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Abstract

Practical results gained from statistical theories of turbulence usually appear
in the form of an inertial range energy spectrum £(k) ~ k=% and a cut-off wave-
number k.. For example, the values ¢ = 5/3 and (k. ~ Re%/* are intimately
associated with Kolmogorov’s 1941 theory. To extract such spectral informa-
tion from the Navier—Stokes equations, [Doering and Gibbon M] introduced
the idea of forming a set of dynamic wave-numbers &y, (t) from ratios of norms of
solutions. The time averages of the , (t) can be interpreted as the 2nth-moments
of the energy spectrum. They found that 1 < g < 8/3, thereby confirming the
carlier work of [Sulem and Frisch M] who showed that when spatial intermit-
tency is included, no inertial range can exist in the limit of vanishing viscosity
unless ¢ < 8/3. Since the k,(t) are based on Navier—-Stokes weak solutions, this
approach connects empirical predictions of the energy spectrum with the math-
ematical analysis of the Navier—Stokes equations. This method is developed to
show how it can be applied to many hydrodynamic models such as the two dimen-
sional Navier—Stokes equations (in both the direct- and inverse-cascade regimes),
the forced Burgers equation and shell models.

1 Introduction

The energy spectrum of the velocity field plays an important role in fluid dynamics,
since it describes how kinetic energy distributes across scales. In turbulent flows, the
energy spectrum generally behaves as a power law in the range between the forcing
and dissipation characteristic wavenumbers, with a slope that depends critically on the
space dimension. In view of their highly fluctuating nature, turbulent flows have been
studied with statistical tools, and the form of the energy spectrum has been predicted by
using dimensional analysis, renormalization-group techniques, and stochastic or closure
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models. For a recent review of this topic, the reader is referred to|Alexakis and Biferald

2018] and [Vermal [2019).

Establishing a rigorous connection between the statistical theory of turbulence
and the mathematical analysis of the Navier—Stokes equations is a difficult problem
Doering and Qibbgn,m; Foias et all m; Constantin, m; Dgering, m; Kuksin
and Shirikyan, m; Mwﬂj, M] Let us first summarize how empirical esti-
mates for length scales in the statistical theory of homogeneous and isotropic turbulence
have traditionally been obtained in terms of the energy spectrum. In a d-dimensional
space, this is defined as

E(k) = cqa k¥ T F(k), (1)

where ¢4 is a positive constant which depends on the spatial dimension and

F;;(k) = /]Rd e kT u(x + 7, t) - u(zx, t) dV, (2)

is the Fourier transform of the velocity spatial correlation function ﬂNk_oni;nmll@gM,
]. The overline denotes an ensemble average over the realizations of the velocity
field in the statistically steady state. For a statistically stationary, homogeneous, and
isotropic field, the spatial correlation does not depend on time and the position &, but
only on the separation r. For d = 3 assume that £(k) has an inertial range between
the forcing wavenumber ¢~! and a cut-off wavenumber k. of the form

E(k) ~ 3B (1< q<3), (3)

where

= / " R2E (k) dk (@)

is the mean energy dissipation rate. By using (B]) and ignoring the energy content in the
range k > k., the mean energy dissipation rate can be estimated as €'/3 ~ pf5/3-9f3-1,
This, together with the empirical prediction € ~ U?// yields

lk, ~ Re® , (5)

which can be found in @] Here U is the root-mean square velocity and
Re = Ul/v is the Reynolds number. The 2n-th moment of the energy spectrum, i.e.

CEME (k) dk
e I E TS ©)
is then estimated as
(K, ~ (ko)™ ~Reva 2 (85). (7)
Kolmogorov’s 1941 theory sets ¢ to 5/3, which gives
(k, ~ Re3/* and (K, ~ Re*/41/4n (8)
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Table 1: Estimates for the time average of L£({kn) and corresponding predictions for the inertial-range energy spectrum.
L is the box size L for d = 2 and the forcing length scale (¢) in all the other cases. Unless otherwise specified, ¢ > 1.

System Upper bounds on L(k,) | E(k) ~ k™1
__T 5
3D Navier—Stokes a? 7 Red 2t g<$
3D Navier-Stokes a%_% Ro Shmte” <8 _2
with suppressed fluctuations ¢ 15375

3(1-1

2D Navier—Stokes (direct cascade) aj( ") Rei™ 2 g< Y
2D N avierfStolfes (direct cascade) With a;(l—%) Re (<3

monochromatic or constant e-forcing
2D Navier—Stokes (inverse cascade) ap’? Re? 2<q
Burgers al}g_%” Re!~ 2 q<2
— o 3L 5
Shell model a, " Rei in g< 3

