv∂xβε + ∂kβε = −p(k)βε ,

βε(t, 0, x) = ζα
∫∞

0
p(k)αε dk + (1− ζγ)γε0(t, x, 0) ,

(25){
ε2∂tγ

ε
0 − ∂kγε0 = (1− ζα)p(k)αε + (1− ζβ)p(k)βε . (26)

The switching rate p(k) describes both the change in direction of the center of mass and transition to
rest state γ0 where memory is gradually lost. This replaces the movement of the front and the back of
the cell as in Section 2 and is given by (18). Since we are not considering front and back movements
then α, β and γ0 depend only on (t, x, k). In the above system, ζ ∈ (0, 1) is a probability and note
that we have introduced a diffusive scaling (t, x) 7→ (t̄/ε2, x̄/ε). The individuals from population α
that switch direction with rate p(k) either start moving in the opposite direction with probability
ζα, represented by the first term in βε(t, x, 0), or they go into a resting phase with probability 1−ζα,
given by the first term in the right hand side of (26). A similar dynamic is followed by individuals
in population β. On the other hand, individuals that are at rest, population γ0, start to move to
the right, with probability ζγ , or to the left with probability 1− ζγ .

As for the systems (4)-(7), we can easily check that (24)-(26) preserves the number density of
individuals.

When the rate p(k) is large enough for large k, more precisely when ke−
∫ k
0
p(k∗) dk∗ is integrable,

then the large scale dynamics is normal diffusion. To explain this, we define the survival probability
ψ as

ψ(k) = Ze−
∫ k
0
p(k∗) dk∗ , Z−1 :=

∫ ∞
0

e−
∫ k
0
p(k∗) dk∗ dk ,

∫ ∞
0

p(k)ψ(k) dk = Z . (27)

For p(k) = µ
1+k with µ > 2, then indeed ke−

∫ k
0
p(k∗) dk∗ = k

(1+k)µ is integrable.

The first question is to determine under which conditions diffusion occurs in the small scale
regime for ε. To do that, we compute the limiting α, β, γ0 as ε→ 0, using the solution of

∂kα = −p(k)α ,

α(t, x, 0) = ζβ
∫∞

0
p(k)β dk + ζγγ0(t, x, 0) ,

∂kβ = −p(k)β ,

β(t, x, 0) = ζα
∫∞

0
p(k)α dk + (1− ζγ)γ0(t, x, 0) ,

−∂kγ0 = (1− ζα)p(k)α+ (1− ζβ)p(k)β .

(28)

Therefore, we obtain the limits

α(t, x, k) = α(t, x, 0)
ψ(k)

Z
= ᾱ(t, x)ψ(k) , β(t, x, k) = β(t, x, 0)

ψ(k)

Z
= β̄(t, x)ψ(k) , (29)

γ0(t, x, k) = (1− ζα)ᾱ(t, x)ψ(k) + (1− ζβ)β̄(t, x)ψ(k) ,

where ᾱ(t, x) =
∫∞

0
α dk and β̄(t, x) =

∫∞
0
β dk. The γ0(t, x, 0) is given by

γ0(t, x, 0) = (1− ζα)ᾱ(t, x)ψ(0) + (1− ζβ)β̄(t, x)ψ(0) . (30)
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With these expressions, we can compute a relation between ᾱ(t, x) and β̄(t, x) starting from

ᾱ(t, x) =
α(t, x, 0)

Z
=
ζβ

Z

∫ ∞
0

p(k)β(t, x, k) dk +
ζγ

Z
γ0(t, x, 0)

= ζβ β̄(t, x) + ζγ [(1− ζα)ᾱ(t, x) + (1− ζβ)β̄(t, x)] ,

that finally gives ᾱ(t, x) = ζβ+ζγ(1−ζβ)
1−ζγ(1−ζα) β̄(t, x). Therefore, the condition for a diffusive limit, i.e.,

ᾱ(t, x) = β̄(t, x) turns out to be

ζγ =
1− ζβ

2− ζα − ζβ
. (31)

Then, the second question is to compute the diffusion coefficient. The macroscopic conservation
equation is obtained using

∂t(ᾱε + β̄ε + γ̄ε0) + v∂xJε = 0 , where Jε :=
ᾱε − β̄ε

ε
.

The difficulty here is to compute the flux Jε when p(k) is not constant. In the following we are going
to compute the diffusive limit under the condition (31), i.e., such that, as ε→ 0

ᾱ(t, x) = β̄(t, x) , for ζγ =
1− ζβ

2− ζα − ζβ
, and Jε → −Dv∂xβ̄(t, x) .

We start by computing the Taylor expansion of αε using the equation

ε2∂t
αε(t, k, x)

ψ(k)
+ εv∂x

αε(t, k, x)

ψ(k)
+ ∂k

αε(t, k, x)

ψ(k)
= 0 .

Integrating with respect to k we find,

αε(t, x, k)

ψ(k)
=
αε(t, x, 0)

ψ(0)
− εv∂x

∫ k

0

αε(t, x, k
∗)

ψ(k∗)
dk∗ +O(ε2) =

αε(t, x, 0)

ψ(0)
− εkv∂x

αε(t, x, 0)

ψ(0)
+O(ε2)

=
αε(t, x, 0)

ψ(0)
− εkv∂xᾱε +O(ε2) ,

since, integrating in k after multiplying by ψ(k), we find ᾱε = αε(t,x,0)
ψ(0) +O(ε). For βε, we obtain

βε(t, x, k)

ψ(k)
=
βε(t, x, 0)

ψ(0)
+ εkv∂xβ̄ε +O(ε2) . (32)

From the above equations the aim is to compute

Jε =
ᾱε − β̄ε

ε
=

∫ ∞
0

ψ(k)
αε(t, x, 0)− βε(t, x, 0)

εψ(0)
dk − v∂x

∫ ∞
0

kψ(k)(ᾱε + β̄ε) dk +O(ε)

=
αε(t, x, 0)− βε(t, x, 0)

εψ(0)
− v∂x(ᾱε + β̄ε)

∫ ∞
0

kψ(k) dk +O(ε) . (33)

In order to compute the term αε(t, x, 0) − βε(t, x, 0), we first multiply by p(k)ψ(k) in (32) and
integrate in k. This gives, using that

∫∞
0
kp(k)ψ(k) dk = 1,∫ ∞

0

p(k)βε(t, x, k) dk = βε(t, x, 0) + εv∂xβ̄ε

∫ ∞
0

kp(k)ψ(k) dk +O(ε2)

