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THERE EXIST TRANSITIVE PIECEWISE SMOOTH VECTOR FIELDS ON

S
2 BUT NOT ROBUSTLY TRANSITIVE.

RODRIGO D. EUZÉBIO, JOABY S. JUCÁ, AND RÉGIS VARÃO

Abstract. It is well known that smooth (or continuous) vector fields cannot be topologically

transitive on the sphere S
2. Piecewise-smooth vector fields, on the other hand, may present

non-trivial recurrence even on S
2. Accordingly, in this paper the existence of topologically

transitive piecewise-smooth vector fields on S
2 is proved, see Theorem A. We also prove that

transitivity occurs alongside the presence of some particular portions of the phase portrait

known as sliding region and escaping region. More precisely, Theorem B states that, under

the presence of transitivity, trajectories must interchange between sliding and escaping regions

through tangency points. In addition, we prove that every transitive piecewise-smooth vector

field is neither robustly transitive nor structural stable on S
2, see Theorem C. We finish the paper

proving Theorem D addressing non-robustness on general compact two-dimensional manifolds.
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1. Introduction

Piecewise-smooth vector fields (PSVF) describe a particular type of dynamical systems for

which discontinuities may occur on the phase portrait. Through the literature several authors

have dealt with PSVF by assuming distinct conventions in order to establish how trajectories

interact with those discontinuities. A particular approach largely adopted in the study of PSVF

was established by A. F. Filippov in [13]. The convention adopted by Filippov captures the

so-called sliding motion in such way that trajectories may reach the discontinuity set in finite

time and then slide on that region. An equivalent approach is considered by Utkin (see [21]).

Other conventions are possibly more restrictive in the treatment of the trajectories, we mention

Broucke et. al. (see [1]) and Barbashin (see [22]). In this paper we adopt Filippov’s convention.

As a motivation to the study of PSVF on the background of Filippov, we mention that several

practical problems can be modeled by such vector fields, for instance stick-slip processes, the

anti-lock braking system (ABS), the relay systems and generally speaking a substantial part of

control systems (see these and other applications of PSVF in [2], [4], [5], [9], [11], [14], [16], [18]

and [19]).
1
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Figure 1. Filippov orbits of a topologically transitive PSVF on S
2

An important feature of smooth and piecewise-smooth vector fields concerns topological tran-

sitivity. The classical literature on dynamical systems has a well established theory on tran-

sitivity for smooth vector fields (an, of course, for diffeomorphims), but such a theory is still

premature in the particular context of PSVF. Indeed, some preliminary results can be found in

[6, 7, 8, 12] and references therein. A PSVF to be topologically transitive requires that any two

open sets can be connected by a Filippov orbit (see the proper definitions on Section 2).

It is a well known result that the two-dimensional sphere S
2 does not admit topologically

transitive continuous vector fields (see [17] and references therein). In this paper, we investigate

that and other related issues for PSVF defined on the sphere. In particular, we are able to

provide an explicit example of an one-parameter family of topologically transitive PSVF on S
2.

Theorem A. There exist an one-parameter family of transitive piecewise-linear vector fields

defined on the sphere S
2.

One may notice from Figure 1 that the topologically transitive vector fields we provide in

Theorem A present three zones separated by two circles. A proper question concerns the pos-

sibility of constructing a transitive PSVF on the two-dimensional sphere with only two zones.

Actually, we are able to partially answer this question. The following result states that, for a

certain class of PSVF, the answer is negative when considering two zones separated by a circle.

Proposition 1. There exist no transitive piecewise-linear vector fields on S
2 having two zones

and separated by a circle.

Transitive PSVF on S
2 have some inherent features concerning the discontinuities occurring

in the phase portrait. We point to the existence of sliding and escaping regions (see Section 2

for precise definitions) connecting each other through tangency points.

Theorem B. If Z is a transitive PSVF on S
2 having a finite number of tangency points on Σ,

then the following statements hold:
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(a) the sliding and escaping regions are non-empty sets;

(b) every sliding and escaping regions are connected by some trajectory of Z. Moreover there

are an uncountable number of trajectories of Z connecting sliding and escaping regions.

