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Abstract

A biological system achieve homeostasis when there is a regulated quantity that
is maintained within a narrow range of values. Here we consider homeostasis as a
phenomenon of network dynamics. In this context, we improve a general theory for
the analysis of homeostasis in network dynamical systems with distinguished input
and output nodes, called ‘input-output networks’. The theory allows one to define
‘homeostasis types’ of a given network in a ‘model independent’ fashion, in the sense
that the classification depends on the network topology rather than on the specific
model equations. Each ‘homeostasis type’ represents a possible mechanism for gener-
ating homeostasis and is associated with a suitable ‘subnetwork motif’ of the original
network. Our contribution is an extension of the theory to the case of networks with
multiple input nodes. To showcase our theory, we apply it to bacterial chemotaxis,
a paradigm for homeostasis in biochemical systems. By considering a representative
model of Escherichia coli chemotaxis, we verify that the corresponding abstract net-
work has multiple input nodes. Thus showing that our extension of the theory allows
for the inclusion of an important class of models that were previously out of reach.
Moreover, from our abstract point of view, the occurrence of homeostasis in the stud-
ied model is caused by a new mechanism, called input counterweight homeostasis. This
new homeostasis mechanism was discovered in the course of our investigation and is
generated by a balancing between the several input nodes of the network — therefore,
it requires the existence of at least two input nodes to occur. Finally, the framework
developed here allows one to formalize a notion of ‘robustness’ of homeostasis based
on the concept of ‘genericity’ from the theory dynamical systems. We discuss how
this kind of robustness of homeostasis appears in the chemotaxis model.
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1 Introduction

The idea that an organism should keep its internal parameters within a strict range
despite changes in the external environment to guarantee its survival, was first intro-
duced by Claude Bernard in the 19" century |27]. This property is present in many
biological systems, and it was called homeostasis by Walter Cannon in 1929 [27].
Although the notion of homeostasis has appeared in the study of physiology of
multicelular organisms, it has a much broader scope today. From a mathematical
point of view, homeostasis can be defined in several distinct contexts. For example,
one may consider homeostasis with respect to genetic variants or polymorphisms
(i.e., in systems such that the phenotype is robust to genetic variation) [31]. This is
related to the relationship between the enzymatic activity variation promoted by the
polymorphism and the impact of it on the relevant phenotype. Likewise, one may



consider homeostasis in discrete stochastic biochemical systems by observing the
adaptability of the system over finite time intervals [13|. Or one can study collective
behavior, rather than the individual one, in response to an external parameter |25].

Consider a biological system model as a dynamical system with input parameter
I which varies over an open interval |1, I5[. Consider an output observable variable
such that for each I €|y, [, there is a stable equilibrium where the value of the
observable is x,(I). In this situation, it is reasonable to say that the system would
exhibit homeostasis if after changing the input variable Z, the value of the observable
zo(Z) at the equilibrium remains approximately constant.

Another concept related to homeostasis is Adaptation, which is widely studied in
synthetic biology and control engineering (cf. [2,41/5124,135]). Adaptation is defined
as the ability of the system to reset x,(Z) to its pre-stimulated output level (its set
point) after responding to an external change on the stimulus Z. Hence, adaptation is
essentially equivalent to homeostasis. There are two formulations usually considered
in the research on adaptation: (1) the strict condition of perfect adaptation, where
the observable z,(Z) is required to be constant over a range of external stimuli Z; (2)
the more general condition of near-perfect adaptation, where the observable z,(Z) is
required to be within a narrow interval of values over a range of external stimuli Z.

A similar formulation proposed by Golubitsky and Stewart [16}/17] — motivated
by previous work on biochemical networks [33] (see also [8,29-32]) — employs meth-
ods from singularity theory to define the notion of ‘infinitesimal homeostasis’. Their
framework can also be applied to other biological systems, such as gene expression
modeled in a deterministic way [3]. According to this approach, a system exhibits
infinitesimal homeostasis if %% (Iy) = 0 for some input value Iy, where z, is the func-
tion that associates to each input parameter a unique value of the observable at the
equilibrium. Infinitesimal homeostasis generalizes the notion of perfect adaptation
(or perfect homeostasis), since condition (1) is equivalent to %e = 0. On the other
hand, many systems exhibiting near-perfect adaptation (or near-perfect homeosta-
sis) do not have any I, where %= (y) = 0 (e.g. product inhibition [33]). We shall
not pursue the study of near-perfect homeostasis here.

In this paper, we shall focus on the occurrence of infinitesimal homeostasis in
networks of dynamical systems with distinguished input and output nodes. More
precisely, Wang et al. [39] introduced the notion of ‘abstract input-output network’
and obtained a method to classify infinitesimal homeostasis in networks with a single
input node and a single input parameter affecting this input node. They introduced a
notion of ‘infinitesimal homeostasis types’ corresponding to the ‘mechanisms’ that are
responsible for the occurrence of infinitesimal homeostasis in a network. These ‘home-
ostasis types’ were further divided in two ‘homeostasis classes’, called appendage and




structural, which correspond respectively to feedback and feed-forward mechanisms.
Although the results of [39] completely covered the classification of infinitesimal
homeostasis of networks with one input and one output nodes, they can not be ap-
plied to systems with more than one input node. This limitation excludes several
important mathematical models. One such exclusion, that are known to exhibit
perfect homeostasis, is the mathematical model of bacterial chemotaxis systems.

Generally speaking, bacterial chemotaxis refers to the ability of bacteria to sense
changes in their extracellular environment and to bias their motility towards favor-
able stimuli (attractants) and away from unfavorable stimuli (repellents). There
exist a number of different but related bacterial chemosensory systems, of which the
most widely studied is the Escherichia coli chemotaxis |7]. Extensive mathematical
modeling has described different aspects of the chemotaxis pathway and has mainly
focused on explaining the initial response to addition of attractant, as well as robust-
ness of perfect homeostasis. For instance, |1,/6] showed that perfect homeostasis is
robust (insensitive to parameter variations in the pathway), if the kinetics of recep-
tor methylation depends only on the activity of receptors and not explicitly on the
receptor methylation level or external chemical concentration. Their idea was later
extended by others, providing conditions for perfect homeostasis [26,/40], as well as
robustness to noise by the network architecture [20}23].

Our goal in this paper is to extend the theory of [39] to input-output networks
with multiple input nodes and a single input parameter affecting these input nodes.
More precisely, in our extended version of the theory, the same structure of the
classification is maintained, except that there is a new ‘homeostasis class’. This
new class, called input counterweight, does not exist in the single input node case.
The corresponding homeostasis mechanism is generated by a balancing between the
several input nodes of the network. That explains why one needs at least two input
nodes to detect it. Finally, we show that our generalization allows us to analyze
a representative model for chemotaxis that has good agreement with experimental
findings, including occurrence of perfect homeostasis [10,37,38].

The main idea in our approach is to reduce to the single input-output case. For
each input node, we consider the corresponding single input-output network (by
‘forgetting’ the action of the input parameter on the other input nodes) and apply
the results of [39] to each of these networks. The novelty consists in showing that the
properties of the individual single input-output networks are compatible in a certain
sense. This is sufficient to obtain a classification for the original multiple input-
output network. The approach introduced here can be further extended to the case
of input-output networks with multiple input nodes and multiple input parameters.
This will be pursed in another publication.



Mathematical Modeling of Chemotaxis

The mathematical modeling of chemotaxis can be roughly divided into two types:
single cell models and bacterial population models |37, 38|. Single cell models con-
sider the activation of the flagellar motor by detection of attractants and repellents
in the extracellular medium. The flagellar motor activity of bacteria is regulated by
a signal transduction pathway, which integrates changes of environmental chemical
concentrations into a behavioral response. Assuming mass-action kinetics, the reac-
tions in the signal transduction pathway can be modeled mathematically by ODEs.
The bacterial population models describe evolution of bacterial density by parabolic
PDEs involving an anti-diffusion ‘chemotaxis term’ proportional to the gradient of
the chemoattractant, thus allowing movement up-the-gradient, the most prominent
feature of chemotaxis. The most extensively studied bacterial population models are
the Patlak-Keller-Segel (PKS) type models. We will only consider single cell models
here.

Understanding the response of E. coli cells to external attractants has been the
subject of experimental work and mathematical models for nearly 40 years. In fact,
many models of the chemotaxis have been formulated and developed to provide a
comprehensive description of the cellular processes and include details of receptor
methylation, ligand-receptor binding and its subsequent effect on the biochemical
signaling cascade, along with a description of motor driving CheY/CheY-P levels,
the main output of the chemotaxis system (see 38| for a survey).

However, including such detail has often led to very complex mathematical models
consisting of tens of governing differential equations, making mathematical analysis
of the underlying cellular response difficult, if not in many cases, impossible. A model
proposed by Clausznitzer et al. [10] has sought to provide a comprehensive description
of the FE. coli response, by coupling a simplified statistical mechanical description
of receptor methylation and ligand binding, with the signaling cascade dynamics.
The model consists of five nonlinear ordinary differential equations (ODEs) and is
parameterized using data from the literature. The authors were able to show that the
model is in good agreement with experimental findings. However, being a fifth-order
nonlinear ODE model, it is difficult to treat analytically. More recently, Edgington
and Tindall [12] undertook a comprehensive mathematical analysis of a number of
simplified forms of the model of [10] and proposed a fourth-order reduction of this
model that has been used previously in the theoretical literature [11].

In the following we shall consider the model proposed by [11/12]. It has four vari-
ables for the concentrations of CheA /CheA-P (a,), CheY /CheY-P (y,), CheB/CheB-
P (b,) and the receptor methylation (m) and is given by the following system of ODEs



(in non-dimensional form):
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where v, Vg, ki,...,ks are non-dimensional parameters, the extracellular ligand

concentration L is the external parameter and the function ¢ is determined by a
Monod-Wyman—Changeux (MWC) description of receptor clustering
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The key observation of [12] is that system has a unique asymptotically stable
equilibrium X* = (m*, a3, y;, by), with ay, > and b} positive and m* is a real number,
for the non-dimensional parameters obtained from the parameter values originally
used in [10]. Furthermore, [12] were able to show that some pairs of parameters might
yield oscillatory behavior, but in regions of parameter space outside that observed
experimentally. This was done by carrying out the stability analysis for pair-wise
parameter variations, whereby for each case the occurrence of at least two non-
zero imaginary parts was recorded as indicating possible oscillatory dynamics. The
steady-state X* can be easily found by numerical integration for parameter values
that are experimentally valid, although some combinations of parameters produce a
large stiffness coefficient [10].

More importantly, the stability of X* persists as L is varied in the range (0, +00).
By standard arguments (see subsection 2.1) this implies that there is a well-defined
smooth mapping L — X*(L) = (m*(L), a;(L),y;(L),b5(L)). Since the values of a3,
yy and by are independent of L (see [12]), it follows that the individual component
functions a(L), y5(L) and b3(L) are actually constant functions with respect to L.

In Figure (I} we show the time series of the three variables a,, y, and b, and how
they are perturbed when the parameter L is varied by sudden jumps. After a tran-
sient, which depends on the contraction rates at the equilibrium point, each variable
returns to its corresponding steady-state value. Moreover, when the parameters g,
YR, k1,..., ks are changed the equilibrium X* also changes, but the new functions
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Figure 1: Time series of the model , showing perfect homeostasis of the three
variables a, (green), b, (cyan), y, (blue) at the non-dimensional equilibrium given by
a, =955 X 1073, b, = 0.48, y; = 0.41. Input parameter L is given by a step function
(red curve). The parameters were set to non-dimensional values of [12, Table 2].
Time series were computed using the software XPPAuT [14].

ay(L), yy(L) and b3(L) remain constant with respect to L, possibly with different
values. This is exactly the robust perfect homeostasis that was shown to occur in
other models of chemotaxis [1},6,20,23.26}/40].

We shall consider this model in Section [4] in the light of the newly developed
theory. We show that the network corresponding to the model equations has two
input nodes and one output node and thus cannot be analyzed using the methods
of [39]. In fact this can be seen directly from the equations [L.1] since both the
equation for m and a, depend on the external parameter L.

Singularity Approach to Homeostasis

Undoubtedly, an important concern when analyzing a theoretical model given by a
dynamical system is whether the properties of interest are preserved under pertur-
bations (of a certain type). For instance, in systems biology and control engineering
phenomena are usually modeled by a parametric family of ODEs and a relevant con-
cept ‘robustness’ means that a property is robust if it is preserved by changes in the
parameters of the model. This is exactly the notion of robustness that is employed
in the literature on perfect homeostasis of chemotaxis |1,/6}/10}/12,26,40].

In singularity theory one is concerned with parametric families of maps or dy-
namical systems and the role of ‘robustness’ is played by the notion of genericity —



structure preservation by all small perturbations of the whole parametric family (in
the appropriate function space). In this case the small perturbations are as general
as possible, and not restricted to variation of parameters within a fixed family.

It is clear that perfect homeostasis is not a robust in the wider sense above.
Nevertheless, we show in Section [4] that perfect homeostasis is robust in the model
equations for a much larger set of perturbations than the obtained by changes
in the parameters of the model. Moreover, our analysis suggests that weaker versions
of it, namely ‘infinitesimal homeostasis’ and ‘near perfect homeostasis’, are generic
for the model equations (|1.1).

Structure of the paper. The remainder of this paper is divided in three parts.
In Section [2] we present the theory of infinitesimal homeostasis for networks with
multiple input nodes. In Section (3| we provide detailed proofs of the theorems of
Section[2] In Section[d we apply the general theory to study homeostasis in the model
equations for bacterial chemotaxis. Sections |3[and (4] can be read independently
from each other.

2 Homeostasis in Coupled Systems

In this section we define the basic objects of the theory: multiple input nodes input-
output networks, network admissible systems of differential equations, input-output
functions and infinitesimal homeostasis points. Then we introduce the generalised
homeostasis matrix and show how to use it to find infinitesimal homeostasis points
and to classify homeostasis types. Finally, we relate the classification of homeostasis
types with the topology of the network by associating ‘subnetwork motifs’ to the
irreducible factors of the determinant of the generalised homeostasis matrix and
present an algorithm to find all these factors in terms of the ‘subnetwork motifs’
constructed before.

2.1 A Dynamical Systems Formalism for Homeostasis

Golubitsky and Stewart proposed a mathematical method for the study of home-
ostasis based on dynamical systems theory [16|17] (see the review [19]). In this
framework, one considers a system of differential equations

X =F(X,T) (2.3)

where X = (xy,--+ ,2;) € RF and parameter Z € R represents the external input to
the system.