= βε(t, x, 0) + εv∂xβ̄ε +O(ε2) . (34)

The boundary condition αε(t, x, 0) in (24) can be written as, after using (30) and (34),

αε(t, x, 0) = (ζβ + ζγ(1− ζβ))

∫ ∞
0

p(k)βε(t, x, k) dk + ζγ(1− ζα)

∫ ∞
0

p(k)αε(t, x, k) dk

= (ζβ + ζγ(1− ζβ))[βε(t, x, 0) + εv∂xβ̄ε] + ζγ(1− ζα)[αε(t, x, 0)− εv∂xᾱε] +O(ε2) ,
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and we obtain, for c := 1
1−ζγ(1−ζα) = 1

ζβ+ζγ(1−ζβ)
thanks to (31),

αε(t, x, 0) = βε(t, x, 0) + εv∂xβ̄ε − cζγ(1− ζα)εv∂xᾱε +O(ε2)

= βε(t, x, 0) + εv∂xβ̄ε + (1− c)εv∂xᾱε +O(ε2) .

From here we obtain, with ᾱ = β̄ the limits of ᾱε and β̄ε,

lim
ε→0

αε(t, x, 0)− βε(t, x, 0)

ε
= (2− c)v∂xᾱ .

Finally, we write (33) and compute the diffusion coefficient

J = −v∂xᾱ(t, x)
(

2

∫ ∞
0

ψ(k)k dk − 2− c
Z

)
, D = 2

∫ ∞
0

ψ(k)k dk − 2− c
Z

. (35)

Note that, by opposition to the formalism developed in [8], this diffusion coefficient is not always
positive. This is because the authors also rescale k in such a way to give more weights to the large
values of k. When D is negative, some instability arises for the kinetic model, which is analysed in
Section 4.2.

3.1 Partial synchronisation limit
We may also assume that moving forward is more effective than elongating and shortening. To
represent that, we may derive a partial synchronisation limit starting from (8)-(11). This limit
consists on introducing fast transition rates for conformations γ and δ so that the whole system
approximately converges to the two moving populations α and β (as in (50) and (51) in Section 4).
We start by introducing the following scaling

(∂t + v∂z + ∂kx + ∂ky )γ = −1

ε
(pγx + pγy)γ − pγγ , (36)

(∂t − v∂z + ∂kx + ∂ky )δ = −1

ε
(pδx + pδy)δ − pδδ , (37)

and we change accordingly the boundary conditions (12) and (13). With this scaling, we find γ → 0
and δ → 0 as ε→ 0. The difficulty is to compute the limiting contribution to the boundary terms

α(·, kx = 0, ky) =
1

ε

∫ ∞
0

pγxγ(·, kx, ky) dkx .

To do so, we use the method of characteristics in (10) and (11) and neglect the initial contribution
which is immediately absorbed due to our scaling. We find, respectively,

γ(·, kx, ky) =


γ(t− kx, X, z − vkx, kx = 0, ky − kx)e

−
∫ kx
0

(
p
γ
x+p

γ
y

ε +pγ
)

dk∗x for kx < ky ,

γ(t− ky, X, z − vky, kx − ky, ky = 0)e
−

∫ ky
0

(
p
γ
x+p

γ
y

ε +pγ
)

dk∗y for ky < kx ,

(38)

δ(·, kx, ky) =


δ(t− kx, X, z + vkx, kx = 0, ky − kx)e

−
∫ kx
0

(
pδx+pδy
ε +pδ

)
dk∗x for kx < ky ,

δ(t− ky, X, z + vky, kx − ky, ky = 0)e
−

∫ ky
0

(
pδx+pδy
ε +pδ

)
dk∗y for ky < kx .

(39)

We may estimate these quantities thanks to the Laplace approximation in the regime where ε→ 0,

1

ε

∫ ∞
0

pγxγ(·, kx = 0, ky)e
−

∫ kx
0

(
p
γ
x+p

γ
y

ε +pγ
)

dk∗x
dkx →

pγx(kx = 0)

pγx(kx = 0) + pγy
γ(·, kx = 0, ky) ,

1

ε

∫ ∞
0

pγxγ(·, kx, ky = 0)e
−

∫ ky
0

(
p
γ
x+p

γ
y

ε +pγ
)

dk∗y
dkx → δ0(ky)

∫ ∞
0

pγx
pγx + pγy(ky = 0)

γ(·, kx, ky = 0) dkx .

(40)
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Note that δ0(ky) represents a Dirac delta function in ky while δ(·, kx, ky) is the density of individuals
moving as in Figure 2. Substituting these expressions into the first equation in (12) and using (14),
we find the boundary condition

α(·, kx = 0, ky)→ pγx(kx = 0)

pγx(kx = 0) + pγy
γ(·, kx = 0, ky) + δ0(ky)

∫ ∞
0

pγx
pγx + pγy(ky = 0)

γ(·, kx, ky = 0) dkx

=
pγx(kx = 0)

pγx(kx = 0) + pγy

∫ ∞
0

pαxα dkx + δ0(ky)

∫ ∞
0

pγx
pγx + pγy(ky = 0)

∫ ∞
0

pβyβ dky dkx .

(41)

Similarly, we obtain from the second equation in (12)

α(·, kx, ky = 0) = δ0(kx)

∫ ∞
0

pδy
pδx(kx = 0) + pδy

∫ ∞
0

pβxβ dkx dky +
pδy(ky = 0)

pδx + pδy(ky = 0)

∫ ∞
0

pαyα dky .

(42)
We can simplify the above expressions by using the following notation

Pγx =
pγx

pγx + pγy(ky = 0)
, Pγy =

pγx(kx = 0)

pγx(kx = 0) + pγy
,

Pδx =
pδy(ky = 0)

pδy(ky = 0) + pδy
, Pδy =

pδy
pδx(kx = 0) + pδx

.

(43)

For the population β, we follow the same steps, starting from β(·, kx = 0, ky) = 1
ε

∫∞
0
pδxδ dkx .

Using (40) we have

β(·, kx = 0, ky) =
pδx(kx = 0)

pδx(kx = 0) + pδy

∫ ∞
0

pβxβ dkx + δ0(ky)

∫ ∞
0

pδx
pδx + pδy(ky = 0)

∫ ∞
0

pαyα dky dkx ,

(44)

β(·, kx, ky = 0) = δ0(kx)

∫ ∞
0

pγy
pγx(kx = 0) + pγy

∫ ∞
0

pαxα dkx dky +
pγy(ky = 0)

pγy(ky = 0) + pγx

∫ ∞
0

pβyβ dky .

