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1 Stochastic transport equations
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Abstract

We study in this article the existence and uniqueness of solutions
to a class of stochastic transport equations with irregular coefficients
and unbounded divergence. In the first result we assume the drift
is L2([0, T ] × R

d) ∩ L∞([0, T ] × R
d) and the divergence is the locally

integrable. In the second result we show that the smoothing acts as a
selection criterion when the drift is in L2([0, T ]×R

d)∩L∞([0, T ]×R
d)

without any condition on the divergence.

1 Introduction

1.1 Background

The linear transport equation

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0 (1.1)

appears in a broad spectrum of physical applications, for instance related
to fluid dynamics as it is well described in Lions’ books [38, 39]. Moreover,
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Dafermos’ book [19] presents more general applications of the transport equa-
tions in the domain of conservation laws.

The existence and uniqueness of classical solutions for the transport equa-
tion (1.1), with smooth coefficients are well known. Indeed, for the so called
drift b ∈ L∞([0, T ] × R

d) and having Lipschitz bounds, one applies the
method of characteristics and the classical solution is given by u(t, x) :=
u0(X

−1(t, x)), where the flow X is the solution, for each t ∈ (0, T ), of the
following system of differential equations











dX(t)

dt
= b(t,X(t)),

X(0) = x.

(1.2)

The above approach used to be the natural one, that is the passage from
the Lagrangean into Eulerian formulation. The first reversed approach was
considered in 1989 by R. DiPerna, P.L. Lions [24]. Indeed, in that paper
they proved that W 1,1 spatial regularity of b(t, x) (together with a condition
of boundedness on the divergence) is enough to ensure uniqueness of (renor-
malized) weak solutions for the transport equations. One recalls that, the
existence of bounded solutions is easily obtained by standard regularization
of the coefficients (and passage to the limit), but the uniqueness problem
is much more delicate. Then, they deduced the existence, uniqueness and
stability results for (1.2) from corresponding results on the associated linear
transport equation. L. Ambrosio in [5] extended the theory developed in
[24] to include BV vector fields. At the same time, Ambrosio introduced a
probabilistic non trivial axiomatization based on the duality between flows
and continuity equation. More recently, S. Bianchini, P. Bonicatto in [10]
proved the uniqueness for (1.1) in the nearly incompressible BV vector field
setting, hence positively establishing Bressan’s compactness conjecture, see
[11]. Furthermore, we address the readers to two excellent summaries in [6]
and [22].

1.2 Purpose of this paper

In the current contribution, we are interested in the extension of the theory
developed for (1.1) under random perturbations of the drift vector field,

2



namely considering the stochastic linear transport equation

∂tu(t, x) +
(

b(t, x) +
dBt

dt

)

· ∇u(t, x) = 0 , (1.3)

when the divergence of the drift b is not bounded, and even integrable. These
assumptions are mathematically interesting and also fundamental for some
physical applications. Moreover, the uniqueness results are false under this
assumptions for the corresponding deterministic equation (1.1), see for in-
stance [24] Section IV.1.

Let us recall that, the theory for the stochastic linear transport equation
(1.3) has been developing quite well. Indeed, the first and influential result in
this direction was given by F. Flandoli, M. Gubinelli, E. Priola [30]. In that
paper, they obtained wellposedness of the stochastic problem for an Hölder
continuous drift term (with some integrability conditions on the divergence),
where their approach is based on a careful analysis of the characteristics.
Since the paper [30], there exist a considerable list of important correlated
results, to mention a few [7], [8], [25], [30], [31], [34] [42], [44], [45], [52]. For
related works see [3], [4], [18], [32], [33] and [46].

It is well known that, when divergence of b is not bounded we may develop
concentrations or vacuum in the continuity equation, which is related to the
transport equation, at least formally. Indeed, let us consider the continuity
equation (deterministic case)

∂tv(t, x) + b(t, x) · ∇v(t, x) = −v(t, x) divb(t, x).

Applying the simple change of variables u = v e
∫
t divb, we get the linear trans-

port equation (1.1). Therefore, boundeness of divb prevents some physical
extreme cases, but which are interesting for applications. For instance, the
transport-continuity equation with unbounded divergence is an important
application to hyperbolic systems that, can be written as one scalar conser-
vation law plus one transport-continuity equation, where the divergence of
the drift term is a measure, see [16].

Here, we consider the stochastic linear transport equations such that divb
is not bounded, first, and then, even integrable. Hence we have to deal with
a more general sense of solutions, and in the second case the uniqueness
property gives up its place to a selection principle (see next section).
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1.3 Selection principle

It is well known that many partial differential equations cannot, in general,
have a classical solution, at least for several important applications. Then,
one may adopt the concept of weak solutions (for PDEs in divergence form) or
for instance, the concept of viscosity solutions as introduced by P.L. Lions,
M. G. Crandall [15]. Unfortunately, the concepts of nonclassical solutions
permit nonuniqueness. Therefore, it is natural to inquiry if there is a selection
principle (or admissibility criteria), which would from the physical viewpoint
select the correct physical solution among all nonclassical ones, and ensure
the uniqueness of a nonclassical solution from the mathematical viewpoint.