Theorems A and B together illustrate the richness of the trajectories in a PSVF. Nevertheless,

every transitive PSVF on S
2 must present a non-trivial recurrence between two type of sets which

arise when discontinuities are allowed in the vector fields. On the other hand, such a recurrence

is easily broken by small perturbations, that is, transitivity is not a generic property for PSVF

as stated in the next result.

Theorem C. There exist no robustly transitive PSVF on S
2 with finite number of tangency

points.

We are mainly concerned with S
2 but our techniques can be effortlessly applied to obtain

results for compact two-dimensional manifolds.

Theorem D. Let M2 be a two-dimensional compact manifold. There exist no robustly transitive

PSVF on M2 having non-empty sliding and escaping regions with finite number of tangency

points.

The next result is a direct consequence of the non-robustness of transitive PSVF.

Corollary 1. Every transitive Filippov PSVF defined on a two-dimensional compact manifold

with finite number of tangency points is not structurally unstable.

The corollary is proved by noticing that in order to a PSVF fitting the hypotheses of Theorem

C be structurally stable, it should also be robustly transitive which is a contradiction to Theorem

C. For the sake of completeness we remark that a different proof of Corollary 1 can be achieved

using the results on structural stability presented in [1], which applies to Filippov convention

due to a suitable definition of topological conjugation considered in that paper. For our purposes

only the presented proof will be enough.

The next section contains the precise definitions used throughout this paper and the last one

contains the proofs of the main results.

2. Preliminaries

Definition 2.1. A piecewise-smooth vector field is a triple (M,Σ,Z) where
(i) M is a suitable manifold;
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(ii) Σ is formed by a finite union of simple curves Σ = Σ1 ⊍ ⋯ ⊍ Σn splitting M into n + 1
connected components regions Ri, where Σi = γ−1i (0) and γi ∶M → R are smooth functions

having 0 as regular value, i = 1, . . . , n;
(iii) Z is a collection of n+ 1 vector fields of class Cr defined on M , say Z = (X1, . . . ,Xn+1),

being each Xi defined on the closure of Ri.

We shall denote a PSVF by Z instead of the triple (M,Σ,Z) unless there is some confusion

on M or Σ. We call Σ the switching manifold and we notice that Z is bi-valuated on Σ.

In particular, every component Xi of Z is a vector field defined on whole M which has been

restricted to Ri. Because Z is bi-valuated on each connected component of Σ, it is necessary

to establish some rule describing how trajectories interact to Σ, switching to one side of Σ to

another or even remaining on it. As mentioned before, in this paper we adopt the Filippov

convention which we describe in this section.

Remark 2.2. We remark that Filippov convention requires connected components of Σ to be

disjoint pairwise, simple and smooth. Nevertheless other conventions or including extensions of

the Filippov one may suppress some of those assumptions in such way that Definition 2.1 could

be slightly adapted.

Let Σi = γ−1i (0) be the common boundary between the regions Ri and Rj and suppose that

∇γi(p) points to the interior of the region Ri for all p ∈ Σi. We distinguish three regions on Σi

satisfying (Xi.γi(p)) ⋅(Xj .γi(p)) ≠ 0, where Xk.γi(p) = ⟨Xk(p),∇γi(p)⟩ is the first Lie derivative
of γi in the direction of vector field Xk at the point p. Such regions are characterized in what

follows.