How can a result like () be achieved for the incompressible Navier—Stokes equations?
More specifically, how can the value of ¢ be determined from the analysis? Rigorous
results for partial differential equations are conventionally expressed as estimates of
time-averages of spatial norms and not in terms of spectra. Indeed, in the language
of Sobolev norms the idea of a spectrum associated with an inertial range, as in (3],
has no meaning. How to circumvent this difficulty and extract results corresponding
to () for weak solutions of the three-dimensional Navier-Stokes equations was first
addressed by Doering and Gibbon M] twenty years ago. Moreover, in a separate
but parallel paper, Doering and Foiad M] also addressed how length scales in the
forcing can be used to achieve estimates in terms of the Reynolds number Re instead of
the less physical Grashof number Gr: see (1)) in §2for definitions of these dimensionless
quantities.

A summary of these ideas is the following: first write down the Navier—Stokes
equations on a periodic d-dimensional domain V = [0, L], where d = 2, 3

ou+u-Vu=-Vp+vAu+ f(x), V-u=0. 9)

Here u(x,t) is the velocity field, p is pressure, v is the kinematic viscosity, and f(x)
is a time-independent, mean-zero, and divergence-free body forcing. For simplicity, we
follow mgng_&miﬂnasj HZDM] in assuming that the forcing is narrow-band, i.e. it is
concentrated on wavenumbers k ~ (~!. Parseval’s equality then implies that || f||» ~
("IN fl2, where || - |[3 = [, | - [*dV. The aspect ratio of the box size to the forcing
scale is denoted as

L
_ L 1
@ =7 (10)
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As a consequence of Poincaré’s inequality, a, > 27w. The initial velocity field is taken
mean-zero, so that w(x,t) remains mean-zero at all times. In i i
| the following sequence of squared L?*-norms was introduced

Fo(t) = H,(t) + 72 [V"fll3,  n=12,... (11)
with
Hy(t) = [[V"u(-, 1)]l5 . (12)

The forcing term is included for the technical reason that the analysis involves division
by F, and thus H, may be small on certain time intervals. The time scaled] T, are
chosen in such a way that the contribution of the forcing does not dominate the time
average of H,, in the turbulent regime so the Re-scaling of the time averages of F;, and
H,, remains the same. These technical issues are addressed in §21 Then the following
family of time-dependent ratios was introduced

oo (£) = (%) o 0<r<n). (13)

The &, , have the dimension of a wavenumber and are ordered according to K, , < Kpt1,r
and Ky, < Kpr41. The quantities &, = Kk, play a special role because of their physical
meaning. Indeed, Parseval’s equality yields

H,(t) = L™y k™ |a(k, t)]? (14)

with w(k,t) as the inverse spatial Fourier transform of u(x, ). Hence

o ek ([l P + 72| FR)P)
Sk (latk D2+ 72 f(R)2)

(15)

At large Reynolds numbers, £2"(t) can therefore be regarded as the 2n-th moment of the
(instantaneous) energy spectrum. The strategy in Doering and Gibbon ﬂlﬂ)j}, which

also adopted some ideas on the forcing from Doering and Foiad m], was to find a

class of estimates of the type

(lrp) < cRed (16)
for the set of time averages (¢k,), where the brackets

(-) = limsup %/0 -dt (17)

T—o00

denote a long-time average. The specific form of &, found inDoering and Gibbonl W]

is given in Theorem [l and is also displayed in the first line of Table [l The estimate

In [Doering and Gibborl ﬂlO_Oj] the 7, had no n-dependence. However, the development of the
method to other cases sometimes requires this dependence so it has been introduced at this point.
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in (I6) in terms of Re then allowed them to make the final step which was to compare
the exponent ,, with that in () that comes from [Frisch M]

Lot (Q) <6 (18)

3—q 2n\3—gq

The direction of the inequality in ([I8) reflects that in (I€). In reality, results from
statistically stationery, homogeneous, isotropic turbulence theory are being compared
with estimates of the long-time averages of ratios of Navier-Stokes spatial norms. The
value of &, from Theorem [I] gives the range of ¢ and this turns out to be precisely

1<q<8/3 (19)

as in (Sulem and Frisch 1925], where a bound on the energy spectrum was obtained by
considering a ‘shell decomposition’ of the velocity field and examining the energy flux
across wavenumbers.

Here we will endeavour to show that this method has much greater scope and can
be applied in other circumstances, such as the 2D Navier-Stokes equations (in both
the direct- and inverse-cascade regimes), Burgers equation, and shell models. Table
[ summarises the range of ¢ for each of these cases with the details provided in the
rest of the paper. Although the spectral slopes for these systems are known, our study
shows that they can be obtained in a systematic way within the same mathematical
framework and thus confirms the wide applicability of these methods to the analysis of
hydrodynamic equations.

