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ON GLOBAL ASYMPTOTIC STABILITY FOR THE DIFFUSIVE

CARR-PENROSE MODEL

JOSEPH G. CONLON AND MICHAEL DABKOWSKI

Abstract. This paper is concerned with large time behavior of the solution
to a diffusive perturbation of the linear LSW model introduced by Carr and
Penrose. Like the LSW model, the Carr-Penrose model has a family of rapidly
decreasing self-similar solutions, depending on a parameter β with 0 < β ≤ 1.
It is shown that if the initial data has compact support then the solution to the
diffusive model at large time approximates the β = 1 self-similar solution. This
result supports the intuition that diffusion provides the mechanism whereby
the β = 1 self-similar solution of the LSW model is the only physically relevant
one.

1. Introduction

In this paper we continue our study of the diffusive Carr-Penrose (CP) model
introduced in [7]. The model is obtained by adding a second order diffusion term
with coefficient ε/2 > 0 to the Carr-Penrose equation [3]. The density function
cε(x, t) evolves according to a linear diffusion equation, subject to the linear mass
conservation constraint as follows:

∂cε(x, t)

∂t
=

∂

∂x

{[

1− x

Λε(t)

]

cε(x, t)

}

+
ε

2

∂2cε(x, t)

∂x2
, x > 0,(1.1)

∫ ∞

0

xcε(x, t)dx = 1.(1.2)

We also need to impose a boundary condition at x = 0 to ensure that (1.1), (1.2)
with given initial data cε(·, 0), satisfying the constraint (1.2) has a unique solution.
We impose the Dirichlet boundary condition cε(0, t) = 0, t > 0. This condition has
the advantage that the parameter Λε(t) > 0 in (1.1) is given by a simple formula

(1.3) Λε(t) =

∫ ∞

0

xcε(x, t)dx
/

∫ ∞

0

cε(x, t)dx = 1
/

∫ ∞

0

cε(x, t)dx .

In §2 where we discuss the more physically relevant Becker-Döring (BD) [2]
and Lifschitz-Slyozov-Wagner (LSW) [11, 22] models, we give some justification for
diffusive models with zero Dirichlet condition. Penrose [16] argued that solutions
of the super-critical BD model are at large time approximate solutions to the LSW
model. This claim was given some rigorous justification by Niethammer [13], but
much remains to be understood. In particular, the large time behavior of solutions
to the LSW model is conjectured to be given by one of a family of self-similar
solutions to LSW [5]. These can be conveniently parametrized by a single number
β with 0 < β ≤ 1. Already in the original papers [11, 22] it was claimed that
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the only physically relevant self-similar solution to the LSW model is the critical
one with β = 1. Therefore one expects following Penrose [16] that solutions to the
super-critical BD model converge at large time to the critical equilibrium, which
forms a boundary layer close to the origin, with the time evolution of the excess
mass being well approximated by the β = 1 self-similar solution to the LSW model.
The only rigorous result known in this direction was obtained in Ball et al [1],
where for the super-critical BD model weak convergence to the critical equilibrium
is established. This implies that the excess mass drifts to infinity at large time, but
nothing more precise. The problem of determining on what time scale the LSW
time evolution becomes a good approximation for the time evolution of the excess
mass appears to be extremely subtle. This has been illustrated by some examples
in the paper of Penrose [17].

In [8] we introduced a continuous non-linear Fokker-Planck (NFP) model which
bears many similarities to the discrete BD model. In fact it is shown in [8] that
there is a continuous interpolation from the BD to the NFP model. The interpolated
models are like BD also discrete, but on the chain εZ+ with 0 < ε ≤ 1. In this
interpolation the BD model is given by ε = 1, and the NFP model by the limit
as ε → 0. The main result of [8] is the proof of convergence to equilibrium, so a
continuous analogue of the main result of [1]. The methodology is also similar, using
the fact that a free energy functional exists, which decreases along trajectories of the
solution to NFP. Comparison of the BD system to a continuous diffusive system was
first considered by Velázquez [21]. It was argued further in the physics literature
[12, 19] that diffusion may be the mechanism of the selection principle, whereby the
β = 1 self-similar solution of LSW describes the asymptotic behavior of the excess
mass in the super-critical BD model and some other models of Ostwald ripening
[15].

In the NFP model the Fokker-Planck equation is solved with a non-zero Dirichlet
boundary condition, which couples to a parameter in the PDE and conservation
law. In §2 we observe that one can introduce a second parameter into the model,
which does not affect the Fokker-Planck dynamical law or conservation law, but
sends the Dirichlet boundary condition to zero as this parameter goes to infinity.
Therefore it is reasonable to expect that the study of the zero Dirichlet boundary
condition model yields some insight into the NFP model. Furthermore, since it is
also a diffusive model one expects that the selection principle for the β = 1 self-
similar solution of LSW continues to operate. In the present paper we verify this
is the case for the much simpler diffusive CP model (1.1), (1.2).

The system (1.1), (1.2) with ε ≥ 0 can be interpreted as an evolution equation
for the probability density function (pdf) of random variables. Thus let us assume
that the initial data cε(x, 0) ≥ 0, x > 0, for (1.1), (1.2) satisfies

∫∞

0 cε(x, 0) dx < ∞,

and let Xε,0 be the non-negative random variable with pdf cε(·, 0)/
∫∞

0 cε(x, 0) dx.
The conservation law (1.2) implies that the mean 〈Xε,0〉 of Xε,0 is finite, and this
is the only absolute requirement on the variable Xε,0. If for t > 0 the variable Xε,t

has pdf cε(·, t)/
∫∞

0
cε(x, t) dx, then (1.3) implies that Λε(t) = 〈Xε,t〉, and hence

(1.1) becomes an evolution equation for the pdf of Xε,t.
There is an infinite one-parameter family of self-similar solutions to (1.1), (1.2)

with ε = 0. Using the normalization 〈X0〉 = 1, the initial data for these solutions
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are given by
(1.4)

P (X0 > x) =











[1− (1− β)x]β/(1−β) , 0 < x < 1/(1− β), if 0 < β < 1,

e−x if β = 1,

[1 + (β − 1)x]β/(1−β) , 0 < x < ∞, if β > 1.

The random variable Xt corresponding to the evolution (1.1), (1.2) with ε = 0 and
initial data (1.4) is then given by

(1.5) Xt = 〈Xt〉X0 ,
d

dt
〈Xt〉 = β .

The main result of [3] is that a solution of (1.1), (1.2) with ε = 0 converges at
large time to the self-similar solution with parameter β, provided the initial data
and the self similar solution of parameter β behave in the same way at the end of
their supports. The main result of this paper is that a similar result holds for the
diffusive model (1.1), (1.2) with ε > 0 and initial data of compact support. In this
case a selection principle operates, so that the asymptotic behavior is given by the
β = 1 self-similar solution (1.4) corresponding to the exponential variable:

Theorem 1.1. Assume the initial data cε(·, 0) for (1.1), (1.2) is non-negative,
integrable and has compact support. Let Xε,t, t > 0, be the random variable cor-
responding to the solution cε(·, t) of (1.1), (1.2) with Dirichlet boundary condition
cε(0, t) = 0. Then

(1.6)
Xε,t

〈Xε,t〉
D−→ X as t → ∞ , lim

t→∞

d

dt
〈Xε,t〉 = 1 ,

where X is the exponential random variable with mean 1, and
D−→ denotes conver-

gence in distribution.

A result analogous to Theorem 1.1 was proved in [7] for a reduced model which
we denoted the inviscid CP model, since a corresponding viscous CP model is
equivalent to the diffusive CP model (1.1), (1.2). The evolution of the inviscid model
is determined by solving a first order non-linear PDE. This PDE is essentially the
ε = 0 CP equation (1.1) with the addition of a quadratic non-linearity. The method
of characteristics may be used to solve this Burgers’ type equation in the case of no
shocks. Hence no boundary condition is needed at x = 0 to guarantee uniqueness of
the solution. In §3 we introduce a diffusive model, also without boundary condition
at x = 0, by solving (1.1) on the whole line −∞ < x < ∞ with initial data which
is zero on the half line x < 0 and non-negative for x > 0. The parameter Λε(t) in
(1.1) is given by the first formula on the RHS of (1.3). The conservation law (1.2)
now no longer holds. We prove a result analogous to Theorem 1.1 for this model.

The remainder of the paper consists of generalizing the results of the whole line
diffusive CP model to the half line model with zero Dirichlet condition at x = 0.
One can most easily see how this introduces additional subtlety into the problem,
by comparing the formulas for the rates of coarsening in the ε = 0 CP and diffusive
ε > 0 models. On differentiating (1.3) we see that if ε = 0 then

(1.7)
dΛ0(t)

dt
= c0(0, t)

/

[
∫ ∞

0

c0(x, t)dx

]2

,
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whereas if ε > 0 the formula is given by

(1.8)
dΛε(t)

dt
=

ε

2

∂cε(0, t)

∂x

/

[
∫ ∞

0

cε(x, t)dx

]2

.

It clearly follows from (1.7) that the function t → Λ0(t) is increasing. We also
see from (1.8) and the maximum principle [18] applied to (1.1) that the function
t → Λε(t) is strictly increasing if ε > 0.

In comparing the CP to the diffusive CP model, an obvious question to ask is if
the limit of the solution to the diffusive model on a fixed time interval 0 < t ≤ T ,
with parameter ε > 0 and given initial data independent of ε, converges as ε → 0
to the solution of the CP model with the same initial data. A strong convergence
result was proven in [7], and a similar result for a diffusive LSW model in [4]. In
§2 we explain how the main theorem of Niethammer [13] may be interpreted as an
analogous result for the BD model. In the proof of convergence for the diffusive
CP and LSW models a boundary layer analysis is necessary. We can see this from
(1.7), (1.8) since these equations suggest that

(1.9) lim
ε→0

ε

2

∂cε(0, t)

∂x
= c0(0, t) .

From (1.9) we expect there is a boundary layer of size O(ε) at the origin, within
which the function x → cε(x, t) increases rapidly from 0 to c0(0, t). The analysis of
this boundary layer is the main source of difficulty in proving convergence.

Theorem 1.1 concerns large time behavior of solutions to the diffusive problem.
That is ε > 0 is fixed, and we are interested in the behavior of solutions cε(·, t) to
(1.1), (1.2) with Dirichlet condition cε(0, ·) = 0 as t → ∞. There is a close relation
between this problem and the problem of the convergence of cε(·, t) as ε → 0 on
a fixed time interval 0 < t ≤ T . The reason is that limt→∞ Λε(t) = ∞. Since the
ε = 0 CP model is scale invariant, rescaling of the PDE (1.1) so that the mean mass
at large time T is O(1) makes the diffusion constant in (1.1) small while leaving
the other terms the same. Therefore large time behavior T → ∞ of cε(·, T ) may be
estimated by means of ε → 0 analysis, provided we can establish certain uniformity
properties on the solution as T → ∞.

Uniformity is measured in terms of the boundedness of the beta function of a
random variable, which is defined by (3.23), (3.24). There is a close relationship
between boundedness properties of the beta function and log concavity properties of
the pdf. In [7] we showed that if the initial data cε(·, 0) for (1.1) with zero Dirichlet
condition satisfies a log concavity property then cε(·, t) has the same log concavity
property for all t > 0. Equivalently, if the beta function for Xε,0 is bounded by 1
then the beta function for Xε,t is bounded by 1 for all t > 0. Since the coarsening
rate dΛε(t)/dt can be estimated in terms of the beta function of Xε,t, this implies
a uniform upper bound on the rate of coarsening as t → ∞.

The main technical issues of this paper are concerned with the ratio (4.1) of
the Dirichlet Green’s function for (1.1) on the half line to the whole line Green’s
function. The whole line Green’s function is explicitly given by the Gaussian (3.4).
In [6] it is shown that this ratio satisfies a log concavity condition. Using this fact
and other estimates from [6] we are able to prove that if the initial data for (1.1)
has compact support then the beta function of Xε,T is bounded at large T , and
furthermore converges to the beta function of the exponential variable, whose beta
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function is simply the constant 1. Convergence of the coarsening rate as in (1.6)
then follows from an ε → 0 analysis.

2. Relation to the BD, NFP and LSW models

The NFP model introduced in [8] is a continuous version of the BD model in
which the dynamics is given by a Fokker-Planck (FP) equation on the positive
real line with a time varying parameter. The parameter is coupled to a Dirichlet
boundary condition and a conservation law. The FP equation is given by

(2.1) ∂tc(x, t) + ∂x(b(x, t)c(x, t)) = ∂2
x(a(x)c(x, t)) , x, t > 0 ,

where the drift b(·, ·) is of the form

(2.2) b(x, t) = a(x)[θ(t)W ′(x)− V ′(x)] .

The functions V (·), W (·) are assumed to be positive C1 and increasing. The
conservation law is given by

(2.3) Aθ(t) +

∫ ∞

0

W (x)c(x, t) dx = ρ , where A ≥ 0 is constant.

It is easy to see that c(x, t) = ceqθ (x) where

(2.4) ceqθ (x) = a(x)−1 exp(−V (x) + θW (x)) ,

is an equilibrium solution to (2.1), (2.2). The Dirichlet boundary condition is given
in terms of this equilibrium solution by

(2.5) c(0, t) = ceqθ(t)(0) , t > 0 .

The NFP model consists of solving (2.1) subject to the constraints (2.3), (2.5) with
given non-negative initial data.

Observe that if we replace the potential V (·) with V (·) + M where M is a
constant, the PDE (2.1) and conservation law (2.3) do not change, just the boundary
condition (2.5). If we let M → ∞ then (2.5) becomes the zero Dirichlet condition
in the limit. Thus we have a continuous interpolation between the NFP model and
a diffusive model with zero Dirichlet condition.