Definition 2.3. Let Σi be a connected component of Σ for some i = 1, . . . , n. Call Xi and Xj

the vector fields separated by Σi and let p ∈ Σi such that Xi(p) and Xj(p) are transversal to Σi

at p. Under this assumptions we distinguish three types of regions on Σi:

i) The crossing region Σc
i of Σi which is formed by the points p ∈ Σi such that (Xi.γi(p)) ⋅

(Xj .γi(p)) > 0.
ii) The escaping region Σe

i of Σi which is formed by the points p ∈ Σi such that Xi.γi(p) > 0
and Xj .γi(p) < 0.

iii) The sliding region Σs
i of Σi which is formed by the points p ∈ Σi such that Xi.γi(p) < 0

and Xj .γi(p) > 0.
We call Σc = n

⋃
i=1

Σc
i , Σ

s = n

⋃
i=1

Σs
i and Σe = n

⋃
i=1

Σe
i the crossing, sliding and escaping regions of Σ,

respectively.
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Figure 2. Filippov’s convention

Notice that, when ∇γi(p) points to the interior of Rj for all p ∈ Σi the inequalities in bullets

ii) and iii) of the last definition are interchanged.

Definition 2.4. The points p ∈ Σi such that Xi.γi(p) = 0 (resp. Xj .γi(p) = 0) are called tangency

points of Xi (resp. Xj). The collection of the points p ∈ Σ such that p is a tangency point for

some vector field Xj , j = 1, . . . , n + 1 constitute the set of tangency points of Z denoted by

Σt.

Let p ∈ Σ be a tangency point of Z = (X1, . . . ,Xn+1). We say that Z has a contact of order

n ∈ N with Σ at p if, for some Xi, X
k
i .γi(p) = ⟨∇Xk−1

i .γi(p),Xi(p)⟩ = 0 for k < n andXn
i .γi(p) ≠ 0.

We classify tangency points according to the following: We say that p ∈ Σ is an invisible tangency

point if Xi has a contact of even order at p and Xr
i .γi(p) < 0. On the other hand, we say that

p ∈ Σ is a visible tangency point if either Xi has a contact of even order at p and Xr
i .γi(p) > 0 or

Xi has contact of odd order at p.

A particular kind of tangency points are the even contact order points which are tangency

points for both Xi and Xj . We refer to those points by double tangency. We say that a double

tangency p is elliptic if p is invisible for Xi and Xj , hyperbolic if it is visible for Xi and Xj and

parabolic if p is visible for Xi and invisible for Xj or otherwise.

In what follows we define the sliding vector field ZΣ on Σs∪e. If Σi is a common boundary

of Ri and Rj and p ∈ Σs
i then we define ZΣ(p) = m − p, with m being the point on segment

joining p +Xi(p) and p +Xj(p) such that m − p is tangent to Σs
i (see Figure 2). If p ∈ Σe

i , then

p ∈ Σs
i for the vector field −X and we define ZΣ(p) = −(−X)Σ(p). In our pictures we represent

the dynamics of ZΣ by double arrows and we refer to ZΣ by Filippov vector field. The points

p ∈ Σs,e such that ZΣ(p) = 0, that is, the equilibrium points of the Filippov vector field, are

called pseudo equilibrium points of Z.
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Remark 2.5. We notice that although the Filippov vector field is defined at sliding and escaping

points we can extend it beyond the boundary of Σs,e. For instance, if p ∈ Σt and

lim
q→p

XΣ(q) = L ≠ 0, q ∈ Σs,e,

then we define the extended Filippov vector field at p as XΣ(p) = L. That will be the case in

the proof of Theorem A.

A global trajectory ΓZ(t, p) of a piecewise-smooth vector field Z is the trace of a continuous

curve obtained by a suitable oriented concatenation of trajectories ofXi and/orXj and/or Z
Σ. A

maximal trajectory ΓZ(t, p) is a global trajectory that cannot be extended by any concatenation

of trajectories of Xi, Xj or ZΣ. We also refer to a maximal trajectory ΓZ(t, p) as a Filippov

trajectory (or orbit). If a Filippov trajectory is singular at p ∈M we say that p is an equilibrium

point of Z in the sense that Xi(p) = 0 for some Xi which is defined on Ri. We say that p is

a real equilibrium point if p belongs to the closure of Ri, otherwise we say that p is a virtual

equilibrium point.

We finish this section by introducing two definitions addressing topolocally transitive PSVF

which are inspired in the classical definitions for smooth vector fields.