2 The Navier—Stokes equations in three and two dimensions

In the following, we consider the Navier—Stokes equations in both d = 3 and d = 2
dimensions. For weak solutions with initial data in L*()), the root-mean square velocity

U=L""\/(lulls) < oo. (20)

Likewise, the root-mean square of the (time-independent) forcing is f = L=2||f||,.
Suitable definitions of the Grashof and Reynolds numbers are

e Uv

iy Re= — . 21

v? T (21)
The former is a dimensionless measure of the magnitude of the forcing, whereas the
latter is the system response. Gr and Re satisfy the bound ﬂ]lleringjnd_ﬂnas], bﬁﬂj]

Gr < ¢(Re + Re?), (22)

which shows that the turbulent regime is achieved for Gr > 1. The bound in (22]) can
be rewritten in terms of the mean energy dissipation rate

e=vL™? (Hy) (23)
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as
e < c’l7* (Re’ + Re?) . (24)

Doering and Foias [2002] also proved the inequality
erf < P2 e U2 (25)

which, in turn, gives the lower bound

36_4 Grz

TP (26)

€E=cv

The L?-norms F, include a contribution from the forcing which must not dominate
(H,) as Gr — oo. This is achieved by suitably choosing the time scales 7,,. Using
Poincaré’s inequality, the assumption of a narrow-band forcing, and (20) yields

V" £ V" £13
n <c, L2(n—1) n 2 _ Cn I/€_1L2(n_l)€_2n7'3f2 (27)
(Hy) (H1)
= e VP LN 2602 <201l V22 (1 + Re)? . (28)
Therefore, a suitable definition of 7, is
—1£2
Tp = (29)
al" V(1 + Re)1+2
with )
O<5<6 for d=3 and 0=0 for d=2, (30)
so that
2|V |12 < c,Re ™ (H,,) as Gr — o0. (31)

The non-zero d-correction is required when d = 3 because, for technical reasons, the forc-

E contribution to (F},) needs to become negligible as Gr — oo |[Doering and Gibbon,

|. When d = 2, the contribution of the forcing simply must not grow faster than

H,) |Gibbon and Pavliotis, M] We shall see that the use of definition (29]) sys-

tematically improves the power of a, in the estimates of (k,). Although this is of little

importance in most cases because generally a, = O(1), it becomes essential in the study

of the inverse-cascade regime of the 2D Navier—Stokes equations, which is characterized
by large values of ay.

Finally, when d = 2 and d = 3 the F,, satisfy the following ‘ladder’ of differential
inequalities as Gr — oo (see qualifications in Appendix [Al) :

1.

Now we shall see that estimates for (k,,) differ, leading to different ranges of ¢. Through-
out this paper ¢ and ¢, denote dimensionless, generic constants.

6
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2.1 Three examples involving the 3D Navier—Stokes equations

The main result of Doering and Gibbon [2002] is an estimate for the time average of

kn for weak solutions of the 3D Navier-Stokes equations

Theorem 1 (Doering and Gibbon HQJM]) Forn>2and 0 <0< %,

— 5
Ukn) < oy ai 7 Re e ta as Gr — o0. (33)

Remark 1. Comparing the exponents of Re in (33) and (7) gives

- 5 46
- L3 — 4= 4
3—q s 2n+n’ (34)
whence . 05
<-4 — 35
1S3V 30,00 (35)

Thus, for every value of n, we find that 1 < q < % as advertised in Table [

Doering and Gibbon ﬂzogj] also investigated how the energy spectrum is modified when

the spatial fluctuations of the velocity gradients are suppressed through the assumption

IVulloe = c L7 Vul,,  2<p<oo. (36)

For p = 2, this means that as Re increases, the maximum velocity scales as the root-
mean square velocity. Higher values of p correspond to a milder suppression of fluc-
tuations, and (33)) is recovered for p = co. With approximation (36@l), Theorem [I] is
modified as follow

Theorem 2 (Doering and Gibbon [2002]). Under assumption (B6) and for n > 2

w_% 6np—5p+6
U k) < cpa, "0 " Re 2np+6) as Gr — c0. (37)

If the energy spectrum is as above, an argument analogous to that used for p = oo
shows that the scaling in Theorem [2is consistent with

8 2
l<g<=-—-. 38
1S3 (38)
In particular, p = 2 yields the Kolmogorov spectrum ¢ = 5/3. More generally, by
altering the value of p in the range 2 < p < oo we find that the upper bound of ¢,
designated as ¢, lies in the range
5 8

3C_Ib3 ()

These methods have also been applied to magnetohydrodynamic turbulence to show

that the Iroshnikov—Kraichnan total-energy spectrum can be excluded when there is no
cross-correlation between the velocity and magnetic fields |Gibbon et alJ, 2{!16].