One can see from the formulation of the BD model in [4], that if a(·), V (·),W (·)
are given by the formulae

(2.6) a(x) = (1 + x)α, 0 < α < 1, W (x) = 1 + x, a(x)V ′(x) = 1, V (0) = 0,

then the NFP model can be considered a continuous version of the BD model. In
the case of (2.6) equilibrium solutions (2.4) of the NFP model, which satisfy the
conservation law (2.3), exist for all θ ≤ 0. The θ = 0 equilibrium solution is the
critical equilibrium. Let ρcrit be the value of ρ in (2.3) which corresponds to the
critical equilibrium, so

(2.7)

∫ ∞

0

W (x)ceq0 (x) dx = ρcrit .

In [8] it is shown that for ρ > ρcrit in (2.3) the solution cε(·, t) of (2.1)-(2.5) converges
weakly as t → ∞ to ceq0 (·). The main tool in the proof is the free energy functional
G defined by

(2.8) G(c(·), θ) =

∫ ∞

0

[log
c(x)

ceq0 (x)
− 1]c(x) dx+

Aθ2

2
,
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which decreases along orbits t → c(·, t) of the solution to (2.1)-(2.5). One can easily
see this by writing (2.1) as

(2.9) ∂tc(x, t) = ∂x

(

a(x)c(x, t)∂x log
c(x, t)

ceqθ(t)(x)

)

.

Letting D be the dissipation functional

(2.10) D(c(·), θ) =

∫ ∞

0

a(x)

(

∂x log
c(x)

ceqθ (x)

)2

c(x) dx ,

we see from (2.3), (2.5) and (2.8), (2.9) that

(2.11)
d

dt
G(c(·, t), θ(t)) = −D(c(·, t), θ(t)) .

Recently an alternative continuous model has been proposed by Goudon and
Monasse [9]. This model is quite similar to the NFP model, but the time varying
parameter which occurs in the conservation law and boundary condition also en-
ters the second derivative term in the Fokker-Planck PDE, in addition to the first
derivative term as in (2.1), (2.2). The parameter in [9] seems to represent mass
concentrated at the origin, which is similar to the situation with the BD model.
However there does not appear to be a free energy functional which decreases along
orbits of the solution. Therefore a proof of convergence at large time to equilibrium
is not available by Lyapounov’s second method as was the case in [1, 8].

A more closely related model is that studied by Niethammer and Pego [14].
This is a generalized LSW model, which can be obtained from the NFP model by
eliminating the second derivative term in (2.1), yielding a first order PDE. The
boundary condition (2.5) is no longer required, but the conservation law remains
as in (2.3). Global existence and uniqueness of solutions are proved, as well as con-
tinuous dependence on the initial data. An important tool is the energy functional
E defined by

(2.12) E(c(·), θ) =

∫ ∞

0

V (x)c(x) dx+
Aθ2

2
.

Defining the dissipation functional by

(2.13) D(c(·), θ) =

∫ ∞

0

a(x)[θW ′(x) − V ′(x)]2c(x) dx ,

we see that along orbits t → c(·, t) of the solution one has

(2.14)
d

dt
E(c(·, t), θ(t)) = −D(c(·, t), θ(t)) ,

provided V (0) = W (0) = 0.
We next introduce a small parameter ε > 0 into the NFP model with the goal

of proving convergence on a fixed time scale to the LSW model as ε → 0. Since we
want this to be related to the problem of large time behavior of the NFP model, we
scale the solution c(·, ·) of (2.1)-(2.5) by setting cε(x, t) = γ(ε)−1c(x/ε, t/ε), where
γ(·) is a positive function. The PDE (2.1), (2.2) then becomes the PDE

(2.15) ∂tcε(x, t) + ∂x(bε(x, t)cε(x, t)) = ∂2
x(aε(x)cε(x, t)) , x, t > 0 ,

where

(2.16) aε(x) = εa(x/ε), bε(x, t) = b(x/ε, t/ε) = aε(x)[θε(t)W
′
ε(x)− V ′

ε (x)] ,
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Vε(x) = V (x/ε), θε(t)Wε(x) = θ(t/ε)W (x/ε) .

This defines θε(·), Wε(·) up to a multiplicative constant. The constant is deter-
mined from the scaled conservation law

(2.17) Aεθε(t) +

∫ ∞

0

Wε(x)cε(x, t) dx = ρ .

Thus we have that

(2.18) Aε = ε−1γ(ε)A, θε(t) = εγ(ε)−1θ(t/ε), Wε(x) = ε−1γ(ε)W (x/ε) .

The boundary condition (2.5) becomes

(2.19) cε(0, t) = [γ(ε)a(0)]−1 exp [−V (0) + θ(t/ε)W (0)] = ceqθε(t),ε(0) ,

where the equilibrium density ceqθ,ε(·) is given by

(2.20) ceqθ,ε(x) = [γ(ε)ε−1aε(x)]
−1 exp(−Vε(x) + θWε(x)) .

Note that

(2.21)

∫ ∞

0

Wε(x)c
eq
0,ε(x) dx = ρcrit ,

where ρcrit is given by (2.7). We see from (2.8) that the free energy Gε corresponding
to (2.15)-(2.20) is given by

(2.22) Gε(c(·), θ) =

∫ ∞

0

[log
c(x)

ceq0,ε(x)
− 1]c(x) dx+

Aεθ
2

2
.

Note from (2.8), (2.22) that

(2.23) Gε(cε(·, t), θε(t)) = εγ(ε)−1G(c(·, t/ε), θ(t/ε)) .
We consider now the situation where the coefficients are given by (2.6). We

choose γ(ε) such that limε→0 Wε(·) = W0(·) exists. Evidently we should take
γ(ε) = ε2, in which case W0(x) = x. Next we need that limε→0 aε(x)θε(t)W

′
ε(x)

exists. Defining θ̃ε(t) = ε1−αθε(t), we see the limit exists if limε→0 θ̃ε(t) = θ̃0(t)
exists. The conservation law (2.17) then becomes

(2.24) Aεαθ̃ε(t) +

∫ ∞

0

Wε(x)cε(x, t) dx = ρ .

Letting ε → 0 and assuming limε→0 cε(x, t) = c0(x, t), limε→0 θ̃ε(t) = θ̃0(t), we see
that c0(·, ·) is formally a solution to the LSW equation

(2.25)
∂c0(x, t)

∂t
+

∂

∂x
[θ0(t)x

α − 1] = 0 .

The formal limit of the conservation law (2.24) yields

(2.26)

∫ ∞

0

W0(x)c0(x, t) dx = ρ .

The issue of the limiting behavior as ε → 0 of solutions cε to (2.15)-(2.20) with
a(·), V (·),W (·) as in (2.6) is actually more subtle than indicated due to the fact
that the boundary condition cε(0, t) = ceqθε(t),ε(0) tends to force cε to blow up as

ε → 0 since it is given by the formula

(2.27) cε(0, t) = ε−2 exp[εαθ̃ε(t)] .
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This happens unless the initial data within the boundary layer x = O(ε) is close to
the equilibrium ceq0,ε(·), hence depending on ε. Outside the boundary layer it may
be taken independent of ε. The closeness to equilibrium inside the boundary layer
then yields from (2.21), (2.24) the limiting conservation law

(2.28)

∫ ∞

0

W0(x)c0(x, t) dx = ρ− ρcrit ,

instead of (2.26).
Niethammer [13] (and Schlichting [20] by a different method) has rigorously

shown in the context of the Becker-Döring model that a weak limit limε→0 cε does
exist and is a solution to the LSW model (2.25), (2.28). Closeness of the initial
data to equilibrium within the boundary layer is measured in terms of the order
of magnitude of the excess free energy Gε(cε(·, 0), 0) − Gε(c

eq
0,ε, 0) as ε → 0. With

a(·), V (·),W (·) as in (2.6) we have that

(2.29) ε1−αGε(cε(·, t), θε(t)) =

∫ ∞

0

{

(ε+ x)1−α − ε1−α

1− α

}

cε(x, t) dx

+ε1−α

[
∫ ∞

0

[log cε(x, t)− 1]cε(x, t) dx+

∫ ∞

0

log{ε2−α(ε+ x)α}cε(x, t) dx
]

+
1

2
εαAθ̃ε(t)

2 .

If limε→0 cε = c0 exists then the first term on the RHS of (2.29) converges as
ε → 0 to the LSW energy (1 − α)−1

∫∞

0 x1−αc0(x, t) dx corresponding to (2.12).

Niethammer’s main condition is that ε1−α times the excess free energy is bounded
independent of ε > 0. It is quite easy to come up with a large class of initial data
which satisfy the Niethammer condition. Thus suppose x → c0(x, 0), x ≥ 0, is a
continuous non-negative integrable function which satisfies (2.28) with t = 0. We
define initial data for the system (2.15)-(2.20) as

(2.30) cε(x, 0) = ceq0,ε(x), if 0 ≤ x < ε [M log(1/ε)]1/(1−α) ,

cε(x, 0) = c0(x, 0), if x ≥ ε [M log(1/ε)]
1/(1−α

,

where the constant M satisfies M > 1. For the initial data (2.30) it follows from

(2.21), (2.24), (2.28) at t = 0 that θ̃ε(0) = O[ε1−α]. Thus the final term on the RHS
of (2.29) is O[ε2−α] as ε → 0 and hence bounded independent of ε. If we subtract
from the middle term the corresponding quantity with cε(·, 0) replaced by ceq0,ε(·)
we obtain an integral over the interval ε [M log(1/ε)]1/(1−α) < x < ∞. Evidently
this difference is O[ε1−α], whence again uniformly bounded as ε → 0. Finally if we
subtract from the first term the corresponding quantity with cε(·, 0) replaced by
ceq0,ε(·) we obtain the LSW energy for c0(·, 0) plus O[ε1−α]. Assuming Niethammer’s
method applies to the present situation, one expects it to imply that the solution
cε to (2.15)-(2.20) with initial data (2.30) converges weakly to the corresponding
solution of the LSW model (2.25), (2.28).

So far there are no proofs of strong convergence of solutions to (2.15)-(2.20) with
initial data (2.30). However strong convergence for a closely related problem (with
α = 1/3) was proven in [4]. The important difference between the system studied
in [4] and the present one lies in the boundary condition. The diverging Dirichlet
condition (2.27) is replaced by the zero one cε(0, t) = 0. There are some other
minor differences: in [4] the conservation law differs from (2.17) in taking Aε = 0
and replacing Wε by W0; ε

α−1aε(x)W
′
ε(x) = (ε+ x)α is replaced by xα.
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As far as understanding large time behavior of the system (2.1)-(2.5), the re-
placement of the Dirichlet condition (2.5) by the zero Dirichlet condition should
simplify the problem considerably. One also expects that good understanding of
the zero Dirichlet case will yield significant insight into the non-zero Dirichlet case.
Another important property of the zero Dirichlet boundary condition model is that
the Kohn-Otto argument [10] may be applied to yield a global weak upper bound
on the rate of coarsening. This has been shown for the model in [4]. However the
argument is delicate and does not easily extend to the slightly modified model with
coefficients (2.6) and conservation law (2.3) considered here.

3. The whole line problem

We consider here the problem of solving the PDE (1.1) on the whole line R =
{−∞ < x < ∞} with initial data which is non-negative on the positive half line
{x > 0} and zero on the negative half line {x < 0}. The parameter function Λε(·)
is given by (1.3), whence the problem is non-linear. We have now instead of (1.4)
the formula

(3.1)
1

Λε(t)

dΛε(t)

dt
=

{

cε(0, t) +
ε

2

[

∂cε(0, t)

∂x
+

cε(0, t)

Λε(t)

]}

/

∫ ∞

0

cε(x, t)dx .

We shall see below that (3.1) implies Λε(·) is an increasing function, although
∂cε(0, t)/∂x may be negative.

There is an explicit formula for the whole line Green’s function for (1.1). Let A :
[0,∞) → R be a continuous function and define related functions m1,A,m2,A, σ

2
A :

[0,∞) → R
+ by

(3.2) m1,A(T ) = exp

[

∫ T

0

A(s′)ds′

]

, m2,A(T ) =

∫ T

0

exp

[

∫ T

s

A(s′)ds′

]

ds ,

σ2
A(T ) =

∫ T

0

exp

[

2

∫ T

s

A(s′)ds′

]

ds .

The solution to (1.1) on the whole line with initial data cε(x, 0), x ∈ R, which is
supported on the half line R

+, has the representation

(3.3) cε(x, T ) =

∫ ∞

0

Gε(x, y, 0, T )cε(y, 0) dy , x ∈ R, T > 0.

The Green’s function Gε(x, y, 0, T ) is defined (see eqn. (2.5) of [6]) by the formula

(3.4) Gε(x, y, 0, T ) =
1

√

2πεσ2
A(T )

exp

[

−{x+m2,A(T )−m1,A(T )y}2
2εσ2

A(T )

]

,

where m1,A,m2,A, σ
2
A are as in (3.2) and A(·) ≡ 1/Λε(·). Observe now that

(3.5)
[

1 +
ε

2

∂

∂x

]

Gε(x, y, 0, T )
∣

∣

∣

x=0
=

[

1− m2,A(T )

2σ2
A(T )

+
m1,A(T )y

2σ2
A(T )

]

Gε(0, y, 0, T ) .

The RHS of (3.5) is non-negative for y > 0 if A(·) ≥ 0, and consequently from (3.3)
the RHS of (3.1) is also non-negative. We have shown that the function Λε(·) is
increasing.



10 JOSEPH G. CONLON AND MICHAEL DABKOWSKI

Lemma 3.1. Assume cε(x, 0), x ∈ R, is a non-negative function satisfying cε(x, 0) =
0 for x < 0, and the integrability condition

(3.6) 0 <

∫ ∞

0

(1 + x)cε(x, 0) dx < ∞ .