There exist some strategies to tackle the above problem. One of them is
the concept of entropy solutions for conservation laws, where an adicional
equation is considered, in fact an inequality, which is automatically satisfied
for classical solutions, but play the role of a selection principle for weak ones.
The existence of entropies for the scalar case is trivial, but more delicate
for systems of conservation laws, see [9]. Similarly, we address the reader
to the concept of maximal dissipation introduced by C.M. Dafermos [19],
and well adapted by E. Feireisl [27] to play the role of a selection principle,
which is violated by the oscillatory solutions (obtained in the process of
convex integration) as introduced by C. DeLellis, L. Székelyhidi [23]. In
addition, we address the reader to some recent results of non-uniqueness for
(deterministic) transport equations obtained also via convex integration, see
S. Modena [41] (and references therein).

Some types of approximations are also used to guarantee uniqueness at the
approximate level, and then establishing an admissible criteria. For instance,
the zero-viscosity limit works well to seek for (admissible) viscosity solutions
of Hamilton-Jacobi equations. Furthermore, the weak solutions for scalar
conservation laws that are uniquely selected by entropy selection principle,
coincide with solutions obtained by the vanishing viscosity method, see C.
Dafermos [17]. Albeit, the zero-viscosity limit of weak solutions of Navier
Stokes equations, which are not Leray type, does not select a unique solution
of the Euler equations, see T. Buckmaster, V. Vicol [12]. Therefore, the
vanishing viscosity limit is still poorly mathematically understood at this
time.
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1.4 The contribution of this paper is two-fold

The first result establishes the existence and uniqueness of the equation (1.3)
on the class of quasi-regular solution, assuming that b ∈ L2([0, T ] × R

d) ∩
L∞([0, T ]× R

d) and div b ∈ L1
loc([0, T ]× R

d). In the second result, we show
that the smoothing acts as a selection criterion when b ∈ L2([0, T ] × R

d) ∩
L∞([0, T ]× R

d), that is, the equation with regularized drift term converges
to only one week-limit point in L2

loc(Ω× [0, T ]×R
d). The precise definitions

and statements will be presented in Section 2.

One remarks that, both results cited above are intrinsically stochastic.
Then, we list some others known conditions on the divergence, related to
this paper, in other to obtain uniqueness of solution to transport-continuity
equations. In [43] is showed uniqueness when the divergence is the BMO
space. In [13] it is assumed some global exponential integrability conditions
(both results for the deterministic equation). In [8] is showed uniqueness of
the stochastic transport-continuity equation when the divergence is in Lq

t (L
p
x)

with d/p+ 2/q < 1.

This paper is organized as follows. In the next section we present precisely
the setting, introduce some notation, define the class of quasiregular weak
solutions, and week-asymptotic solutions. Also we state the main results of
this paper. In Section 3, we present the proof of the main results. To ease
the presentation, the proofs of some technical results are postponed to the
Appendix.

2 Statements of the Main Results

The aim of this section is to present the setting and suitable definitions
of weak solutions to equation (1.3), adapted to treat the problem of well-
posedness under our very weak assumptions on the regularity of the coeffi-
cients and the initial condition. Moreover, we state the main results of this
paper.

Hypothesis 2.1. We assume the following conditions for the vector field b,

b ∈ L2
(

[0, T ]× R
d
)

∩ L∞
(

[0, T ]× R
d
)

, (2.4)

div b ∈ L1
loc([0, T ]× R

d) . (2.5)
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Moreover, the initial condition is taken to be

u0 ∈ L2(Rd) ∩ L∞(Rd) . (2.6)

We shall work on a fixed time interval t ∈ [0, T ], and throughout the
paper we will use a given probability space (Ω,P,F), on which there exists
an R

d-valued Brownian motion Bt for t ∈ [0, T ]. We will use the natural
filtration of the Brownian motion Ft = FB

t , and restrict ourselves to consider
the collection of measurable sets given by the σ-algebra F = FT , augmented
by the P-negligible sets. Moreover, for convenience we introduce the following
set of random variables, called the space of stochastic exponentials

X :=
{

F = exp
(

∫ T

0

h(s) · dBs −
1

2

∫ T

0

|h(s)|2 ds
)
∣

∣

∣
h ∈ L2

(

[0, T ];Rd
)

}

.

Further details on stochastic exponentials and some useful properties are
collected in the Appendix. In particular, the technical assumption that the σ-
algebra we are using is the one provided by the Brownian motion is essential
to ensure that the family of stochastic exponentials provides a set of test
functions large enough to obtain almost sure uniqueness.

The next definition tells us in which sense a stochastic process is a weak so-
lution of (1.3). Hereupon, we will use the summation convention on repeated
indices.