Definition 2.6. A PSVF is topologically transitive if given two arbitrary open sets U and V of

M , there exist a Filippov trajectory connecting these sets.

Definition 2.7. We say that a Z is robustly topologically transitive if Z is topologically transitive

and every PSVF sufficiently close to Z is also topologically transitive.

3. Proof of the main results

In this section we prove the main results of the paper. We consider the unitary sphere S2 ⊂ R3

centered at the origin.

3.1. Proof of Theorem A. Initially we construct a topologically transitive piecewise-linear

vector field on S
2 (see Figure 1). Then we perturb it to obtain the desired one-parametric

family of transitive PSVF on S
2.

Effectively, let Σ1 and Σ2 be the curves on S
2 given by the intersection of S2 with the planes

z = 1/2 and z = −1/2, respectively. Consider the linear vector fields

X(p) = (z,0,−x) and Y (p) = (−1
2
(√3 y + z) ,

√
3

2
x,

x

2
)
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with p = (x, y, z) ∈ S2. Let Z = (X,Y,X) be a piecewise-linear vector field with three zones on

S
2 being X defined on R1 = {(x, y, z) ∈ S2; z ≥ 1/2} and R3 = {(x, y, z) ∈ S2; z ≤ −1/2} and Y

defined on R2 = {(x, y, z) ∈ S2; ∣z∣ ≤ 1/2}. Notice that Y is the vector field obtained from −X

trough the rotation by the angle π/3 around of the x−axis in the clockwise sense. We claim that

Z is topologically transitive on S
2.

In order to prove the claim we first check that Z satisfies the following properties:

(i) Each equilibrium point of Z is virtual;

(ii) Z has a pair of double tangency points T −1 ≠ T +1 with Σ1, a pair of double tangency

points T −2 = −T +1 and T +2 = −T −1 with Σ2, and Z has no more tangency points with Σ

besides T ±i , i = 1,2;
(iii) the tangency points T ±i , i = 1,2 are invisible for X, T +1 and T −2 are visible for Y and T −1

and T +2 are invisible for Y ;

(iv) Y has a periodic orbit on R2 ∪Σ connecting T −2 to T +1 ;

(v) Σc = ∅; Σe
1 = {(x, y, z) ∈ Σ1; x < 0}, Σs

1 = {(x, y, z) ∈ Σ1; x > 0}, Σe
2 = {(x, y, z) ∈ Σ1; x <

0} and Σs
2 = {(x, y, z) ∈ Σ1; x > 0};

(vi) the extended Filippov vector field is well defined on the entire Σ1,2 and its orientation

is in the counter-clockwise sense without pseudo-equilibrium points.

The claims (i)− (v) can be proved straightforward by a direct integration of the linear vector

fields X and Y . To prove claim (vi), we notice that Xt(p) = (x cos(t) + z sin(t), y, z cos(t) −
x sin(t)) and Yt(p) = (xt(p), yt(p), zt(p)) where

xt(p) = x cos(t) − 1/2(√3 y + z) sin(t);
yt(p) = 1

4
(y + 3y cos(t) +√3(z(−1 + cos(t)) + 2x sin(t)));

zt(p) = 1
4
(3z +√3y(−1 + cos(t)) + z cos(t) + 2x sin(t))),

with p = (x, y, z) ∈ S2. Consequently, the extended Filippov vector field on Σi, i = 1,2, can be

defined by

(1) ZΣ(p) = Y f(p)X(p) −Xf(p)Y (p)
Y f(p) −Xf(p) =

√
3

3
(−y,x,0),

for p = (x, y, z) ∈ Σe,s
i , i = 1,2, and therefore claim (vi) is proved.