Let cε(·, t), t > 0, be the solution to the whole line PDE (1.1) with the con-
straint (1.3) and initial data cε(·, 0). Then the function Λε(·) is increasing and
limT→∞ Λε(T ) = ∞. If in addition cε(·, 0) has compact support, then limT→∞ m1,A(T ) =

∞, limT→∞
m2,A(T )
m1,A(T ) = ∞, limT→∞

σ2

A(T )
m2,A(T ) = ∞, and limT→∞

σ2

A(T )
m1,A(T )2 < ∞,

where A(·) ≡ 1/Λε(·).

Proof. Since Λε(·) is increasing we have that limT→∞ Λε(T ) = Λ∞ ≤ ∞. We
assume Λ∞ < ∞ and obtain a contradiction. With A(·) = 1/Λε(·), we see from
(3.2) that the functions m1,A, m2,A, σ2

A satisfy
(3.7)

lim
T→∞

m1,A(T ) = ∞ , Λε(0) ≤ lim
T→∞

m2,A(T )

m1,A(T )
≤ Λ∞ ,

Λε(0)

2
≤ lim

T→∞

σ2
A(T )

m1,A(T )2
≤ Λ∞

2
.

We can obtain a formula for the RHS of (1.3) in terms of expectations of the random
variable Xε,y,T given by

(3.8) Xε,y,T = m1,A(T )y −m2,A(T ) +
√
εσA(T )Z ,

where Z is the standard normal variable. This follows by observing that
∫ ∞

0

cε(x, T ) dx =

∫ ∞

0

P (Xε,y,T > 0)cε(y, 0) dy ,(3.9)

∫ ∞

0

xcε(x, T ) dx =

∫ ∞

0

E[Xε,y,T | Xε,y,T > 0]P (Xε,y,T > 0)cε(y, 0) dy .

We have now that
(3.10)

E[Xε,y,T |Xε,y,T > 0] =
√
εσA(T )E[Z−zy,T/

√
ε | Z > zy,T /

√
ε] , zy,T =

m2,A(T )−m1,A(T )y

σA(T )
.

Writing

(3.11) zy,T = a(T )− b(T )y ,

we see from (3.7) that

(3.12) 0 < inf
T≥1

a(·) ≤ sup
T≥1

a(·) < ∞ , 0 < inf
T≥1

b(·) ≤ sup
T≥1

b(·) < ∞ .

We also have from Lemma A.1 there is a constant cε > 0 such that

(3.13) E[Z − z | Z > z] ≥ max{cε,−z} for z ≤ sup
T≥1

a(·)/
√
ε .

It follows from (1.3) and (3.9)-(3.13) that

(3.14) Λε(T ) ≥ cε
√
εσA(T ) .

Since (3.7) implies that limT→∞ σA(T ) = ∞, we conclude from (3.14) that limT→∞ Λε(T ) =
∞, contradicting our assumption that Λ∞ < ∞.

Having shown that limT→∞ Λε(T ) = ∞, we next show that limT→∞ m1,A(T ) =
∞. This implies that Λε(T ) cannot grow too rapidly with T . Since m1,A(·) is
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an increasing function we have that limT→∞ m1,A(T ) = m1,A(∞) ≤ ∞. Arguing
again by contradiction we assume that m1,A(∞) < ∞. Using the identities

(3.15)
m2,A(T )

m1,A(T )
=

∫ T

0

dt

m1,A(t)
,

σ2
A(T )

m1,A(T )2
=

∫ T

0

dt

m1,A(t)2
,

we see that the functions a(·), b(·) of (3.11) satisfy inequalities

(3.16) c1
√
T ≤ a(T ) ≤ C1

√
T , c1 ≤

√
Tb(T ) ≤ C1 for T > 0 ,

where c1, C1 > 0 are constants. Assume now that cε(·, 0) has support in the interval
[0, y∞]. It follows from (3.10), (3.16) and Lemma A.1 there are constants C2, T2 > 0
such that

(3.17) E[Xε,y,T | Xε,y,T > 0] ≤ C2 for T ≥ T2, y ∈ [0, y∞] .

From (1.3), (3.9) we conclude that limT→∞ Λε(T ) < ∞, a contradiction.
Next we show that limT→∞ m2,A(T )/m1,A(T ) = ∞. Note from (3.15) this

implies m1,A(T ) cannot approach ∞ too rapidly, which in turn implies a lower
bound on the rate of growth of Λε(T ). To see this we assume for contradiction
that limT→∞ m2,A(T )/m1,A(T ) = m∞ < ∞, whence (3.15) and the inequality
m1,A(·) ≥ 1 implies that limT→∞ σ2

A(T )/m1,A(T )
2 ≤ m∞ < ∞. It follows that the

functions a(·), b(·) of (3.11) satisfy the inequality (3.12). Hence zy,T is uniformly
bounded for y ∈ [0, y∞] as T → ∞. We conclude from (3.10)-(3.12) there are
positive constants c3, T3 such that

(3.18) E[Xε,y,T | Xε,y,T > 0] ≥ c3m1,A(T ) for T ≥ T3, y ∈ [0, y∞] .

It follows from (1.3), (3.9), (3.18) that

(3.19) Λε(T ) ≥ c3m1,A(T ) for T ≥ T3 .

From (3.15), (3.19) there is a constant C4 > 0 such that

(3.20) logm1,A(T ) =

∫ T

0

dt

Λε(t)
≤ C4

m2,A(T )

m1,A(T )
for T ≥ T3 .

Since we have already established that limT→∞ m1,A(T ) = ∞, we conclude from
(3.20) that m∞ = ∞, contradicting our original assumption.

It follows from (3.15), and the fact that m1,A(·) ≥ 1, limT→∞
m2,A(T )
m1,A(T ) = ∞ that

a(T ), b(T ) in (3.11) satisfy limT→∞ a(T )/b(T ) → ∞ and limT→∞ a(T ) = ∞. We
see then from (3.10) and Lemma A.1 there are constants C3, T3 > 0 such that

(3.21) E[Xε,y,T | Xε,y,T > 0] ≤ C3
σ2
A(T )

m2,A(T )
for T ≥ T3, y ∈ [0, y∞] .

Now (3.9), (3.21) imply that Λε(T ) ≤ C3σ
2
A(T )/m2,A(T ), whence we conclude

that limT→∞ σ2
A(T )/m2,A(T ) = ∞. From (3.15) we see that σ2

A(T )/m2,A(T ) ≤
m1,A(T ), whence (3.21) implies that Λε(T ) ≤ C3m1,A(T ). We have then from
(3.15) there is a constant C4 such that

(3.22)
σ2
A(T )

m1,A(T )2
≤ C4

∫ T

0

dt

m1,A(t)Λε(t)
= C4

[

1− 1

m1,A(T )

]

.

�
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We recall from [7] some functions associated with positive random variables X
with finite mean 〈X〉 < ∞. Let us assume that X has integrable pdf proportional
to a function cX : (0,∞) → R

+. We define functions wX , hX with domain (0,∞)
by

(3.23) wX(x) =

∫ ∞

x

cX(x′) dx′ , hX(x) =

∫ ∞

x

wX(x′) dx′ .

The beta function βX associated with X also has domain (0,∞) and is defined by

(3.24) βX(x) =
cX(x)hX(x)

wX(x)2
.

It is easy to see from (3.23), (3.24) that E[X − x | X > x] = hX(x)/wX(x) and

(3.25) − d

dx
E[X − x | X > x] = 1− βX(x) .

Furthermore, if we define vX(x) = E[X − x | X > x]−1 then

(3.26) hX(x) = hX(0) exp

[

−
∫ x

0

vX(x′) dx′

]

.

Proposition 3.1. Assume cε(x, 0), x ∈ R, has compact support, satisfies the con-
ditions of Lemma 2.1 and cε(·, t), t > 0, is the solution to (1.1), (1.3). Let Xε,t be
the nonnegative random variable with pdf proportional to cε(x, t), x > 0, and X be
the exponential variable with mean 1. Then

(3.27)
Xε,t

〈Xε,t〉
D−→ X , as t → ∞ .

In addition one has

(3.28) lim
t→∞

‖βXε,t(·)− 1‖∞ = 0.

Proof. We have from Lemma 3.1 that the functions a(·), b(·) of (3.11) satisfy
limT→∞ a(T ) = ∞, limT→∞ b(T )/a(T ) = 0. Hence zy,T given by (3.10) satis-

fies limT→∞ zy,T = +∞, and the limit is uniform for y ∈ [0, y∞]. Let X̃ε,y,T be the
random variable Xε,y,T of (3.8) conditioned on Xε,y,T > 0. It follows from Lemma
A.2 that

(3.29)
X̃ε,y,T

〈X̃ε,y,T 〉
D−→ X as T → ∞ .

The limit in (3.28) is uniform for y ∈ [0, y∞]. We also have from Lemma A.1 that

(3.30)
〈X̃ε,y,T 〉
〈X̃ε,0,T 〉

→ 1 as T → ∞ ,

and the limit is uniform for y ∈ [0, y∞]. We conclude from (3.9), (3.30) that

(3.31)
〈X̃ε,y,T 〉
〈Xε,T 〉

→ 1 as T → ∞ ,

and the limit is uniform for y ∈ [0, y∞]. We have from (3.3), (3.8) that

(3.32) P

(

Xε,T

〈Xε,T 〉
> x

)
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=

∫ y∞

0

P

(

Xε,y,T

〈Xε,T 〉
> x

)

cε(y, 0) dy

/

∫ y∞

0

P (Xε,y,T > 0)cε(y, 0) dy

=

∫ y∞

0

P

(

X̃ε,y,T

〈Xε,T 〉
> x

)

P (Xε,y,T > 0)cε(y, 0) dy

/

∫ y∞

0

P (Xε,y,T > 0)cε(y, 0) dy .

The convergence in distribution (3.27) then follows from (3.29)-(3.32).
The limit of the beta function in (3.28) already follows from Lemma 2.1 of [7] in

the case when cε(·, 0) is a point distribution. For cε(·, 0) supported in an interval
[0, y∞] we write βε(x, T ) = Aε(x, T )Cε(x, T )/Bε(x, T )

2. The function Aε is given
by the formula

(3.33) Aε(x, T ) =

∫ y∞

0

exp

[

b(T )xy

εσA(T )

]

c̃ε(y, 0) dy ,

where c̃ε(y, 0) = exp

[

a(T )b(T )y

ε
− b(T )2y2

2ε

]

cε(y, 0) ,

and a(·), b(·) are given by (3.10), (3.11). The functions Bε, Cε are given by the
formulae

(3.34)

Bε(x, T ) =

∫ y∞

0

dy

∫ ∞

0

dx′ exp

[

b(T )(x+ x′)y

εσA(T )
− a(T )x′

εσA(T )
− x′(2x+ x′)

2εσ2
A(T )

]

c̃ε(y, 0) ,

Cε(x, T ) =

∫ y∞

0

dy

∫ ∞

0

dx′ x′ exp

[

b(T )(x+ x′)y

εσA(T )
− a(T )x′

εσA(T )
− x′(2x+ x′)

2εσ2
A(T )

]

c̃ε(y, 0) .

Observe now that for δ > 0 small one has

(3.35)

∫ ∞

0

e−z−δz2/2 dz = 1− δ +O(δ2) ,

∫ ∞

0

ze−z−δz2/2 dz = 1− 3δ +O(δ2) .

From (3.34), (3.35) we see there exists T0 ≥ 1 sufficiently large such that for T ≥ T0,

(3.36)

Bε(x, T ) = [1−δε(x, T )]

∫ y∞

0

[

a(T )− b(T )y

εσA(T )
+

x

εσ2
A(T )

]−1

exp

[

b(T )xy

εσA(T )

]

c̃ε(y, 0) dy ,

Cε(x, T ) = [1−3δε(x, T )]

∫ y∞

0

[

a(T )− b(T )y

εσA(T )
+

x

εσ2
A(T )

]−2

exp

[

b(T )xy

εσA(T )

]

c̃ε(y, 0) dy .

with ‖δε(·, T )‖∞ ≤ 2ε/a(T )2. Using the fact that limT→∞ a(T ) = ∞, limT→∞ b(T )/a(T ) =
0, we conclude from (3.33), (3.36) that βε(·, T ) converges uniformly to 1 as T → ∞.
The limit (3.28) follows. �

Proposition 3.2. Assume cε(x, 0), x ∈ R, has compact support, satisfies the con-
ditions of Lemma 3.1 and cε(·, t), t > 0, is the solution to (1.1), (1.3). Then

limt→∞
dΛε(t)

dt = 1.

Proof. We see from (3.5) and Lemma 3.1 that for any δ > 0 there exists Tδ ≥ 1
such that

(3.37)
ε

2

∣

∣

∣

∣

∂cε(0, t)

∂x

∣

∣

∣

∣

≤ δcε(0, t) for t ≥ Tδ .
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If we also choose Tδ sufficiently large so that ε/2Λε(t) ≤ δ for t ≥ Tδ, then we
conclude from (3.1), (3.24), (3.37) that

(3.38) [1− 2δ]βXε,t(0) ≤ dΛε(t)

dt
≤ [1 + 2δ]βXε,t(0) t ≥ Tδ .

The result follows from (3.28) of Proposition 3.1 and (3.38). �

Remark 1. Observe that the rate of coarsening for the ε = 0 CP model is given by

(3.39)
d

dt
〈X0,t〉 = βX0,t(0) .

Hence the formula (3.1) for the whole line ε > 0 model can be considered as a
linear combination of the ε = 0 formula (3.39) and the ε > 0 formula (1.4) for the
Dirichlet boundary condition case.