2The difference in the power of a, compared to the original version of the theorem is due to the
use of definition (ZJ), which gives an extra factor a, ' in the estimate of (xk3): (*(k}) < ca; 'Re'™®
as Gr — 0o. The rest of the proof is unchanged.

3The exponent § can be set to zero when assumption (B0 is used.

7
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2.2 The 2D Navier—Stokes equations

Consider the Navier-Stokes equations on the periodic square V = [0, L]?. The defi-
nitions introduced in §I] extend unchanged to two dimensions (d = 2). However, the
absence of vortex stretching leads to a different estimate for the time average of x,,.

Two-dimensional turbulence is characterized by a dual cascade consisting of a direct
cascade of enstrophy (defined as ||w/||3 with w = V x u) from /7! to high wavenumbers
and an inverse cascade of energy from ¢! to low wavenumbers [Kraichnan and Mont-
gomery, 1980; [Kellay and Goldburg, 2002; Tabeling, 2002; Boffetta and Eckd, 2012].
The enstrophy cascade ends at a cutoff wavenumber k., beyond which enstrophy is
dissipated by viscosity. In an unbounded domain or in a bounded domain before statis-
tical equilibrium is established, the energy cascade continues to extend to ever smaller
wavenumbers, and a quasi-steady spectrum forms at wavenumbers between the inverse
integral scale and ¢~

We study the spectra of the two cascades separately by considering first the case
¢~ L/27 (direct cascade) and then ¢ < L (inverse cascade).

2.2.1 Direct cascade of enstrophy
The following theoremf] describes the behaviour of </<Ji) as Gr — oo while ay = O(1).

Theorem 3 (Gibbon and Pavliotis [2007]). For n >

L*(k2) < cna?(l_ﬁ)Re%_% [ln(agRe)]%_

3=

as Gr — o0. (40)

It follows that

3

3(1-1
L{k,) < cnaf(l ")Re%_% [ln(a?Re)]%_% : (41)

We want to compare this bound with a practical estimate for LK, under the assumption
that ¢ ~ L/27. Consider the mean enstrophy dissipation rate

n, = vL™? (Hy) . (42)
This is bounded [Alexakis and Doering, 12006, Gibbon and Pavliotis, 2007] and, at large

Re, can be estimated as

U3
The flow is assumed to be isotropic and to have an energy spectrum of the form
Elk) ~mPe~ g (' <k < k) (44)

4There is a small difference in the powers of a; and In Re between (@) and the original version of
the theorem. This is due to the choice of 7,,, which modifies the estimates of (x7) and (k3 ;). With
definition (29), as Gr — oo

L*(rk7) < casRe and L*(k3,) < cajRe.
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with 1 < g < 5. The mean enstrophy dissipation rate can be obtained from the energy
spectrum via the relation ﬂManjﬂd_Yﬁg]mﬂ, 1925] :

ke
N, =v / KAE(k)dk ~ vn?/303-9k5—1 (45)
4

where the contributions coming from wavenumbers k > k. have been ignored. Combin-

ing ([@3), @), and [{ET) yields

(k. ~ Rev . (46)
By plugging (@) into (@) and using (@d]), we find :
LK, ~ (K, ~ (tk)"™ 5 ~ Rewa 2 (i), (47)

We now compare ([@7) with (4I]) and conclude that the Reynolds-number scaling of K,

is consistent with that of (x,) provided that

11n — 12
3n—4

Since this must hold for all n > 2 and the right-hand side of ([48]) is a decreasing function

of n, we find that

q < (48)

11
n
Remark 2. The bound in @8] can also be derived by comparing the high-Re scaling

of the 2(n — 1)-th moment of the enstrophy spectrum with the bound for {(k, )%™~V
obtained in|Gibbon and Pavliotis .

Remark 3. The bound in [{@8) agrees with a practical estimate of |Sulem and Frisch
,@/ and a rigorous result of M/ The exponent —11/3 also describes the
enerqy spectrum of spiral structures in two-dimensional turbulence [M, ]

1<g< (49)

In numerical simulations of isotropic turbulence, the following two types of forcing
are commonly used: (i) strictly monochromatic forcings with a single wavenumber ¢!
and (ii) forcings that maintain a constant energy injection rate e, i.e.

5, Pu
[Pully’

where the operator P projects the velocity field on a finite set of spatial modes. For
these forcings, it is possible to derive a more stringent bound on gq. Indeed as Gr —> 00
the general estimate for the mean enstrophy dissipation rate

MKH, Gibbon and Pavlioti é, UKLﬂ]

f=¢€L (50)

)

(Hy) < el *aiRe’ (51)
is replaced with ﬂAl@mkiundJl)ﬂinQ, |20_0_d
(Hy) < ev*l™*ajRe®. (52)

Using (52) in the proof of Theorem [ yields the following result.