Now we prove the transitive property of Z. Notice that, for every p = (x, y, z) with ∣z∣ ≥ 1
2
,

p ≠ T ±i , i = 1,2, there exist t > 0 such that Xt(p) ∈ Σs
1. Analogously, for every p = (x, y, z) with

∣z∣ ≤ 1
2
, p ≠ T ±i , i = 1,2, there exist t > 0 such that Yt(p) ∈ Σs

2. On the other hand, if p ∈ Σ, then
there exist t > 0 such that either ZΣ

t (p) = T +1 for p ∈ Σ1 or ZΣ
t (p) = T −2 for p ∈ Σ2.
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Moreover, there exist a periodic orbit for Z on the region R2 connecting T +1 to T −2 (see

statement (iv)), then given p, q ∈ S2 there exists t1, t2 > 0 and a maximal trajectory ΓZ(t, p)
satisfying ΓZ(t1, p) = q = ΓZ(−t2, p). Therefore, given two arbitrary open set U and V on S2,

we can connect every point on U to every point on V so Z is transitive in S
2.

From Z we construct an one-parametric family Zθ = (X,Yθ,X) by setting on the central

region the family of vector fields Yθ with π/6 < θ ≤ π/3. This new vector field is obtained by the

rotation of −X by an angle θ in the clockwise sense around the x-axis. The linear center of Yθ

remains virtual and therefore the new PSVF Zθ on S
2 is transitive for π/6 < θ ≤ π/3.

For θ ≤ π/6 the center lies in Σ or it is a real equilibrium of Z and for θ > π/3 there exist no

trajectory of Ri visiting Rj for i, j = 1,2, i ≠ j so no longer transitive regime takes place.

3.2. Proof of Proposition 1. Let Z = (X1,X2) be a linear PSVF defined on S
2 separated by

a single circle Σ. Before consider the problem of transitivity, we notice that once Xi(x) =Aix is

linear, using straightforward calculations from linear algebra, Ai is a real skew-symmetric matrix

so the eigenvalues of Ai are zero and a pair of conjugated imaginary pure eigenvalues, i = 1,2.
Thus X1 has an one-dimensional invariant straight line trough the origin filled by equilibrium

points associated to the 0 eigenvalue of A1, which generates two antipodal equilibria on S
2. The

same holds for X2. The remaining trajectories of X1 and X2 are contained on invariant planes

which intersect S
2 on closed curves surrounding the equilibria, which corresponds to periodic

orbits of those linear vector fields. In other words, Z has two pairs of antipodes equilibria of

center type on S
2.

If Σ is a circle on S
2 but not a great circle, then Z has at least one real equilibrium point

of center type and therefore it cannot be transitive. On the other hand, if Σ is a great circle,

we have some situations to analyze. Indeed, if the equilibria of X1 or X2 lie outside Σ then Z

has a real equilibria of center type so Z cannot be transitive. Then assume the four equilibria

of Z lie on the great circle Σ and notice that the points between the equilibria on Σ may be of

crossing or sliding/escaping type. If there is no sliding/escaping, then Z has a pair of double

elliptic tangency points. It is easy to see that trajectories around those tangency points behave

like center equilibria, then again Z cannot be transitive.

The last situation to study is the case of four distinct tangency points of Σ, generating four

regions between the tangency points on Σ, being two crossing regions, one sliding region and

an escaping one. In this case the trajectories associated to the sliding and escaping regions

are invariant because their boundaries are formed by equilibria and therefore transitive cannot

occur. This finishes the proof of the proposition.
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3.3. Proof of Theorem B.

Proof. We shall prove that Σs and Σe are non empty sets, hence we start with the following

claim:

Claim: Σe ≠ ∅.
The claim is proved by contradiction, then assume Σe = ∅.
The set Σs is either empty or nonempty, either case will lead to a contradiction. Indeed,

notice that if the sliding set is empty, then we obtain a Filippov vector field without sliding and

escaping region on the sphere. In particular it implies that the only way to a Filippov orbit

to experience non-uniqueness of solution is at double tangency points. Hence consider a new

vector field denoted by φZ, where Z is the considered Filippov vector field and φ is a positive

smooth function which is zero only at the tangency points which are finite by hypothesis. Now

we have transformed the Filippov vector field Z into a vector field with uniqueness of solutions.