(45)

Here, we similarly define

P̄γx =
pγy(ky = 0)

pγx + pγy(ky = 0)
, P̄γy =

pγy
pγx(kx = 0) + pγy

,

P̄δx =
pδx

pδy(ky = 0) + pδy
, P̄δy =

pδx(kx = 0)

pδx(kx = 0) + pδx
.

(46)

Using (41), (42), (44) and (45) and integrating with respect to kx, ky in (8) and (9) we obtain

(∂t + 2v∂X)ᾱ = −
∫∫

P1(kx, ky)α(·, kx, ky) +

∫∫
P2(kx, ky)β(·, kx, ky) , (47)

(∂t − 2v∂X)β̄ = −
∫∫

P3(kx, ky)β(·, kx, ky) +

∫∫
P4(kx, ky)α(·, kx, ky) , (48)

where P1, P2, P3, P4 are expressed in terms of (43) and (46). This system is analogous to (50)-(51)
below that describes the left and right movement only, corresponding to the synchronisation case,
with a modified jumping rate p(k) coming form the populations γ and δ.

To achieve conservation of particles we add (47) and (48) to obtain

∂tu+ 2v∂Xj =

∫∫
(−1 + Pγy + P̄γy )pαxα+

∫∫
(−1 + Pδx + P̄δx)pαyα+

∫∫
(−1 + Pγx + P̄γx )pβyβ

+

∫∫
(−1 + Pδy + P̄δy)pβxβ = 0 , (49)
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since the terms inside the brackets cancel out.
In conclusion, assuming fast transition in the “asynchronous states” γ and δ, we recover a simpli-

fied system where only the states α, β occur, that is the back and front are always synchronized. The
new phenomena is the possibility of two fast transitions α → β → α (or symmetrically exchanging
β and α) which modifies the boundary conditions compared to the model initially postulated.

4 Synchronised movement description
When the front and back movement of cells are synchronised, as described in Section 1, the system
is much simpler but still can exhibit several remarkable features as oriented drift, instability or su-
perdiffusive movement. As before, we denote by α(t, x, k) the probability that the cell moves to the
right and by β(t, x, k) the probability that the cell moves to the left. The rate of changing the direc-
tion is denoted by p(k), defined in (18). The system of equations that describes the synchronisation
movement was derived in Appendix 6.1 from a discrete description and is given by

{
∂tα(t, x, k) + v∂xα(t, x, k) + ∂kα(t, x, k) = −p(k)α(t, x, k) ,

α(t, x, 0) =
∫∞

0
p(k)β(t, x, k) dk ,

(50){
∂tβ(t, x, k)− v∂xβ(t, x, k) + ∂kβ(t, x, k) = −p(k)β(t, x, k) ,

β(t, x, 0) =
∫∞

0
p(k)α(t, x, k) dk .

(51)

4.1 Normal diffusion limit of the synchronised system
We first study the scale in the memory term p(k) which leads to a usual diffusion equation, following
the lines of Section 3. Because of the simplicity of the system, we may analyse the drift-diffusion
behaviour in a more general context. To do so we re-scale (50)-(51) as follows,

ε2∂tαε(t, x, k) + ε v∂xαε(t, x, k) + ∂kαε(t, k, x) = −(p(k) + εpα(k))αε(t, x, k) ,

ε2∂tβε(t, x, k)− ε v∂xβε(t, x, k) + ∂kβε(t, x, k) = −(p(k) + εpβ(k))βε(t, x, k) ,

αε(t, x, 0) =
∫∞

0
(p(k) + εpβ(k))βε dk, βε(t, x, 0) =

∫∞
0

(p(k) + εpα(k))αε dk .

(52)

The drift-diffusion limit is obtained using again the identity

∂t(ᾱε + β̄ε) + ∂xJε = 0 , Jε :=
ᾱε − β̄ε

ε
, (53)

where we need to compute the x-flux Jε. We are going to compute the constants V and D̃ such
that, as ε→ 0,

ᾱ(t, x) = β̄(t, x) , and Jε → V ᾱ(t, x)− D̃v∂xᾱ(t, x) . (54)

We complete the system (52) with initial data such that αε(0, x, k) = βε(0, x, k), this is because the
definition of the flux Jε requires a bounded quantity ᾱε−β̄ε

ε .
As ε vanishes, we find limits that we denote by α, β and that satisfy∂kα(t, x, k) = −p(k)α(t, x, k) , α(t, x, 0) =

∫∞
0
p(k)β(t, x, k) dk ,

∂kβ(t, x, k) = −p(k)β(t, x, k) , β(t, x, 0) =
∫∞

0
p(k)α(t, x, k) dk ,

which means that the limits are given by (27) and (29). Consequently, we deduce that

ᾱ(t, x) =
α(t, x, 0)

ψ(0)
=

1

ψ(0)

∫ ∞
0

p(k)β(t, x, k) dk = β̄(t, x) .
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To compute the flux Jε we follow the steps in Section 3 and we write

αε(t, x, k)

ψ(k)
=
αε(t, x, 0)

ψ(0)
− ε

∫ k

0

pα(k∗)
αε(t, x, k

∗)

ψ(k∗)
dk∗ − ε v∂x

∫ k

0

αε(t, x, k
∗)

ψ(k∗)
dk∗ +O(ε2) ,

which can be re-arranged as

αε(t, x, k) = ψ(k)
αε(t, x, 0)

ψ(0)
−εψ(k)

∫ k

0

pα(k∗) dk∗
αε(t, x, 0)

ψ(0)
−ε kψ(k)v∂x

αε(t, x, 0)

ψ(0)
+O(ε2) . (55)

Arguing in a similar way for βε, and using the expression for αε(t, x, 0) in (52) we find

αε(t, x, 0) =

∫ ∞
0

(p(k) + εpβ(k))βε dk = βε(t, x, 0)
(

1 + ε
Zβ

ψ(0)

)
− εβε(t, x, 0)

ψ(0)
Y β + εv∂x

βε(t, x, 0)

ψ(0)

∫ ∞
0

kp(k)ψ(k) dk +O(ε2) . (56)

Here we have used the normalization of ψ(k) introduced in (27) and

Zα :=

∫ ∞
0

pα(k)ψ(k) dk, Zβ :=

∫ ∞
0

pβ(k)ψ(k) dk, Y α,β :=

∫ ∞
0

p(k)ψ(k)

∫ k

0

pα,β(k∗) dk∗ dk.