9
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Theorem 4. Forn > 2 and a monochromatic or a constant-energy-input forcing

L*(12) < caad /" Re [In(a?Re)] V> V" as Gr— oo (53)

By comparing (53)) with (47]), we find that for these types of forcing

q<3+ : (54)

n—1

which yields for every n
1<g<3. (55)

Note that, up to logarithmic corrections, Kraichnan’s prediction for the energy spectrum

in the enstrophy-cascade range is £(k) ~ k=3 [Kraichnan, |L9_6_ﬁ, 1971].

2.2.2 The inverse cascade of energy

To investigate the regime of the inverse cascade, we study the behaviour of (k,) in the
limit in which a, — oo while the Reynolds number based on the characteristic velocity
at the forcing scale is O(1). More precisely, consider u} = L™>(||luy|3), where

up(@,t) = > e*ak,t), (56)

|k|>0—1

and define
u ff

Ref = (57)

If Re; ~ 1, then /' ~ k, and the dlrect cascade of enstrophy is negligible [see
Mﬁjlld_&fﬂmlé lZD_lg] Furthermore, if the energy spectrum E(k) ~ k™7 for

L' < k < 07! and is negligible otherwise, it can be shown that [Smith and Yakhot,

1994, Mvaul, 00

U? = az_lufc (58)
and hence
Re = a\" " Re; (59)

Therefore, in the regime considered here, Re ~ aéq /2

(k,) which is relevant to the energy cascading range.

. We can now prove a bound on

Theorem 5. If E(k) is steeper than k~° and Rey = O(1), then for n > 1 and as
ay — OO
L*(k?) < ca}Re. (60)

Proof. Recall that
(Fy) < c(Hy) < cv*l™a?(Re® 4+ Re?), (61)

where the bound on (H,) can be found in |Alexakis and Doering [2006] and Gibbon and

Pavliotis M] Using the tighter bound for monochromatic or constant-energy-input
forcings would not change the result in this case.

10
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In addition, the following form of the Brezis—Gallouét inequality holds
IVl < ¢ Fy2[1 + In(Lks )] 2. (62)

Now note that, as a; — oo, the F), satisfy the same ladder as in (32) (see Appendix [Al).
Thus, following |Gibbon and Pavlioti M], we divide through the ladder by F; and
time average. We then use (62) together with x,,, < Kpy1, for 2 <r <n and Jensen’s
inequality on the logarithm to find

L2{k7,,) < e v (Fp) 2 [1+ (L% (k7 ))]'2 + cap™ (1 + Re). (63)

n,r

By using (59) and (€1]), we can see that the first term on the right-hand side behaves
as a2/ Re?ﬂ, whereas the second behaves as a) ™ "2 Re;. Since Rey = O(1),
n > 3, and ¢ < 5, the second term dominates over the first. For n > r > 2 and in the
limit @y, — oo while Rey = O(1), we thus find

L*(k2,) < ca;'(1+Re). (64)

By adapting the proofs of |Gibbon and Pavliotid M] in the manner described in Ap-

pendix [A] it is also possible to show that as a, — oo

1. F() 1. Fl
SFy < —vF + =2 d P < —vF+ -+,
510 v 1+270 an 54 v 2+27_1 (65)
which imply
L*(k]) <ca(1+Re) and  L*(k3;) <caj(l+Re). (66)

The advertised result follows from using (64]) and (66]) in

) = <<%)/ (?)/> <42 (7

O

We now move to the practical estimate for the moments of the spectrum. We remind
the reader that we are assuming that ¢ < L and ¢ ~ k., so that the contribution from
the spectrum at wavenumbers in the enstrophy cascading range is negligible. Assuming
that £(k) ~ k77 with 1 < ¢ < 5 in the range L™ < k < 7!, we find

g1
/ BRER)E g
2n 1 2n _ JL—1
i = ~(5)
£(k)dk

L*l

(68)

or
LK, ~a, 9792 (69)

11
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In order to compare (69) with the mathematical bound for L(k,), we recall (B9) and
the assumption Re; = O(1). Thus, (69) can be recast as

LKn ~ az_(q_l)/2n_(q_l)/4Rel/2 (70)
and the practical estimate for LK, is consistent with the bound for L(k,) if

2 + 5n — 2n?

n 4+ 2 (1)

qz=
Since the right-hand side is a decreasing function of n, this means that the constraint

on ¢ is fixed by the n =1 case, i.e.
5
> Z.
173
This lower bound agrees with an earlier result of M] and with Kraichnan’s
prediction for the energy cascading range ﬂKLajdmaﬂ, 11967, 1921|]. That the bound is
obtained for n = 1 rather than considering the large-n limit is consistent with the fact

that the inverse energy cascade is a large-scale phenomenon.