Definition 2.2. Under conditions (2.4), (2.5) and (2.6), a stochastic process
u ∈ L∞

(

Ω× [0, T ]×R
d
)

is called a quasiregular weak solution of the Cauchy
problem (1.3), when

• (Weak solution) For any test function ϕ ∈ C∞

c (Rd), the real valued
process

∫

u(t, x)ϕ(x)dx has a continuous modification which is an Ft-
semimartingale, and for all t ∈ [0, T ], we have P-almost surely
∫

Rd

u(t, x)ϕ(x)dx =

∫

Rd

u0(x)ϕ(x) dx+

∫ t

0

∫

Rd

u(s, x) bi(s, x)∂iϕ(x) dxds

+

∫ t

0

∫

Rd

divb(s, x)u(s, x)ϕ(x) dx ds

+

∫ t

0

∫

Rd

u(s, x) ∂iϕ(x) dx ◦dB
i
s .

(2.7)
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• (Regularity in Mean) For each function F ∈ X, the deterministic func-
tion V := E[uF ] is a measurable bounded function, which belongs to
L2([0, T ];H1(Rd)) ∩ C([0, T ];L2(Rd)).

One remarks that, the stochastic integration in this paper is to be under-
stood in the Stratonovich sense. This is often considered to be the natural
one for this kind of problems, that is, in view of the Wong-Zakai approxima-
tion theorem. Moreover, it is useful for computations to present also the Ito
formulation of equation (2.7). It reads

∫

Rd

u(t, x)ϕ(x) dx =

∫

Rd

u0(x)ϕ(x) dx (2.8)

+

∫ t

0

∫

Rd

u(s, x)
(

b(s, x) · ∇ϕ(x) + ϕ(x)divb(s, x)
)

dxds

+

∫ t

0

(

∫

Rd

u(s, x) ∇ϕ(x) dx
)

· dBs

+
1

2

∫ t

0

∫

Rd

u(s, x) ∆ϕ(x) dxds .

Then, we are read to state our first main result.

Proposition 2.3. Under the conditions of Hypothesis 2.1, there exist quasi-
regular weak solutions of the Cauchy problem for the linear stochastic trans-
port equation (1.3).

The key hypothesis to prove existence of quasiregular solutions, under
Hypothesis 2.1, is condition (2.4) which allows to obtain a-priori estimates.
The existence result is somehow classical (see for example [30] ), but we still
have to check the regularity in mean of such solutions.

For the uniqueness, let us consider the following family of parabolic equa-
tions, that is to say

∂tV (t, x) +
(

b(t, x) + h(t)
)

· ∇V (t, x) =
1

2
∆V (t, x) (2.9)

with h(t) ∈ L2(0, T ). We will show (see Lemma 2.4 below) that for a quasireg-
ular weak solution u to the stochastic transport equation (1.3), its expected
value V = E[uF ] against any stochastic exponential F solves, as soon as it
is sufficiently regular, a parabolic equation of the family (2.9), and therefore,
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as one could then expect, is unique. Using the uniqueness result not only for
a single equation but for the whole family (2.9), and looking at stochastic
exponentials as test functions (they form a family which is large enough),
we are able to obtain almost sure uniqueness. This idea was introduced in
[26], the new ingredient in this work is to show uniqueness with unbounded
divergence. The following lemma is proved in [26] and after that, we state
the uniqueness result.

Lemma 2.4. If u is a quasiregular weak solution of (1.3), then for each
function F ∈ X, the deterministic function V := E[uF ] satisfies the parabolic
equation (2.9) in the weak sense, with initial condition given by V0 = u0.

Proof. Take any F ∈ X and any quasiregular weak solution u. By definition,
V (t, x) ∈ L2

(

[0, T ];H1(Rd)
)

∩ C
(

[0, T ];L2(Rd)
)

. Consider the Itô integral
form of the equation satisfied by u, as given in (2.8). To obtain an equation
for V we multiply this equation by F and take expectations:
∫

Rd

V (t, x)ϕ(x) dx =

∫

Rd

V (0, x)ϕ(x) dx

+

∫ t

0

∫

Rd

V (s, x)
(

b(s, x) · ∇ϕ(x) + ϕ(x)divb(s, x)
)

dxds

+ E

[

∫ t

0

(

∫

Rd

u(s, x) ∇ϕ(x) dx
)

· dBs F
]

(2.10)

+
1

2

∫ t

0

∫

Rd

V (s, x) ∆ϕ(x) dxds .

By definition of quasiregular weak solutions,
∫

Rd u(·, x)ϕ(x) dx is an adapted
square integrable process for any ϕ ∈ C∞

c (Rd). Therefore,

Ys =

∫

Rd

u(s, x)∇ϕ(x) dx

is also an adapted square integrable process. The expected value of the
stochastic integral on the third line of (2.10) can be rewritten as the expected
value of a Lebesgue integral against a certain function h ∈ L2

(

[0, T ]
)

due to
the properties of stochastic exponentials:

E

[

∫ t

0

(

∫

Rd

u(s, x) ∇ϕ(x) dx
)

· dBs F
]

=

∫ t

0

∫

Rd

V (s, x)h(s) · ∇ϕ(x) dxds .
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This is shown in detail in Lemma A.4 in the Appendix.