Remark 2. It follows from (3.36) that

(3.40) lim
T→∞

Λε(T )a(T )

εσA(T )
= lim

T→∞

Λε(T )m2,A(T )

εσ2
A(T )

= 1 , where A(·) ≡ 1

Λε(·)
.

Equation (3.40) suggests that Λε(T )/T converges to 1 at a logarithmic rate. To see
this note from Lemma 2.1 that

(3.41) lim
T→∞

σ2
A(T )

m1,A(T )2
= Cε < ∞ .

We conclude from (3.15), (3.40), (3.41) and Proposition 3.2 that

(3.42) lim
T→∞

T

m1,A(T )

∫ T

0

ds

m1,A(s)
= εCε .

If we choose m1,A(T ) ≃ T (logT )1/2 for large T then the limit on the LHS of (3.42)
is 2 and

(3.43)
dm1,A(T )

dT
≃ m1,A(T )

T

[

1 +
1

2 logT

]

.

From (3.2) we have that

(3.44)
dm1,A(T )

dT
= A(T )m1,A(T ) =

1

Λε(T )
m1,A(T ) .

Comparing (3.43), (3.44) we conclude that

(3.45)
Λε(T )

T
≃ 1− 1

2 logT
as T → ∞ .

4. The half line problem

We consider now the half line problem (1.1), (1.2) with zero Dirichlet boundary
condition. Our approach will be to regard this problem as a perturbation from the
whole line problem studied in §2. Hence it is helpful to regard the half line problem
as (1.1), (1.3) rather than the equivalent (1.1), (1.2). In comparing the half line
problem to the full line problem, the main difficulty is in finding estimates on the
ratio of the half line Dirichlet Green’s function Gε,D for (1.1) to the whole line
Green’s function (3.4). We write the ratio as

(4.1) Kε,D(x, y, t, T ) = Gε,D(x, y, t, T )
/

Gε(x, y, t, T ) , x > 0, 0 < t < T .
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In [6] we proved a log concavity property for this ratio (see Theorem 1.1 of [6]).
We shall use this fact to show that the conclusions of Lemma 3.1 extend to the half
line problem.

Lemma 4.1. Let cε(x, t), x, t > 0, be the solution to (1.1), (1.2) with zero Dirichlet
boundary condition and non-negative initial data cε(·, 0) satisfying (3.6). Then
the function Λε(·) of (1.3) is increasing and limT→∞ Λε(T ) = ∞. If in addition

cε(·, 0) has compact support, then limT→∞ m1,A(T ) = ∞, limT→∞
m2,A(T )
m1,A(T ) = ∞,

limT→∞
σ2

A(T )
m2,A(T ) = ∞ and limT→∞

σ2

A(T )
m1,A(T )2 < ∞ , where A(·) = 1/Λε(·).

Proof. For T > 0 we define the function uε by

(4.2) uε(y, t, T ) =

∫ ∞

0

Gε,D(x, y, t, T ) dx , y > 0, t < T .

In place of (3.9) we have the formulas

(4.3)

∫ ∞

0

cε(x, T ) dx =

∫ ∞

0

uε(y, 0, T ) cε(y, 0) dy ,

and

(4.4)

∫ ∞

0

xcε(x, T ) dx =

∫ ∞

0

E[Xε,y,T ]uε(y, 0, T )cε(y, 0) dy ,

where Xε,y,T is the positive random variable with pdf proportional to the function
x → Gε,D(x, y, 0, T ). Since the function x → Gε(x, y, 0, T ) of (3.4) is the pdf of the
random variable (3.8) we have that

(4.5) E[Xε,y,T ] =

√
εσA(T )

E[Kε,D(
√
εσA(T ){Z − zy,T /

√
ε}, y, 0, T ){Z − zy,T/

√
ε} | Z > zy,T/

√
ε]

E[Kε,D(
√
εσA(T ){Z − zy,T/

√
ε}, y, 0, T ) | Z > zy,T /

√
ε]

,

where Z is the standard normal variable and Kε,D is given by (4.1). Observe that
the function f(z) = Kε,D(

√
εσA(T )z, y, 0, T ), z ≥ 0, is continuous increasing with

f(0) = 0 and limz→∞ f(z) = 1 (see Proposition 3.2 of [6]).
It follows from (1.4) that Λε(·) is increasing. As in Lemma 3.1 we assume for

contradiction that limT→∞ Λε(T ) = Λ∞ < ∞. Then (3.12) holds, and in place of
(3.13) we have from (A.17) of Lemma A.3 that E[Xε,y,T ] ≥ c

√
εσA(T ), y > 0, T ≥

1, for some constant c > 0. The inequality (3.14) follows now from (4.3), (4.4),
whence we conclude limT→∞ Λε(T ) = ∞. To prove that limT→∞ m1,A(T ) = ∞ we
need to use the concavity of the function z → − log[1− f(z)] (see (1.17) of [6]). In
particular, we need to show that if the functions a(·), b(·) satisfy (3.16) then the
analogue of (3.17) given by

(4.6) E[Xε,y,T ] ≤ C2 for T ≥ T2, y ∈ (0, y∞] ,

holds. Using the representation (4.5), we see that (4.6) follows from (A.1) of Lemma
A.1 and (A.18) of Lemma A.3.

The argument that limT→∞ m2,A(T )/m1,A(T ) = ∞ follows as in Lemma 2.1
from (3.14). To prove that limT→∞ σ2

A(T )/m2,A(T ) = ∞ we again need to use the
concavity of the function z → − log[1 − f(z)]. Thus (A.1) and (A.18) imply the
analogue of (3.21),

(4.7) E[Xε,y,T ] ≤ C3
σ2
A(T )

m2,A(T )
for T ≥ T3, y ∈ (0, y∞] ,
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whence we conclude from (4.3), (4.4) that Λε(T ) ≤ C3σ
2
A(T )/m2,A(T ) for T ≥ T3.

The remainder of the argument proceeds as in Lemma 3.1. �

Remark 3. Lemma 7.1 of [7] gives a proof that limT→∞ Λε(T ) = ∞ by using some
simple inequalities for solutions to (1.1), (1.2) with zero Dirichlet condition. Note
that the proof in Lemma 4.1 of limT→∞ Λε(T ) = ∞ uses only the elementary prop-
erty (proved using the maximum principle) that the function x → Kε,D(x, y, 0, T )
is increasing. The proof in Lemma 4.1 of limT→∞ m1,A(T ) = ∞ uses the more
subtle log concavity property of the function x → Kε,D(x, y, 0, T ). Evidently the
result that limT→∞ m1,A(T ) = ∞ is a type of upper bound on the rate of coarsen-
ing i.e. the rate at which Λε(·) can increase. Theorem 1.2 of [7] yields a bound
Λε(T ) ≤ CT +Λε(0), which implies that limT→∞ m1,A(T ) = ∞. The proof of The-
orem 1.2 of [7] also proceeds by establishing a log concavity condition on solutions
to (1.1) with zero Dirichlet boundary condition.

In Theorem 1.2 of [7] we obtained an upper bound on the rate of coarsening
provided the initial data for (1.1), (1.2) satisfies a log concavity condition. The
condition is that the function hXε,0(·) defined by (3.23) for the initial condition
random variable Xε,0 is log concave. It was shown in §7 of [7] that this implies
hXε,t(·) is also log concave for t > 0. Equivalently, one has that the beta function of
the random variablesXε,t, t > 0, defined by (3.24) satisfies the inequality βXε,t(·) ≤
1. Next we obtain a bound on the beta function of the variables Xε,t, t > 0, when
the initial data has compact support.

Lemma 4.2. Let cε(x, t), x, t > 0, be the solution to (1.1), (1.2) with zero Dirichlet
boundary condition and non-negative initial data cε(·, 0) satisfying (3.6). Assume
cε(·, 0) has compact support and for t > 0 denote by Xε,t the random variable with
pdf proportional to cε(·, t). Then for any T0 > 0 there is a constant C such that
βXε,t(·) ≤ C for t ≥ T0.

Proof. We bound βXε,t(·) from above by a constant times the beta function of the
corresponding random variable in the whole line problem. The result then follows
from the argument in the proof of Proposition 3.1. To obtain the bound we note
that

(4.8) cε(x, T ) =

∫ y∞

0

Kε,D(x, y, 0, T )Gε(x, y, 0, T )cε(y, 0) dy ,

and write

(4.9)

wε(x, T ) =

∫ ∞

x

cε(x
′, T ) dx′ =

∫ ∞

x

dx′

∫ y∞

0

Kε,D(x′, y, 0, T )Gε(x
′, y, 0, T )cε(y, 0) dy

≥
∫ y∞

0

Kε,D(x, y, 0, T )

[
∫ ∞

x

dx′ Gε(x
′, y, 0, T )

]

cε(y, 0) dy ,

since the function x → Kε,D(x, y, 0, T ) is increasing. Observe that

(4.10)
1

Gε(x, y, 0, T )

∫ ∞

x

dx′ Gε(x
′, y, 0, T ) =

Bε(x, y, T )

Aε(x, y, T )
,

where Aε(x, y, T ), Bε(x, y, T ) are the functions Aε(x, T ), Bε(x, T ) of (3.33), (3.34)
with c̃ε(·, 0) given by the Dirac delta function concentrated at y. Since Lemma



CARR-PENROSE MODEL 17

4.1 implies that limT→∞ a(T ) = ∞, limT→∞ b(T )/a(T ) = 0, we have from (3.33),
(3.36) there exists T1 ≥ T0 such that
(4.11)

1

Gε(x, y, 0, T )

∫ ∞

x

dx′ Gε(x
′, y, 0, T ) ≥ 1

2

[

a(T )

εσA(T )
+

x

εσ2
A(T )

]−1

x ≥ 0, T ≥ T1, 0 < y < y∞ .

Arguing as in the proof of Lemma 4.1 we also see that the variable Xε,y,T defined
there satisfies the inequality
(4.12)

E[Xε,y,T−x |Xε,y,T > x] ≤ C1

[

a(T )

εσA(T )
+

x

εσ2
A(T )

]−1

x ≥ 0, T ≥ T1, 0 < y < y∞ ,

for some constant C1 > 0. It follows from (4.11), (4.12) that βXε,T (·) ≤ 2C1 if T ≥
T1. The upper bound on βXε,T (·) in the region T0 < T < T1 is straightforward. �

Proposition 4.1. Assume cε(·, 0) satisfies the conditions of Lemma 3.2. Then for
any T0 > 0 there is a constant C0 such that the function Λε(·) defined by (1.3)
satisfies the inequality dΛε(t)/dt ≤ C0 when t ≥ T0.

Proof. We follow the arguments of Lemma 7.2 and Lemma 7.3 of [7], using Lemma
4.2 to substitute for the argument of Lemma 7.2. Thus by rescaling and Lemma
4.2 we can assume that

(4.13) 〈Xε,0〉 = 1, βXε,0(·) ≤ C1,

where C1 is the bound obtained in Lemma 4.2. We wish to show there is a second
constant C2, depending only on C1, such that

(4.14)
ε

2

∂cε(0, 1)

∂x
≤ C2cε(ε, 1) if ε ≤ 1.

Expressing the function Kε,D of (4.1) as

(4.15) Kε,D(x, y, 0, T ) =

{

1− exp

[

−qε(x, y, T )

ε

]}

,

we have that

(4.16)
ε

2

∂cε(0, 1)

∂x
=

1

2

∫ ∞

0

∂qε(0, y, 1)

∂x
Gε(0, y, 0, 1)cε(y, 0) dy .

We have then from (4.16) and Proposition 5.1 of [6] the inequality

(4.17)
ε

2

∂cε(0, 1)

∂x
≤
∫ ∞

0

[

1 +
m1,A(1)y

σ2
A(1)

]

Gε(0, y, 0, 1)cε(y, 0) dy ,

where A(·) ≡ 1/Λε(·). Using the lower bound in Proposition 3.3 of [6] we have that

(4.18) cε(ε, 1) ≥ 2m1,A(1)

σ2
A(1)

∫ ∞

0

y exp

[

−2m1,A(1)y

σ2
A(1)

]

Gε(ε, y, 0, 1)cε(y, 0) dy .

Observe that the function A(·) is decreasing and satisfies A(0) = 1. The inequality
(4.14) follows from (4.17), (4.18) by using the argument in the proof of Lemma 7.2
of [7]. The key point is that the inequality (7.6) of [7] continues to hold. That is if
Xε,0 satisfies (4.13) then for any δ with 0 < δ < 1 there exists a constant ν(δ) > 0,
depending only on C1, such that

(4.19) P (Xε,0 < ν(δ)) ≤ δ .
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The inequality (4.19) follows from (3.25), (3.26). Once (4.14) is established the
proof of the lemma follows as in the proof of Lemma 7.3 of [7]. �

Proposition 4.1 gives an upper bound on the rate of coarsening. We can also
obtain a lower bound by using the log concavity property of the function Kε,D,
which was crucial to the proof of Lemma 4.1. We illustrate this first for the classical
(ε = 0) CP model.

Lemma 4.3. Assume 0 < ε ≤ 1 and cε(x, 0) = f(x)e−x, x > 0, is the initial
data for the diffusive CP model (1.1), (1.2), where f : [0,∞) → ∞ is continuous
non-negative increasing, satisfying limx→∞ f(x) = 1 and with the property that the
function − log[1 − f(·)] is concave. Then there is a universal constant δ0 > 0 such
that Λε(1) ≥ [1 + δ0]Λε(0).

Proof. We first prove the result in the case ε = 0, so for the classical model of [3].
Let X0,t, t ≥ 0, be the random variables with pdf proportional to c0(·, t), t ≥ 0,
where c0(x, t), x, t ≥ 0, is the solution of the CP model (1.1), (1.2) with ε = 0.
Then one has that

(4.20)
dΛ0(t)

dt
= βX0,t(0) , t > 0 .