Suppose that (X*,Z*) is a linearly stable equilibrium of (2.3). By the implicit
function theorem, there is a function X (Z) defined in a neighborhood of Z* such that

X(Z*) = X* and F(X(Z),Z) = 0. The simplest case is when there is a variable, let’s
say x, whose output is of interest when Z varies. Define the associated input-output
function as z(Z) = ,(Z).

The input-output function allows one to formulate two of the most used defini-
tions that capture the notion of homeostasis [2}[24}35].

Definition 2.1. Let z(Z) be the input-output function associated to a system of
differential equations (2.3)). We say that the corresponding system ([2.3]) exhibits

(a) Perfect Homeostasis (Adaptation) on the interval |Z;, Zo[ if

&
dZl

That is, z is constant on |Z, Z,|.

7)=0 for all Z €]7,, 7] (2.4)

(b) Near-perfect Homeostasis (Adaptation) relative to the point Zy on the interval
|71, Z,| if for a fixed ¢

|2(Z) — 2(Zy)| <0 forall T €], T, (2.5)
That is, z stays within z(Zy) 4+ § on |Zy, Z,].

It is clear that perfect homeostasis implies near-perfect homeostasis, but the
converse does not hold. Inspired by Reed et al. [8,28], Golubitsky and Stewart [16,17]
introduced another definition of homeostasis that is essentially intermediate between
perfect and near-perfect homeostasis. Moreover, this new definition allows the tools
from singularity theory to bear on the study of homeostasis.

Definition 2.2. Let z(Z) be the input-output function associated to a system of
differential equations . We say that the corresponding system displays
Infinitesimal Homeostasis at the point Zy on the interval |Z;, Zy[ if
dz
() =0 (2.6)
It is obvious that perfect homeostasis implies infinitesimal homeostasis. Moreover,
it follows from Taylor’s theorem that infinitesimal homeostasis implies near-perfect
homeostasis in a neighborhood of Z;. It is easy to see that the converse to both
implications is not generally valid (see [33]).
When combined with coupled systems theory [15] the formalism of |16}(17,/19)
becomes very effective in the analysis of model equations.
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2.2 Multiple Input-Node Input-Output Networks

A multiple input-node input-output network is a network G with n distinguished
input nodes v = {t1,ta,...,t,}, all of them associated to the same input parameter
Z, one distinguished output node o, and N regulatory nodes p = {p1,...,pn}. The
associated network systems of differential equations have the form

T, = fL(xLJ Ty, Imz)
T, = fp(-ruxmajO) (2.7)

x.o - fo(xu Lp, xo)

where Z € R is an external input parameter and X = (x,,2,,2,) € R" x RN x R is
the vector of state variables associated to the network nodes.
We write a vector field associated with the system (2.7) as

F(X, 1) = (f(X, 1), fo(X), fo(X))

and call it an admissible vector field for the network G.

Let fj., denote the partial derivative of the j* node function f; with respect to
the ¢*" node variable x,. We make the following assumptions about the vector field
F' throughout:

(a) The vector field F' is smooth and has an asymptotically stable equilibrium at
(X*,Z*). Therefore, by the implicit function theorem, there is a function X (Z)
defined in a neighborhood of Z* such that X(Z*) = X* and F(X(Z),Z) = 0.

(b) The partial derivative f;,, can be non-zero only if the network G has an arrow
¢ — j, otherwise f;,, =0.

(c¢) Only the input node coordinate functions f, ~depend on the external input
parameter Z and the partial derivative of f, 7 generically satisfies

fimz # 0. (2.8)

Definition 2.3. Let G be an input-output network with n input nodes and F' be a
family admissible vector field with equilibrium point X (Z) = (2.(T), 2,(Z), 20(T)).
The mapping Z +— x,(Z) is called the input-output function of the network G, relative
to the family of equilibria X (Z).

10



2.3 Infinitesimal Homeostasis by Cramer’s Rule

As noted previously [16,/19,[33,139], a straightforward application of Cramer’s rule
gives a formula for determining infinitesimal homeostasis points. This has a straight-
forward generalization to multiple input networks.

Let J be the (n+ N + 1) x (n+ N + 1) Jacobian matrix of an admissible vector
field F' = (f,, f», [»), that is,

fL,xL fL,xp fL,xo
J = fp,:m fp,xp fp,mo (2.9)
fO,$L f0,$p fo,zo

The (n+ N + 1) x (n+ N + 1) matrix (H) obtained from J by replacing the last
column by (—f.z,0,0)", is called generalized homeostasis matriz:

fLJJL fmcp _fl,,I
<H> = fp,xb fp,xp 0 (210)
fO,zL fo,xp 0
Here all partial derivatives fy ., are evaluated at (X (I),7).

Lemma 2.1. The input-output function x,(Z) satisfies

2 (T) = % (2.11)

Here det(J) and det((H)) are evaluated at (X(I),I). Hence, Iy is a point of in-
finitesimal homeostasis if and only if

det((H)) =0 (2.12)
at the equilibrium (f( (Io),IO).

Proof. Tmplicit differentiation of the equation f(X(Z),Z) = 0 with respect to T
yields the linear system

l‘; fL,I
J £E:) = — 0 (2.13)
x) 0

Since X () is assumed to be a linearly stable equilibrium, it follows that det(.J) # 0.
On applying Cramer’s rule to (2.13]) we can solve for 2/ (Z) obtaining (2.11]). O

11



By expanding det({H)) with respect to the last column and each ¢, (input) row
one obtains

det((H)) = > +f,, zdet(H,,) (2.14)
m=1
Note that when there is a single input node, i.e. n = 1, Lemma gives the
corresponding result obtained in [39]. In this case, there is only one matrix H,,, = H,
called the homeostasis matriz, that played a fundamental role in the theory developed
in [39]. Hence, it is expected that the matrices H,, should play a similar role in the
generalization of [39] to the multiple input node case.

Definition 2.4. Let G be an input-output network with n input nodes and f be
an admissible vector field, with a family of equilibrium points X (Z). The partial
homeostasis matriz H,, of f is obtained from the Jacobian matrix J of F' by dropping
the last column and the ¢, row (see formula (3.36)).

2.4 Classes and Types of Homeostasis

The classification of homeostasis types proceeds as in [39]. The first step is to apply
Frobenius-Konig theory [9,34] to the generalized homeostasis matrix (H). More
precisely, Frobenius-Konig theory implies that there exist (constant) permutation
matrices P and () such that

By x ok
0 B, *
PH)Q=]: &+ -~ & (2.15)
0 0 --- By
o o --- 0 C
where each diagonal block By, ..., By and C is fully indecomposable (in the sense

of |9]), that is, det(By), ..., det(Bs) and det(C) are irreducible polynomials. As P
and () are constant permutation matrices, we have that

det((H)) = £ det(By) - - - det(B,) - det(C) (2.16)

In order to simplify nomenclature, we will call By, ..., By and C irreducible home-
ostasis blocks, although in the literature the term irreducible matrix may have a
different meaning (see [34]).

A direct comparison of factorization (2.16) with expansion suggests that
the irreducible factors det(B;) are the common factors of det(H,, ) and det(C) is

lm
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a weighted alternating sum of f,, 7,..., f,, z. Indeed, as we show in Section (3| the
matrix C'in (2.15)) contains all the functions f,, 7 as entries, that is, it is a homoge-
neous polynomial of degree 1 on f,, 7,..., f,, z, whereas the matrices By, ..., B do
not contain any of them.

The next step is to classify the irreducible homeostasis blocks of (H) according
to their number number of self-couplings. Indeed, we show that each block B; of
order k; has exactly k; or k; — 1 self-couplings (see Section [3)). But, unlike [39], in
the multiple input nodes case we find three classes of irreducible homeostasis blocks
that may occur in core networks with multiple input nodes.

Definition 2.5. Let B; be an irreducible homeostasis block of order k; which does
not contain any partial derivatives f, 7 with respect to Z. We say that the home-
ostasis class of B; is appendage if B; has k; self-couplings and structural if B; has
k; — 1 self-couplings.

Definition 2.6. We say G exhibits appendage homeostasis if there is an appendage
irreducible homeostasis block B; such that det(B;) = 0. In an analogous way, we
say G exhibits structural homeostasis if there is an structural irreducible homeostasis

block B; such that det(B;) = 0.

As shown in Wang et al. |39, appendage and structural homeostasis occur in core
networks with one input node. Nevertheless, networks with multiple input nodes also
exhibit a new class of homeostasis that is not found in networks with only one input
node.

Definition 2.7. Let C' be an irreducible homeostasis block whose determinant
det(C) is a homogeneous polynomial of degree 1 on the variables f,, z,..., f..z-
We say that the homeostasis class of C' is input counterweight. Moreover, we say
that G exhibits input counterweight homeostasis when det(C') = 0.

The final step in our theory is to associate a subnetwork motif’ of G to each
homeostasis block of (H) in such a way that each class of homeostasis corresponds to a
distinguished class of subnetworks. Because of the appearance of a third homeostasis
class, the extension of the results of [39] to the multiple input nodes require several
new ideas.

2.5 Network Topology and Homeostasis

We start with the basic combinatorial definitions needed to understand the construc-
tion of ‘subnetwork motifs’ associated with the homeostasis blocks in networks with

13



multiple input nodes. We notice that an example of how to apply the definitions and
results of this subsection to an abstract network can be found in figure 2

Recall that a node p is downstream from a node 7 if there is a directed path from
T to p and upstream if there is a directed path from p to 7. We always assume that
every node is downstream and upstream from itself.

Remark 2.8. From now on we assume that all networks satisfy the following condi-
tion: the output node is downstream from all input nodes. This seemingly innocuous
assumption, that is implicit in every study about input-output networks, is absolutely
necessary to ensure that all results are true and non-trivial (see Appendix .

Definition 2.9. Let G be a network with input nodes ¢1, ..., ¢, and output node o.
We call G a core network if every node in G is upstream from o and downstream from
at least one input node. Analogously, we define the core subnetwork G,, between ¢,,
and o as the subnetwork composed by nodes downstream ¢,, and upstream o.

The main result about core networks (extending |39, Thm 2.4]) is that infinitesi-
mal homeostasis in G, is ‘the same’ as in G (see Theorem (3.2 for details). Therefore,
without loss of generality, one can consider only core networks.

We classify the nodes in a core network G according to their role in the topology
of the network (see figure [2)).

Definition 2.10. Let G be a core network with input nodes ¢1, ¢s, ..., ¢, and output
node o.

(a) A directed path connecting nodes p and 7 is called a simple path if it visits each
node on the path at most once.

(b) An v,,0-simple path is a simple path connecting the input node ¢, to the output
node o.

(¢) A node is t,,-simple if it lies on an ¢,,0-simple path.

(d) A node is t,,-appendage if it is downstream from ¢, and it is not an ¢,,-simple
node.

(e) A node is absolutely simple if it is an ¢,,-simple node, for every m = 1,... n.

(f) A node is absolutely appendage if it is an t,,-appendage node, for every m =
1,...,n.

14



(D)) (Ao} (o 4%)
° 5

Figure 2: (a) A core network G with input nodes ¢; and ¢, and output node o (see
definition [2.9). (b) Simple paths between the input nodes and the output node.
(c) Nodes ¢; and oy (both in blue) are ¢;-simple, but they are not downstream ts;
node 1y is to-simple, but it is not downstream t5. Nodes highlighted in purple are
either absolutely simple (03) or absolutely super-simple (o3 and 0). Both o and f (in
green) are absolutely appendage nodes (definitions and . The algorithm of
subsection , implies that G supports three classes of homeostasis: appendage (d);

structural (e); and input counterweight (f).
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Wang et al. [39] introduced the concept of path equivalent classes in appendage
subnetworks of networks with only one input node. As we need this definition in
other contexts, we generalize it to every subnetwork of G.

Definition 2.11. Let K be a nonempty subnetwork of G. We say that nodes p;, p;
of K are path equivalent in K if there are paths in K from p; to p; and from p; to p;.
A K-path component is a path equivalence class in K.

Definition 2.12. Let G be a core subnetwork with multiple input nodes ¢4, ..., ¢,
and output node o and let G,, be the core subnetwork between ¢,, and o.

(a) The G,,-complementary subnetwork of an t,0-simple path S is the subnetwork
C,,S consisting of all nodes of G,,, not on S and all arrows in G,,, connecting those
nodes.

(b) The G-complementary subnetwork of an ¢,,0-simple path S is the subnetwork C'S
consisting of all nodes of G not on S and all arrows in G connecting those nodes.

We start with the ‘subnetwork motifs’ associated with appendage homeostasis.

Definition 2.13. Let G be a core subnetwork with multiple input nodes ¢q,..., ¢,
and output node o and let G,,, be the core subnetwork between ¢,, and o.

(a) For every m = 1,...,n, we define the ¢,,,-appendage subnetwork Ag,  as the sub-
network of G composed by all ¢,,,-appendage nodes and all arrows in G connecting
Lm-appendage nodes.

(b) The appendage subnetwork Ag is the subnetwork of G composed by all absolutely
appendage nodes and all arrows in G connecting absolutely appendage nodes, i.e.,

Ag =Ag, N---NAg,

By Definition [2.T1] each path component of a network is a path equivalence class
of this network. Therefore, we can partition Ag in different Ag-path components.
We still need another concept to associate a component of this partition with the
appendage homeostasis blocks.

Definition 2.14. Let A; be an Ag-path component. We say that A; satisfies the
generalized no cycle condition if the following holds: for every m = 1,...,n, for
every t,o-simple path S,,, nodes in A; are not C'S,,-path equivalent to any node in

C'Spm \ A
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The condition in Definition is the correct generalization of the ‘no cycle con-
dition’ of Wang et al. [39]. Finally, it is shown in Section , that each appendage
homeostasis block corresponds exactly to an Ag-path component A; satisfying the
generalized no cycle condition is an irreducible appendage homeostasis block (see
Theorems and [3.13). Moreover, this is equivalent to the assertion that each
appendage homeostasis block is an appendage homeostasis block of each core sub-
network G,, (see Theorems and .

The topological characterization of appendage homeostasis in networks with mul-
tiple input nodes is similar to the topological characterization of appendage home-
ostasis in single input node networks. This is not the case for the other homeostasis
classes. Indeed, in single input node networks there are only two classes of home-
ostasis, appendage and structural, while in networks with multiple input nodes there
is also the input counterweight homeostasis. Moreover, single input node networks
always support structural homeostasis, which is not always the case with networks
with multiple input nodes (see Section .

Now we consider the ‘subnetwork motifs’” associated with structural homeostasis.