Now, due to the regularity of V , we see that V is a weak solution of the
parabolic equation (2.9), that is to say, for each test function ϕ ∈ C∞

c (Rd)
∫

Rd

V (t, x)ϕ(x) dx =

∫

Rd

V (0, x)ϕ(x) dx

+

∫ t

0

∫

Rd

V (s, x)
(

b(s, x) · ∇ϕ(x) + ϕ(x)divb(s, x)
)

dxds

+

∫ t

0

∫

Rd

V (s, x)h(s) · ∇ϕ(x) dxds

−
1

2

∫ t

0

∫

Rd

∇V (s, x) · ∇ϕ(x) dxds . (2.11)

As explained in the Appendix, due to the properties of stochastic exponen-
tials we have that F is a martingale with mean 1. Since u0 is deterministic,
it immediately follows that V0 = E

[

u0F
]

= u0.

Then, we can state the uniqueness result.

Theorem 2.5. Under the conditions of Hypothesis 2.1, uniqueness holds for
quasiregular weak solutions of the Cauchy problem for the linear stochastic
transport equation (1.3) in the following sense: if u, v ∈ L∞

(

Ω× [0, T ]×R
d
)

are two quasiregular weak solutions with the same initial data u0, then u = v
almost everywhere in Ω× [0, T ]× R

d.

Now, we consider the second main result of this paper.

To this end, we say that a random field {S(t, x) : t ∈ [0, T ], x ∈ R} is a
spatially dependent semimartingale if for each x ∈ R, {S(t, x) : t ∈ [0, T ]}
is a semimartingale in relation to the same filtration {Ft : t ∈ [0, T ]}. If
S(t, x) is a C∞-function of x and continuous in t almost everywhere, it is
called a C∞-semimartingale. See [35] for a rigorous study of spatially depend
semimartingales and applications to stochastic differential equations.

In the following, we introduce a new concept of solution for the stochastic
transport equation (1.3).

Definition 2.6. We say that u in L2(Ω×[0, T ];L2
loc(R

d))∩L∞(Ω×[0, T ]×R
d)

is a week-asymptotic solution of the Cauchy problem for the linear stochastic
transport equation (1.3), if

9



1. There exists a sequence of C∞-semimartingales {uǫ}ǫ>0, such that u =
limǫ→0 uǫ weak in L

2(Ω×[0, T ], L2
loc(R

d)) and ∗−weak in L∞(Ω×[0, T ]×
R

d).

2. For all ǫ > 0, the semimartingale uǫ verifies

uε(t, x, ω) = uǫ0(x) +

∫ t

0

∇uε(s, x, ω) · bε(s, x)ds++

∫ t

0

∇uε ◦ dBt(ω),

where uǫ0 and bε are mollfiers approximation of u0 and b respectively.

Then, we have the following selection principle.

Proposition 2.7. Under conditions (2.4) and (2.6), there exists a unique
week-asymptotic solution of the Cauchy problem for the linear stochastic
transport equation (1.3).

3 Strategy of Proofs

3.1 Existence Proof

The main issue of this section is to prove Proposition 2.3.

Proof of Proposition 2.3. We divide the proof into two steps. First, using
an approximation procedure we shall prove that the problem (1.3) admits
weak solutions under our hypothesis. Then, in the second step, we show that
the solutions obtained as limit of regularized problems in the first step are
indeed quasiregular solutions.

Step 1: Weak solution property. Let {ρε}ε>0 be a family of standard
symmetric mollifiers with compact support. Using this family of functions
we define the family of regularized coefficients as bε(t, x) = (b(t, ·) ∗ ρε(·))(x).
Similarly, define the family of regular approximations of the initial condition
uε0(x) = (u0(·) ∗ ρε(·))(x).

One remark that, any element bε, uε0 of the two families we have defined is
smooth (in space) and compactly supported, hence with bounded derivatives
of all orders. Then, for any fixed ε > 0, the classical theory of Kunita, see
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[35] or [36], provides the existence of a unique solution uε to the regularized
equation

{

duε(t, x, ω) +∇uε(t, x, ω) ·
(

bε(t, x)dt+ ◦dBt(ω)
)

= 0 ,

uε
∣

∣

t=0
= uε0

(3.12)

together with the representation formula

uε(t, x) = uε0
(

(φε
t)

−1(x)
)

(3.13)

in terms of the (regularized) initial condition and the inverse flow (φε
t)

−1

associated to the equation of characteristics of (3.12), which reads

dXt = bε(t, Xt) dt+ dBt , X0 = x .