We can further notice that
∫∞

0
kp(k)ψ(k) dk = 1 as before.

Writing an analogous expression of (56) but for βε(t, x, 0) we can compute

αε(t, x, 0)−βε(t, x, 0) = βε(t, x, 0)− αε(t, x, 0) + ε
Zβ

ψ(0)
βε(t, x, 0)− ε Z

α

ψ(0)
αε(t, x, 0)

− ε
[
βε(t, x, 0)

ψ(0)
Y β − αε(t, x, 0)

ψ(0)
Y α
]

+ εv∂x

[
βε(t, x, 0)

ψ(0)
+
αε(t, x, 0)

ψ(0)

]
+O(ε2) .

This shows that in the limit α(t, x, 0) = β(t, x, 0), ᾱ(t, x) = β̄(t, x) and thus α(t, x, k) = β(t, x, k),
giving

2 lim
ε→0

αε(t, x, 0)− βε(t, x, 0)

ε
= (Zβ − Zα)ᾱ(t, x)− ᾱ(t, x)(Y β − Y α) + 2v∂xᾱ(t, x)

= 2v∂xᾱ(t, x) ,

since (and the same argument shows that Y β = Zβ),

Y α = −
∫ ∞

0

dψ(k)

dk

∫ k

0

pα(k∗) dk∗ =

∫ ∞
0

ψ(k)pα(k) dk = Zα.

Back to (55), using (29), we find, with V =
∫∞

0
ψ(k)

(∫ k
0

(pα(k∗)− pβ(k∗)) dk∗
)

dk,

lim
ε→0

Jε = lim
ε→0

αε(t, x, 0)− βε(t, x, 0)

εψ(0)
− ᾱ(t, x)

∫ ∞
0

ψ(k)

(∫ k

0

(pα(k∗)− pβ(k∗)) dk∗

)
dk

− 2v∂xᾱ(t, x)

∫ ∞
0

kψ(k) dk = V ᾱ(t, x)− 2v∂xᾱ(t, x)

∫ ∞
0

kψ(k)

(
1− p(k)

2Z

)
dk .

We finally obtain the transport coefficients V and D̃

lim
ε→0

Jε = V ᾱ− vD̃∂xᾱ(t, x), D̃ = 2

∫ ∞
0

kψ(k) dk − 1

Z
.

We recover the result of Section 3 when pα,β = 0, and ζα,β = 1, then we find V = 0, c = 1 and
D = D̃. The same comment on the positivity of D̃ applies here.
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Remark 4.1. When ψ(k) is given by (2), then for k0 = 1 we have that
∫∞

0
kψ(k) dk = 1

(µ−2)(µ−1) > 0

for µ > 2. Moreover, it holds that

1

(µ− 2)(µ− 1)
>

1

2Z
for µ ∈ (2, 3)

and the diffusion coefficient D̃ > 0.

4.2 Stability analysis

Consider, for simplicity, the system (52). When the above diffusion coefficient is negative, D̃ < 0,
we expect instability for the kinetic system when ε small enough. This phenomena has been already
observed for chemotaxis and semilinear parabolic equations in [20, 22] and we explain it in the
present context.

To study the stable/unstable modes, we consider a simple Fourier mode α(t, x, k) = ᾱ(t, x) +
an(k)eλteinx that we substitute in the equation for α in (52). We get

ε2λan(k) + εvinan(k) + ∂kan(k) + p(k)an(k) = 0 ,

which we can solve to obtainan(k) = an(0)e−
∫ k
0

(p(k∗)+ε2λ+εivn) dk∗ ,

an(0) =
∫∞

0
p(k)bn(k) dk .

Hence we have

an(k) =

∫ ∞
0

p(k)bn(k) dk e−
∫ k
0

(p(k∗)+ε2λ+εivn) dk∗ ,

bn(k) =

∫ ∞
0

p(k)an(k) dk e−
∫ k
0

(p(k∗)+ε2λ−εivn) dk∗ .

Substituting bn(k) into an(k), multiplying by p(k) and integrating we obtain the dispersion relation

1 =

∫ ∞
0

p(k)e−
∫ k
0

(p(k∗)+ε2λ+εivn) dk∗ dk

∫ ∞
0

p(k)e−
∫ k
0

(p(k∗)+ε2λ−εivn) dk∗ dk . (57)

For ε very small, we use a Taylor expansion and re-write (57) as

1 =

∫ ∞
0

p(k)e−
∫ k
0
p(k∗) dk∗(1− εivnk − ε2λk − ε2

2
n2k2v2) dk

×
∫ ∞

0

p(k)e−
∫ k
0
p(k∗) dk∗(1 + εivnk − ε2λk − ε2

2
n2k2v2) dk .

As before, see (27), we may use that
∫∞

0
p(k)e−

∫ k
0
p(k∗) dk∗ dk = 1,

∫∞
0
kp(k)e−

∫ k
0
p(k∗) dk∗ dk = 1

Z .
Thus the terms of order 1 and ε cancel and the second order terms give

2

Z
λ = −n2v2

∫ ∞
0

p(k)e−
∫ k
0
p(k∗) dk∗k2 dk +

1

Z2
v2n2 .

Computing
∫∞

0
p(k)ψ(k)k2 dk = 2

∫∞
0
ψ(k)k dk, we obtain

λ =
n2v2

2

(
1

Z
− 2

∫ ∞
0

ψ(k)k dk

)
= −D̃ . (58)

This condition shows that when D̃ < 0, for ε small, the kinetic model is Turing unstable as in
[20, 22].
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5 Fractional equation for the synchronised movement
In the context of system (50)-(51), using an appropriate scaling, we obtain a macroscopic fractional
diffusion equation describing the persistent movement of the total population when the front and
back of the cell are synchronised. When ψ(k) has a “fat tail”, meaning µ ∈ (1, 2) for p(k) = µ

1+k ,
fractional diffusion occurs as already pointed out in [9]. We also recall that superdiffusion regimes
are well established in different contexts of purely kinetic theory since the seminal works [13, 18].