Definition 2.15. Let G be a core subnetwork with multiple input nodes ¢4, ..., ¢,
and output node o.

(a) An tp,-super-simple node is an t,,,-simple node that lies on every ¢,,0-simple path.

(b) An absolutely super-simple node is an absolutely simple node that lies on every

tmo-simple path, for every m = 1,...,n. In particular, an absolutely super
simple-node is an ¢,,-super-simple node, for every m =1,...,n.
It is straightforward that every core network G with multiple input nodes ¢4, ..., ¢,

and output node o has at least one absolutely super-simple node: the output node
o. However, in contrast to core networks with only one input node where both the
input the output nodes are super-simple, core networks with multiple input nodes
may exhibit the output node as their only super-simple node (see Figure . In fact,
as we will see later, this is the reason why abstract core networks with multiple input
nodes do not necessarily support structural homeostasis.

Similarly to what happens in networks with single input node there is a natural
way of ordering the absolutely super-simple. Indeed, the absolutely super-simple
nodes can be uniquely ordered by p; > ps > --- > p, > o, where a > b when b is
downstream a by all ¢,,0-simple paths (see Lemma . Through this ordering, we
say that two absolutely super-simple nodes py, pri1 are adjacent when pi. is the
first absolutely super-simple node which appears after p.

Definition 2.16. Let px > pry1 be adjacent absolutely super-simple nodes.
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Figure 3: A core network with input nodes ¢; and ¢5 and output node o. The only
absolutely super-simple node is 0. Node ¢ is an absolutely simple node, but it is
not between two absolutely super-simple nodes, as it would be expected for core
networks with only one input node (see Lemma [3.17).

(a) An absolutely simple node p is between py and py; if there exists an ¢,,0-simple
path that includes py to p to pry1 in that order, for some m € {1,...,n}.

(b) The absolutely super-simple subnetwork, denoted L(py, pr+1), is the subnetwork
whose nodes are absolutely simple nodes between p; and py,1 and whose arrows
are arrows of G connecting nodes in L(py, pr+1)-

In addition to the Ag-path components that satisfy the generalized no cycle
condition there may be Ag-path components B; that do not satisfy this property.
More precisely, for every m = 1,...,n, there is an (,,0-simple path S,, such that
nodes in B; are C'S,,,-path equivalent to an absolutely simple node in C'S,,, \ B; which
belongs to an absolutely super-simple subnetwork L(py, pri1), where pg, pri1 are
adjacent absolutely super-simple nodes. There is an unique correspondence between
each Ag-path component B; and the absolutely super-simple subnetwork to which
B; is C'S,,-path equivalent, for some t,,0-simple path S,, (see Lemma . The
union of the Ag-path components B; and the corresponding absolutely super-simple
subnetworks generate the primary subnetworks associated to structural homeostasis.

Definition 2.17. Let p; and pgi1 be adjacent absolutely super-simple nodes in G.
The absolutely super-simple structural subnetwork L'(py, pr+1) is the input-output
subnetwork consisting of nodes in L£(pg, pr+1) U B, where B consists of all absolutely
appendage nodes that are C'S,,-path equivalent to nodes in L(py, pr11) for some ¢,,0-
simple path S,,, for some m € {1,...,n}, i.e., B consists of all Ag-path components
B; that are C'S,,-path equivalent to nodes in L£(py, pr+1) for some S,,, for some m €
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{1,...,n}. Arrows of L'(py, pr+1) are arrows of G that connect nodes in L'(py, pri1)-
Note that py is the input node and that py; is the output node of L£'(p, pri1)-

Each absolutely super-simple structural subnetwork L'(py, pr+1) is a single node
input-output network with pj as the input node and py,; as the output node. There-
fore, the homeostasis matrix H (L' (pg, pr+1)) is well defined. Indeed, we show that
the homeostasis matrix of each absolutely super-simple structural subnetwork cor-
responds to an irreducible structural homeostasis block and, conversely, each irre-
ducible structural homeostasis block is given by the homeostasis matrix of an abso-
lutely super-simple structural subnetwork (see Theorems and [3.23).

Finally, we define the ‘subnetwork motif’ associated with input counterweight
homeostasis.

Definition 2.18. Let the absolutely super-simple nodes of G be p; > --- > ps > o.
The input counterweight subnetwork Wg of G is the subnetwork composed by: (1) the
input nodes ¢1, ..., t,, (2) the absolutely super-simple node p, (3) nodes 7 for which
there exists an m € {1,...,n} such that there is an ¢,,0-simple path that passes
at L, 7 and p; in that order, (4) the nodes that are not absolutely appendage nor
absolutely simple, and (5) nodes in C, where C consists of all absolutely appendage
nodes that are C'S,,-path equivalent to nodes that are not absolutely appendage and
that are not between two absolutely super-simple nodes, for some ¢,,0-simple path
Sm (m € {1,...,n}). Arrows of Wy are the arrows of G that connect nodes of Wj.

2.6 Enumerating Homeostasis Subnetworks

The classification of homeostasis types obtained in this paper allows us to we write
down an algorithm for enumerating subnetworks corresponding to the r = p+¢q+1
homeostasis blocks (see figure [2)).

Step 1: Determine the Ag-path components Aj, ..., A, satisfying the generalized no
cycle condition. By Theorems and [3.13] these are the appendage homeostasis
subnetworks of G, and their corresponding Jacobian matrix J4, is an irreducible
appendage homeostasis block that appears in the normal form of (H). Moreover,
there are p independent defining conditions for appendage homeostasis based on the
determinants det(J4,) =0, fori =1,...,p.

Step 2: Determine the absolutely super-simple nodes of G. If the only absolutely
super-simple node of G is o, then G does not support structural homeostasis. On the
other hand, if there is more than one absolutely super-simple node, consider their
natural order p; > --- > p, > pgy1 = o and determine the corresponding abso-

lutely super-simple structural subnetwork £'(pg, pr+1). By Theorems and
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the corresponding homeostasis matrix H(L'(pg, pr+1)) is an irreducible structural
homeostasis block that appears in the normal form of (H). Moreover, there are ¢ in-

dependent defining conditions for structural homeostasis based on the determinants
det(H(‘C,(pk7pk+l))) = 07 for k = 17 - (g

Step 3: Determine the input counterweight subnetwork Wg; of G. Then, the gener-
alized homeostasis matrix of (H)(Wg) is, up to permutation of rows or columns, the
input counterweight homeostasis block C' that appears in the normal form of (H).
Furthermore, there is one defining condition for input counterweight homeostasis
based on the determinant det({H)(Wg)) = 0.

3 Structure of Infinitesimal Homeostasis

In this section we provide the proofs of all results behind the classification of home-
ostasis types and the algorithm in subsection We follow Wang et al. [39] and
provide the appropriate generalizations of each corresponding result. Nevertheless,
it is important to remark that there are new difficulties that arise in the multiple
input node context that do not have a single input node counterpart. Completely
new arguments were required to overcome these difficulties.

3.1 Core Networks

We extended the results of Wang et al. [39] to a core network associated to a multiple
input nodes input-output network. Recall Definition of a core network.

The linearly stable equilibrium (Xy, Zy) of satisfies the system of equations
that can be explicitly written as

fu(@o, @y, o 2, 25,00, L) =0
sz(anxLza cee axbnaxpaxoaz) =0
(3.17)
o @ @iy T T, 00, L) =0
1 n =
fp(xb y Ligy ooy Ly al‘pvmo) 0
fol@u, Ty oo, X0y, T, o) =0

Following Wang et al. [39], we partition the regulatory nodes p in three classes
depending if they are upstream from the output node or/and downstream from at
least one input node.

More precisely, consider the partition of the nodes in G in three classes as follows:
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(1) those nodes ¢ that are both upstream from o and downstream from at least one
input node ¢,,,

(2) those nodes d that are not downstream from any input node ¢,,,

(3) those nodes w which are downstream from at least one input node ¢,,, but not
upstream from o.

Figure 4] shows the connections which can be found in G.
We can now rewrite equations in (3.17)) as

fo(To, Ty oo X Ty Ty T, Ty L) =0

Jo (X @y oo Xy, Ty Ty g, T, L) =0

o (T, Ty v oy Ty, s Ty Ty Ty Ty L) = 0 (3.18)
Jo(Tiy, Tugy e o Xy Ty Ty Ty To) = 0

@y gy oo Xy, Ty Ty Ty Tp) = 0

fa(x, @y o Ty, Ty Ty Ty Tp) = 0

Jo(Tiyy Tugy e ooy Xy Ty Ty Ty To) = 0

As already proved by Wang et al. |39, Lem 2.1|, (3.18) may be simplified to

fu(x, @y, 2, To, g, 20, L) =0

foo (@ @y ooy, Ty g, T, L) =0

fo @, @y, T Ty Ty o, L) =0 (3.19)
folTy, @y T, Ty gy To) =0

@iy gy oo Xy, Ty Ty g, Tp) = 0

fa(za) =0

fo(Ty, @y o T, Ty Ty, To) = 0

Note that if we fix z, at some value, it is trivial to obtain an admissible system to

G, from (3.19).

21



b/

Figure 4: The possible connections in G. The corresponding core network G. is
composed by the input nodes ¢q,...,t,, the nodes o that are upstream from the
output node and downstream of at least one input node, and the output node o.

*

Lemma 3.1. Suppose Xo = (], 2},,...,2; , T4, 5, x5, x}) is a linear stable equilib-

rium of (3.19). Then the core admissible system (obtained by freezing x4 at x)

. *
xu = fL1(xL17:BL2a e 7'ILn7 l’o—, l’d,.il?o,I)
. *
Ty = fio(Tiyy Ty ooy Xy s Ty gy Ty L)
(3.20)
. *
xbn = an(xL17'CEL2’ e 7xbn7 l’o—, J]d7l’o,I)
. *
Ty = fO(xbuxsz sy Ly Loy gy x0>
. *
To = fol@iy gy ooy Ty, Ty Ty )
has a linear stable equilibrium in Yy = (x},x},, ..., 2} , x5, T}).

Proof. Tt is trivial that Yj is an equilibrium of (3.20). We start by verifying that Y;
is linearly stable. Indeed, the Jacobian matrix J of (3.19) evaluated at Xj is
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lenyl fuﬂhn fb1,ro fblwd 0 fbl,ﬂfo

an,:le e fbn,a}Ln fbn,aza fbn,:td 0 fbn,mo
J = fa,ocLl e fmrbn fmrg fa,xd 0 fo,:co (321>
0 - 0 0  fae, O 0
fu,:ml e fu,acbn fu,:vg fu,zd fu,:]cu fu,g:o
fo,;rLl e fa,zm fo,zg fo,:vd 0 fo,zo

and therefore the eigenvalues of J are the same eigenvalues of f;,,, fuz, and of the
matrix J., where

fuml fbl,zm fbl,zcr fL17xO

¢ any-TLl to fL"l)ILn fL”l)"EO' anyzo ( ’ )
fa,fcq e famn fa,xa fa,xo
fo,:m1 e fo,xbn foma fo,zo

Notice now that J. is the Jacobian matrix of (3.20) calculated at Yj, and therefore,
if Xy is a linearly stable equilibrium, then so it is Y. ]

Theorem 3.2. Let x,(Z) be the input-output function of the admissible system ([2.7))
and let x$(Z) be the input-output function of the associated core admissible system
(3-20). Then z¢ has a point of infinitesimal homeostasis at Iy if and only if x, has
a point of infinitesimal homeostasis at Zy.

Proof. By Lemma the input-output function of the admissible system (12.7) is
given by
dr, det((H))

= 7/ 3.23
A~ det(J) (3:23)
where
le,xLl T le,an le,xU fL1,:t:d 0 _fL1,I
an’xbl e an,an an,zg an,xd 0 _an,I
<H> = fa,rLl T fa,zm fa,za fa,zd 0 0 (324)
0 - 0 0 fim, O 0
fu@bl T fu,an fu,xa fu,xd fu@u 0
fo,gﬁL1 T fo,:pbn fo,:):(7 fo,xd 0 0
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Likewise, by Lemma the input-output function of the core admissible system
(3.20) is given by
dz¢  det((H.))

o TN 3.25
dz det(J,) (3:25)
where
le,rLl T le,:Jc,,n fblyw(r _fL1,I
<Hc> = an,;tLl tr an,wLn an,a:g _fbn,I (326)
fmxbl Tt fa,xm fa,xa 0
fo,xb1 Tt fo,an fO,Io— 0
From Lemma 3.1, we have
det(J) = det(fuz,) - det(fuz,) - det(Je) (3.27)
From (3.24) and (3.26]) we get
det ((H)) = det(fan,) - det(fuz,) - det((H.)) (3.28)
Hence
dr, det((H))  det(fon,) - det(fuq,)  det((He))  det({H.)) dat (3.29)
dZ — det(J) — det(fyn,) det(fus,) det(J.) —  det(J.)  dT '
and so the theorem is proved. O

Theorem [3.2] allows us to analyze the core subnetwork in the search for infinitesi-
mal homeostasis points. Therefore, given a network G with output node o and input
nodes t1,t9,...,t,, all of them associated to the same input parameter Z, we can
detach from G nodes d that are not downstream from any input node and nodes
u which are not upstream from o to obtain the core subnetwork G.. We can also
analyze G, from a different point of view.

Given a network G described above, denote by V the set of nodes of G and by
E the set of arrows of G. Consider the core subnetwork G. and V. and E, the sets
of nodes and of arrows of G, respectively. For every m = 1,...,n, consider the
subnetwork G,, generated by ¢,,, 0 and all nodes downstream from ¢,, and upstream
from o.

Proposition 3.3. Given an input-output network G with multiple input nodes

L1092y ...y L, all of them associated to the same input parameter I and output node
o0, then its core subnetwork G. is the union of all core networks G, from t,, to o
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i.e., considering networks as directed graphs, we define V,, and E,, as the sets of

nodes and arrows of G,, respectively, for every m = 1,...,n, and V. and E. as the
sets of nodes and arrows of G., respectively. Then:

Ve=WVU---UV, and E.= E,U---UE, (3.31)
Proof. The proof is straightforward as every node in G, is upstream o and downstream
an input node ¢,,. O

" @ (D) @
e*e O-® @D
o O
HOXO " O
80c

Figure 5: (a) An abstract network G with output node o and input nodes ¢; and
t2. (b) Nodes and arrows that belong to the core subnetwork G; between ¢; and o
are highlighted in blue. (c) Nodes and arrows that belong to the core subnetwork
G2 between 15 and o are highlighted in red. (d) The core network G, is obtained by
the union between G; and G;. Nodes and arrows of G. that belong to both G; and
G, are highlighted in purple. Nodes and arrows which belong to G; but not to G
are highlighted in blue and nodes and arrows which belong to G, but not to G; are
highlighted in red.