If uε is a solution of (3.12), it is also a weak solution, which means that
for any test function ϕ ∈ C∞

c (Rd), uε satisfies for all t ∈ [0, T ], the following
equation (written in Itô form)

∫

Rd

uε(t, x)ϕ(x) dx =

∫

Rd

uε0(x)ϕ(x) dx+

∫ t

0

∫

Rd

uε(s, x) bε(s, x) · ∇ϕ(x) dxds

+

∫ t

0

∫

Rd

uε(s, x) div bε(s, x)ϕ(x) dxds

+

∫ t

0

∫

Rd

uε(s, x) ∂iϕ(x) dx dB
i
s +

1

2

∫ t

0

∫

Rd

uε(s, x)∆ϕ(x) dxds .

(3.14)
To prove the existence of weak solutions to (1.3) we shall show that the
sequence uε admits a convergent subsequence, and pass to the limit in the
above equation along this subsequence. This is done following the classical
argument of [51, Sect. II, Chapter 3], see also [30, Theorem 15].

By the representation formula (3.13) itself, we also get the uniform bound
in L∞

(

Ω× [0, T ]×R
d
)

. Therefore, there exists a sequence εn → 0 such that
uεn weak-⋆ converges in L∞ and weakly in L2(Ω × [0, T ], L2

loc(R
d)) to some

process u ∈ L∞

(

Ω× [0, T ]×R
d
)

∩L2(Ω× [0, T ], L2
loc(R

d)). To ease notation,
let us denote εn by ε and for every ϕ ∈ C∞

c (Rd),
∫

Rd u
ε(t, x)ϕ(x) dx by uε(ϕ),

including the case ε = 0.

11



Clearly, along the convergent subsequence found above, the sequence of
nonanticipative processes uε(ϕ) also weakly converges in L2

(

Ω×[0, T ]) to the
process u(ϕ), which is progressively measurable because the space of non-
anticipative processes is a closed subspace of L2

(

Ω × [0, T ]), hence weakly
closed. It follows that the Itô integral of the bounded process u(ϕ) is well
defined. Moreover, the mapping f 7→

∫

·

0
f(s) · dBs is linear continuous from

the space of nonanticipative L2(Ω × [0, T ];Rd)-processes to L2(Ω × [0, T ]),
hence weakly continuous. Therefore, the Itô term

∫

·

0
uε(∇ϕ) · dBs in (3.14)

converges weakly in L2(Ω× [0, T ]) to
∫

·

0
u(∇ϕ) · dBs.

Note that the coefficients bε and divbε are strongly convergent in L2([0, T ]×
R

d) and L1
loc

(

[0, T ] × R
d
)

respectively. This implies that bε · ∇ϕ + ϕdivbε

strongly converges in L1([0, T ];L1(Rd)) to b · ∇ϕ + ϕdivb because ϕ is of
compact support. We can therefore pass to the limit also in all the remaining
terms in (3.14), to find that the limit process u is a weak solution of (1.3).

Step 2: Regularity. First, let us denote by Y the separable metric space
C([0, T ];L2(Rd)), and consider a solution uε of the regularized problem (3.12).
For any F ∈ X, the function Vε(t, x) := E[uε(t, x)F ] is regular and we can
apply Lemma 2.4 to get

Vε(t, x) = V ε
0 (x)−

∫ t

0

∇Vε(s, x) ·
(

bε(s, x) + h(s)
)

ds+
1

2

∫ t

0

∆Vε(s, x) ds .

Rewrite this in differential form:

∂tV
2
ε (t, x) = −∇V 2

ε (s, x) ·
(

bε(s, x) + h(s)
)

+ Vε∆Vε(s, x) .

Now, integrating in time and space we get

∫

Rd

V 2
ε (t, x) dx =

∫

Rd

(

V ε
0

)2
(x) dx

− 2

∫ t

0

∫

Rd

∇Vε(s, x)Vε(s, x)b
ε(s, x) dxds

−

∫ t

0

∫

Rd

∇
(

V 2
ε

)

(s, x) · h(s) dxds

−

∫ t

0

∫

Rd

∣

∣∇Vε(s, x)
∣

∣

2
dxds ,
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and rearranging the terms conveniently we obtain the bound

∫

Rd

V 2
ε (t, x) dx+

∫ t

0

∫

Rd

∣

∣∇Vε(s, x)
∣

∣

2
dxds ≤

∫

Rd

(

V ε
0

)2
(x) dx

+ 2

∫ t

0

∫

Rd

|∇Vε(s, x) Vε(s, x) b
ε(s, x)| dxds

≤

∫

Rd

(V ε
0 )

2(x) dx

+ C

∫ t

0

∫

Rd

|Vε(s, x)|
2 dxds+

1

4

∫ t

0

∫

Rd

|∇Vε(s, x)|
2 dxds ,

(3.15)
where the positive constant C can be chosen uniformly in ε. Then, we can
apply Grönwall’s Lemma to obtain

∫

Rd

V 2
ε (t, x) dx ≤ C

∫

Rd

(V ε
0 )

2(x) dx, (3.16)

and plugging (3.16) into (3.15), we also get

∫ t

0

∫

Rd

∣

∣∇Vε(s, x)
∣

∣

2
dxds ≤ C

∫

Rd

(

V ε
0

)2
(x) dx . (3.17)

From (3.16) and (3.17) we deduce the existence of a subsequence εn (which
can be extracted from the subsequence used in the previous step) for which
Vεn(t, x) converges weakly to the function V (t, x) = E[u(t, x)F ] in Y and such
that ∇Vn(t, x) converges weakly to ∇V (t, x) in L2([0, T ]× R

d). This allows
us to conclude that V ∈ L2([0, T ];H1(Rd)) ∩ C([0, T ];L2(Rd)). Moreover,
since u is a bounded function, this carries over to V .