The previous procedure still leaves φZ transitive. To see that, let γ be a transitive orbit for

Z. In order to be dense, γ must visit these tangency points only a finite number of time and,

at some point, it never returns to these tangency points. Hence, the forward orbit of γ is dense

and it is an orbit of φZ (up to a reparametrization) since we only changed the dynamics on the

tangency points. Therefore we obtain a continuous transitive vector field on the sphere, which

is an absurd. Hence we have eliminated the empty slinding set.

We still have to consider the case where the sliding set is nonempty. Due to transitivity, an

orbit which enters the sliding region has to leave it eventually. Moreover, there exist only a

finite number of exit points at the tangency ones. Since there exist no escaping region, such an

orbit faces non-uniqueness only at tangency points which are finite. But then by transitivity

that orbit must return the same sliding region and then it is a periodic orbit which is not dense.

However it is an absurd which finishes the proof of the claim.

The claim implies that any Filippov vector field fulfilling the hypothesis of the theorem has

nonempty escaping region. We now consider a new Filippov vector field replacing X by −X.

This is another way of inverting the orientation of orbits in time and for this new Filippov vector

field we apply the claim we just proved, hence it has nonempty escaping region. But now the

escaping region associated to −X is the sliding region of the original Filippov vector field X.

This proves item a).
We now prove item b). Consider a sliding and an escaping region, respectively, I and J . Let

U and V be two open sets close enough to I and J , respectively, in such that any orbit starting

on U enters I and any orbit passing through V comes from J . By topological transitivity there
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exist an orbit that visits U and V . Assume γ is such an orbit with γ(t1) ∈ U and γ(t2) ∈ V .

We assume that t1 < t2, the other case can be treated by analogous arguments. Since γ(t1) ∈ U
then before reaching V it enters the sliding region and before the time t2 it touches the escaping

region, therefore the sliding and escaping regions I and J are connected.

For the last part of item b) observe that since sliding and escaping regions can be connected,

we can consider an orbit that leave some escaping region and enter a sliding region. Notice that

small perturbations of this orbit in the escaping region still generate an orbit entering the sliding

region, hence we can create many different orbits connecting these regions.

�

3.4. Proof of Theorem C.

Proof. The proof is done by contradiction. Consider Z a PSVF with a finite number of tangency

points and assume that Z is robustly transitive. So there exist UZ a neighborhood of Z such

that every Filippov vector field in UZ is transitive.

We first notice that, from Theorem B, Z has sliding and escaping regions, so take p ∈ Σs and

let X and Y be the adjacent vector fields separated by Σs. The positive sliding trajectory of p

eventually reaches a tangency point TA at the boundary of Σs, say that X is tangent at TA. We

assume that TA is not a tangency point for Y and that it is the common boundary between Σs

and a crossing region (see Figure 3). Otherwise, we perturb Z conveniently in order to obtain

the described configuration. We also notice that, if TA is an invisible tangency point, then it is

the ω−limit set of every point nearby Σs, but this contradicts the transitivity of Z. Therefore

TA is a visible tangency point of Z and points on Σs close to TA leave Σ through this point.

Moreover, this trajectory is unique (see Figure 3).

Figure 3. Connection between visible tangent points.

Analogously, there exist a visible tangency point TB located at the common boundary of some

escape region Σe and a crossing region which repels trajectories of the escaping vector field. In

other words, TB is an entering point (the only one) to the escaping region Σe (see Figure 3).
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The goal is to use the transitive property to connect TA to TB and then perturb Z = Z0 in a

suitable way to obtain a topologically transitive PSVF which does not connect tangency points

(an absurd from Theorem B).

Effectively, let us call the escaping region associated to TB by J . Notice that if a point is in a

neighborhood of TB and it is not in a trajectory which enters immediately in J by the tangency

TB, then the time this point takes to enter J is uniformly greater than some fixed time (this

is because J has a repelling behavior around it with the exception of the points which enters

through TB the region J itself). Let us call this number by α > 0. Since Z0 is transitive we know

by Theorem B that we may connect through a Filippov orbit the tangency points TA and TB .