For example, consider the abstract network G in Figure (a). In this example,
the subnetwork G; composed by nodes downstream ¢; and upstream o is

L] — 01 — 09 — 0 (3.32)
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On the other hand, the subnetwork G, is
Ly = 03 =0 (3.33)

By Proposition [3.3, we conclude that the corresponding core network is the one
shown in Figure [5{(d).

3.2 Generalized Homeostasis Matrix

Consider a core network G with input nodes ¢, to, - - - , ¢, output node o and regula-
tory nodes o which are upstream o and downstream at least one of the input nodes.
The generalized homeostasis matrix of G is given by

fbl,ILI e fL17$Ln fbl,wa _thZ

<H> - fm,%l T an,mm an,xd _an,I (334)
fa,xq e fU,a:Ln fa,xg 0
fowbl Tt fo,an fo,xc 0

Expanding the determinant det((H )) with respect to the last column gives

det((H)) = z": +f, zdet(H,,) (3.35)

where, according to Definition

fblyle e fbthn leny'
fbmfla@,l T fmele/,n fbmflﬂ?cr
. fbm+1773L1 e fLm+1,an fLm+17-7fo
H, = |7m . _ (3.36)
f’»nnyl U an»an f’fnyxa
fU,ILl e fo’,zm fa,wg
fo,zbl e fO,(Ebn fouxa

Remark 3.1. Note that when the network G has only one input node ¢; = ¢, (3.36))
is exactly the homeostasis matrix defined in Wang et al. [39].
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Let G,, be the subnetwork of G consisting of ¢,,, 0 and the nodes downstream
Ly and upstream o, i.e., the core subnetwork between ., and o. Denote by H; the
homeostasis matrix of G,,, considered as an input-output network, i.e.,

fp,me fp,xo

0,L 10, fo,xp

det(H? ) = (3.37)

By the definition of G, there may be nodes in G that are not downstream ¢,, (but
downstream other input nodes).

The vestigial subnetwork (with respect to t,,) D,, of G consists of nodes d,, that
are not downstream ¢, and the arrows that connect these nodes, that is, D,, =
G\ Gm. As nodes in D,, must not be downstream from ¢, and, consequently not
downstream from any node p, we have, by , after a permutation of rows and

columns that
fpﬂhm fp,a:p fp,sz
det(H,,) = £ fou,,, fox, foun, (3.38)
0 0 fDm,xDm

The Jacobian Jp,, of the subnetwork D,, is defined as Jp,, = [ fpmmm]. Therefore,

m m

by (3.37)) and (3.38) we have
det(H,,,) = £ f,, zdet(Jp,,)det(H; ) (3.39)

In order to simplify notation, for m = 1,...,n such that G and G,,, have the same
nodes, i.e., G =G, = D,,, = G\ G, = &, define Jp,, = [1]. With this convention, it
follows from Eqs. (3.35) and (3.39)) that

det((H)) = Zn: +f,,.zdet(Jp,,) det(H; ) (3.40)

m=1

3.3 Structure of the Homeostasis Blocks

Before proceeding with the topological characterization of homeostasis types we need
to show that, for every m = 1,...,n, det(Jp,,) does not share common factors with
det((H)). We use Frobenius-Kénig theory to factorize det(Jp,,) and then we show
that none of these factors of det(Jp,,) is a factor of det((H)).

By Frobenius-Konig theory, for every m = 1, ..., n, there are permutation matri-
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ces P, and @), such that

D1 * * *
0 D0 * R *
Pudp,Qm= 0 0 Dmg - (3.41)
0 0 0 o Dyn,n

where det D,, ; is an irreducible polynomial, for every 1 < j < n,,. We study the
number of self-couplings in each matrix D,, ;. For this purpose, consider that each
matrix D,, ; is a square matrix of order k; and suppose that Jp,, is a square matrix
of order N, i.e., that the subnetwork D,, has N nodes. It is straightforward that

N=>k (3.42)

Lemma 3.4. Each matriz D,, ; has exactly k; self-couplings.

Proof. Suppose that D,, is composed by nodes pi, ps,...,pn. Therefore, as every
node is self-coupled, then one of the summands of det Jp,, is

fp17xp1 ' fPQ;pr e pr,l‘pN (343)

As proved in Wang et al. [39, Lem 4.6], by Frobenius-Kénig theory, (3.43)) is the
product of a summand of each of the determinants det D,, ;, which means that in all
of these matrices two different self-couplings cannot share the same line or column.
By the pigeon hole principle, each matrix D,, ; has exactly k; self-couplings. O

Note that as the self-couplings must have different rows and columns from each
other, we may choose permutation matrices P,, and @,, such that the product
P, Jp,, Q. have all the self-couplings in the main diagonal, i.e, we may assume that
for every j = 1,...,ny, Dy, ; has the form:

f7‘1 YTy le Ty fﬂ YTy,
g

fTQ,rrl fm,wfg T szJffkj

kaj Ty fmj Ty T kaj ey
where 71, 7y,..., 7y, are nodes of D,,, i.e., Dy, ; is the Jacobian of the subnetwork
D,y of Dy, composed by nodes 7y, 7o, . . ., Ty, -
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Lemma 3.5. Let K be a proper subnetwork of D,,. If nodes in K are not D,,-path
equivalent to any node in D,, \ K, then upon relabeling nodes, Jp, is block lower
triangular.

Proof. The proof is exactly the same as in Wang et al. [39, Lem 5.3]. ]
The following theorem fully characterizes the subnetworks D,, ;.

Theorem 3.6. Let D, ; be the subnetwork of D,, associated to the matriz D,, ;.
Then:

(a) Nodes in D,, ; are not D,,-path equivalent to any node in D,, \ D, ;
(b) Dy, ; is a path component of D,,

Proof. (a) Suppose that there are nodes in D,, ; which are D,,-path equivalent to
nodes D,, \ D, ;. Let B C D,, \ Dy, ; be the non-empty set of nodes that are D,,-
path equivalent to nodes in D,,, ;. Notice that D,,-path equivalence is an equivalence
relation, and therefore, nodes in D,, ; and B are not D,,-path equivalent to nodes in
(D, \ Dy j) \ B =Dy, \ (Dy,; UB). We now have two possibilities. If D, \ (D,,; U
B) = 0, then D,, = D,,; U B. However, det(Jp,, ;) = det(D,;) is not a factor of
det(Jp,, ,us), as proved by Wang et al. [39, Thm 5.4], which is a contradiction. On
the other hand, if D, \ (D,,; U B) # 0, then, by Lemma Jp,, is a block lower

triangular matrix of the form:

U 0 0
Jp,, = | * Jp,,u8 0 (3.45)
* * \%
where
fDm LID . f’D TR
Jp. B = I Em I 3.46
Dm,;UB ( fB,xDm’j fB,mB ( )

Again, det(Jp,, ;) = det(D,, ;) is not a factor of det(Jp,, ,us), which is a contradic-
tion. Therefore, we conclude that nodes in D,,, ; are not D,,-path equivalent to nodes
in Dy, \ Dy ;-

(b) It is enough to show that D,, ; is path connected, as, by item (a) of this lemma, if
a D,,-path component contains nodes in D,, \ D, ;, then this path component does
not contain any node in D,, ;. Suppose that D, ; is not path connected. In that
case, we may split in two subnetworks A and B such that

Ji 0
Ty = ( A JB) (3.47)
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This is however a contradiction as by hypothesis det D,, ; is irreducible. Therefore
D,, ; is a D,,-path component. [

Proposition 3.7. For every j = 1,...,ny,, Dy, ; contains an u,-simple node, for
somek=1,2,...,n, k#m.

Proof. Consider a subnetwork D,,, ;. Nodes in D,,, ; are not downstream from ¢,,, and
therefore, as G is a core network, for every node p in D, j, there is k € {1,...,n},
k # m, such that p is downstream from ¢, and ¢, is not downstream from ¢,,. If
p is an -simple node, the corollary is proved. On the other hand, suppose that
p is an (i-appendage node. By definition of ip-appendage node, there is a path
by — 01 — =+ — 0p — p — 0py1 — -+ — o such that at least one node 7 in
this path appears before and after p. Moreover, nodes in the path between 7 and
p (and vice-versa) must not be downstream from ¢,,, and therefore, they are paths
of D,,. If 1, satisfies this condition, then p is D,,-path equivalent to ¢x, which is an
tp-simple node. If ¢, does not satisfy, consider the smallest r such that o, satisfies the
condition. Then o, is an ¢,-simple node and p is D,,-path equivalent to o,. In both
cases, there is an ¢-simple node which belongs to the same D,,-path equivalence
class of p. By theorem 3.6 as Dy, ; is a path component of D,,, this ¢4-simple node
belongs to D,y, ;. O

Proposition 3.8. For every m = 1,...,n such that D,, is not empty, factors of
det(Jp,,) are not factors of det((H)).

Proof. We prove this statement by contradiction. Suppose that there is m such that
D,, is not empty and there is an irreducible factor det(D,, ;) of det(Jp,,) which is also
a factor of det((H >) By equation (3.40), det((H )) can be seen as an homogeneous
polynomial with variables f, 7 and respective coefficients +det(Jp,) det(pr), for
every p=1,...,n. By Lemma[A.1} det(D., ;) must be a factor of det(.Jp,) det(H; ),
for every p = 1,...,n. Consider now a node p in D,, ;. As G is a core network,
there is k € {1,...,n}, k # m, such that p is downstream from ¢; and ¢ is not
downstream from ¢,,,. As det(D,, ;) is irreducible, we conclude that det(D,, ;) must
be a factor of det(Jp,) or of det(H;, ). As p is in the core network between ¢, and o,
det(D,, ;) must be a factor of det(H; ). We have already proved in Lemma [3.4{ that
the number of self-couplings in D,, ; is equal to the order of D,, ;. As shown in Wang
et al. [39, Lem 5.2|, this means that det(D,, ;) is an appendage block and therefore
all nodes in D, ; should be tx-appendage. However, by Proposition 3.7, D, ; has an
tp-simple node, which is a contradiction. O
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3.4 Topological Characterization of Homeostasis Blocks

Our aim now is to associate the factorization of det ( (H )) with the network topology.
In order to do this, recall that, by equation (3.40)), we have

det((H}) = i +f,,.zdet(Jp,,) det(H; )

m=1

and hence we can consider the expression of det ((H )) as an homogeneous polynomial
of degree 1 on variables f,, 7 and respective coefficients £ det(.Jp,,) det(H; ) for all
m=1,...,n.

By Lemma E', to factorize det((H )), we must search for common factors of
the coefficients +det(Jp,,) det(H¢ ). On the other hand, Proposition implies
that, for all m = 1,...,n, det(Jp,,) does not share common factors with any term
det(Jp,) det(H; ), for all p € {1,...,n}, p # m. Therefore, in order to look for
common factors between the coefficients, we must search for common factors of
det(H; ).

Bearing all the facts above in mind and applying Frobenius-Kénig theory to
det(Hy ), there are square matrices By, By, ..., By such that det(B;) is irreducible
for y = 1,...,n and for every m = 1,...,n, there exists a square matrix C,  such
that

det(H; ) = % (det(By) - det(By) - --- - det(By)) - det(C,,,) (3.48)

where det(C,,),..., det(C,,) do not share common factors. In case det(H; ), ...,
det(H; ) do not share common factors, we can consider that HS = C,,,.

From Egs. (3.40) and (3.48)) it follows that

det ((H)) = (det(B,) - det(By) - - - det(By)) (i +f, det(Jp,) det<qm)> (3.49)

m=1

By Corollary [A.2] the expression

> tfi,zdet(Jp,)det(C,,) = det(C) (3.50)
m=1
is irreducible. Substituting (3.50) into (3.49) gives
det((H)) = det(By) - det(Bs) - - - det(B,) - det(C) (3.51)
where each of the matrices By, ..., Bs and C is an irreducible homeostasis block. As

explained in Subsection 2.5 C'is the input counterweight homeostasis block. Observe
that the difference between the matrices By, By, ..., By and C' is that the terms f, 7
do not appear in any of the matrices B;.
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Corollary 3.9. Every core network G with multiple input nodes supports input coun-
terweight homeostasis.

Proof. The proof is straightforward as det({H)) is always a multiple of an irreducible
homogeneous polynomial of degree 1 on variables f,, z,..., f..z [

Remark 3.2. Although input counterweight homeostasis does not occur in networks
with only one input node, it is interesting to note that in these networks there is
a corresponding matrix C'. In fact, from equation and considering networks
with only one input node ¢, we have

C=[-f.1] = det(C) = —f,.z #0 (3.52)

As, by hypothesis, f, 7 # 0, the input counterweight homeostasis is never present in
networks with only one input node.

In Wang et al. [39] the classification of the irreducible homeostasis blocks was
based on the number of self-couplings. The same arguments can be used in our con-
text. Initially, as H is the homeostasis matrix of G,,, we conclude that B,..., B
are irreducible homeostasis blocks of each of the core networks G,, with one input
node. Thus, we can conclude that, for every j = 1,...,n, B; has exactly k; self-
couplings or k; — 1 self-couplings, where k; is the order of B;. In order to maintain
the same terminology employed in [39], we call B; an appendage homeostasis block
when B; has exactly k; self-couplings, and a structural homeostasis block otherwise

(see Definition [2.5]).

3.4.1 Appendage Homeostasis

Recall that each appendage homeostasis block B; of order k; has exactly k; self-
couplings. In an analogous way of equation (3.44), B; must be the Jacobian matrix
of a subnetwork ;.

Theorem 3.10. Let K; be a subnetwork of G associated with an appendage home-
ostasis block B;. Then the following statements are valid:

(a) Each node in KC; is an vn,-appendage node, for everym =1,...,n.

(b) For every v,,0-simple path S, nodes in K; are not C,,S-path equivalent to any
node in Cp, S\ IC;, for allm =1,... n.

(c) K; is a path component of Ag,,, for allm=1,...,n.
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Proof. The diagonal block B; must be an appendage homeostasis block of each core
subnetwork G,,. By [39, Lem 5.2 and Thm 5.4], the theorem follows. O

Now we can characterize K; with respect to the whole core network G.

Theorem 3.11. Let K; be a subnetwork of G associated with an appendage home-
ostasis block B;. Then the following statements are valid:

(a) Each node in K; is an absolutely appendage node.

(b) For every t,,0-simple path S, nodes in IC; are not C'S-path equivalent to any node
in CS\ K, forallm=1,... n.