3.2 Uniqueness Proof

In this section, we shall prove Theorem 2.5. The proof relies on the com-
mutator Lemma 3.1, below. If applied in the usual way, this lemma requires
to have W 1,1 regularity either for the drift coefficient b or for the solution u.
This is precisely what we want to avoid: in our setting we have neither of
them, since we want to deal with possibly discontinuous solutions and drift
coefficients. However, the key observation is that, it is enough to ask such

13



Sobolev regularity for the expected values V (t, x) = E[u(t, x)F ] for F ∈ X,
and not on the solution u itself.

Before stating and proving the main theorem of this section, we shall
introduce some further notations and the key lemma on commutators. We
stress that in this section we will be working under both the sets of Hypothesis
2.1.

Let {ρε} be a family of standard positive symmetric mollifiers. Given two
functions f : Rd 7→ R

d and g : Rd 7→ R, the commutator Rε(f, g) is defined
as

Rε(f, g) := (f · ∇)(ρε ∗ g)− ρε ∗ (f · ∇g) . (3.18)

The following lemma is due to Le Bris and Lions [37].

Lemma 3.1. (C. Le Bris - P. L.Lions ) Let f ∈ L2
loc
(Rd), g ∈ H1(Rd).

Then, passing to the limit as ε→ 0

Rε(f, g) → 0 in L1
loc
(Rd) .

Proof of Theorem 2.5. The proof relies on energy-type estimates on V
(see equation (3.21) below) combined with Grönwall’s Lemma. However, to
rigorously obtain (3.21) two preliminary technical steps of regularization and
localization are needed, where the above Lemma 3.1 will be used to deal with
the commutators appearing in the regularization process.

Step 0: Set of solutions. Remark that the set of quasiregular weak so-
lutions is a linear subspace of L∞

(

Ω × [0, T ] × R
d
)

, because the stochastic
transport equation is linear, and the regularity conditions is a linear con-
straint. Therefore, it is enough to show that a quasiregular weak solution u
with initial condition u0 = 0 vanishes identically.

Step 1: Smoothing. Let {ρε(x)}ε be a family of standard symmetric mol-
lifiers. For any ε > 0 and x ∈ R

d we can use ρε(x − ·) as test function in
the equation (2.11) for V . Observe that considering only quasiregular weak
solutions starting from u0 = 0 results in V0 = 0. Using the regularity of V ,

14



we get

∫

Rd

V (t, y)ρε(x− y) dy = −

∫ t

0

∫

Rd

(

b(s, y) · ∇V (s, y)
)

ρε(x− y) dyds

−

∫ t

0

∫

Rd

(

h(s) · ∇V (s, x)
)

ρε(x− y) dyds

−
1

2

∫ t

0

∫

Rd

∇V (s, y) · ∇y ρε(x− y) dyds .

For each t ∈ [0, T ], we set Vε(t, x) = V (t, x) ∗ ρε(x), and using the definition
(3.18) of the commutator

(

Rε(f, g)
)

(s) with f = b(s, ·) and g = V (s, ·), we
have

Vε(t, x) +

∫ t

0

(

b(s, x) + h(s)
)

· ∇Vε(s, x) ds−
1

2

∫ t

0

∆Vε(s, x) ds

=

∫ t

0

(

Rε(b, V )
)

(s) ds .

Due to b and V regularities, given by (2.4), and the solution Definition 2.2,
one easily obtains that Rε(b, V ) ∈ L1

(

[0, T ];L1
loc(R

d)
)

. Therefore, Vε is dif-
ferentiable in time. To obtain an equation for V 2

ε we can differentiate the
above equation in time, multiply by 2Vε and integrate again. We end up with

V 2
ε (t, x) +

∫ t

0

(

b(s, x) + h(s)
)

· ∇
(

V 2
ε (s, x)

)

ds−

∫ t

0

Vε(s, x)∆Vε(s, x) ds

= 2

∫ t

0

Vε(s, x)Rε(b, V ) ds .

(3.19)
Remark that, by definition of solution, V is bounded. Therefore, Vε is uni-
formly bounded. It follows that all the terms above have the right integra-
bility properties, and the equation is well-defined.

Step 2: Energy inequality and Passage to the limit. Integrating equation

15



(3.19) in space, we have
∫

Rd

V 2
ε (t, x) dx+

∫ t

0

∫

Rd

|∇Vε(s, x)|
2 dxds

≤ 2

∫ t

0

∫

Rd

|Vε(s, x)∇Vε(s, x) · b(s, x)| dxds

+ 2

∫ t

0

∫

Rd

|Vε(s, x)Rε(b, V )| dxds.