(72)

3 Burgers equation

All the quantities introduced in §2 can be defined analogously for the Burgers equation
by taking d = 1 on the periodic interval V = [0, L]

O+ upu = vO*u + f. (73)

In particular, we can again set 6 = 0 in the definition of 7,,.

The following two lemmas can be proved by adapting the proofs for the 3D Navier—

Stokes equations [see [Doering and Gibbor, |20£ﬁ] to the Burgers equation :

Lemma 1. Forn > 1 and as Gr — oo, the F,, satisfy the ladder in (32).

Lemma 2. There exists a positive constant ¢ such that, as Gr — 00,
*{K3}) < ca;'Re. (74)
We now prove the analogue of Theorems [Il and [3 for the Burgers equation.

Theorem 6. Forn > 2, as Gr — oo

Proof. The inequality

18,1]|oo < ¢ |0pully*|0%ully? < e AR (76)

12
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turns the ladder in (32) into
1

§Fn S —vEp + 6 <F11/4F21/4+Tr:1> . (77)

By dividing through by F,,, time averaging, and noting that the forcing term is sub-
dominant and can therefore be ignored, we find

1/4 -1/4 n Fy 14 1/2 Cn, 1/2 141/2 Cn
<“n+1n> y <F/F/> _<(E> F1/ :7< 2/1F1/><7</€2,1>1/2<F1>1/2

(78)
and hence, by using Jensen’s inequality,

(Knim) < cav™ w3 )Y, (79)

The estimate of [Doering and Foias M] for the mean energy dissipation rate, and

consequently the corresponding estimate for (F}), also hold for the Burgers equation.
As Gr — oo, we thus have (F}) < ¢(H;) < cv*(~3a,Re®. Inserting this estimate into
[@Q) with n =1 yields as Gr — oo

(k2,) < cl2a}"Re?. (80)

Together (79) and ([8Q) give
() < (i) < en €0y Re. (81)

We also have

D= ((5) )= ((8) (R) )= (st <0t ot

Therefore, by using (&) and Lemma 2] we find

< () < ()T (DT < el TR (83
]

We assume again that the flow is isotropic, the forcing is large-scale with ¢ ~ L/2,
and the energy spectrum is as in ([B]) with 1 < ¢ < 3. By proceeding as for d = 3 (see
§ ), we find

(k. ~ Re (84)

and

(K, ~ (tk)"™ 5 ~ Rew7 2 (57), (85)

Therefore, after comparing (83]) with Theorem [6] we conclude that the scaling of (K,
is consistent with that of ¢(x,) provided that

1<g<2. (86)

Remark 4. The energy spectrum of the Burgers equation for a large-scale forcing is

known to behave as k™% [e.q. |Frisch et QZJ, 2(213, BQm'tthzl, 2(2141].

13
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4  Shell models

In the ‘Sabra’ shell model [L’vov et all, |L9£E], the velocity variables u; are complex and

satisfy the system of ordinary differential equation

iy = i(ark; W g u oyt askiug g wh_ —ask,_yui_qu_y)—vkiu+f;, j=1,2,3,...,
(87)

where u} is the complex conjugate of u;, v is the kinematic viscosity, f; are the forcing
variables, and k; = koA with kg > 0 and A > 1. The ‘boundary conditions’ are
ug = u_1 = 0, while the coefficients ai, as, as are real and such that a; + as + a3 = 0.
This ensures that the kinetic energy

E=Y|ul (88)
j=1

is conserved when v = 0 and f; = 0 for all j. Moreover, the time-averaged energy

dissipation rate is
6:V<Zk]2|uj|2>. (89)
j=1

The forcing is assumed to be of the form f; = F¢;_;., where F is a complex constant
and ¢, = 0 for p < 0 and p > jmax — Jy. Therefore, ky = koN/ and kpax = koA/me
are the characteristic and maximum wavenumbers of the forcing, respectively. Under
these assumptions and if the initial energy is finite, the shell model has globally regular

solutions |Constantin et al., M] Finally, Gr and Re are defined as in {I] with U =
VIE), €= k', ap = ky/ky, and f = |F].
The shell-model analogues of H,, and F;, are

o= SK FamH SR 0
j=1

j=1

and 7, is as in (29) with 6 = 0. As in the case of the Navier-Stokes equations, the
definition of 7,, ensures that (F,,) and (H,,) scale in the same way as Gr — oco. Indeed,
e satisfies an inequality analogous to ([23) (see (B.8) in Appendix [Bl) which gives the
same lower bound as in (26]). Using used a shell-model version of Poincaré’s inequality

e < vk "™V (H,) . (91)