(¢) K; is a path component of Ag.

Proof. (a) Each node in K; is v,,-appendage, for all m = 1,...,n, which means that
each node in /C; is absolutely appendage (see definition [2.10)).
(b) Suppose that for some m = 1,...,n, there is an ¢,,0-simple path such that there

is a node p in K; that is C'S-path equivalent to a node 7 in C'S \ K;, which means
that there are paths in C'S such that p — 7 and 7 — p. By item (a) above, p is
t,-appendage for all p =1, ..., n, and, in particular, p is ¢,,-appendage = every node
downstream from p is downstream from ¢,, and belongs to G,, = there are paths
p— 7and 7 — pin C,,S, and therefore p is C,,S-path equivalent to 7 € C,,,S \ K,
which is a contradiction by Theorem [3.10]

(c¢) By statement (a) above, KC; C Ag,,, for all m = 1,...,n, which means that
all nodes in K; belong to the same Ag-path equivalence class. Consider the path
component 7 of Ag such that £; C 7. We have T C Ag = T C Ag,,, for all
m=1,...,n. As K, is a path component of Ag, , for all m =1,...,n, we conclude
that ,Cj = T ]

Wang et al. [39] proved that the conditions of Theorem 3.10]are not only necessary,
but also sufficient to determine subnetworks associated to appendage homeostasis in
networks with only one input node. Theorem |3.13| generalizes this result to networks
with multiple input nodes.

Proposition 3.12. Suppose K; is a subnetwork of G such that
(a) K; is an Ag,,-path component, for allm =1,... n.

(b) For every iymo-simple path S, nodes in K; are not C,,S-path equivalent to any
node in Cp, S\ IC;, for allm =1,... n.
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then det(Jx,) is an irreducible factor of det(H).

Proof. By [39, Thm 7.1], statements (a) and (b) mean that det(.Jk,) is an irreducible

factor of det HS , for every m = 1,...,n. Therefore, by (3.40), det(Jx,) is an
irreducible factor of det(({H)). O

Theorem 3.13. Suppose K; is a subnetwork of G such that
(a) K; is an Ag-path component.

(b) For every t,,0-simple path S, nodes in IC; are not C'S-path equivalent to any node
in CS\ K, forallm=1,... n.

then det(Ji,) is an irreducible factor of det((H)).

Proof. We begin proving that assertion (b) above implies assertion (b) of Proposition
B.12] In fact, for every m = 1,...,n and every (,,0-simple path S, C,,S C CS, and
therefore|3.13{(b) =|3.12(b). On the other hand, if K; is an Ag-path component, then,
as Ag = Ag, N---N Ag,, the nodes in K; belong to the same Ag, -path equivalence
class, forallm = 1,...,n. Consider the Ag, -path component 7,, such that C; C 7Ty,.
If there is a m such that KC; # 7,,, then for this m, for every t¢,,0-simple path S, as
T € C,S, nodes in K; are C,,S-path equivalent to nodes in C,,S \ KC;, which is a

contradiction. Therefore, K; is a path component of Ag, , for all m =1,...,n. As
both assumptions of Proposition are satisfied, we conclude that det(Jk,) is an
irreducible factor of det((H)). O

3.4.2 Structural Homeostasis

In order to characterize structural homeostasis in networks with multiple input nodes
we start with the absolutely super-simple nodes. In networks with one input node,
the super-simple nodes may be ordered by simple paths. We can then apply this
result to the subnetworks G,,.

Lemma 3.14. For every m = 1,...,n, the t,-super simple nodes in G,, can be
uniquely ordered by Ly, > Pmi > Pm2 > 0 > Pmp. > 0, where a > b when b is
downstream from a by all v,,0-simple paths.

Proof. For every m = 1,...,n, G,, is a core subnetwork with only one input node
tm. Hence, we can apply the result about ordering obtained by Wang et al. |39, Lem
6.1] to conclude that the ¢,,-super-simple nodes may be uniquely ordered by all ¢,,0-
simple paths. O]
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We now extend Lemma to the absolutely super-simple nodes of G.

Lemma 3.15. The absolutely super-simple nodes in G can be uniquely ordered by
p1 > p2 > -+ > pp > 0, where a > b when b is downstream from a by all v,,0-stmple
paths.

Proof. By Lemma [3.14] for each m = 1,...,n, we can order the absolutely super-
simple according to the ¢,,0-simple paths. Suppose there are my,mqs € {1,...,n},
mi1 # Mg, such that there are absolutely super-simple nodes p;, p;, pi # pj, such
that p; > p; according to i, o-simple paths and p; > p; according to t,,o0-simple
paths. This means that there are an ¢, o-simple path Si: ¢, — -+ = p; —
coo = p; = -+ — o and an uy,,0-simple path Sy by, — - = pj = 0 = p =

- — 0. By definition of S, there is an ¢1p;-simple path which does not pass by
p;, and by definition of Sy there is an p;o-simple path which does not pass by p;.
Therefore, we conclude that there must be an ¢;0-simple path which does not pass
by p;, contradicting the fact that p; is an absolutely super-simple node. [

Corollary 3.16. If G is a core network with input nodes tq, ..., L, and output node
o0, then at most one input node of G is an absolutely super-simple node.

Proof. Suppose that G has two input nodes ¢; and ¢; which are absolutely super-
simple nodes. Notice that if we order the super-simple nodes according to the ¢;-
simple paths, we have ¢, > ¢;, and if we order them according to the ¢;-simple paths,
we have ¢; > 1;. The different orderings contradict Lemma [3.15] O

Let pr. > pry1 be adjacent ¢,,-super-simple nodes for some m € {1,...,n}. An
tm-simple node p is between pi and pgyq if there exists an ¢,,0-simple path that
includes pi to p to pri1 in that order.

Lemma 3.17. Every i,,-stmple node, which is not t,,-super-simple, lies uniquely
between two adjacent t,,-super-simple nodes.

Proof. Since G, can be seen as the core subnetwork between ¢, and o, i.e., G,, is a
core subnetwork with one input node, the result follows from |39, Lem 6.2]. ]

Observe that each network Ag, can be partitioned in (p,, + ¢m) Ag,,-path com-
ponents A, 1,. .., Ampns B, - -« Bmg,, Where nodes in components A,,; are not
CimSm-path equivalent to any node in C, Sy, \ A, for every ¢,,0-simple path S,,.
Whereas this is not the case for nodes in the Ag, -path components B,,;, i.e., for
every B, there is an ¢,,0-simple path S,, such that nodes in B,,; are C,,S,,-path
equivalent to nodes in C,, Sy, \ By, ;. Clearly, for every m = 1,...,n one has that

Ag, = (AU -UA,, YU (BpaU- - UBp ) (3.53)

m
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Lemma 3.18. Consider the Ag,,-path component B,,; and suppose there is an t,,0-
simple path S, such that nodes in B, ; are Cp,Spy,-path equivalent to nodes in C, Sy, \
B Then there is at least an iy,-simple node p in Cp, Sy, \ B such that nodes in
B are Cp Sy -path equivalent to p. Moreover, the iy,-simple nodes in Cp,Spy, \ B
that are C.,Sp,-path equivalent to B, ;, including p, are not i,,-super-simple and are
contained in a uNIQUE Ly, -super-simple subnetwork.

Proof. This is proved in [39, Lem 6.3]. O

Let pr > pry1 be adjacent i,,-super-simple nodes, for some m € {1,...,n}. The
Lm-super-simple subnetwork, denoted L, (pk, pr+1), is the subnetwork whose nodes are
tm-simple nodes between p; and p.; and whose arrows are arrows of G,, connecting
nodes in Ly, (pk, Prt1)-

Let pr and pryq be adjacent t,,-super-simple nodes in G,,,. The t,,-super-simple
structural subnetwork L! (pg,pr+1) is the input-output subnetwork consisting of
nodes in L, (pk, pr+1)UB,,, where B, consists of all appendage nodes that are ., S,,-
path equivalent to nodes in L,,(pk, px+1) for some ¢,,0-simple path S,,. Arrows of
L (pr, pr+1) are arrows of G, that connect nodes in L/ (pk, pr+1)-

As G,, is a core subnetwork with only one input node, the homeostasis matrix
of each t,,-super-simple structural subnetwork £ (pk, pr+1) (H (L, (pk, pr+1))) is an
irreducible structural homeostasis block of the homeostasis matrix of G,, (H ) (see
[39, Thm 6.11]). We have already proved in Proposition that the irreducible
structural homeostasis blocks of (H) are also structural homeostasis blocks of each
of the matrices H; . Therefore, we now study under which conditions there is an
super-simple structural subnetwork shared by all the core subnetworks G,,.

Lemma 3.19. Let pr > pri1 be two adjacent absolutely super-simple nodes. Then
the following properties are valid:

(a) pr and pxy1 are adjacent v,,-super-simple nodes, for everym =1,... n.

(b) Every ty,-simple node in L, (pr, prs1) 1S an absolutely simple node, for every
m=1...,n.

(¢) Lon(prs prs1) = L(pk, pry1), for everym =1,... n.

Proof. (a) Suppose there is m € {1,...,n} such that there is an ¢,,-super-simple
node p which satisfies p. > p > pry1. Then, every ¢, 0-simple path passes by px, p
and pg.1, in that order. Suppose now there is j € {1,...,n}, j # m, such that there
is an ¢j0-simple path which does not pass by p. That means that there is a path in
G between py and pg,1 which does not pass by p. As there are an ¢,,pi-simple path,
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a prpPr+1-simple path and a pgiq0-simple path such that neither of them passes by p,
we can obtain an ¢,,0-simple path which does not pass by p, which is a contradiction.
(b) By item (a) above pg,prr1 must be adjacent ¢,,-super-simple nodes, and so
L (pry prs1) is well defined. For some m € {1,...,n}, consider an ¢,,-simple node p
which is between p; and pp.1. By definition, there is an ¢,,0-simple path .S,, which
passes by

by —> = P> P> = Pyl —> - —> 0

in that order. Let’s take j € {1,...,n}. Consider any ¢;o-simple path S;. S; and S,
have some nodes in common (at least pg, pr+1 and o), and these nodes must appear
in the same order. Therefore, we can build a path S} taking the S; stretch from ¢;
to pr and the S, stretch from p to o passing by p (and pgy1). By the argument
above, S is an ¢jo-simple path, and therefore p is an ¢;-simple node. As this process
may be done to any j € {1,...,n}, then p is an absolutely simple node.

(c¢) For every m = 1,...,n, all absolutely simple nodes between py and pgyq are
tm-simple nodes, and therefore L(pk, pri1) € Lo (pr, prr1). On the other hand, by
statement b) of this lemma, every t,,-simple node between p; and py,; is an abso-
lutely simple node, which means that L,,(pk, pr+1) € L(pk, pr+1) = Lok, pry1) =
L(pr; Prs1)- O

To verify that the absolutely super-simple structural subnetworks are well de-
fined, we must partition the appendage subnetwork Ag in a similar way that we
have done to Ag, . Therefore, we partition Ag in (p + ¢ + r) Ag-path components
Ay, oo A By, By Gy Gy, where

(1) Ag-path components A; satisfy the following condition: for all m = 1,... n, for
every t,o-simple path S,,, nodes in A; are not C'S,,-path equivalent to any node

(2) Ag-path components B; satisfy the following condition: for all m = 1,...,n,
there is an ¢,,0-simple path S,, such that nodes in B; are C'S,,-path equivalent
to an absolutely simple node in C'S,, \ B; which belongs to an absolutely super-
simple subnetwork L(py, pr+1), where py, ppy1 are adjacent absolutely super-
simple nodes.

(3) Ag-path components C; do not satisfy neither of the conditions (a) and (b) above.

Again, we have

Ag = (AU~ UA) U (BU- - UB) U (CU- - UC,) (3.54)
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(2 O

Figure 6: A core network with input nodes ¢; and ¢, and output node o. Nodes o; and
o3 are absolutely simple while oy and o are absolutely super-simple. The absolutely
super-simple subnetwork £(o9, 0) is composed by nodes 05, 03 and o. The appendage
subnetwork Ag is composed by «, 5 and 7, and each of these nodes corresponds to
a distinct Ag-path component. Following the nomenclature proposed above, node
a (in blue) corresponds to an Ag-path component A, 8 (in red) corresponds to an
Ag-path component B and ~ (in green) corresponds to an Ag-path component C.
According to definition the subnetwork composed by nodes 09,03, and o is
an absolutely super-simple structural subnetwork £'(o,0).

Figure [0] exemplifies the three types of Ag-path components in a core network G
with multiple input nodes.
We now generalise Lemma to the Ag-path components B;.

Lemma 3.20. Consider the Ag-path component B; and suppose there is an t,0-
simple path S,, such that nodes in B; are CS,,-path equivalent to an absolutely
simple node p in CS,, \ B; which belongs to an absolutely super-simple subnetwork
L(pk, prs1). Then the following statements are valid:

(a) Nodes in CS,, \ B; that are CS,,-path equivalent to B; which are not absolutely
appendage, including p, are absolutely simple nodes contained in L(pk, pri1)-
Furthermore, these nodes are not absolutely super-simple.
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(b) For every j = 1,...,n, there is an vjo-simple path S; such that nodes in B; are
C'Sj-path equivalent to p in C'S; \ B;.

(c) Suppose there is another Lm0-simple path S, such that nodes in B; are CSy,-path
equivalent to nodes in CSy, \ B;. Then, there is an absolutely simple node T
between pi and py1 which is C'Sy,-path equivalent to B;.

Proof. (a) By hypothesis, p is an absolutely simple node which belongs to L(p, px+1)-
Moreover, p cannot be an absolutely super-simple node, as S,,, passes by all absolutely
super-simple nodes and p belongs to C'S,,. Consider so the ¢,,0-simple path S},

Take now a node 7 of C'S,,, \ B; such that nodes in B; are C'S,,-path equivalent to
7 and suppose that 7 is not absolutely appendage. As 7 is downstream nodes in B;,
then we conclude that 7 is downstream ¢;, for every j = 1,...,n. That means that
there is j € {1,...,n} such that 7 is ¢;-simple. Consider the ¢;0-simple path S; that
passes by 7. As pj and pj41 are absolutely super-simple nodes, S; must pass by pg
and py41. We shall see that 7 is between py and p1;. In fact, suppose that S; passes
by these nodes in the following order

Lj_>...%7'_>...%pk%..._>pk+1_>...%0

Then, as 7 and p belong to the same C'S,,-path component and, as py and pj; do
not belong to C'S,, (because p, and py,1 are absolutely super-simple nodes), then
there is a path from 7 — p which does not pass by px or pxi1. Taking this path
together with S7 and S, we can obtain an ¢jo-simple path that does not pass by py,
which is a contradiction. On the other hand, if S; is of the form

then, in analogous manner, we can obtain an ¢;0-simple path that does not pass by
pr+1, which is also a contradiction. Therefore, 7 must be between pj, and px,1, and
consequently, by lemma , 7 is an absolutely simple node of L(p, px+1). Moreover,
as 7 lies in C'S,,, then 7 must not be absolutely super-simple.