Furthermore βX0,t(x) = βX0,0 (FA(x, t)), x ≥ 0, where A(·) ≡ 1/Λ0(·) and FA is
defined by

(4.21) FA(x, t) =
x+m2,A(t)

m1,A(t)
, x, t ≥ 0 .

We have from (3.24) that

(4.22) βX(x) =
cX(x)

wX(x)
E[X − x | X > x] .

Arguing as in the proof of Lemma A.3, we see there is a universal constant c1 > 0
such that E[X0,0 − x | X0,0 > x] ≥ c1, x > 0. We consider for X = X0,0,

(4.23)
wX(x)

cX(x)
=

∫ ∞

x

f(x′)

f(x)
ex−x′

dx′ .

We write f(x) = 1−e−q(x) where q(·) is positive increasing and concave. If q(x) ≥ 1
then the RHS of (4.23) is bounded above by [1− e−1]−1. If q(x) ≤ 1 then we have
from (4.23) that

(4.24)
wX(x)

cX(x)
≤ e

∫ ∞

x

q(x′)

q(x)
ex−x′

dx′ .

From the concavity of q(·) and the fact that q(0) ≥ 0 we obtain the inequality

(4.25) q(x′) ≤ q(x) +
q(x)

x
(x′ − x) for x′ > x ,

whence the RHS of (4.24) is bounded above by e[1 + x]/x. We conclude from
(4.22)-(4.25) that

(4.26) βX0,0(x) ≥ c1x

e[1 + x]
, x > 0 .
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Since the function A(·) = 1/Λ0(·) is decreasing we see thatm1,A(s) ≤ exp[A(0)s], s >
0, whence we have that

(4.27)
m2,A(t)

m1,A(t)
≥ 1

A(0)

[

1− e−A(0)t
]

, t > 0 .

By the argument of Lemma A.3 there are universal constants C2, c2 > 0 such that
c2 ≤ Λ0(0) ≤ C2. The result follows from this and (4.26), (4.27) upon using the
identity,

(4.28) Λ0(1)− Λ0(0) =

∫ 1

0

βX0,0(FA(0, t)) dt .

To extend the argument to ε > 0 we use (4.16) and Proposition 5.1 of [6], whence
we obtain the inequality

(4.29)
ε

2

∂cε(0, t)

∂x
≥
∫ ∞

0

m1,A(t)y

σ2
A(t)

Gε(0, y, 0, t)cε(y, 0) dy .

Then (1.2), (1.4), (3.24), (4.26), (4.29) yield the inequality

(4.30)
dΛε(t)

dt
≥ c1m1,A(t)

eσ2
A(t)

∫ ∞

0

y2

1 + y
Gε(0, y, 0, t)

wX(y)2

hX(0)hX(y)
dy ,

where X = X0,0. As in the proof of Lemma 7.3 of [7], we use an inequality

(4.31) hX(y) ≥ 1

12
hX(0) , if 0 < y ≤ Λ0(0)/2 .

We combine (4.31) with the inequality hX(y)/wX(y) = E[X − y | X > y] ≤ C1

for some constant C1, as in the proof of Lemma A.3. Then we integrate (4.30) as
before to obtain the result for 0 < ε ≤ 1. �

Proposition 4.2. Assume cε(·, 0) satisfies the conditions of Lemma 3.2. Then for
any T0 > 0 there is a constant δ0 > 0 such that the function Λε(·) defined by (1.3)
satisfies the inequality Λε(T + Λε(T )) ≥ [1 + δ0]Λε(T ) when T ≥ T0.

Proof. We may assume that T0 is sufficiently large so that we are in the asymptotic
regime established in Lemma 4.1. Noting that Lemma A.3 also yields a lower bound
comparable to the upper bound (4.12), we conclude that

(4.32) E[Xε,T − x | Xε,T > x] ≥ c1

[

a(T )

εσA(T )
+

x

εσ2
A(T )

]−1

x ≥ 0, T ≥ T0 ,

for some constant c1 > 0. We wish to obtain a lower bound on βXε,T (·) similar to
the one established in the proof of Lemma 4.3. This will follow from (4.32) and an
upper bound on the ratio wε(x, T )/cε(x, T ), where cε(x, T ), wε(x, T ) are given by
(4.8), (4.9).

In analogy to (3.33), (3.34) we define functions Aε,D, Bε,D by

(4.33) Aε,D(x, T ) =

∫ y∞

0

Kε,D(x, y, 0, T ) exp

[

b(T )xy

εσA(T )

]

c̃ε(y, 0) dy ,

(4.34) Bε,D(x, T ) =

∫ y∞

0

dy

∫ ∞

0

dx′ Kε,D(x+ x′, y, 0, T )

× exp

[

b(T )(x+ x′)y

εσA(T )
− a(T )x′

εσA(T )
− x′(2x+ x′)

2εσ2
A(T )

]

c̃ε(y, 0) .
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Then one has for X = Xε,T the formula

(4.35)
wX(x)

cX(x)
=

Bε,D(x, T )

Aε,D(x, T )
.

Using the representation (4.15) we define y∞(x, T ) by

(4.36) y∞(x, T ) = sup{y : 0 < y < y∞, qε(x, y, T ) < ε } .

Since qε(x, 0, T ) = 0 and the function y → qε(x, y, T ) is increasing, it follows
from (4.36) that 0 < y∞(x, T ) ≤ y∞ and qε(x, y, T ) ≤ ε if y < y∞(x, T ), with
qε(x, y, T ) ≥ ε if y∞(x, T ) < y∞ and y > y∞(x, T ). It follows then from (4.33) that

(4.37) Aε,D(x, T ) ≥ 1

εe

∫ y∞(x,T )

0

qε(x, y, T ) exp

[

b(T )xy

εσA(T )

]

c̃ε(y, 0) dy

+
[

1− e−1
]

∫ y∞

y∞(x,T )

exp

[

b(T )xy

εσA(T )

]

c̃ε(y, 0) dy .

Similarly we have that

(4.38) Bε,D(x, T ) ≤ 1

ε

∫ y∞(x,T )

0

dy

∫ ∞

0

dx′ qε(x+ x′, y, T )

× exp

[

b(T )(x+ x′)y

εσA(T )
− a(T )x′

εσA(T )
− x′(2x+ x′)

2εσ2
A(T )

]

c̃ε(y, 0)

+

∫ y∞

y∞(x,T )

dy

∫ ∞

0

dx′ exp

[

b(T )(x+ x′)y

εσA(T )
− a(T )x′

εσA(T )
− x′(2x+ x′)

2εσ2
A(T )

]

c̃ε(y, 0) .

Applying (4.25) to the functions x → qε(x, y, T ) and using (3.35) we have from
(4.37), (4.38) the inequality
(4.39)

Bε,D(x, T )

Aε,D(x, T )
≤ C1

[

a(T )

εσA(T )
+

x

εσ2
A(T )

]−1
{

1 +
1

x

[

a(T )

εσA(T )
+

x

εσ2
A(T )

]−1
}

,

for some constant C1.
It follows from (3.40) and Lemma A.3 that T0 can be chosen sufficiently large so

that

(4.40) c2
εσA(T )

a(T )
≤ Λε(T ) ≤ C2

εσA(T )

a(T )
, for T ≥ T0 ,

for some constants C2, c2 > 0. We conclude from (4.32)-(4.40) there is a constant
c3 > 0 such that

(4.41) βXε,T (x) ≥ c3
x

Λε(T ) + x
, for x > 0, T ≥ T0 .

The result follows now from (4.41) and the argument of Lemma 4.3 by scaling Λε(T )
to 1, whence the diffusion coefficient in (1.1) becomes ε/Λε(T ) << 1. �
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5. Convergence of the function x → qε(x, y, T ) as T → ∞
In Proposition 3.1 we proved convergence in distribution to the exponential vari-

able for solutions to the whole line diffusive CP problem. This follows from the
corresponding convergence in distribution of the positive random variable X̃ε,y,T ,
with density proportional to the function x → Gε(x, y, 0, T ), x > 0. To prove that
we used certain properties of functions associated with A(·) ≡ 1/Λε(·), established
in Lemma 3.1. These are as follows:

(5.1)

(a) lim
T→∞

A(T ) = 0, (b) lim
T→∞

m1,A(T ) = ∞, (c) lim
T→∞

m2,A(T )

m1,A(T )
= ∞ ,

(d) lim
T→∞

σ2
A(T )

m2,A(T )
= ∞ , (e) lim

T→∞

σ2
A(T )

m1,A(T )2
< ∞ .

We wish to follow a similar strategy for the half line problem. In Lemma 4.1
we showed that (5.1) with A(·) ≡ 1/Λε(·) holds for the half line problem. The
random variable Xε,y,T defined in the proof of Lemma 4.1 has pdf proportional to

x → Gε,D(x, y, 0, T ), x > 0. The variables X̃ε,y,T/〈X̃ε,y,T 〉 and Xε,y,T /〈Xε,y,T 〉
have therefore the same distributional limit as T → ∞ if we can show the ratio of
their pdfs, given by the function x → Kε,D(x, y, 0, T ) of (4.1), converges to 1 as

T → ∞ for x larger than any small constant times min
{

〈X̃ε,y,T 〉, 〈Xε,y,T 〉
}

. In

view of (4.15), and the fact that the function x → qε(x, y, T ) is increasing, this is
equivalent to obtaining lower bounds on the function qε(·, y, T ).

It was shown in §4 of [6] that the function q0(x, y, T ) = limε→0 qε(x, y, T ) is the
solution to the variational problem

(5.2) q0(x, y, T ) =

min

{

1

2

∫ T

τ

[

dx(s)

ds
− λ(x(s), y, s)

]2

ds
∣

∣

∣
0 < τ < T, x(T ) = x, x(·) > 0, x(τ) = 0

}

,

where λ(·, ·, ·) is defined by

(5.3) λ(x, y, s) =

[

A(s) +
1

σ2
A(s)

]

x− 1 +
m2,A(s)

σ2
A(s)

− m1,A(s)y

σ2
A(s)

, x, y, s > 0.

We see from (5.3) that if (5.1) holds then lims→∞ λ(x, y, s) = −1. The solution to
(5.2) when λ(·, ·, ·) ≡ −1 is given by q0(x, y, T ) = 2x and the optimal exit time is
τ = τ(x, y, T ) = T − x. We therefore expect that limT→∞ q0(x, y, T ) = 2x for all
x, y > 0. The situation is however more subtle than we just described because it
is possible that the minimizing trajectory xmin(s), τ < s < T, for (5.2) could have
T − τ large. In that case xmin(·) is approximately the integral curve for the vector
field λ(·, ·, ·) with terminal condition xmin(T ) = x for a long time, but then close to
time τ the trajectory xmin(·) exits the positive half line with small cost. We shall
show that the conditions (5.1) rule out this possibility.

Proposition 5.1. Assume the function A : [0,∞) → R is continuous positive

decreasing and (5.1) holds. Then for all x, y > 0 one has limT→∞
q0(x,y,T )

2x = 1. In
addition the limit is uniform in any region 0 < x < M, y0 < y < y∞, where M > 0
and 0 < y0 < y∞ < ∞.
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Proof. It follows from the upper bound qε(x, y, T ) ≤ −2λ(0, y, T )x, proved in
Proposition 3.3 of [6], and (5.1) that

(5.4) lim sup
T→∞

[qε(x, y, T )− 2x] /x ≤ 0 , uniformly for 0 < x < M, 0 < y < y∞ .

From Theorem 2.1 of [6] we have that q0(x, y, T ) = limε→0 qε(x, y, T ), whence (5.4)
also holds when ε = 0. To obtain a lower bound on q0(x, y, T ) we consider solutions
to the equation

(5.5)
dx(s)

ds
= λ(x(s), y, s) , s < T, x(T ) = x ,

which we denote by xclass(s, T ), s < T . We have from (2.12) of [6] the explicit
formula

(5.6) σ2
A(T )xclass(s, T ) = xm1,A(s, T )σ

2
A(s) + ym1,A(s)σ

2
A(s, T )

+ m1,A(s, T )m2,A(s, T )σ
2
A(s)−m2,A(s)σ

2
A(s, T ) ,

where the functions (s, T ) → m1,A(s, T ), m2,A(s, T ), σ2
A(s, T ), s < T, are defined

for the interval [s, T ] similarly to the corresponding functions T → m1,A(T ) =
m1,A(0, T ), m2,A(T ) = m2,A(0, T ), σ2

A(T ) = σ2
A(0, T ) of (3.2) defined for the

interval [0, T ]. Evidently one has lims→T xclass(s, T ) = x and lims→0 xclass(s, T ) =
y. We can estimate xclass(s, T ) in the interval 0 < s < T using the properties (5.1)
by observing from (5.6) that

(5.7) xclass(s, T ) ≥ σ2
A(s)

m1,A(s)2

(

σ2
A(T )

m1,A(T )2

)−1
m2,A(s, T )

m1,A(s, T )

− 1

m1,A(s)

σ2
A(s, T )

m1,A(s, T )2

(

σ2
A(T )

m1,A(T )2

)−1
m2,A(s)

m1,A(s)
, 0 < s < T .

From (5.1) (c),(e) the first term on the RHS of (5.7) goes to ∞ as T → ∞, whereas
from (5.1) (e) the second term converges to a finite number. We conclude that
limT→∞ xclass(s, T ) = ∞.

We can use the method of characteristics to construct a solution to the Hamilton-
Jacobi equation (2.29) of [6] , corresponding to the variational problem (5.2), in a
neighborhood of the line {[x.T ] ∈ R

2 : x = 0, T > 0}. The characteristic equation,
given by (4.28) of [6], is
(5.8)
dx(s)

ds
=

[

A(s) +
1

σ2
A(s)

]

x(s)+
m1,A(s)

σ2
A(s)

[y + 2g2,A(τ, τ)− g2,A(s, s)] , s > τ, x(τ) = 0 ,

where the function s → g2,A(s, s) is given by the formula

(5.9) g2,A(s, s) =
σ2
A(s)−m2,A(s)

m1,A(s)
, s > 0 .