5.1 Kinetic system
We start by integrating (50) and (51) with respect to k, taking into account the boundary condition
at k = 0,

∂tᾱ(t, x) + v∂xᾱ(t, x) = −
∫ t

0

p(k)α(t, x, k) dk +

∫ t

0

p(k)β(t, x, k) dk , (59)

∂tβ̄(t, x)− v∂xβ̄(t, x) = −
∫ t

0

p(k)β(t, x, k) dk +

∫ t

0

p(k)α(t, x, k) dk , (60)

where ᾱ(t, x) =
∫ t

0
α(t, x, k) dk and β̄(t, x) =

∫ t
0
β(t, x, k) dk . We also consider initial conditions

β0(0, x, k) = β̄0(x)δ(k) and α0(0, x, k) = ᾱ0(x)δ(k).

Now the aim is to write the right hand side of (59)-(60) in terms of the macroscopic densities
ᾱ(t, x) and β̄(t, x). For that purpose we follow some steps from [3] and [4]. Using the method of
characteristics we find the solution of (50) and (51) for k < t where we neglect the initial data:

α(t, x, k) = α(t− k, x− vk, 0)e−
∫ k
0
p(k∗) dk∗ , (61)

β(t, x, k) = β(t− k, x+ vk, 0)e−
∫ k
0
p(k∗) dk∗ . (62)

Next, from (59) let us define the escape and arrival rates of individuals at position x at time t as

jα(t, x) =

∫ t

0

p(k)α(t, x, k) dk , jβ(t, x) =

∫ t

0

p(k)β(t, x, k) dk . (63)

Recalling the definitions (1) and (3) and following the steps in Appendix A-I we write

jα(t, x) =

∫ t

0

φ(t− s)e−v(t−s)∂xα(s, x, 0) ds+ α0(x− vk)φ(k) , (64)

jβ(t, x) =

∫ t

0

φ(t− s)ev(t−s)∂xβ(s, x, 0) ds+ β0(x+ vk)φ(k) . (65)

Using the Laplace transform L[f ](t) = f̂(λ) where λ is the Laplace variable, we have

ĵα(λ, x) = φ̂(λ+ v∂x)α̂(λ, x, 0) + α0φ̂(λ+ v∂x) . (66)

Moreover, using the Laplace transform of the characteristic solution (61) and the definition of ᾱ(t, x)
we write

ˆ̄α(λ, x) = α̂(λ, x, 0)ψ̂(λ+ v∂x) + α0ψ̂(λ+ v∂x) . (67)

Substituting α̂(λ, x, 0) from (67) into (66) we finally get

ĵα(λ, x) =
φ̂(λ+ v∂x)

ψ̂(λ+ v∂x)
ˆ̄α(λ, x) = Q̂(λ+ v∂x) ˆ̄α(λ, x) . (68)
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The operator Q̂(λ + v∂x) can be explicitly computed in the Laplace space. Transforming back to
the (t, x)-space we have, for jα and jβ ,

jα(t, x) =

∫ t

0

Q(t− s)ᾱ(s, x− v(t− s)) ds , (69)

jβ(t, x) =

∫ t

0

Q(t− s)β̄(s, x+ v(t− s)) ds . (70)

Using the expressions (69) and (70) we write the system (59)-(60) in term of the macroscopic
quantities ᾱ and β̄. In the following we obtain explicit expressions for jβ and jα by using the
distribution of persistence steps k given in (2).

5.2 Left and right persistent movement
Using the results from the previous section we write the kinetic system as follows

∂tᾱ+ v∂xᾱ = −jα + jβ , (71)
∂tβ̄ − v∂xβ̄ = −jβ + jα , (72)

where jα and jβ are given by (69) and (70), respectively.
The quantities in the right hand side of (71) and (72) are best expressed in the Fourier-Laplace

space, where the Fourier-Laplace transform is defined as

FL[f ](t, x) = f̃(λ, ξ) =

∫
R

∫ ∞
0

eiξx−λtf(t, x) dtdx .

Transforming the system (71)-(72) we write

λ ˜̄α+ α0 + viξ ˜̄α = −j̃α + j̃β ,

λ ˜̄β + β0 − viξ ˜̄β = −j̃β + j̃α ,
(73)

where j̃α = Q̃(λ + viξ) ˜̄α(λ, ξ) and j̃β = Q̃(λ − viξ) ˜̄β(λ, ξ). To obtain Q̃(λ ± viξ) we first have
to compute the quantities φ̃(λ ± viξ) and ψ̃(λ ± viξ), previously defined in (2) and (3). Letting
λ± = λ± viξ, φ̃± = φ̃(λ±) and ψ̃± = ψ̃(λ±) we write,

ψ̃± = kµ0λ
µ+1
± ek0λ±Γ(−µ+ 1, k0λ±) , φ̃± = µ(k0λ±)µΓ(−µ, k0λ±)ek0λ± .

Using an asymptotic expansion of the Gamma function [2] and following the steps in [3] we get

ψ̃± = − k0

1− µ
− k2

0λ±
(1− µ)(2− µ)

+ kµ0λ
µ−1
± Γ(−µ+ 1) +O(k3

0λ
2
±) ,

φ̃± = 1 +
k0λ±
1− µ

+ kµ0λ
µ
± +O(kµ+1

0 λµ+1
± ) .

(74)

Using (74) we can write

Q̃(λ± viξ) ' µ− 1

k0
− λ± viξ

2− µ
− kµ−2

0 (λ± viξ)µ−1(µ− 1)Γ(−µ+ 1) . (75)

Hence, system (73) is now written in the (t, x)-space, for b = kµ−1
0 (µ− 1)Γ(−µ+ 1),

∂tᾱ+ v∂xᾱ = −µ− 1

k0
(ᾱ− β̄) +

∂t + v∂x
2− µ

ᾱ− ∂t − v∂x
2− µ

β̄ + b
(

(∂t + v∂x)µ−1ᾱ− (∂t − v∂x)µ−1β̄
)
,

∂tβ̄ − v∂xβ̄ = −µ− 1

k0
(β̄ − ᾱ) +

∂t − v∂x
2− µ

β̄ − ∂t + v∂x
2− µ

ᾱ+ b
(

(∂t − v∂x)µ−1β̄ − (∂t + v∂x)µ−1ᾱ
)
.