(b) For every j = 1,...,n, we can obtain an ¢;o-simple path S; such that the path
of S; from p; to o coincides with the path of S,, from p; to o. Consider now C'S;.
Clearly B; € CS;. On the other hand, the absolutely appendage nodes that are
C'S,,-path equivalent to nodes in B; also belong to C'S;. Consider now the node 7
which is absolutely simple and C'S,,-path equivalent to B;. We need to verify that 7
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also belongs to C'S;. In fact, by statement a), 7 is an absolutely simple node between
pr and pgy1, and by the initial hypothesis, S, and S; share the same path between
pr and ppy1, meaning that 7 does not lie in \S;, and therefore 7 belongs to C'S;.
By item (a) above, nodes that belong to the same C'S,,-path component as B; are
absolutely appendage or absolutely simple, and therefore nodes that are C'S,,-path
equivalent to B; are also C'S;-path equivalent to B;, including, in particular, p.

(c) Suppose there is an ¢y,0-simple path S, such that nodes in B; are CS,,-path
equivalent to nodes in CS,, \ B;. As B, is an Ag-path component, there is at least
one node 7 € CS,, \ B; such that 7 is not absolutely appendage and 7 is C'S,,-path
equivalent to nodes in B;. In fact, if that was not the case, we would find an Ag-path
component that contains B; and which is different from B;, which is a contradiction.
Therefore, there is j = 1,...,n such that 7 is ¢;-simple. By item (b) above, there is
an ¢jo-simple path S; such that p € S; and nodes in B; are C'S;-path equivalent to
p. Moreover, as 7 is ¢j-simple, there is an ¢jo-simple path S7 that passes by 7. As py
and pr.1 are super-simple nodes, they are present in Sin, S;j and S7. Suppose that
S7 follows the order

Lj—>...%7'—>...%pk%...—>pk+1—>...%0
In this case, we have the following:

(1) By definition of S}, there an ¢j7-simple path that does not pass by px,

(2) As 7 is Cgm-path equivalent to nodes in B; and Sm contains pp and pgyq, for
every node from B;, there is a path from 7 to this node which does not pass by

Pk O Ply1,

(3) By a similar argument, for every node in B; there is a path from this node to p
which does not pass by px or pri1,

(4) As p is between py and pgy1, there is a po-simple path which does not pass by
Pk,

Now it follows from (1)-(4) above that we can obtain an ¢jo-simple path that does
not pass by pg, which is a contradiction. On the other hand, if S} follows the order

then, in an analogous manner, we can obtain an ¢jo-simple path that does not pass
by pr+1, which is also a contradiction. Therefore, 7 must belong to L;(pk, pr+1),
which means that, by Lemma 7 is an absolutely simple node that is between

pr and ppiq. O
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Lemma/3.20|implies that the correspondence between the Ag-path components B;
and the absolutely super-simple subnetworks is unique, and therefore the absolutely
super-simple structural subnetworks are well defined (see Definition [2.17)).

Lemma 3.21. Let pp > pri1 be two adjacent absolutely super-simple nodes. Then
L., (s prar) = L' (s prar), for everym =1,... n.

Proof. By Lemma [3.19] we already know that L,,(px, pe+1) = L(pk, prt1), for every
m =1,...,n. By definition, we also know that £ (px, px+1) = L(pk, prr1) U B, where
B consists of all absolutely appendage nodes that are C'S,,-path equivalent to nodes
in L(pk, pr+1) for some ¢,0-simple path S,,, for some m € {1,...,n}. Consider
an Ag-path component B; C L'(pk, prt1). By item (b) of Lemma [3.20] for every
m = 1,...,n, there is an ¢,,0-simple path S,, such that nodes in B; are C'S,,-path
equivalent to nodes in L(py, pry1). Moreover, as nodes in B; are downstream from
Lm, then all nodes that are C'S,,-path equivalent to nodes in B; are downstream from
tm, and therefore nodes in B; are C),S,,-path equivalent to nodes in L,,(pk, pr+1),
for every m = 1,...,n. As this property is valid for every Ag-path component B; C
L' (pr, pr+1), we conclude that L'(pg, pr+1) € L, (pk, pr+1), for every m = 1,... n.
On the other hand, consider an Ag, -path component B,,,; C L] (pk, pr+1). As there
is a path between nodes in L,,(px, pr+1) = L(pk, pr+1) and nodes in B, ;, then nodes
in B,,; are downstream from ¢;, j = 1,...,n. Suppose a node 7 of B,,; is not an
absolutely appendage node, i.e., that there is j € {1,...,n} such that 7 is ¢;-simple.
Consider the ¢jo-simple path S; that passes by 7. If 7 is between p;, and pj41, then,
by Lemma 3.19, 7 is an absolutely simple node, which is contradiction considering 7
is tm-appendage. Suppose then that S; follows the order

In that case, as there is a path between 7 € B,,; and nodes in L,,(px, pr+1) =
L(pk, pr+1) which does not pass by pj and there is a path between ¢; and 7 which
does not pass by pg, then, we can obtain an ¢;o-simple path that does not pass by
pr, contradicting the fact that py is absolutely super-simple. By a similar argument,
if S; follows the order

Lj_>..._)pk_>..._>pk+1_>..._>7-_>..._)0

then we can obtain an ¢;o-simple path that does not pass by pj1, which is also a con-
tradiction. Therefore, we conclude that every node in B,,; is absolutely appendage,
and consequently B,,; is an Ag-path component. We know that there is an ¢,,0-
simple path S,, such that B,,; is C,,S,,-path equivalent to nodes in L,,(pk, pr+1) =
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L(px, pr+1), and, consequently, as C,,,S,,, C C'S,,, nodes in B,, ; are C'S,,-path equiva-
lent to nodes in L., (pk, pr+1) = L(Pks Pr+1)s 1€, Bimi C L (pks prt1). As this is valid
for every Ag, -path component of L/ (p, pr+1), we conclude that, for every m =
1,...,n, one has L] (pk, pr+1) € L' (o, pri1) = L1, (pr, Prr1) = L' (P, Prs1)- O

Wang et al. [39] proved that in networks with only one input node, every irre-
ducible structural homeostasis block corresponds to the homeostasis determinant of
a super-simple structural subnetwork £'(7,0), where 7 is the input node and o is
the output node of this subnetwork. On the other hand, the homeostasis determi-
nant of each super-simple structural subnetwork £'(7, o) uniquely corresponds to an
irreducible structural homeostasis block.

Theorem 3.22. Consider the core network G with multiple input nodes. If there
is an irreducible structural homeostasis block By such that det(Bj) is an irreducible
factor of det(<H>), then G has adjacent absolutely super-simple nodes py and priq
such that det(By) = det(H (L' (pk, pr+1)))

Proof. By the results above, we know that det(B;) is an irreducible factor of det(H) if
and only if det(B;) is an irreducible factor of each homeostasis determinant det(H; ).
That means, by the results of [39, Thm 6.11], that for every m = 1,...,n, there are
Lm-super-simple nodes py,., px,,+1 such that det(Bs) = det (H(ﬁ;n(pkm,pkmﬂ))). In
particular, these implies that all the subnetworks £'(px,, , px,,+1) must share the same
input and output nodes, i.e., there are absolutely super-simple nodes pg, pp1+1 such
that det(B,) = det(H (L, (pk, pr+1))), for every m = 1,...,n. By Lemma @
det(B,) = det(H (L' (pr, prt1)))- O

Corollary 3.23. Consider a core network G with multiple input nodes. If G have
absolutely super-simple nodes other than the output node, then the homeostasis matriz
of each absolutely super-simple structural subnetwork corresponds to an irreducible
structural homeostasis block.

Proof. Consider the adjacent absolutely super-simple nodes pg, pr+1 in G. By Lemma

3.21}, for every m = 1,...,n, we have L, (px, prr1) = L' (pr, prs1). As proved in 39,
Thm 7.2|, this means that the homeostasis matrix of £'(px, pr+1) is an irreducible

structural homeostasis block of each subnetwork G,,, and therefore the homeostasis
matrix of L£'(pg, pr+1) is an irreducible structural homeostasis block of G. O

3.4.3 Input Counterweight Homeostasis

Recall that for each core network G, the determinant of the input counterweight
homeostasis block C' is unique up to signal and its explicit formula is given by (i3.50).
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We have already proved that det(C) is an irreducible factor of det((H )) It
remains to show that C' is associated with the input counterweight subnetwork Wy
(see Definition . For this purpose, we first verify that in certain sense G can be
divided in subnetworks associated to appendage homeostasis, absolutely super-simple
structural subnetworks (structural homeostasis) and Wj.

Lemma 3.24. Consider a core network G with multiple input nodes, with absolutely
super-simple nodes py > -+ > ps > psr1 = 0, and its associated input counterweight
subnetwork Wg. Then, the following statements are valid

(a) Wg does not share nodes with any of the subnetworks A;, where A; is an Ag-
path component that satisfy the following condition: for allm = 1,--- ,n, for
every Ly,o-simple path S,,, nodes in A; are not C'S,,-path equivalent to any node

(b) For k # 1, Wg does not share nodes with L'(pg, pxr1). Moreover, the only
common node between Wg and L'(p1, p2) is p1.

(¢) If a node o in G is such that it does not belong to any subnetwork A; defined
in item (a), neither to any absolutely super-simple structural subnetwork, then o
belongs to Wg.

Proof. (a) The proof is straightforward, as none of the nodes in Wy are absolutely
appendage nodes that satisfy the condition of item (a) above.

(b) Consider the subnetwork & composed by the union of all absolutely structural
super-simple subnetworks of G:

S =L p1,p2) UL (pa2, p3) U---UL(ps,0)

Therefore, with the exception of p;, by Lemmas and [3.20] every node o in S
satisfies one of the two conditions: o is absolutely simple and for every m =1,...,n
there is a simple path S, that passes by ¢,,, p1 and ¢ in this order; or ¢ is an
absolutely appendage node which belongs to an Ag-path component B; that C'S,,-
path equivalent to an absolutely simple node p in CS,, \ B; which belongs to an
absolutely super-simple subnetwork L£(pg, pr+1). In both cases, by definition, o does
not belong to Wg. Whereas p; belongs to both Wg and S.
(c) If o is absolutely simple, then for every ¢,,0-simple path S,, that passes by o, o
must be upstream from p; (if this does not happen, then, by Definition[2.16] o belongs
to one absolutely structural super-simple subnetwork, which is a contradiction). This
means that there is an ¢,,0-simple path S,,, which follows the order ¢,, = -+ — o —
- — p1, and therefore o belongs to Wg. On the other hand, if o is absolutely
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appendage, then, by the partition of Ag explained above, ¢ must belong to an Ag-
path component C; for which there is C'S,,-path equivalent to nodes that are not
absolutely appendage and that are not between two absolutely super-simple nodes,

for some t,0-simple path S,,, for some m € {1,...,n}, ie., in this case o also
belongs to Wg. Finally, if o is not absolutely simple nor absolutely appendage, then
o belongs to Wg. [

Lemma implies that the network G is basically the union between Wg,
the subnetworks associated to appendage homeostasis and the absolutely structural
super-simple subnetworks of G. Moreover, these different subnetworks do not share
common paths. It is interesting to note that Wy contains all the vestigial subnet-
works, as these subnetworks are composed by nodes which are not either absolutely
simple nor absolutely appendage.

Lemma 3.25. Consider a core network G with multiple input nodes and its associated
input counterweight subnetwork Wg. Then, the following statements are valid

(a) Wg is a core network with input nodes iy, . .., i, and output node p;.

(b) Wg does not support either appendage nor structural homeostasis.
(¢) det({(H)(Wg)) is a factor of det((H)).

Proof. (a) As Wg is a subnetwork of G, every node in Wy is downstream from at
least one of the input nodes. We must now verify that every node in Wy is upstream
from p;. In fact, this is true for the input nodes and for p;. This is also true for
every node 7 for which there is m € {1,...,n} such that there is an ¢,,0-simple path
that passes at ¢,,, 7 and p; in that order. On the other hand, take a node o which
cannot be classified as absolutely appendage nor absolutely simple. There are two
possibilities for o: (i) o is not downstream every input node, or (ii) o is downstream
from every input node, but there are m,j € {1,...,n} such that o is ¢,,-simple and
t;~appendage. In the first case, 0 must be downstream at least one input node ¢y,.
If o is t,,-simple, then if by the ¢,,0-simple path that passes by o, ¢ is downstream
p1, then o would be downstream every input node, which is a contradiction, and
therefore o must be upstream p; by this ¢,,0-simple path. If o is ¢,,-appendage, then
o must be G,,-path connected to some ¢,,-simple node which, by a similar argument,
must be upstream p;, and, again, ¢ is upstream p;. Considering now the second case
(o is downstream every input node, but there are m,j € {1,...,n} such that o is
tm-simple and ¢;-appendage), then o must be upstream p; by the ¢,,0-simple path
that passes by o, as if this does not happen, o would be absolutely simple. Finally,
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take an absolutely appendage node o in C described in Definition 2.18] Then, there
is a path between ¢ and a node 7 in Wy such that there is an ¢,,0-simple path .S,
passing by 7 and 7 is not between two absolutely super-simple nodes. If by S,,, 7
is downstream p;, then that means that 7 must be between two absolutely super-
simple nodes, which is a contradiction. Therefore, S,, must pass by ¢,,, 7 and p;
in that order, and, as there is a path from o to 7, then o is also upstream p;. As
all nodes in Wg, we can see this subnetwork as a core network between with input
nodes t1,...,t, and output node p;.

(b) The only absolutely appendage nodes in Wg are the absolutely appendage nodes
in C. By Lemma|3.20] for every ¢,,0-simple path S, for which an Ag-path component
C; C C is CS,,-path equivalent to nodes in C'S,, \ C;, then not absolutely appendage
nodes C'S,,-path equivalent to C; are not between two absolutely super-simple nodes,
meaning that these nodes are also present in Wg. Therefore, all Ay,,-path compo-
nents do not follow the necessary conditions to present appendage homeostasis, i.e.,
this kind of homeostasis is not supported by Wg. On the other hand, as the only
absolutely super-simple node in Wg is p1, then Wy does not support structural home-
ostasis neither.