Differentiating (5.9) we find that

(5.10)
d

ds
g2,A(s, s) =

A(s)σ2
A(s)

m1,A(s)
.

Evidently the function s → g2,A(s, s), s > 0, is non-negative increasing, and from
(5.1) (c), (d) we have lims→∞ g2,A(s, s) = ∞. Choosing T1 > 0 so that σ2

A(s) ≥
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2m2,A(s) for s ≥ T1, we see from (5.9), (5.10) that

(5.11)
d

ds
g2,A(s, s) ≤ 2A(s)g2,A(s, s) , s > T1 .

Integrating (5.11) we conclude that

(5.12) g2,A(s, s) ≤ exp

[

2

∫ s

T

A(s′) ds′
]

g2,A(T, T ) , for s > T ≥ T1 .

Since the function A(·) is decreasing it follows from (5.8), (5.12) that the character-
istic curve s → xchar(T, s), s > T, xchar(T, T ) = 0, is increasing provided T > T1

and T < s < T + log 2/2A(T ). We may also obtain a lower bound on xchar(T, s) by
observing from (5.8), (5.12) that
(5.13)
d

ds
xchar(T, s) ≥ m1,A(s)

3σ2
A(s)

g2,A(s, s) ≥ 1

6
, for T < s < T+log(3/2)/2A(T ) , T ≥ T1,

whence we conclude that

(5.14) xchar(T, s) ≥ s− T

6
, if T < s < T + log(3/2)/2A(T ) , T ≥ T1 .

The first variation equation for the characteristics is obtained by differentiating
(5.8) with respect to τ . This yields the equation

(5.15)

d

ds
DTxchar(T, s) =

[

A(s) +
1

σ2
A(s)

]

DTxchar(T, s)+
2m1,A(s)

σ2
A(s)

A(T )σ2
A(T )

m1,A(T )
, s > T ,

DTxchar(T, s)
∣

∣

∣

s=T
= −m1,A(T )

σ2
A(T )

[y + g2,A(T, T )] .

Using the fact that the function s → m1,A(s)/σ
2
A(s), s > 0, is decreasing we have

from (5.15) that

(5.16)
d

ds
DTxchar(T, s) ≤ 2A(T ) if s > T and DTxchar(T, s) ≤ 0,

DTxchar(T, s)
∣

∣

∣

s=T
≤ −1

2
, if T ≥ T1 .

It follows from (5.16) that DTxchar(T, s) < 0 if T < s < T +1/4A(T ), T > T1. We
define a domain Dy(T1) by

(5.17) Dy(T1) = {[x, s] : x = xchar(T, s), T < s < T + 1/5A(T ), T > T1 } .

Letting U(T1) = {[s, T ] : T < s < T +1/5A(T ), T > T1 }, we have shown that the
mapping U(T1) → Dy(T1) defined by [s, T ] → [xchar(T, s), s] is a diffeomorphism.

One can use the method of characteristics to construct a C1 solution qchar(x, y, T ), [x, T ] ∈
Dy(T1), of the Hamilton-Jacobi equation in the domain Dy(T1). From (4.26) of [6]
we have the formula

(5.18)
∂qchar(xchar(T, s), y, s)

∂x
=

2m1,A(s)[y + g2,A(T, T )]

σ2
A(s)

, s > T .

In view of (5.1) (a) and (5.14), we see that for any M > 0 there exists TM ≥ T1

such that Dy(T1) contains the infinite rectangle {[x, T ] : 0 < x < M, T > TM}.
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Furthermore, (5.1) (a), (b), (d), (e) and (5.14), (5.18) imply for any y∞ > 0 that

(5.19) lim
T→∞

∂qchar(x, y, T )

∂x
= 2 , uniformly for 0 < x < M, 0 < y < y∞ .

As a consequence of (5.19) we have that limT→∞ qchar(x, y, T )/2x = 1 for all x, y >
0. Let x(s), τ < s ≤ T, be a path in R

+ such that x(T ) = x and with first exit
time τ > 0 from R

+. The associated Lagrangian L and action integral A are given
by the expressions

(5.20) L(x(·), x, y, s, T ) =
1

2

[

dx(s)

ds
− λ(x(s), y, s)

]2

, τ < s < T ,

A(x(·), x, y, T ) =

∫ T

τ

L(x(·), x, y, s, T ) ds .

The usual verification theorem (see Proposition 4.2 of [6]) implies that if the path
s → [x(s), s], τ < s ≤ T, lies in Dy(T1) then A(x(·), x, y, T ) ≥ qchar(x, y, T ).
Suppose now that T > TM and the path exits Dy(T1), but then reenters Dy(T1) at
time τ∗ > TM and remains in Dy(T1), until it exits R+. In that case we have the
inequality A(x(·), x, y, T ) ≥ qchar(M, y, τ∗).

Next we wish to obtain a lower bound on the action in the case 0 < τ < T1.
We observe that the path x(s), τ ≤ s ≤ T, is the solution to the terminal value
problem
(5.21)
dx(s)

ds
= λ(x(s), y, s)−f(s) , τ < s ≤ T , x(T ) = x,

1

2
f(s)2 = L(x(·), x, y, s, T ) .

It follows from (5.5) that x̃(s) = x(s) − xclass(s, T ) is a solution to the terminal
value problem

(5.22)
dx̃(s)

ds
=

[

A(s) +
1

σ2
A(s)

]

x̃(s)− f(s) , τ < s < T, x̃(T ) = 0 .

Integrating (5.22) we obtain the integral formula

(5.23) x̃(s) =
σ2
A(s)

m1,A(s)

∫ T

s

m1,A(s
′)

σ2
A(s

′)
f(s′) ds′ .

Applying the Schwarz inequality in (5.23) we have from (5.1) (e) and (5.21) that
(5.24)

x̃(s)2 ≤ C

[

∫ T

s

|f(s)|
m1,A(s, s′)

ds′

]2

≤ 2C
σ2
A(s, T )

m1,A(s, T )2

∫ T

s

L(x(·), x, y, s′, T ) ds′ ,

for some constant C. It follows from (5.2), (5.20), (5.24) that
(5.25)

A(x(·), x, y, T ) ≥ m1,A(s, T )
2

2Cσ2
A(s, T )

[x(s)− xclass(s, T )]
2 + q0(x(s), y, s) , τ < s < T .

We wish to show that

(5.26) lim inf
T→∞

q0(x, y, T )

2x
≥ 1 , uniformly for 0 < x < M, y0 < y < y∞ .

To do this we first note the lower bound from Proposition 4.1 of [6],

(5.27) q0(x, y, T ) ≥ 2m1,A(T )xy

σ2
A(T )

, x, y, T > 0 .
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Consider a path x(s), τ < s < T, with x(T ) = x and first exit time τ , where τ <
T2M < T . Taking s = T2M in (5.25) and recalling that limT→∞ xclass(T2M , T ) = ∞,
it follows from (5.1) (e) and (5.25), (5.27) that there exists T ∗

2M > T2M such that

(5.28) A(x(·), x, y, T ) ≥ 2x for T > T ∗
2M , 0 < x < M, y > y0 .

We have already seen that the method of characteristics yields a lower bound on
the action in the case τ > T2M . Combining that with (5.28) implies (5.26). We
have already established the upper bound lim supT→∞ q0(x, y, T )/2x ≤ 1 in (5.4).
It also follows from the inequality q0(x, y, T ) ≤ qchar(x, y, T ) and (5.19). �

Next we show that the result of Proposition 5.1 extends to the case ε > 0. We
have already obtained an upper bound in (5.4),so we just need to obtain a lower
bound on qε(x, y, T ). We consider solutions Xε(·) to the SDE

(5.29) dXε(s) = µε(Xε(s), y, s) ds+
√
εdB(s) ,

run backwards in time with controller µε and given terminal data. The optimal
controller for the stochastic control problem corresponding to the function [x, T ] →
qε(x, y, T ) is

(5.30) µ∗
ε(x, y, T ) = λ(x, y, T ) +

∂qε(x, y, T )

∂x
, x, T > 0 .

Letting X∗
ε (·) be solutions to (5.29) with µε = µ∗

ε, we have from Lemma 2.1 and
Lemma 2.3 of [6] the identity
(5.31)

qε(x, y, T ) = E

[

1

2

∫ T

τ∗

ε,x,T

[µ∗(X∗
ε (s), y, s)− λ(X∗

ε (s), y, s)]
2
ds
∣

∣

∣
X∗

ε (T ) = x

]

,

where τ∗ε,x,T is the first exit time of X∗
ε (s), s < T, with X∗

ε (T ) = x from the half

line (0,∞). Lemma 2.3 of [6] also establishes that τ∗ε,x,T > 0 with probability 1.

We generalize the lower bound (5.25) on the action. To do this we denote by
Xε,class(s, T ), s < T, the solution to (5.29) with µε = λ and terminal condition
Xε,class(T, T ) = x. The SDE (5.29) is then linear and may be explicitly solved,
whence we have that
(5.32)

Xε,class(s, T ) = xclass(s, T )−
√
ε

σ2
A(s)

m1,A(s)
Z(s) , with Z(s) =

∫ T

s

m1,A(s
′) dB(s′)

σ2
A(s

′)
,

where xclass(s, T ) is given by (5.6). Since the function x → qε(x, y, T ) is increasing it
follows from (5.30) that µ∗(x, y, s) ≥ λ(x, y, s), x, y, s > 0, whenceXε,class(s, T ) > 0
for τ∗ε,x,T < s < T . Integrating (5.29) over an interval [s, T ] we have similarly to

(5.22), (5.23) the identity

(5.33) Xε,class(s, T )−X∗
ε (s) =

σ2
A(s)

m1,A(s)

∫ T

s

m1,A(s
′)

σ2
A(s

′)
[µ∗(X∗

ε (s
′), y, s′)− λ(X∗

ε (s
′), y, s′)] ds′ , τ∗ε,x,T < s < T .

Let τT be a stopping time for the diffusion (5.29), run backwards in time with
terminal time T , such that τT > τ∗ε,x,T . Applying the Schwarz inequality in (5.33),

we conclude from (5.31) that

(5.34) qε(x, y, T ) ≥ E
[

qε(X
∗
ε (τT ), y, τT )

∣

∣

∣
X∗

ε (T ) = x
]
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+
σ2
A(T )

2
E

[

{Xε,class(τT , T )−X∗
ε (τT )}

2

σ2
A(τT )σ

2
A(τT , T )

∣

∣

∣
X∗

ε (T ) = x

]

,

where we have used the identity

(5.35)

∫ T

s

m1,A(s
′)2 ds′

σ4
A(s

′)
=

m1,A(s)
2σ2

A(s, T )

σ2
A(T )σ

2
A(s)

.

In order to proceed further we first consider a simpler problem in which the
function λ is replaced by a constant −k with k > 0. We see from (4.15) and (2.18),
(2.19) of [6] that the function vε, defined by

(5.36) vε(x, y, T ) = 1−Kε,D(x, y, 0, T ) = exp

[

−qε(x, y, T )

ε

]

,

is a solution to the PDE

(5.37)
∂vε(x, y, T )

∂T
= −λ(x, y, T )

∂vε(x, y, T )

∂x
+

ε

2

∂2vε(x, y, T )

∂x2
,

with boundary condition limx→0 vε(x, y, T ) = 1. Replacing the function λ in (5.37)
by the constant −k, we are interested in solutions (x, T ) → vε(x, T ) to the Dirichlet
boundary value problem

(5.38)
∂vε(x, T )

∂T
= k

∂vε(x, T )

∂x
+
ε

2

∂2vε(x, T )

∂x2
, x, T > 0, vε(0, T ) = 1, T > 0 .

As in (5.36) we define a function (x, T ) → qε(x, T ) by

(5.39) vε(x, T ) = exp

[

−qε(x, T )

ε

]

, x, T > 0 .

Observe that if we set qε(x, T ) = 2kx in (5.39) then (x, T ) → vε(x, T ) is a solution
to (5.38).

Proposition 5.2. Let the function (x, T ) → vε(x, T ) be the solution to the bound-
ary value problem (5.38) with initial data vε(x, 0) = exp[−qε(x, 0)/ε], x > 0, and
assume there is a non-negative function f : R+ → R, independent of ε, with the
property that limx→∞ f(x) = ∞ and qε(x, 0) ≥ f(x), x ≥ 0. Then the function qε
defined by (5.39) has the property limT→∞ [qε(x, T )− 2kx] /x = 0 if x > 0. In ad-
dition for any M, ε0 > 0, the limit is uniform in the region 0 < x ≤ M, 0 < ε ≤ ε0.

Proof. The solution to (5.38) with initial data vε(·, 0) has the representation
(5.40)

vε(x, T ) =
ε

2

∫ T

0

∂Gε,D(x, 0, t)

∂x′
dt+

∫ ∞

0

Gε,D(x, x′, T )vε(x
′, 0) dx′ , x, T > 0 ,

where Gε,D is the Dirichlet Green’s function for the PDE (5.38). In the case of
(5.38) there is an explicit formula for Gε,D,

(5.41) Gε,D(x, x′, t) =
1√
2πεt

exp

[

− (x− x′ + kt)2

2εt

]{

1− exp

[

−2xx′

εt

]}

.

We first observe that

(5.42)
ε

2

∫ ∞

0

∂Gε,D(x, 0, t)

∂x′
dt = exp

[

−2kx

ε

]

.