Then we obtain
∫

Rd

V 2
ε (t, x) dx+

1

2

∫ t

0

∫

Rd

|∇Vε(s, x)|
2 dxds

≤ C

∫ t

0

∫

Rd

|Vε(s, x)|
2 dxds

+ 2

∫ t

0

∫

Rd

|Vε(s, x)Rε(b, V )| dxds,

(3.20)

where the positive constant C can be chosen uniformly in ε. Recall that
u is bounded, so that V and Vε are (uniformly) bounded too. Moreover,
by standard properties of mollifiers, it follows that Vε → V strongly in
L2

(

[0, T ];H1(Rd)
)

∩ C([0, T ];L2(Rd)), and we can use Lemma 3.1 and the
uniform boundedness of Vε to deal with the term on the right hand side.
Then, passing to the limit as ε→ 0 in the above equation (3.20), we get

∫

Rd

V 2(t, x) dx+
1

2

∫ t

0

∫

Rd

|∇V (s, x)|2 dxds

≤ C

∫ t

0

∫

Rd

|V (s, x)|2 dxds.

(3.21)

Applying Grönwall’s Lemma we conclude that for every t ∈ [0, T ], V (t, x) =
E[u(t, x)F ] = 0 for almost every x ∈ R

d and every F ∈ X.

Step 4: Conclusion. From the result of the previous step we get that
∫

[0,T ]×Rd E[u(t, x)F ]f(t, x) dxdt = 0 for all F ∈ X and f ∈ C∞

c ([0, T ] × R
d).

By linearity of the integral and the expected value we also have that
∫

[0,T ]×Rd

E
[

u(t, x) Y
]

f(t, x) dxdt = 0 (3.22)
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for every random variable Y which can be written as a linear combination
of a finite number of F ∈ X. By Lemma A.3 the span generated by X is
dense in L2(Ω), hence (3.22) holds for any Y ∈ L2(Ω). Linear combinations
of products of functions Y f(t, x) are dense in the space of test functions
ψ(ω, x, t) ∈ L2(Ω× [0, T ]× R

d), so that for any compact set K ⊂ R
d

∫

[0,T ]×K

E
[

u(t, x)ψ(ω, t, x)
]

dxdt = 0 .

Consequently, u = 0 almost everywhere on Ω× [0, T ]× R
d.

Remark 3.2. From the proof of Theorem 2.3 it is possible to see that, under
our weak hypothesis, any weak solution u of the Cauchy problem (1.3) which
is the L∞

(

Ω;Y
)

-limit of weak solutions to regularized problems has the reg-
ularity of a quasiregular weak solution, and is therefore unique by Theorem
2.5. In other words, we have also proved uniqueness in the sense of Theorem
2.5 in the class of solutions which are limit of regularized problems.

3.3 Selection principle Proof

Finally, we present the

Proof of Proposition 2.7. Let {uε}, {uδ} be two families of solutions of
the regularized problem (3.12) corresponding respectively to mollifiers {ρε}ε
and {ρδ}δ. Appling the same procedure done in the proof of the Proposition
(2.3), there are sequences εn → 0 and δn → 0 such that uεn, uδn weak-⋆
converges in L∞(Ω × [0, T ] × R

d) and weakly in L2(Ω × [0, T ], L2
loc(R

d)) to
some processes u, v ∈ L∞

(

Ω×[0, T ]×R
d
)

∩L2(Ω×[0, T ], L2
loc(R

d)). Moreover,
Vǫn = E[uǫnF ], and Wδn = E[vδnF ] converge to V and W respectively in
L2([0, T ];H1(Rd)) ∩ C([0, T ];L2(Rd)). To ease notation, let us denote εn by
ε and δn by δ.

Now, we will show that V = W . We observe that Uǫ,δ = Vǫ −Wδ verifies

Uε,δ(t, x) = (V ε
0 −W δ

0 )(x)−

∫ t

0

∇Uε,δ(s, x) ·
(

bε(s, x) + h(s)
)

ds

−

∫ t

0

∇Wδ(s, x) · (b
ε(s, x)− bδ(s, x)) ds+

1

2

∫ t

0

∆Uε,δ(s, x) ds .

17



Then we have

∂tU
2
ε,δ(t, x) = −∇U2

ε,δ(t, x) ·
(

bε(s, x) + h(s)
)

+ Uε,δ(t, x) ∆Uε,δ(t, x) + 2Uε,δ(t, x)∇Wδ(t, x) · (b
ε − bδ)(t, x).