Here we have used the fact that

FL
[(
∂t ± v∂x

)µ−1

f
]

= (λ± viξ)µ−1f̃ .
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Remark 5.1. The tempered fractional material derivative [4, 28], defined as(
∂t ± v∂x

)µ−1

f(t, x) = 0D
µ−1
t f(t, x± vt) ,

generalises the standard material derivative d
dtf(t, x ± vt) = (∂t ± v∂x)f for µ = 2 through the

introduction of the Riemann-Liouville operator [28].

5.3 Macroscopic PDE for the total population
We may now write a macroscopic equation for the total density ρ(t, x) = ᾱ(t, x) + β̄(t, x). From the
definitions of jα and jβ in (63) we know that

jα(t, x) = β(t, x, 0) and jβ(t, x) = α(t, x, 0) , (76)

and therefore, using (61) and (62) we have

α(t, x, k) = jβ(t− k, x− vk)ψ(k) , β(t, x, k) = jα(t− k, x+ vk)ψ(k) . (77)

Hence, from (77) we can write

jα(t, x) =

∫ t

0

p(k)α(t, x, k) dk =

∫ t

0

φ(k)jβ(t− k, x− vk) dk + α0(x− vk)φ(k) , (78)

jβ(t, x) =

∫ t

0

p(k)β(t, x, k) dk =

∫ t

0

φ(k)jα(t− k, x+ vk) dk + β0(x+ vk)φ(k) . (79)

On the other hand we have

ᾱ(t, x) =

∫ t

0

α(t, x, k) dk =

∫ t

0

jβ(t− k, x− vk)ψ(k) dk + α0(x− vk)ψ(k) , (80)

β̄(t, x) =

∫ t

0

β(t, x, k) dk =

∫ t

0

jα(t− k, x+ vk)ψ(k) dk + β0(x+ vk)ψ(k) . (81)

Next we apply the Fourier-Laplace transform to (78)-(81) to obtain

j̃α(λ, ξ) = φ̃(λ+ ivξ)
(
j̃β(λ, ξ) + α̃0(ξ)

)
, j̃β(λ, ξ) = φ̃(λ− ivξ)

(
j̃α(λ, ξ) + β̃0(ξ)

)
, (82)

˜̄α(λ, ξ) =
(
j̃β(λ, ξ) + α̃0(ξ)

)
ψ̃(λ+ ivξ) , ˜̄β(λ, ξ) =

(
j̃α(λ, ξ) + β̃0(ξ)

)
ψ̃(λ− ivξ) . (83)

Re-arranging the above expressions and using the notation introduced in Section 5.2 for ψ± and
φ± we get

˜̄α(λ, ξ) =
( φ̃−
ψ̃−

˜̄β(λ, ξ) + α̃0
)
ψ̃+ , ˜̄β(λ, ξ) =

( φ̃+

ψ̃+
˜̄α(λ, ξ) + β̃0

)
ψ̃− , (84)

or equivalently,

˜̄α(λ, ξ) =
φ̃−β̃0ψ̃+ + α̃0ψ̃+

1− φ̃+φ̃−
, ˜̄β(λ, ξ) =

φ̃+α̃0ψ̃− + β̃0ψ̃−

1− φ̃−φ̃+
. (85)

Note that if we substitute the j̃α from the expression for ˜̄β in (83) into j̃β = φ̃−j̃α + β̃0φ̃− we
obtain the relation (68) in Section 5.

Fractional scaling We consider the following scaling

(tn, kn, xn) 7→ (t/εθ, k/εκ, x/εν) , (86)

where θ, κ, ν > 0. We introduce the scaling in the expressions (2) and (3)

ψε(k) =
( εκk0

εκk0 + k

)µ
, φε(k) =

µ(εκk0)µ

(εκk0 + k)µ+1
, pε(k) =

µεκ

εκk0 + k
, (87)
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and from now on, we take a = εκk0.
Now consider the case when the cell starts to move to the right at t = 0 from the point x = 0,

then α0 = εvδ(x) where v > 0 is a constant and β0(x) = 0. Since ρ̃ = ˜̄α + ˜̄β we have, in the
Fourier-Laplace space, using (84),

ψ̃+
ε ψ̃
−
ε (ρ̃− εv) = ψ̃+

ε φ̃
− ˜̄β ψ̃+

ε + ψ̃−ε φ̃
+
ε

˜̄α ψ̃−ε . (88)

Using the expansions (74) and following the steps in Appendix A-II the above expression can be
written as

εv + aλ−

( ˜̄β

1− µ
+

˜̄α

2− µ

)
+ aλ+

( ˜̄β

2− µ
+

˜̄α

1− µ

)
= aµ−1Γ(−µ+ 1)(1−µ)(λµ−1

+
˜̄β+ λµ−1

− ˜̄α) . (89)

Replacing λ± = λ± ivξ and including the scaling we have

εv + k0(εθ+κλ− εν+κivξ)
( ˜̄β

1− µ
+

˜̄α

2− µ

)
+ k0(εθ+κλ+ εν+κivξ)

( ˜̄β

2− µ
+

˜̄α

1− µ

)
= kµ−1

0 ε(κ+ν)(µ−1)Γ(−µ+ 1)(1− µ)
(

(ivξ)µ−1 ˜̄β + (−ivξ)µ−1 ˜̄α
)
. (90)

Note that on the right hand side we have used a quasi-static approximation (εθλ ± ενivξ)µ−1 '
εν(µ−1)(±ivξ)µ−1, assuming θ > ν. Grouping terms and using the definitions for the macroscopic
density and the local flux ρ̃ = ˜̄α+ ˜̄β , J̃ε =

˜̄α− ˜̄β
ε respectively, we obtain

εθ+κλρ̃− cµεv +
1

(3− 2µ)
εν+κ+1ivξJ̃ε = dµε

(κ+ν)(µ−1)
(

(ivξ)µ−1 ˜̄β + (−ivξ)µ−1 ˜̄α
)
, (91)

where

cµ = − (1− µ)(2− µ)

k0(3− 2µ)
> 0 , dµ = kµ−2

0

(1− µ)2(2− µ)

(3− 2µ)
> 0 for 1 < µ < 3/2 . (92)

Choosing θ = κ(µ − 2) + ν(µ − 1), v = (κ + ν)(µ − 1) and noting that ν + κ + 1 > (κ + ν)(µ − 1)
(which means that the normal diffusion is of lower order) for µ < 2 + 1

κ+ν we get

λρ̃− cµ = dµ

(
(ivξ)µ−1 ˜̄β + (−ivξ)µ−1 ˜̄α

)
. (93)

Using FL[∂tρ(t, x)] = λρ̃(λ, ξ)−ρ0(0) , where we assume that cµ = ρ0(0) and the following relations
for s ∈ (0, 1) [5, 6]

F [Ds−f ] = (iξ)sf̃ , F [Ds+f ] = (−iξ)sf̃ ,

we have
∂tρ = dµ(Dµ−1

− β̄ +Dµ−1
+ ᾱ) for µ ∈ (1, 3/2) .