In fact the LHS of (5.42) is given by
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(5.43)

∫ ∞

0

x

t3/2
√
2πε

exp

[

− (x+ kt)2

2εt

]

dt

= exp

[

−kx

ε

]
∫ ∞

0

x

t3/2
√
2πε

exp

[

− x2

2εt
− k2t

2ε

]

dt = exp

[

−kx

ε

]

2
√
z

∫ ∞

0

sg(s)e−zs ds ,

where z, g(·) are given by the formulae

(5.44) z =
k2x2

ε2
, g(s) =

1

2
√
πs3/2

exp

[

− 1

4s

]

.

Now (5.42) follows since the Laplace transform Lg(z) = exp[−√
z].

To obtain an upper bound on lim supT→∞ qε(x, T )/x we show that for any δ > 0
there exists Tδ > 0 such that

(5.45) vε(x, T ) ≥ exp

[

−2kx(1 + δ)

ε

]

if 0 < x ≤ M, 0 < ε ≤ ε0, T ≥ Tδ .

The inequality (5.45) follows from (5.42) and the inequality

(5.46)
ε

2

∫ ∞

T

∂Gε,D(x, 0, t)

∂x′
dt ≤

(

2ε

π

)1/2
x

k2T 3/2
exp

[

−k2T

2ε

]

.

To obtain a lower bound on lim infT→∞ qε(x, T )/x, we show that for any δ > 0
there exists Tδ > 0 such that

(5.47)
∫ ∞

0

Gε,D(x, x′, T )vε(x
′, 0) dx′ ≤ e−2kx/ε

[

eδx/ε − 1
]

= e−(2k−δ)x/ε
[

1− e−δx/ε
]

≤ δx

ε
e−(2k−δ)x/ε if T ≥ Tδ, 0 < x ≤ M, 0 < ε ≤ ε0 .

To prove (5.47) we first observe there exists T0 > 0 such that

(5.48) inf
x′>0

[

(x− x′ + kT )2

2T
+ f(x′)

]

≥ 2kM for all x > 0, if T ≥ T0 .

Evidently T0 must satisfy the inequalities

(5.49) T0 ≥ 4M

k
, f(kT0) ≥ 2kM .

From (5.41), (5.48) we see that the LHS of (5.47) is bounded above by

(5.50) e−(2k−δ)M/ε 1√
2πεT

∫ ∞

0

dx′ 2xx
′

εT
exp

[

− δ

2kε

{

(x− x′ + kT )2

2T
+ f(x′)

}]

,

provided T ≥ T0. It follows from (5.47), (5.50) it is sufficient to choose Tδ ≥ T0

such that

(5.51)
1√
2πεT

∫ ∞

0

dx′ 2x′

T
exp

[

− δ

2kε

{

(x − x′ + kT )2

2T
+ f(x′)

}]

≤ δ

if T ≥ Tδ. Evidently Tδ may be chosen uniformly for 0 < x ≤ M, 0 < ε ≤ ε0. �

The proof of Proposition 5.2 depends heavily on using the explicit formula (5.41)
for the Dirichlet Green’s function. No such formula exists in the general case of
the drift (5.3). We therefore give an alternative proof of Proposition 5.2, using the
representation of qε(x, T ) as the cost function of a stochastic control problem. We
will then generalize this approach to the case of the drift λ of (5.3).
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Proof of Proposition 5.2 upper bound. As in the proof of Lemma 2.1 of [6], we have
the inequality

(5.52) qε(x, T ) ≤ E

[

1

2

∫ T

τε,x,T∨0

[µε(Xε(s), s) + k]
2
ds
∣

∣

∣
Xε(T ) = x

]

+ E
[

qε(Xε(τε,x,T ∨ 0), τε,x,T ∨ 0)
∣

∣

∣
Xε(T ) = x

]

.

where Xε(s), s ≤ T, is the solution to the SDE (5.29), and τε,x,T is the first exit
time of Xε(·) from the half line (0,∞). We define the drift µε by

(5.53) µε(x, s) = k if 1 < s < T, µε(x, s) =
x

s
if 0 < s < 1 .

Arguing as in the proof of Lemma 2.1 of [6] , we see that τε,x,T > 0 with probability
1. Hence the second term on the RHS of (5.52) is zero. It follows then from (5.52)
that
(5.54)

qε(x, T ) ≤ 2k2E[T − τaε,x,T ] +E

[

1

2

∫ 1

τε,x,T∧1

[µε(Xε(s), s) + k]
2
ds
∣

∣

∣
Xε(T ) = x

]

,

where τaε,x,T is the first exit time from the half line (0,∞) for the diffusion with the

constant drift k. It is easy to see that E[T − τaε,x,T ] = x/k. To estimate the second

term on the RHS of (5.54) we consider a diffusion run backwards in time from s = 1
conditioned on Xε(1) = x, which satisfies the SDE (5.29) with µε(x, s) = x/s. The
solution to (5.29) is then given by the formula

(5.55) Xε(s) = s
[

x−
√
εZ(s)

]

, Z(s) =

∫ 1

s

dB(s′)

s′
.

Let τε,x < 1 be the first exit time from (0,∞) for Xε(·) with Xε(1) = x. Then
using (5.55) and arguing as in the proof of Lemma 2.2 of [6], we obtain the identity

(5.56) E

[

1

2

∫ 1

τε,x

[Xε(s)/s+ k]
2
ds
∣

∣

∣
Xε(1) = x

]

=
(x+ k)2

2
E[1− τε,x] + x(x + k)E[τε,x] +

ε

2
E

[

∫ 1

τε,x

Z(s)2 ds

]

.

Following the argument of [6], we see that

(5.57) E

[

∫ 1

τε,x

Z(s)2 ds

]

≤ C [1 + | log ε|+ x] ,

with constant C independent of ε, x for x > 0, 0 < ε ≤ ε0. Since 0 < τε,x < 1 one
obtains from (5.56), (5.57) an upper bound on the LHS of (5.56), which we denote
by Fε(x). It follows then from (5.54), noting that (5.41) with k replaced by −k and
t = T − 1 gives the distribution of Xε(1) on paths Xε(s) with τε,x,T < 1, that

(5.58)
qε(x, T )

x
≤ 2k+

1
√

2πε(T − 1)

∫ ∞

0

exp

[

−{x− x′ − k(T − 1)}2
2ε(T − 1)

]

1

x

{

1− exp

[

− 2xx′

ε(T − 1)

]}

Fε(x
′) dx′ .
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The integral in (5.58) converges to 0 as T → ∞, uniformly for 0 < ε ≤ ε0, 0 <
x ≤ M . We conclude that lim supT→∞ qε(x, T )/x ≤ 2k and the limit is uniform for
0 < ε ≤ ε0, 0 < x ≤ M . �

Proof of Proposition 5.2 lower bound. Let µ∗
ε be the optimal controller

(5.59) µ∗
ε(x, T ) = −k +

∂qε(x, T )

∂x
, x, T > 0 ,

and X∗
ε (·) be the solution to the SDE (5.29) with µε = µ∗

ε . Denoting by τ∗ε,x,T
the first exit time from the half line (0,∞) for the diffusion X∗

ε (s), s ≤ T, with
X∗

ε (T ) = x > 0, we have an identity similar to (5.31),

(5.60) qε(x, T ) = E

[

1

2

∫ T

τ∗

ε,x,T∨0

[µ∗
ε(Xε(s), s) + k]

2
ds
∣

∣

∣
X∗

ε (T ) = x

]

+ E
[

qε(Xε(τ
∗
ε,x,T ∨ 0), τ∗ε,x,T ∨ 0)

∣

∣

∣
X∗

ε (T ) = x
]

.

Let Xε,class(s), s ≤ T, be the solution to (5.29) with µε ≡ −k. Evidently, condi-
tioned on Xε,class(T ) = x, one has the formula

(5.61) Xε,class(s) = x+ k(T − s) +
√
εB(s), s ≤ T .

Arguing as in (5.33), (5.34) we obtain from (5.60) the lower bound

(5.62) qε(x, T ) ≥ E

[

{Xε,class(τ)−X∗
ε (τ)}

2

2(T − τ)
+ qε(X

∗
ε (τ), 0) ;

∣

∣ X∗
ε (T ) = x

]

,

where τ is any stopping time satisfying τ ≥ τ∗ε.x.T ∨ 0. We use the fact that

(5.63) inf
τ<T

X0,class(τ)
2

2(T − τ)
= inf

τ<T

{x+ k(T − τ)}2
2(T − τ)

= 2kx ,

where the minimizing τ satisfies T − τ = x/k. We can obtain a lower bound on
qε(x, T ) from (5.62), (5.63) if we show for any δ > 0 that with high probability
Xε,class(s) ≥ (1 − δ)X0,class(s), s ≤ T , provided Xε,class(T ) = X0,class(T ) = x is
sufficiently large. Thus we need to compute the probability that

(5.64) Xε,class(s)−(1−δ)X0,class(s) = δx+δk(T −s)+
√
εB(s) > 0 for s < T .

This probability is given by 1 minus the RHS of (5.42) with δx replacing x and
δk replacing k, whence the probability of the event (5.64) is 1 − exp[−2δ2kx/ε].
Choosing τ = τ∗ε.x.T ∨ 0 in (5.62), we conclude that

(5.65) qε(x, T ) ≥
{

1− exp

[

−2δ2kx

ε

]}

min

[

2k(1− δ)2x, inf
X>(1−δ)(x+kT ), x′>0

{

X − x′}2
2T

+ qε(x
′, 0)

}]

.

Since we are assuming that qε(x
′, 0) ≥ f(x′) and limx′→∞ f(x′) = ∞, we obtain on

taking the limit T → ∞ in (5.65) the inequality,

(5.66) lim inf
T→∞

qε(x, T )

x
≥ 2k(1− δ)2

{

1− exp[−2δ2kx/ε]
}

.

The limit in (5.66) is uniform for 0 < x ≤ M, 0 < ε ≤ ε0. Evidently (5.66) yields
a lower bound close to 2k if x/ε >> 1.

We wish to obtain a lower bound, which also holds as x → 0. Let τε,class,x,T , s <
T, be the first exit time from the half line (0,∞) for the diffusion Xε,class(s), s < T,
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withXε,class(T ) = x. Since the function x → qε(x, T ), x > 0, is increasing, it follows
from (5.59) that τ∗ε,x,T > τε,class,x,T . We also have that

(5.67) P (τε,class,x,T < T − t) =

∫ ∞

0

Gε,D(x, x′, t) dx′ ,

where Gε,D is given by (5.41). Evidently the function t → P (τε,class,x,T < T − t) is
decreasing, and from (5.41), (5.67) we see that

(5.68) lim
t→∞

P (τε,class,x,T < T − t) = 1− exp

[

−2kx

ε

]

, t > 0 .

Note that (5.42) is the integral of the pdf of τε,class,x,T , whence the RHS of (5.42) and
the RHS of (5.68) add up to 1. If x/ε ≤ K for some constant K, the asymptotic
limit on the RHS of (5.68) is closely approximated, uniformly for 0 < ε ≤ ε0,
when t ≥ Nε where N >> 1 is independent of ε. The inequality (5.46) gives a
quantitative estimate of this.

We assume x satisfies 0 < x ≤ Nkε/2 with N ≥ 1 and take τ = τ∗ε.x.T ∨ (T −Nε)
in (5.62). Using the quadratic inequality in (5.62) and the formula (5.61), we obtain
a lower bound

(5.69)

qε(x, T ) ≥ ρ
{

2kxP (τ∗ε,x,T > T −Nε)− 2k
√
εE
[

B(T −Nε); τ∗ε,x,T < T −Nε
]}

+E

[

{Xε,class(T −Nε)−X∗
ε (T −Nε)}2

2Nε
+ qε(X

∗
ε (T −Nε), 0) ; τ∗ε,x,T < T −Nε

]

,

for any ρ satisfying 0 ≤ ρ ≤ 1. In (5.69) we have used the identity E[B(τ)] = 0.
Observe from (5.66) that for any M > 0 there exists N0 ≥ 1, T0 > 0 such that
(5.70)

inf
X>Nkε/2, x′>0

{

X − x′}2
2Nε

+ qε(x
′, T −Nε)

}

≥ Nk2ε

32
if N ≥ N0, T ≥ T0, Nkε ≤ M .

We also have as in (5.67) that

(5.71) P (τε,class,x,T < T −Nε, Xε,class(T −Nε) < Nkε/2)

=

∫ Nkε/2

0

Gε,D(x, x′, Nε) dx′ ≤ Cx

ε
exp

[

−Nk2

16

]

,

for some constant C, independent of x, ε,N in the range x > 0, 0 < ε ≤ ε0, N ≥ 1.
Suppose now that

(5.72) P
(

τ∗ε,x,T < T −Nε
)

≥ 2Cx

ε
exp

[

−Nk2

16

]

.

Setting ρ = 0 in (5.69) and using the fact that τ∗ε,x,T > τε,class,x,T , we conclude

from (5.69)-(5.71) that if (5.72) holds then

(5.73) qε(x, T ) ≥ Nk2ε

64
P
(

τ∗ε,x,T < T −Nε
)

if N ≥ N0, T ≥ T0, Nkε ≤ M .

Evidently (5.73) yields the lower bound on qε(x, T ) unless

(5.74) P
(

τ∗ε,x,T < T −Nε
)

≤ 128x

Nkε
.

We assume now that 0 < x ≤ Nkε/2 and that (5.74) holds. We apply the
inequality (5.69) with ρ = 1 and divide the second term on the RHS of (5.69) into
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the expectation over B(T − Nε) ≤ N2/3
√
ε and B(T − Nε) ≥ N2/3

√
ε. Using

(5.61) we then have that

(5.75) qε(x, T ) ≥ 2kx

[

1− 128x

Nkε
− 128

N1/3k

]

− 2kE
[

Xε,class(T −Nε)−X0,class(T −Nε) ; τε,class,x,T < T −Nε,

Xε,class(T −Nε)−X0,class(T −Nε) > N2/3ε
]

.