(c) We verify this looking at the factorisation of det((H)). Consider permutation
matrices P and @ such that P(H)Q is the Frobenius-Kénig normal form of the ma-
trix (H). Recall that each row of P{H)(Q represents the partial derivatives of a
function f; with respect to all other nodes of G, and each column of P(H)() repre-
sents the partial derivatives of all the functions that describe the dynamics of node
with respect to same node j (with the exception of the column composed by zeros
and by the terms f, 7). Consider the Ag-path components A; which satisfy the fol-
lowing condition: for all m =1, ..., n, for every ¢,,0-simple path S,,, nodes in A; are
not C'S,,-path equivalent to any node in C'S,, \ A;, and the absolutely super-simple
structural subnetworks £'(p1, p2), £'(p2, p3), - - -, L' (pp,0). We have already verified
that the Jacobian Jy4, of each Ag-path components A; and the homeostasis matrix
H(L' (pk, pr+1)) of each absolutely super-simple structural subnetwork appear as in-
dependent irreducible blocks of P(H)(@. By equation and by our results on
the characterization of appendage and structural blocks, we get

det((H)) =det(J4,) - - - det(Ja,)-
det (H(L (pr, p2))) - - det (H (L' (pp, 0))) - det(C)
We need to determine which rows and columns of (H) appear in C. Recall that the
matrices that appear in the right-handed side of equation (3.55) are the blocks that

appear in the normal form of (H). Therefore, C' consists of rows and columns that
are not present in such matrices. This means, in particular, that C' consists of:

(3.55)
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1) rows that contain the partial derivatives of the functions f, , for every m =
m y
1,...,n,

(2) rows that contain the partial derivatives of f,,,

(3) rows that contain the partial derivatives of the functions f,, where o represents
nodes in G which do not belong to any subnetwork 4; neither to any absolutely
super-simple structural subnetwork,

(4) columns composed by zeros and by the terms f, 7,

(5) columns containing the partial derivatives with respect to nodes ¢,,, for every
m =1,...,n and nodes o (described in item (3)) above,

(6) columns containing the partial derivatives with respect to p; is not a columns of
C, as this column is present in H (L (p1, p2))-

As shown in item (a) above, Wy is a core network with input nodes ¢y, - , ¢, and
output node p;, then, by Lemma [3.24] we conclude that C is equivalent, up to
permutation of rows and/or columns, to the matrix (H)(Wg), which means that
det ((H)(Wg)) is a factor of det((H)). O

Now we can finally characterize input counterweight homeostasis in terms of
network topology.

Theorem 3.26. Consider a core network G with multiple input nodes and its asso-
ciated input counterweight subnetwork Wg. Then, (H)(Wg) is, up to permutation of
rows or columns, the irreducible input counterweight homeostasis block C of (H).

Proof. By Lemma [3.25| det((H)(Wg)) is a factor of det((H)). Moreover, as Wg
does not support neither appendage or structural homeostasis, det((H >(Wg)) is
an irreducible homogeneous polynomial of degree 1 on variables f,, z,..., f.,,z. By
Frobenius-Konig theory, we conclude that (H)(Wg) must be, up to permutation of
rows or columns, the irreducible input counterweight homeostasis block C' of (H). [

4 Analysis of Escherichia coli Chemotaxis

In order to apply the theory developed in this paper to the model for the Escherichia
coli chemotaxis of [12], we first must rewrite the system (1.1)) in the standard form
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(2.7). We make the following correspondence between variables: m < z,,, a, <> ,,,
by < To, Yp <+ To, L <> L. This gives the following system of ODEs

Ty =R (1 - ¢($L1,I)) — B *TZ ¢(leaz)

iiLQ = ¢(]}L1,I) kl (1 - ng) - k2 (1 - xo) ng - kS (1 - xa) xLQ (456)
T =g ks (1 —x4)x,, — ks,
To=0c1 ke (1 —2x,)z, — ks,

with the function ¢ given by (1.2]) and the input parameter Z. Note that the ODE
system ({4.56|) is an admissible system for the abstract input-output network shown
in Figure (a). In fact, the general form of an admissible system for this network is

le(Iblaa’;O'v )
fL2(IL1=IL2axmme)
3‘30 = fd(xtw 'CEU)

i‘o = fo(nga xo)

(4.57)

From the theory developed in this paper, it is clear that the network G is a core
network with input nodes ¢; and ¢, and output node o. This core network is the union
of networks G; (the core subnetwork between ¢; and o) and G, (the core subnetwork
between ¢y and o).

The Jacobian matrix of network G is:

le,:le O fL1,a:g O
fl, T fL x fL x fL x
J — 2, Leq 25Ty 2,Lo 2,Lo 458
O fa,a:bz fa,xg O ( )
O f0,$4,2 O foyxo

The generalised homeostasis matrix of network G is:

le,.ILl 0 fL1,£L’U _le,I
_ fL27$L1 ng,a:LQ sz,:L‘U _.ng,I
=100 o e 0 (4.59)
0 fou, O 0

Even though one can easily find the factorisation of matrix (H) above, by direct
calculation, it is very instructive to apply the algorithm described in Subsection
to factorise det((H )) to reveal the structure of the underlying network motifs
associated with homeostasis types supported by network G
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F0—0 F——0
S
F0—0 FA=0

Figure 7: Abstract network and the ‘subnetwork motifs’ associated to the types of
homeostasis that this network supports. (a) Abstract network G corresponding to
the admissible ODE system in . It is a core network with input nodes ¢; and ¢
and output node o. (b) The only absolutely appendage node in G is o (in red), and
for every t,,0-simple path S,,, o is not C'S,,-path equivalent to any other node, which
means that o is an Ag-path component. (c) The absolutely super-simple nodes of
G are 15 > o. The corresponding absolutely super-simple structural subnetwork is
L'(13,0) (in green). (d) The greatest absolutely super-simple node of G (according
to the natural ordering) is to. The input counterweight subnetwork Wg is composed
by nodes ¢; and ¢5 (in blue).

We start by observing that o is the only absolutely appendage node of G. More-
over, for every ¢,,0-simple path S,,, o is not C'S,,-path equivalent to any other node.
Therefore, G supports appendage homeostasis at A = {0}, and the corresponding
irreducible factor is det(J4) = foq, (see Figure [f(b)).

The absolutely super-simple nodes of G are 15 > o, that define the absolutely
super-simple structural subnetwork £'(12,0) = {t2 5 0}. As this subnetwork is com-
posed by only 2 nodes, its homeostasis matrix is a degree 1 homeostasis block and
the corresponding irreducible factor is det(H (£'(12,0))) = foa,, (see Figure[7[c)).

We have already determined the appendage and structural blocks of (H). Now
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we describe the input counterweight block. In fact, as the absolutely super-simple
nodes of G are o > o then Wg = {11 — 2} (see Figure [7d)). Furthermore, by
Lemma [3.20, Wg is a core network with input nodes ¢; and ¢y, and output node ¢y
and thus

fL1 x _fL1 7
HY (W) = ! : 4.60
< > ( g) (fLQ,J:Ll _szl ( )
Hence, the complete factorisation of det((H)) is
det(<H>) = fa,xg fo,ch2 (_fu,l' sz,xLl + sz,I fu,:cbl) (461)

Summarising, network G (Figure 7)) generically supports three types of homeostasis:
(1) appendage (null-degradation) homeostasis associated with {c}, (2) structural
(Haldane) homeostasis associated with {t3 5 0} and (3) input counterweight home-
ostasis associated with {s; — 1o}

Now, specializing to the model equations (4.56)), we observe that, although the
abstract network supports appendage and structural homeostasis, the model equa-
tions cannot exhibit these types of homeostasis. In fact, at equilibrium we
have that

fou, = —Qokzz,, — ks <0 (4.62)

fo,ocL2 = ale(l - mo) 7& 0 (463)

The first inequality follows from the fact that all parameters are positive and z,, is
positive at equilibrium. The last inequality follows from that fact that if ajke(1 —
z,) =0 = x, = 1, at equilibrium, then one would have &, = —k; # 0.

This leaves the only remaining possibility: input counterweight homeostasis. To
verify that the model equations indeed exhibit input counterweight homeosta-
sis we compute, assuming that both ¢,, and ¢z (see Remark are Non-zero:

fuz = =614, ) (yr + y523)
fizwe, = G (@0, L) k1 (1 = 2,,)

foz=0z(x,, ) k1 (1 —2,,)
foen, = = 0w, (0, I) (YR + 1877)

Thus, for any C! function ¢, we have

- fu,I sz,mq + ng,I fu,azbl =0 (4-65)
In particular, 2/ (Z) = 0 for all Z and hence, the model equations (4.56) exhibits,

not only infinitesimal homeostasis (of the input counterweight type), but perfect
homeostasis.

(4.64)
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A consequence of the above calculation is that the property of perfect homeostasis
in the model for E. coli chemotaxis is robust, in the sense that it does not
depend on the values of the parameters of the model. Even more, it holds for a
much larger set of perturbations than just parameter change. Consider the space of
all sufficiently regular vector fields Xy given by the right-handed side of 7 with
an appropriate topology (for example, the C' vector fields with the C! topology).
Now consider the subspace )V C Ay of vector fields whose first two components are
the same as in , with an arbitrary function ¢ (of class C'), and arbitrary last
two components. Then it is clear that ) is a closed infinite dimensional subspace of
Xg that contain the model equations and satisfy . In other words, any
perturbation of contained in the infinite dimensional space ) displays perfect
homeostasis.

Remark 4.1. To show that in the model equations (4.56)), both ¢,, and ¢z are
non-zero, recall the correspondence between the variables m <> z,, and L <> Z and
differentiate the equations in (1.2]), obtaining

7) — NeF(le,Z)
P, (010, 1) = 2(1 + eF @ D)2
NeF(@, 1) (% _ ﬁ) (4.66)

¢Z(xL17I) =

(1 ePen D)2 (14 &) (1+ )

As Ko £ KT we conclude by (4.66)) that in the studied model ¢z, # 0 and ¢z # 0.

Remark 4.2. As can be seen in Figure [I] it looks like the time series of all three
variables a,, b, and y, exhibit homeostatic behavior. We can use our results to show
that this is indeed the case. By interchanging the roles of the nodes 15 and o with
the output node o, we can compute new generalized homeostasis matrices H .,
and H(,+,) and show that the corresponding input-output functions have the same
irreducible factor associated with input counterweight homeostasis (see (4.65])) which,
in turn, causes all of them to vanish simultaneously. The matrices H,,.0) and H(y0)
can be obtained from the Jacobian matrix by replacing the second and third
columns, respectively, by (—f,z,0,0)". The corresponding determinants are

det(H(LzHO)) = fU,-Z’ofO,i[o(_fLLIfLnyLl + szlfu,xq)
det(H(aHo)) = fo,xofo,a;L2 (_le,Ing,xLl + sz,Ile,.Z’Ll)

We have shown the occurrence of perfect homeostasis for an infinite dimensional
‘subspace of vector fields’ containing (4.56)). In what follows we show that there
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is another infinite dimensional ‘subspace of vector fields’ containing (4.56) where
perfect homeostasis does not occur.
Consider the following 1-parameter family of perturbations of (4.56)), for e > 0,

i‘bl =R (1 - ¢(xL1’I)) — B [L’i ¢($L1,I) - E¢($L1)
j“éz - d)(xu’z) kl (1 - IL2) - kQ (1 - ‘ro) Loy — k3 (1 - $U> Ly (4 67)
T =asks (1 —x4) 1, — ks 2y '

To=0a1 ko (1 —x,)x,, — ks,

where 1 is a C* function. It is clear that is admissible for the network G for
all € > 0 and coincides with when € = 0. The expressions for f,, 7, f,,z and
fi2.2,, are independent of € and thus are the same as in the original system (4.64)).
The expression for f,, ,,, is

fb1,rL1 = _(ba:,,l (2.,T) (vr + VBx?r) - 6%,,1 (1) (4.68)

Since the equations of f, ., and of f, ., are independent of €, the same argument as
before shows that (4.67) do not exhibit appendage or structural homeostasis, for all
e > 0. As for the input counterweight homeostasis factor, we get

—Juz sz,xq + fiuz fu,w,,l = —eky ¢z(z,,,T) (1 — 2,,) /l/bmbl (1) (4.69)

Recall that ¢z(x,,,Z) # 0. Generically, (1 — x,,) # 0, as well. Otherwise, z,, = 1 at
equilibrium, and so z, and z, must satisfy the over-determined linear system

0= —kg(l—l’o)—kg,(l—afg)
0= (0%} kg (1 - J}J) - k‘5 Lo (470)
0=ar ks (1 —2,) — ks,

Therefore, if the function 1,(z) does not vanish on an interval (say, ¥ (z) = z),
the model do not generically, exhibit perfect homeostasis for all € > 0. It is
clear that this construction can be carried out for an arbitrary number of independent
parameters and functions (e,, 1, ),, showing that the set of perturbations that destroy
perfect homeostasis is not contained in any finitely parametric family of vector fields.
This is a manifestation of the well-known phenomenon in singularity theory, that an
exactly flat function has ‘infinite codimension’ (see Section [f]).

Finally, numerical simulations suggests that, at least when ¢ > 0 is small, the
model displays near perfect homeostasis, see Figure Finally, it seems to
be possible to show that if 1.(z) vanishes at some point zy (say, ¥(z) = 2?) then
infinitesimal homeostasis occurs for an open set of parameters in the model .
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Figure 8: (Upper) Time series of the model (4.67)), with ¢(z) = z and e = 0.05,
showing near perfect homeostasis of the original variables a, <> z,, (green), b, <+
(cyan), y, <> z, (blue) at the corresponding non-dimensional equilibrium. Input
parameter L <+ Z is given by a step function (red curve). Other parameters were
set to non-dimensional values of Table 2|. (Lower) Input-output functions of the
original variables a, <+ x,, (green), b, <> z, (cyan), y, <+ x, (blue), as functions of
input parameter L <+ Z, for the model (£.67)). (Left) For e = 0, which reduces to
the original model , we have perfect homeostasis (constant input-output func-
tions) and (Right) for e = 0.05 we have near perfect homeostasis. Time series were
computed using the software XPPAUT and input-output functions were computed
by numerical continuation of an equilibrium point using AUTO from XPPAUT .
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5 Discussion

In this paper, we aimed to generalize the classification results of [39] and establish
the topological characterization of infinitesimal homeostasis in networks with one
input parameter and multiple input nodes. Using this extended theory, we were able
to characterize the homeostasis in a model of bacterial chemotaxis. We notice that
our results are only applicable to classify infinitesimal homeostasis in input-output
networks with multiple input nodes and a unique input parameter. The classification
of infinitesimal homeostasis in networks with multiple input parameters (as defined
in [18]) and the study of near perfect homeostasis are left for future work.