we find

72 Z 1P = bny_zkfc"_‘la;z("_l)(l + Re) 2 f?

5The results would be the same for the Gledzer-Ohkitani-Yamada (GOY) shell model [Gledzer,
11973, [Yamada and Ohkitani, [1987].
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= b2k a2 V(1 + Re)2Gr? (92)
< ebr K Ve P e < eby (H,)

where b, = Z;’:’O"_jf A22|g 2. Tt was proved in Vincenzi and Gibbonl [2021] that,

analogously to the Navier—Stokes equations,

Gr < ¢(Re + Re?) (93)

and as Gr — oo

(H)) < cv*l™*Re?. (94)
In addition, as Gr — oo the Fj, satisfy the same ladder of differential inequalities as in
B2) with ||Vu||w replaced with sup, ;. kjlu;l f

1.
gin < vk +cn< sup k|| +T{1>Fn- (95)

1<j<o0

In shell models, the energy spectrum is defined as €(k;) = k; ' (Ju;(t)[*) [Yamada and
Ohkitani, M] Therefore, in the limit Gr — oo, the quantity x>" = F,/Fy behaves as
the ratio of the (2n + 1)-th to the first moment of the instantaneous energy spectrum.
To obtain the Re-scaling of (k,,), we first need the shell-model analogue of Lemma 2

Lemma 3. As Gr — oo,
k‘;2</€%> < ca; 'Re. (96)

Proof. The energy evolution equation for the shell model is

dE

= 2w+ > (fus+ frug) . (97)

Jj=1

We add and subtract byy7{k? f* to the right-hand side and apply the Cauchy-Schwarz
inequality to the forcing term to obtain

1.
5t < —vF + b2k f2 4 by? FHY (98)

An application of Young’s inequality with parameter g7¢ yields

1 . HO g blyl{?]% 9 9
-y —VvFi+—+|=+ boT, f , 99

9Vincenzi and Gibbon [2021] proved the ladder for shell models with a single time scale 7. The
proof can be easily modified to include an n-dependent time scale by following the same approach as

in Appendix [Al
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where we have used 7, = CLZITO and g is such that the coefficients of Hy and by72f? are

the same: ”»
2 2274
boa? bia; 78 '
Therefore, as Gr — oo we find g ~ 7, ! and ([@9) becomes
1 d _1
§F0 < —I/F1 + CTO F(] . (101)
By dividing by Fy and time averaging, we finally get
(k1) <cvirgt. (102)
The lemma is proved by replacing the definition of 7. O
Lemma 4. Forn > 1, as Gr — oo
ke (Kna) < caRe¥™ (103)

Proof. Dividing through (@3] by F,,, time averaging, and ignoring the subdominant
forcing term yields

</~€i+17n> < e vt <Sli}1) kj|Uj|> < et <F11/2> < et <F1>1/2 . (104)

X

The advertised result is obtained by using @), (F1) < ¢ (Hi), and (k,1) < (k2,)"? <
<K’i+l,n>1/2‘ 0

The estimates in the above lemmas can be used to prove the following theorem :
Theorem 7. Forn > 1, as Gr — o0
ki kn) < Coay PR (105)

Proof. The proof is analogous to that of Theorem 1 in [Doering and Gibbon ﬂzogj] To

achieve this, first note that

2n—1 2n—1

_2n 2n 2(n—1) 1 2n n 1 1
(k) < < > =<mn—%;1 <z~e§)%~> <o) (D% (106)

and then use the estimates from Lemmas B and @l O

Remark 5. The scaling of (k) is the same as in Theorem[d for p = 2. This strengthens
the parallel which was drawn in ) ,tZ_(ZZZV between shell models and
the Navier—Stokes equations with suppressed velocity gradient fluctuations (p = 2).
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By analogy with (@), we now define K" as

o T Rl X e () o
CTUSR) T S RER)

We also assume k; = k1 and that there exists k. = kgA’° such that £(k;) decays rapidly
for k; > k., while

E(ky) ~ Ak, 1< 5 < e (108)

with 1 <g<3and A ~ 62/3k:5_5/3 ~ Uzkffl/g at large Re. In addition
e=vY KE(k) ~vAk, (109)
=1

whence k./kf ~ Res7. We thus find
K2~ 2agg (110)
and hence L s
K, /kf ~ Res—a"mG-0 (111)

We now follow the approach used for the Navier—-Stokes and Burgers equations and
compare the Re-scaling of K,, and (k,). The two scalings are consistent if

1<q<g. (112)

Remark 6. In the turbulent regime, the GOY and Sabra shell models display a k=%
inertial-range spectrum megdiunﬂhm, 11987, L vou et al, LLQ%/ Moreover, in

the inviscid unforced case, they possess fixed-point solutions with an energy spectrum
scaling as k=°/3|B , M/