Here Ds− and Ds+ are Riemann-Liouville fractional derivatives defined as

Ds−f =
−1

Γ(1− s)
∂

∂x

∫ ∞
x

f(y)

(y − x)s
dy , Ds+f =

1

Γ(1− s)
∂

∂x

∫ x

−∞

f(y)

(x− y)s
dy .

Following the steps in Appendix A-III we finally write the macroscopic equation as

∂tρ(t, x) = C
(
− d2

dx2

)µ−1
2

ρ(t, x) , (94)

where C = dµ
µ−1

2Γ(2−µ)
1

c(1,µ−1
2 )

> 0 .
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6 Numerical results
We present some numerical results for the discrete synchronised system where we show the diffusive
and superdiffusive regimes, in agreement with the results in Sections 4 and 5.

We start with the discrete description of the synchronised movement, which leads, in the limit,
to (50)-(51).

6.1 Discrete description of the fully synchronised cell movement
The system (50)-(51) can be derived from a point particle when the probability of moving depends
on previous steps taken in the same direction. We only treat the full synchronisation case, this
derivation can be extended to the non-synchronised system.

As before, we denote by α(N, x, k) the probability that the cell moves to the right. Here N is
the total number of steps, k are the number of steps given by the cell in the same direction, and
x is the position. Analogously, we denote by β(N, x, k) the probability that the cell moves to the
left. We recall that the probability of changing the direction is denoted by qk = τpk where τ is a
small time step. Therefore the probability of keep moving in the same direction is q̃k = 1 − τpk.
Since the cell has “memory” of the direction of the previous steps, we assume that the probability
of changing direction decreases with the number of steps k according to a power-law. This models
the directional persistence observed in experiments in [12].

At each time a particle makes a step to the left or to the right according to its status, and then
decides to keep moving in the same direction or reverse direction.

Discrete jumping We first consider a cell moving to the right, after N steps, where it gave k
steps in this direction. In the previous step N − 1, this cell had done k − 1 steps to the right and
thus the probability of keep moving to the right is

α(N, x, k) = (1− τpk)α(N − 1, x− δ, k − 1) . (95)

We also have to consider the events when the cell was moving to the left at step N − 1, described
by β(N − 1, x, k) and reverses direction with probability τpk. Since the particle changed direction,
it is set at k = 0 moving to the right, and thus we have

α(N, x, 0) = τ

N−1∑
k=1

pkβ(N − 1, x− δ, k) . (96)

From (95) we can write, after dividing by τ

α(N, x, k)− α(N − 1, x− δ, k − 1)

τ
= −pkα(N − 1, x−δ, k − 1) . (97)

In the limit, for τ, δ → 0 and v = δ/τ we get,

∂tα(t, x, k) + ∂kα(t, x, k) + v∂xα(t, x, k) = −p(k)α(t, x, k) ,

α(t, x, 0) =

∫ ∞
0

p(k)β(t, x, k) dk .
(98)

The second relation in (50) is obtained from (96), in the limit.
Following the same steps for the left movement of the particle we start from

β(N, x, k) = (1− τpk)β(N − 1, x+ δ, k − 1) ,

β(N, x, 0) = τ

N−1∑
k=1

pkα(N − 1, x+δ, k) , (99)
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and in the limit we obtain

∂tβ(t, x, k) + ∂kβ(t, x, k)− v∂xβ(t, x, k) = −p(k)β(t, x, k) ,

β(t, x, 0) =

∫ ∞
0

p(k)α(t, x, k) dk .
(100)

6.2 Numerical set up and main numerical results
We consider a discrete velocity jump model which describes the left and right movement as in
Section 6.1, in an infinite one dimensional domain. We assume that the speed of the cell is constant
given by v = ±1 and the probability of changing direction from left to right is governed by (2).
To decide whether the cell changes direction or not, we use the rejection method. We randomly
generate a number between (0, 1), if that number is bigger than a probability P = ψ(k)

ψ(k−1)
1, then the

cell changes direction, otherwise it keeps moving without changing. The steps k are updated in each
iteration and therefore P , where we always start with k = 1. The cell updates its position according
to x(ti+1) = x(ti) + v. This same description can be extended for the non-synchronisation case,
where the movement of the front (y) and the back (x) are independent. Every time the cell changes
direction we count the number of steps k given in the same direction. For the non-synchronisation
case we take into account the biologically relevant switching probabilities given in Section 2.1 to
preserve the realistic cell length.

With this toy example we are able to compute the mean square displacement (MSD) 〈x2〉 of the
cells. As stated in the Introduction, normal diffusion processes are characterised by 〈x2〉 ∼ t, while
for the case of superdiffusion 〈x2〉 ∼ tζ for ζ ∈ (1, 2), where ζ = µ/2.

In Figure 3 we have the average of the MSD where this average is taken over 10 000 runs and
the trajectories of the cell follows the discrete velocity jump process described before. As obtained
in (92), the superdiffusion movement for the synchronised case is observed when µ ∈ (1, 3/2) which
agrees with the results in Figure 3a. On the other hand, we consider the normal diffusion limit of
the synchronised system derived in Section 4.1 where we observed normal diffusion for µ ∈ (2, 3).
From Figure 3b, we see that the slope of the MSD is approximately 1, corresponding to the normal
diffusion case.

Moreover, these findings are in agreement with [12], where the authors observed superdiffusion
for Lévy exponents µ = 1.39, 1.58, 1.50 and normal diffusion for µ = 2.17, 2.36, 3.57 (see Table 1
in [12]).

Finally, for completeness we also present the numerical results for the non-synchronised case in
Figure 4. Here we observe a similar behaviour as for the synchronised with the difference that now
the superdiffusion is “weaker” in the sense that even for very small values of µ the slope of the MSD
is close to one.