Let t0 > 0 be the time for which an orbit from TA takes to reach TB. Let us call this orbit by γ0,

that is, γ0 is a Filippov orbit of Z0 such that γ0(0) = TA, γ0(t0) = TB and γ0([0, t0))∩{TB} = ∅.
Let Z1 be a perturbation of Z0 which has the following characteristics:

i) Z1 ∈ UZ .

ii) Z1 coincides with Z0 in V c
1 , where V1 is an open ball which does not intersect Σ (the

switching manifold).

iii) γ0(t) is an orbit of Z0 and Z1 as long as γ0[0, t] ⊂ V c
1 .

iv) let γ1 be an orbit of Z1 which is a continuation of the orbit γ0, then there exist a time

t1 > t0 + α/2 such that γ1([0, t1)) ∩ {TB} = ∅, γ1(0) = TA and γ1(t1) = tB.
v) ∣Z0 −Z1∣ < 1/2.

The perturbation is done as follows. We call J the escaping region associated to TB and

let O be a small neighborhood of J minus J ∪ TB and minus the two connected segments that

are inside this neighborhood which connects by a Filippov orbit with the tangency point TB .

In other words, O is a small region around J for which the orbits have some sort of repelling

behavior. And any point in O must take more than α to return to the region J , see Figure 4.

Figure 4. The neighborhood O.

Let γ0(ξ0) be some point very close to TB and ξ0 ∈ [0, t0). By very close we mean that any ball

around γ0(ξ0) must intersect O, in other words γ0(ξ0) is so close to TB that by a perturbation
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small we can place it inside O. Also, consider a ball V1 around γ0(ξ0) small enough such that

its closure is inside the closure of O, the closure of V1 does not intersect Σ and γ0 enters V1 in

a time greater than t0 − α/2.

We now perturb the vector field Z0 inside V1. The perturbation will happen inside some

compact set on V1. Let us describe this perturbation. On V1 we define Z1 to be Z0 +W1, where

W1 is defined outside V1 to be zero. Let us define it in V1. We know that Z0(γ0(ξ0)) is a

nonzero vector. Consider v0 a perpendicular vector to Z0(γ0(ξ0)). Let V0 be a smooth vector

field around and define W1 ∶= φV0 where φ is a smooth bump. We now consider the bump

function to be sufficiently small in order that we can guarantee the conditions listed above.

We now proceed in a recursive way. Let Zn be a perturbation of Zn−1 which has the following

characteristics:

i) Zn ∈ UZ .

ii) Zn coincides with Zn−1 in V c
n , where Vn is an open ball which does not intersect Σ∪V1∪

. . . ∪ Vn−1.

iii) γn−1(t) is an orbit of Zn−1 and Zn as long as γn−1[0, t] ⊂ V c
n .

iv) let γn be an orbit of Zn which is a continuation of the orbit γn−1, then there exist a time

tn > tn−1 +α/2 such that γn([0, tn)) ∩ {TB} = ∅, γn(0) = TA and γn(tn) = TB.

v) ∣Zn −Zn−1∣ < 1/2n.
Note that Zn is uniformly converging to Z̃. Also Z̃ has never changed Z on Σ. Since Z̃ is a

transitive vector field it should connect TA and TB , but the trajectory of Z̃ starting at TA which

is the extension of γ0 never touches TB . This would give an absurd because we have to conect

TA and TB, but it turns out that the trajectory of Z̃ leaving TA and going to TB could be a

different trajectory instead of the one which is an extension of γ0 but the other possible way of

leaving TA. Hence on the proof above we would have to analyse at the same time both orbits.

Thus, we get an absurd, that is, we have a transitive map which does not connect the tangency

points TA and TB . �

3.5. Proof of Theorem D.

Proof. The proof is the same as the proof of Theorem C. We observe that the only part of the

proof for which S
2 was really needed was to obtain that, for a transitive map on the sphere,

one has necessarily sliding and escaping region. Hence that is the additional hypothesis on the

theorem. �
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