5 Summary and conclusion

This paper has developed the method of Doering and Gibbon HQJM] in which a sequence

of time-dependent wavenumbers, or inverse length scales k, (), was originally used to
extract a spectrum from the 3D Navier—Stokes equations. These wavenumbers are ratios
of volume integrals of velocity derivatives. For the 3D Navier—-Stokes equations, and a
version of them where large fluctuations of the velocity gradient are suppressed, they
obtained rigorous bounds for the time average of x,(t) in terms of Re. They interpreted
the wavenumbers k,(t) as moments of the energy spectrum and the bounds on the time
average of these were then used to infer the slope of the energy spectrum in the inertial
range of a turbulent velocity field. Since the k,(t) are based on Navier—Stokes weak
solutions, this approach connects empirical predictions of the energy spectrum with the
mathematical analysis of the Navier-Stokes equations.
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We have extended these methods to other hydrodynamic equations that display
a turbulent regime at high Re, namely the 2D Navier—Stokes equations, the Burgers
equation, and shell models. The results are summarized in Table[Il. Previous predictions
for the energy spectrum are recovered within the same mathematical framework, which
confirms the appropriateness of (k,) as quantities suitable for the rigorous study of the
energy spectrum of hydrodynamic partial differential equations.
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A Proof of the F, ladder
Consider the ladder of inequalities for n > 1 [Doering and Gibbon, |L99§|] :

1.
5 < Vs + cal|VallooH + HY2 9" f > (A1)

In the case d = 2 the time differentiation of the higher order H, is legal because the
Navier-Stokes equations are regular. In the case d = 3 the result is formally true if
one assumes there is a solution with sufficiently long interval of regularity. We proceed
on this basis noting, however, that the estimates for the time-averages achieved in this
paper can be shown to be true for weak solutions M, ] In turn, these are

based on the work of [Foias et all [1981].

Add and subtract v72,||[V"™ f|3 to obtain

1.
5T S —vFas + Gl [VullooFn + H,2|IV" flla + v [VFFIS (A.2)
Now apply Young’s inequality with parameter g72 to the last two terms of the right-

hand side and use 7,11 = a; '7,, and ||V £l = 72|V £l :

HPI" fle + 072 [V < o+ 2Vl o2 [ 1 (A
g v n 2

= H,+72 (54— A4

st 72 (4 22 ) 1911 (A

In order to have the same coefficients for H,, and 72||V" f||3 and thus form F},, we must
take

Tn

v V2 1 1/2
_ = ) A5
g azl? (a}%‘l T o ) (A-5)

As Gr — oo or ay — oo, we find g ~ 7, for all n > 1.
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B Proof of an inequality for ¢ in shell models

The proof of the analogue of (23]) for shell models follows the strategy used by Doering and Foias
2@]

for the 3D Navier—Stokes equations. First define the constants

By = [(laa] + laz))A! + a1 + az]],

Cu = Y XNg, % (B.1)
m=0

Dy = sup A "M Vg |
m=0

where M is any real number such that Cy; and D,; are bounded. In particular, the
following equality [Vincenzi and Gibbon, 2021] will be useful later :

(e}

DML = Cuf R (B.2)

j=1

Now multiply Eq. (87) by k:j_2M [}, sum over j, and average over time:
—2M| |2 2-9M,  px
> kIS = <’/Zka‘ “J‘fj>
=1 =1

_ <Z Z k;2MfJ%(a1kj+1u;+1uj+2 + a2kjuj+1u;_1 - agkj_1Uj_1Uj_2)> . (B?))

i=1

Rearranging the terms in the first time average on the right-hand side and using the

Cauchy—Schwartz inequality and (B.2)) yields
<Z(’fjuj)(’f}_w¢§_jf)>'

<V Z k]z—2Mujf;> ‘ = vf
j=1 J=1
< 1/1/261/2\/01_2]\/[ fk’]lc_2M. (B4)

The second time average can again be estimated by using the Cauchy—Schwartz in-
equality. Consider for instance the term with coefficient a; :

‘<m1 § :kj 2ij kj+luj+1uj+2>‘ = ;\ E :uj+1(kj+2uj+2)(kj 2M¢j_jf)
(B.5)

J=1 Jj=1

e\ 1/2 oM
<—(;) D1 Uk,

Likewise we have

oo
. —2M px *
<za2 E k= f; l{:juj+1uj_1>

Jj=1

las| e\ 1/2 B
<T2(Z) Dy Uk (B.6)
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and

€N 1/2
<latasl ()7 DagUSF™. (B)

J=1

By combining (B.2) and the bounds in (B.4) to (B.1), we find

1/2
Conef < OV2, 262 4 ByDyy1 (5) U. (B.8)
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