Wang et al. [39)] identified that two types of homeostasis may be present in input-
output networks with only one input node: appendage and structural homeostasis.
We were able to generalize such concepts for networks with multiple input nodes. In
particular, we notice that applying theorems (regarding appendage homeostasis)
and [3.22] (regarding structural homeostasis) to networks with only one input node, we
recover the findings of [39]. This observation is nice as it shows the theory proposed
by Wang et al.. may be generalized to other abstract networks.

Interestingly, we also identified that networks with multiple input nodes support a
new class of homeostasis which occurs by the balance of the input nodes. We called it
imput counterweight homeostasis. The input counterweight homeostasis block corre-
sponds to the generalized homeostasis matrix of the subnetwork ‘between’ the input
nodes and the first absolutely super-simple node. Unlike the multiple input node
case, the determinant of the corresponding block in the single input node is always
non-zero by definition. Hence, this class of homeostasis does not occur in networks
with a unique input node.

The biological relevance of input counterweight homeostasis may be exemplified
by the model of chemotaxis studied in this paper. Indeed, although the abstract
network corresponding to this model (see Figure [7)) supports all classes of homeosta-
sis, the model equations exhibit input counterweight rather than appendage
or structural homeostasis. Noticeably, this fact (and hence the presence of perfect
homeostasis) does not depend on the definition of the function ¢. As this function
represents the receptor signaling activity [12], this means from the biological point
of view that if one incorporates more (or less) details in the expression of ¢ or F' (see
(1.2)), the property of perfect homeostasis will remain preserved.

Mathematically, this means that there is an infinite dimensional ‘space of admis-
sible perturbations’ of that exhibit perfect homeostasis. An ‘admissible pertur-
bation’ is a vector field that is compatible with the network structure of . This
goes beyond ‘robustness’ in the sense of preservation by changes in the parameters.
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On the other hand, if we perturb the system in a way to disrupt the symmetry
that leads to input counterweight homeostasis (as done in (4.67))), then the per-
turbed model will not present infinitesimal homeostasis. In other words, there is
an infinite dimensional ‘space of admissible perturbations’ of that destroy per-
fect homeostasis. Again, by ‘admissible perturbation” we mean a vector field that is
compatible with the same network structure of . This is illustrated in Figure
Bl From the singularity theory point of view, we say that the singular points of the
ODE describing the chemotaxis have infinite codimension.

In the model equations , it is clear that perfect homeostasis is not a generic
property. However, it seems that the less strict properties ‘infinitesimal homeostasis’
and ‘near perfect homeostasis’ are persistent for a wide class of perturbations that
destroy perfect homeostasis, as mentioned above (see Figure .

It seems reasonable to expect that other biological systems with perfect home-
ostasis harbor similar features. Indeed, considering that homeostasis occurs as an
emergent dynamical property of the system, rather than due to the presetting of a
target value, it is expected that in such systems the input-output function is only
approximately flat. This means that we expect "typical" singularities associated to
biological systems to have finite codimension. In such a context, the approach based
on singularity theory is potentially useful. In fact, it is shown in [16}/17] that ‘in-
finitesimal homeostasis’ is a finite codimension property. Based on the above, we
formulate the following hypothesis.

Conjecture. Fix a multiple input nodes input-output network G and an appropri-
ate functional space of vector fields Xy compatible with the network G. Consider we
define in Xy a topology 7 that reflects the derivatives of the vector field with respect
to the input (e.g., the equivalent of Whitney topology). Then, we would expect the
following to occur:

(1) Near perfect homeostasis occurs generically in Xy, in the sense that it holds on
an open dense subset of Xg.

(2) Infinitesimal homeostasis occurs generically in Xy, in the sense that it holds on
an open dense subset of finite-parameter families in Xg.

The discussion of this conjecture is relevant, as a precise mathematical description
of a biological system through an exact known system of (differential) equations is
very rarely plausible. Indeed, in the majority of cases the model equations are known
only through approximate empirical formulas (as for example Michaelis-Menten ki-
netics). This means that in biology there are approximation errors not only on the
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parameters used to reproduce the behavior of the system, but also on the equations
employed to model the system [36]. Therefore, to say a property presented by the
studied system is robust, it would not be enough to evaluate the preservation of the
property under a appropriate (i.e., admissible) perturbation on the parameters’ val-
ues, but also under a perturbation on the vector field. The precise definition of such
perturbations and the study of their properties is beyond the scope of this paper.
Similar remarks have been made in [21},22] but in a different context.

Taking altogether, in this paper we extended the theory of homeostasis topological
classification to input-output networks with multiple input nodes. Applying our
results, we were able to demonstrate that the perfect homeostasis property presented
by the studied model of F. coli chemotaxis is due to input counterweight homeostasis.
Further work is necessary to extend our theory to networks with multiple inputs and
to study the genericity and robustness of singularities in biological systems.
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Appendices

A Irreducibility of Homogeneous Polynomials

In this appendix we prove general results about irreducibility of certain homogeneous
polynomials that are used in Section [3] and Appendix [B]

Lemma A.1. Let P(y1,y2,...,Yn) be an homogeneous polynomial of degree 1, i.e.,

P(yi1,y2, .- Yn) = a1y1 + - - + anly (A.1)
then, a polynomial Q(y1, Y2, - .., yn) divides P iff either Q(y1,ys,...,Yyn) = by and by
divides each term a;, for all 1 =1,...,n, or there is a coefficient ¢ such that

QW1 Y2, Yn) =01y + -+ + buln (A.2)
and a; =c- b, forallt=1,...,n.
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Proof. (<) It is straightforward to see that in both cases @) divides P.
(=) Suppose that a polynomial Q(y1, 4, - .., y,) divides P. As P is an homogeneous
polynomial of degree 1, then () must have at most degree 1, i.e., we can explicitly
write () as

Qr, Y2, -, Yn) = bo + b1y + -+ + bpyn (A.3)

Moreover, there is a polynomial R(yi,ys,...,¥y,) such that P = QR. By the same
argument, we can explicitly write R as

By (A.3) and (A.4), we have

P(?/1,927 s 7yn> = Q(y17y27 s 7yn)R<y1ay27 ce 7yn)
aryr + -+ anyn = (bo + b1y + -+ + bayn) - (co + cayr 4+ + Culn)

a1y R AnYn = bOCO -+ Z(biCO + boci)yi + Z (biCj + bjci)yz-yj (A5)

i=1 1<i<j<n
n
2
+ E biciy;
i=1

From (A.5)), we conclude:

boCOZO
bico + boc; = a;, foralli=1,....,n
o o (A.6)
bici+bjc;=0, 1<i<j<n
bic; =0, foralli=1,...,n

From (A.6]), we have by = 0 or ¢y = 0. Suppose that by = 0. Therefore, by (A.3)), we
get

QY1, Y2, Yn) = b1y + - + by (A7)
Taking by = 0 in (A.6)), we get
bico =a;, foralli=1,...,n (A.8)

Considering ¢y = ¢, one of the cases of the lemma is obtained. Suppose now that
¢o = 0. In that case, by (A.6)), we get

boc; =a;, foralli=1,...,n (A.9)
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and therefore, as a; # 0, then ¢; # 0. However, we must satisfy b;c; = 0, for all
t =1,...,n. Therefore, we conclude that b; = 0, for all ¢ = 1,...,n, which means
that

QY1,Y2s -+, Yn) = bo

From (|A.9), we have that by divides each term a;, for all i =1,... n. O

Corollary A.2. Let P(y1,ys, .., Yn) be an homogeneous polynomial of degree 1, i.e.,

P(yhyQJ"'?yn) Ea1y1+"'+anyn‘ (AlO)
such that ay,- -+ ;a, do not share common factors. Then P is irreducible.

Proof. Suppose there is a polynomial Q(y1,¥a, ..., ¥y,) which is a divisor of P. By
Lemma [AT] there is a coefficient ¢ that divides every term a;. As ay,...,a, do
not share common factors, ¢ = +1, and hence, either Q(y1,92,...,y,) = £1 or
Q(y1,Y2, - Yn) = £P(y1, 90, .. .,yn). That is, P is irreducible. O

B Non-triviality of the Homeostasis Determinant

In this appendix we prove the claim that if the self couplings are not identically zero
and the output node is downstream from all input nodes (see Remark , then
det(H) is not identically zero.

Let f be a smooth admissible vector field associated to a network G and denote
by J its Jacobian matrix. Let G be composed by nodes 01,09, -+ ,0,. Then

fUhUl f01,02 fUl,Un
T f02,01 f02702 f0270n
fan,al fa'n70'2 fan,an

where f5, ,, denote the partial derivatives of f. We say that f or J is generic if the
following conditions are satisfied:

(a) fo;0;, =0 if and only if there is no arrow o; — o;.
(b) there is no polynomial relation among f, ;-

This means that f,, ,, may be seen as algebraically independent variables and the
J may be seen as a ‘decorated’ adjacency matrix of G. In particular, det J (or the
determinant of any sub-matrix of J) may be seen as a polynomial on the algebraically
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independent variables f;, ,, and thus it vanishes identically if and only if all its
summands are identically zero (see [9]). Note that the set of generic admissible
vector fields f is an open set in any appropriate topology on the space of all smooth
admissible vector fields.

Lemma B.1. If all the self-couplings of a generic Jacobian matrixz J are not iden-
tically zero (i.e., fy, 0, 7 0) then det J is not identically zero.

Proof. Let G be a network with n nodes oy,09,---,0,. Consider the product of
diagonal elements of J:

fO’l,O’l ct fO’n,O'n ¢ 0

First of all, it is a summand of det J. Moreover, because f (and hence J) is generic
and all the self-couplings are not identically zero, the product is not identically zero.
Therefore, we conclude that det J cannot be identically zero. O

Proposition B.2. Let G be an input-output network with input node v and output
node o such that o is downstream from v. Suppose that J is generic and all its
self-couplings are not identically zero. Then the determinant of the corresponding
homeostasis matriz H is not identically zero.

Proof. By Lemma and [39, Thm 2.4], it is enough to consider the case when G is
a core input-output network with n nodes. Since the output node o is downstream
from the input node ¢ there is a directed path S between them

L—01 "+ =0 —0

We can assume, without loss of generality, that the directed path S is to-simple. Let
Ok+1, - -+, 0n_2 be the remaining (regulatory) nodes of the network that are not in S.

Consider the following product of partial derivatives of a generic admissible vector
field f:

fcfl,L T fO,Uk fa’k+1»0k+1 T fo'n7270'n724 §é 0
Vv

-~

k+1 n—2—k
This product has n — 1 factors, each one belonging to a unique row and column of
the Jacobian matrix J. We claim that it is one of the summands of det H. Indeed,
the homeostasis matrix H is obtained from the Jacobian matrix J by dropping the
first row and the last column, that is, elements of the form f,. and f. ,, respectively.
Since none of these elements are in the product above, it follows that the claim is
true. Because f (and hence J) is generic and all the self-couplings are not identically
zero, the product is not identically zero. Therefore, we conclude that det H cannot
be identically zero. O]
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Proposition B.3. Let G be a network with input nodes tq,- - , 1, and output node o
such that o is downstream from every input node. Suppose that J is generic and all
its self-couplings are not identically zero. Then the determinant of the corresponding
weighted homeostasis matriz (H) is not identically zero.

Proof. By Lemma and equation (3.28]), it is enough to prove the claim when
G is a core network. As shown in Subsection 3.4 det(H) can be factorized as a
product of common factors between each of the determinants det H7 and the input
counterweight term. By Proposition [B.2] none of these common factors can be
identically zero. This means that det(H) is identically zero if, and only if, the
input counterweight term is identically zero. Recall that the input counterweight
term is irreducible and its expression is given by eq. . By hypothesis, f,,, 7 is
always non-zero and Lemma implies that the determinants det(.Jp,, ) must be
all non-zero. Moreover, as each determinant det(C,,, ) is a factor of det HS , then,
by Proposition [B.2} we conclude that det(C,, ) cannot be identically zero for all
1 < m < n. Hence, as det C' is irreducible, we conclude that it cannot be identically
zero. Therefore, det(H) is not identically zero. O

Remark B.1. In the context of biological systems, it is usually expected that all
nodes are self-coupled and that the output node is downstream all input nodes.
Therefore, the assumptions made in this section are usually satisfied by almost all
models.

Remark B.2. The results of this appendix cannot be improved. To see this, first
consider the case when G is a network with only one input node ¢+ and output node
o. Then, if we drop the requirement that all nodes are self-coupled, there exists a
network with identically zero homeostasis determinants (see Figure[J] (a)). Moreover,
if 0 is not downstream from the input node ¢, then det H may also be identically
zero (see Figure [9] (b)). Now consider the case where G has multiple input nodes.
Then det(H) may be identically zero if we allow some node to be not self-coupled
(see Figure [9] (c)). Furthermore, if we require that o be downstream from some, but
not all input nodes, then, although det(H) mat be not identically zero, the output
node will not depend on the dynamics of all input nodes (see Figure [9] (d)).

Remark B.3. The results of this appendix do not contradict the fact that the
model for bacterial chemotaxis exhibits perfect homeostasis, that is, det(H) = 0.
This is because the model equations are not given by a generic vector field
in the sense defined above. Indeed, as it is shown in and , there is a
polynomial relation between certain partial derivatives of the vector field. This is
another manifestation of the fact that robust perfect homeostasis is a non-generic
phenomenon (see Section [f]).
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2) (o)
c) @
s
@ 9

Figure 9: Examples of networks that do not satisfy the assumptions of non-zero self-
couplings and/or the output node is not downstream from the input node(s). With
the existence of nodes that are not self-coupled (cases (a) and (c)) the determinant of
the (weighted) homeostasis matrix may vanish identically either in the case of only
one input node (a) or when there exist multiple input nodes (c). In the case the
output node is not downstream from the input node(s), in (b) it is trivial to see that
det H0. In (d), the network has input nodes ¢; and ¢35, and the output node o is not
downstream from ¢o. In that case det H # 0, but the dynamics of o does not depend
on the dynamics of 1. Finally, in all these examples the eigenvalues of the Jacobian
are non-trivial, and therefore the network may display a linearly stable equilibrium,
depending on the specific model that it represents.
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