Now, integrating in time and space we obtain

∫

Rd

U2
ε,δ(t, x) dx =

∫

Rd

(

V ε
0 −W δ

0

)2
(x) dx

− 2

∫ t

0

∫

Rd

Uε,δ(s, x)∇Uε,δ(s, x) · (b
ε(s, x) + h(s)) dxds

− 2

∫ t

0

∫

Rd

Uε,δ(s, x)∇Wδ(s, x) · (b
ε(s, x)− bδ(s, x)) dxds

−

∫ t

0

∫

Rd

∣

∣∇Uε,δ(s, x)
∣

∣

2
dxds ,

and rearranging the terms conveniently, we have

∫

Rd

U2
ε,δ(t, x) dx+

∫ t

0

∫

Rd

∣

∣∇Uε,δ(s, x)
∣

∣

2
dxds ≤

∫

Rd

(

V ε
0 −W δ

0

)2
(x) dx

+ 2

∫ t

0

∫

Rd

|Uε,δ(s, x)| |∇Uε,δ(s, x) · b
ε(s, x)| dxds

+ 2

∫ t

0

∫

Rd

|Uε,δ(s, x)| |∇Wδ(s, x) · (b
ε(s, x)− bδ(s, x))| dxds.

Then, applying Hölder’s inequality

∫

Rd

U2
ε,δ(t, x) dx+

∫ t

0

∫

Rd

∣

∣∇Uε,δ(s, x)
∣

∣

2
dxds ≤

∫

Rd

(

V ε
0 −W δ

0

)2
(x) dx

+ C

∫ t

0

∫

Rd

|Uε,δ(s, x)|
2 dxds+

1

4

∫ t

0

∫

Rd

|∇Uε(s, x)|
2 dxds

+ C(

∫ t

0

∫

Rd

|∇Wδ(s, x)|
2 dxds)1/2(

∫ t

0

∫

Rd

|bε(s, x)− bδ(s, x)|2 dxds)1/2,

where the positive constant C does not depend on ε, δ > 0. Due to Gronwall’s
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inequality, we have

∫

Rd

U2
ε,δ(t, x) dx ≤

∫

Rd

(

V ε
0 −W δ

0

)2
(x) dx

+ C(

∫ t

0

∫

Rd

|∇Wδ(s, x)|
2 dxds)1/2(

∫ t

0

∫

Rd

|bε(s, x)− bδ(s, x)|2 dxds)1/2.

(3.23)
Passing to the limit as n→ ∞, we have U = 0, that is, V = W , and arguing
as in the step 4 of the Proposition (2.5), we conclude that u = v.

Finally, we have that all sequence has subsequences that converge to the
same limit, which implies our result.

Remark 3.3. A similar concept of week-asymptotic solution have been con-
sidered by other authors and has proved to be an efficient mathematical tool
to study explicitly creation and superposition of singular solutions to various
nonlinear PDEs, see for instance [1], [2], [14], [20], [21], [50].

A Appendix

Definition A.1. Given a filtered probability space with an R
d-valued Brown-

ian motion defined on it, (Ω,F, P,Ft, Bt), for any h ∈ L2([0, T ];Rd), we can
define the random process

Ft = exp
(

∫ t

0

h(s) · dBs −
1

2

∫ t

0

|h(s)|2 ds
)

,

for t ∈ [0, T ]. Such random processes are called stochastic exponentials.

We recall that stochastic exponentials satisfy the following SDE ( see [49,
proof of Theorem 4.3.3] )

Ft = 1 +

∫ t

0

h(s)Fs dBs . (A.24)

This can be obtained by applying Itô formula to Ft. By Novikov’s condition
it also follows that any stochastic exponential Ft is an Ft-martingale, and
E[Ft] = 1.
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When t = T , we shall use the short notation F = FT and, with a slight
abuse of notation, still call the random variable F a stochastic exponential.
Let us recall the definition of the following space of random variables, which
we call the space of stochastic exponentials:

X :=
{

F = exp
(

∫ T

0

h(s) · dBs −
1

2

∫ T

0

|h(s)|2 ds
)
∣

∣

∣
h ∈ L2

(

[0, T ];Rd
)

}

.

Remark A.2. Even though it is not really essential for our proof, we point
out that for every F ∈ X there exists a unique h ∈ L2(0, T ) such that F is
the stochastic exponential of h. This can be easily shown using Itô isometry.

The following result, see [49, Lemma 4.3.2] or [40, Lemma 2.3], is a key
fact for our analysis. Recall that F = FT .

Lemma A.3. The span generated by X is a dense subset of L2(Ω).

We also have the following result.

Lemma A.4. Let F be a stochastic exponential and Ys ∈ L2
(

Ω× [0, T ]
)

an
R

d-valued, square integrable adapted process. Then,

E

[

∫ t

0

Ys · dBs F
]

=

∫ t

0

h(s) · E
[

Ys F
]

ds . (A.25)

Proof. Using the representation formula (A.24) we have

E

[

∫ t

0

Ys · dBs F
]

= E

[

∫ t

0

Ys · dBs

]

+ E

[

∫ t

0

Ys · dBs

∫ T

0

h(s)Fs · dBs

]

= E

[

∫ t

0

Ys · h(s)Fs ds
]

.

Since that Ys is Fs-adapted, we obtain

E
[

Ys Fs

]

= E
[

Ys F
]

,

and (A.25) follows.
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