7 Conclusion and perspectives
We developed a formalism allowing to take into account how eukariotic cells move by protrusions
(front of the cell) and retractions (back of the cell), keeping the simplicity of one space dimension
for motion. Full generality, assuming that back and front are independent leads to a mathemati-
cal model hardly amenable to analysis, but various synchronisation levels lead to simpler models
for which macroscopic effects can be observed. Among them we found normal drift-diffusion but
more interestingly, instability can occur and, in the fully synchronised case, fractional diffusion
characterised by long jumps. This is in accordance with experimental observations in [12] where the
trajectories of metastatic cells, which move in a synchronised way, followed a power-law distribution,
characteristic of a superdiffusion process.

1ψ(k) is the probability of a run of length at least k. I would like to achieve this distribution by independent
decisions whether to turn or not (based on rand(1)). The probability to continue the run after the first time step is
P (1), the probability to continue after the second time step is P (2), etc. The probability that the cell has not turned
within the first k time steps is P (1)P (2)...P (k). This is in fact equal to ψ(k). The formula ψ(k) = P (1)P (2)...P (k)
∀k has a unique solution for the probabilities P : P (j) = ψ(j)/ψ(j − 1).
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(a)

(b)

Figure 3: Average of the MSD taken from 10000 individual trajectories when we let them run for
t = 10000. (a) describes the superdiffusive regime while (b) gives the normal diffusion case.

From a modelling and analytical point of view, several questions are left open. For instance, a
better understanding of the full model and of possible model reduction. Also, the introduction of
more biological details, for example, in the switching direction probability (2). We could tailor this
function to a specific system by knowing the internal mechanisms that leads to synchronisation in
cells. Moreover, we could extend our model to several dimensions and connect it to models of cell
polarisation such as [16, 17]. Finally, it would be interesting to look at the effect of the interactions
with the environment and collective effects.

A Miscellaneous
(I) We compute the escape and arrival rates introduced in (63) by using the characteristic solu-
tions (61) and (62). We start from

jβ(t, x) =

∫ t

0

p(k)β(t, x, k) dx

which, by using (3) and (62), can be re-written as

jβ(t, x) =

∫ t

0

φ(k)β(t− k, x+ vk, 0) dk + β̄0(x+ vk)φ(k)

=

∫ t

0

φ(t− s)ev(t−s)∂xβ(s, x, 0) ds + β̄0(x+ vk)φ(k) . (101)
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Figure 4: MSD for the non-synchronised case. The blue and yellow lines are for µ = 1.3 and 1.5
respectively, and the orange and green are for the cases µ = 2.3 and 2.5.

The last equality is obtained using the change of variables k = t− s along with the following Taylor
expansion

ev(t−s)∂xf(x) =

∞∑
m=0

(v(t− s)∂x)m

m!
f(x)

=

∞∑
m=0

1

m!
(v(t− s))m∂mx f(x) = f(x+ v(t− s)) .

Analogously we can obtain (64) for jα(t, x).

(II) Now we aim to derive the expression (88). From (84) we write, after multiplying both sides by
ψ̃+ψ̃−

ψ̃+ ψ̃− ρ̃ = ψ̃+ φ̃− ˜̄β + α̃0 ψ̃+ ψ̃− + ψ̃− φ̃+ ˜̄α ψ̃− + β̃0 ψ̃− ψ̃+ . (102)

Using the initial conditions α0
ε = εzδ(x) and β0(x) = 0 we obtain (88). Now, we introduce the

scaling to (74) and we write

ψ̃± = − a

1− µ
− a2λ±

(1− µ)(2− µ)
+ aαλµ−1

± Γ(−µ+ 1) +O(a3λ2
±) ,

φ̃± = 1 +
aλ±
1− µ

+ aµλµ± +O(λµ+1) .

Hence from here we compute

ψ̃+φ̃− = − a

1− µ
− a2λ+

(1− µ)(2− µ)
+ aµλµ−1

+ Γ(−µ+ 1)− a2λ−
(1− µ)2

+O(aµ+1) ,

ψ̃−φ̃+ = − a

1− µ
− a2λ−

(1− µ)(2− µ)
+ aµλµ−1

− Γ(−µ+ 1)− a2λ+

(1− µ)2
+O(aµ+1) ,

ψ̃+ψ̃− =
a2

(1− µ)2
− aµ+1 Γ(µ+ 1)

1− µ
(λµ−1
− + λµ−1

+ ) +O(a3) .

Substituting these three quantities in (102) we arrive at (89).
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(III) Finally, we are going to work only with the fractional operators. Following [5, 6] we have

D
µ−1
− β̄ =

−1

Γ(2− µ)

∂

∂x

∫ ∞
x

β̄(s)

(s− x)µ−1
ds =

µ− 1

Γ(2− µ)

∫ ∞
0

β̄(x)− β̄(x+ s)

sµ
ds

D
µ−1
+ ᾱ =

1

Γ(2− µ)

∂

∂x

∫ x

−∞

ᾱ(s)

(s− x)µ−1
ds =

µ− 1

Γ(2− µ)

∫ ∞
0

ᾱ(x)− ᾱ(x− s)
sµ

ds .

The above relation is true if ᾱ, β̄ ∈ C1(R) and ᾱ, β̄ = o(|x|µ−2−ε), x → +∞ for ε > 0 (equivalence
between Marchaud derivative and Riemann-Liuoville derivative).

Now we are going to use the fact that the sum D
µ−1
− f + D

µ−1
+ f gives the fractional Laplace

operator in one dimension, also known as the Riesz derivative,

D
µ−1
− β̄ +Dµ−1

+ ᾱ =
µ− 1

Γ(2− µ)

(∫ ∞
0

β̄(x)− β̄(x+ s)

sµ
ds+

∫ ∞
0

ᾱ(x)− ᾱ(x− s)
sµ

ds
)

=
µ− 1

Γ(2− µ)

(∫ 0

−∞

β̄(x)− β̄(x− s)
|s|µ

ds+

∫ ∞
0

ᾱ(x)− ᾱ(x− s)
sµ

ds
)

=
µ− 1

2Γ(2− µ)

∫ ∞
−∞

β̄(x) + ᾱ(x)− β̄(x− s)− ᾱ(x− s)
|s|µ

ds

=
µ− 1

2Γ(2− µ)

∫ ∞
−∞

ρ(x)− ρ(x− s)
|s|µ

ds =
µ− 1

2Γ(2− µ)

1

c(1, µ−1
2 )

(
− d2

dx2

)µ−1
2

ρ(t, x) ,

where c(1, µ−1
2 ) is a normalization constant.
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