The expectation in (5.75) is given by

(5.76)

∫ ∞

x+Nkε+N2/3ε

Gε,D(x, x′, Nε)[x′ − (x+Nkε)] dx′ ≤ Cx exp
[

−N1/6
]

,

where C is a constant which can be chosen uniformly for 0 < x ≤ Nkε/2, 0 < ε ≤
ε0, N ≥ N0.

To obtain the lower bound on qε(x, T ) we first choose N ≥ N0 large and M
satisfying Nkε0 = M . Then (5.66) holds and hence the lower bound up to an
O(1/N1/3) correction, when Nkε/2 ≤ x ≤ M . In the case 0 < x ≤ Nkε/2 the
argument has just been given. �

Proposition 5.3. Assume the function A(·) satisfies the conditions of Proposition
5.1. Assume also there exists δ0, T0 > 0 such that

(5.77) A (T + 1/A(T )) ≤ A(T )

1 + δ0
if T ≥ T0.

Letting qε(x, y, T ) be the function defined by (4.1), (4.15), then for all x, y > 0

one has limT→∞
qε(x,y,T )

2x = 1. In addition the limit is uniform in any region
0 < x ≤ M, 0 < ε ≤ ε0, y0 < y < y∞, where ε0,M > 0 and 0 < y0 < y∞ < ∞.

Proof. In view of (5.4) it is sufficient to establish a lower bound. Since limT→∞ λ(x, y, T ) =
−1 we may use a similar argument to the one just given of the lower bound in Propo-
sition 5.2. We replace the assumption in Proposition 5.2 on the initial data by the
following:

(5.78) For any ε, δ, y0 > 0, there exists a function f : [1,∞) → R such that

lim
T→∞

f(T ) = ∞, qε(δ/A(T ), y, T ) ≥ f(T ) for 0 < ε ≤ ε0, y ≥ y0 .

The extra assumption (5.77) on A(·) is needed for the proof of (5.78).
To begin the proof of (5.78) we consider any T0 ≥ 1 and define the stopping time

τT by τT = τ∗ε,x,T ∨ T0. We use the formula (5.34), whence we have the inequality

(5.79) qε(x, y, T ) ≥ E
[

qε(X
∗
ε (T0), y, T0); τ∗ε,x,T ≤ T0

]

+
σ2
A(T )

2
E

[

{Xε,class(T0, T )−X∗
ε (T0)}2

σ2
A(T0)σ2

A(T0, T )
; τ∗ε,x,T ≤ T0

]

.

We see from (5.32), (5.35) that

(5.80) Var

[√
ε

σ2
A(s)

m1,A(s)
Z(s)

]

= ε
σ2
A(s)σ

2
A(s, T )

σ2
A(T )

≤ εσ2
A(s) , 0 < s < T .

From Proposition 3.3 of [6] one has that the inequality (5.27) extends to ε > 0, so

(5.81) qε(x, y, T ) ≥ 2m1,A(T )xy

σ2
A(T )

, x, y, T > 0 .
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It follows then from (5.7), (5.32), (5.79)-(5.81) that for any ρ,K > 0 there exists
Tρ,K > T0 such that
(5.82)
qε(x, y, T ) ≥ K for y ≥ y0, 0 < ε ≤ ε0, T ≥ Tρ,K , if P (τ∗ε,x,T ≤ T0) ≥ ρ .

From (5.82) we may assume in the remainder of the argument that τ∗ε,x,T > T0 with
probability at least 1− ρ, where ρ > 0 may be taken arbitrarily small.

Next we consider T > 1/A(0). Since the function s → s + 1/A(s), s > 0, is

strictly increasing, there exists unique T̃ < T such that T̃ +1/A(T̃ ) = T . It follows

from (5.77) that A(T ) ≤ A(T̃ )/(1 + δ0). We have from (5.6), (5.7) that

(5.83) xclass(s, T ) ≥ σ2
A(s)

m1,A(s)2

(

σ2
A(T )

m1,A(T )2

)−1
[x+m2,A(s, T )]

m1,A(s, T )

− 1

m1,A(s)

σ2
A(s, T )

m1,A(s, T )2

(

σ2
A(T )

m1,A(T )2

)−1
m2,A(s)

m1,A(s)
, 0 < s < T .

It follows from (5.1) (d),(e) and (5.83) that for any ν > 0 there exists Tν > 1/A(0)
such that

(5.84) xclass(T̃ , T ) ≥ 1

e(1 + ν)

[

x+
1

A(T̃ )

]

if x > 0, T ≥ Tν .

From (5.32) we have that

(5.85) Xε,class(s, T ) = xclass(s, T )−
√
ε Φ(s, T )Z̃(s, T ) ,

where Φ(s, T ) =
σ2
A(s)m1,A(s, T )

σ2
A(T )

, Z̃(s, T ) =

∫ T

s

dB(s′)

Φ(s′, T )
.

The function s → Φ(s, T ) is positive increasing and Φ(T, T ) = 1. We also have that

(5.86) Φ(T̃ , T ) =
σ2
A(T̃ )m1,A(T̃ , T )

σ2
A(T )

=
σ2
A(T̃ )m1,A(T̃ , T )

m1,A(T̃ , T )2σ2
A(T̃ ) + σ2

A(T̃ , T )
.

Since σ2
A(T̃ , T ) ≤ m1,A(T̃ , T )

2/A(T̃ ) and 1 ≤ m1,A(T̃ , T ) ≤ e, we can obtain a lower

bound on Φ(T̃ , T ), independent of T as T → ∞, if we can bound above 1/σ2
A(T̃ ) by

a constant times A(T̃ ). Note this is tantamount to the linear term in the formula
(5.3) for the drift x → λ(x, y, T ) being dominated by A(T )x. From (5.1) (e) we see

that limT→∞ m1,A(T̃ , T )Φ(T̃ , T ) = 1, whence the lower bound follows. From (5.35)
we see that

(5.87) Var[Z̃(s, T )] =
σ2
A(s, T )

m1,A(s, T )Φ(s, T )
.

We also have by the reflection principle that

(5.88) P

(

sup
s<s′<T

Z̃(s′, T ) > a

)

= 2P
(

Z̃(s, T ) > a
)

, a > 0 .

The identities (5.85)-(5.88) enable us to bound below the diffusive pathXε,class(·, T )
with high probability.

Observe that the RHS of (5.6) is non-negative if x, y ≥ 0 and A(·) is non-negative.
Hence similarly to (5.84), we may choose Tν large enough so that

(5.89) xclass(s, T ) ≥ x

e(1 + ν)
if x > 0, T ≥ Tν , T̃ ≤ s ≤ T .
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From (5.87), (5.88) and (A.9) we have that
(5.90)

P

(

sup
T̃<s′<T

Z̃(s′, T ) > a

)

≤
(

2

π

)1/2
σT

a
exp

[

− a2

2σ2
T

]

, σ2
T =

σ2
A(T̃ , T )

m1,A(T̃ , T )Φ(T̃ , T )
.

We choose Tν large enough so that

(5.91) σ2
T ≤ e2(1 + ν)

A(T̃ )
if T ≥ Tν ,

and define the event ET by

(5.92) ET =

{

sup
T̃<s<T

√
ε0 Φ(s, T )Z̃(s, T ) <

1

A(T̃ )2/3

}

.

Choosing a ≃ 1/A(T̃ )2/3 in (5.90) we see from (5.91) and (5.1)(a) there exists
T1 > 1/A(0) such that

(5.93) P (ET ) ≥ 1− exp

[

− 1

A(T̃ )1/4

]

, T ≥ T1 .

We conclude from (5.84), (5.85), (5.89), (5.92) that for any δ satisfying 0 < δ < 1/3,
there exists Tδ ≥ T1 such that

(5.94) inf
T̃<s<T

Xε,class(s, T ) ≥
δ

3A(T )
and Xε,class(T̃ , T ) ≥

1

3

[

δ

A(T )
+

1

A(T̃ )

]

on the event ET when x =
δ

A(T )
, T ≥ Tδ .

It follows from (5.94) that

(5.95)

σ2
A(T )

2

Xε,class(s, T )
2

σ2
A(s)σ

2
A(s, T )

≥ δ2

20A(T )
,

σ2
A(T )

2

[Xε,class(T̃ , T )− x′]2

σ2
A(T̃ )σ

2
A(T̃ , T )

≥ δ2

20A(T )

on the event ET when x =
δ

A(T )
, T ≥ Tδ, if T̃ < s ≤ T, 0 < x′ <

δ

A(T̃ )
.

Let ΩT be the event
(5.96)

ΩT =

{

x =
δ

A(T )
, T̃ < τ∗ε,x,T < T

}

∪
{

x =
δ

A(T )
, τ∗ε,x,T ≤ T̃ , 0 < X∗

ε (T̃ ) <
δ

A(T̃ )

}

.

We conclude from (5.34), (5.95), (5.96) that

(5.97) qε(δ/A(T ), y, T ) ≥ P (Ωc
T ∩ ET )qε(δ/A(T̃ ), y, T̃ ) + P (ΩT ∩ ET )

δ2

20A(T )
.

where Ωc
T is the complement of ΩT .

We choose any δ with 0 < δ < 1/3 and Tδ as in (5.94). For T > Tδ + 1/A(Tδ)
we may define a sequence of times Tn, n = 1, 2, .., N, with Tδ ≤ T1 < Tδ +
1/A(Tδ), TN = T , and Tn+1 = Tn + 1/A(Tn), n = 1, 2, .., N − 1. We define
events Ωn, n = 1, 2, .., N − 1, by

(5.98) Ωn = {Tn+1 ≥ τ∗ε,x,T > Tn, X∗
ε (Tm) ≥ δ/A(Tm), m = n+ 1, . . . , N}

∪ {τ∗ε,x,T ≤ Tn, X∗
ε (Tn) < δ/A(Tn)} ,
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where x = δ/A(T ). The events Ωn are disjoint and

(5.99)

N−1
∑

n=1

P (Ωn) + P
(

τ∗ε,x,T ≤ T1, X∗
ε (Tm) ≥ δ/A(Tm), m = 1, . . . N

)

= 1 .

We define the probabilities

(5.100) pj−1 =
P (ΩTj ∩ ETj )

P (ETj )
, λj−1 = P (ETj ) , j = 2, . . . , N .

Then (5.97) implies that
(5.101)

qε(δ/A(Tn), y, Tn) ≥ λn−1

[

(1 − pn−1)qε(δ/A(Tn−1), y, Tn−1) + pn−1
δ2

20A(Tn)

]

, n = 2, . . . , N.

Iterating the inequality (5.101) starting with n = N down to n = 2, we conclude
that

(5.102) qε(δ/A(T ), y, T ) ≥
N−1
∏

n=1

λn

[

1−
N−1
∏

n=1

(1− pj)

]

δ2

20A(Tδ)
.

We also have that P (ΩTn) ≥ P (Ωn−1), n = 2, . . . , N , whence we see that

(5.103)
N−1
∑

n=1

pn ≥
N
∑

n=2

P (ΩTn)−
N
∑

n=2

P (Ec
Tn

) ≥
N−1
∑

n=1

P (Ωn)−
N
∑

n=2

P (Ec
Tn

) .

It follows from (5.77), (5.93) that T1 in (5.93) may be chosen so that

(5.104)
N
∑

n=2

P (Ec
Tn

) ≤ 1

4
,

N−1
∏

n=1

λn ≥ 1

2
if Tδ ≥ T1 .

Suppose now that

(5.105)

N−1
∑

n=1

P (Ωn) ≥ 1

2
.

It follows then from (5.103)-(5.105) that

(5.106)
N−1
∏

n=1

(1− pj) ≤ exp

[

−
N−1
∑

n=1

pj

]

≤ exp

[

−1

4

]

.

We conclude from (5.102), (5.104), (5.106) that if (5.105) holds then

(5.107) qε(δ/A(T ), y, T ) ≥ 1

2

[

1− e−1/4
] δ2

20A(Tδ)
.

To prove (5.78) we observe first that if (5.105) holds then qε(δ/A(T ), y, T ) is
bounded below by the RHS of (5.107) for T > Tδ+1/A(Tδ). This bound is uniform
for all ε, y satisfying 0 < ε ≤ ε0, y > 0. In the case when (5.105) does not hold we
have from (5.99) that

(5.108) P
(

τ∗ε,x,T ≤ T1

)

≥ 1

2
, x =

δ

A(T )
.

Then (5.82), (5.108) imply a lower bound on qε(δ/A(T ), y, T ) for large T provided
0 < ε ≤ ε0, y ≥ y0. Since K in (5.82) may be chosen arbitrarily large, and A(Tδ)
in (5.107) arbitrarily small, the lower bound (5.78) follows.



CARR-PENROSE MODEL 35

We proceed now as in the proof of the lower bound in Proposition 5.2 beginning
at (5.59), replacing the condition on the initial data in Proposition 5.2 by (5.78).

Thus we consider qε(x, y, T ) for large T and use (5.78) at time T̃ . We take τT =

max{τ∗x,ε,T , T̃} in (5.34). It follows from (5.1) (d),(e), (5.6), (5.7) that for any ν > 0

there exists Tν > 1/A(0) such that if T ≥ Tν then

(5.109) xclass(s, T ) ≥ 1

(1 + ν)m1,A(s, T )
[x+m2,A(s, T )] for T̃ ≤ s ≤ T .

We wish next to estimate from below the probability that τ∗ε,x,T < T̃ . To see this

we first observe from (5.32) that
(5.110)

Xε,class(s, T ) > 0 if
σ2
A(T )

m1,A(T )2

(

σ2
A(s)

m1,A(s)2

)−1

m1,A(s, T )xclass(s, T )−
√
ε

σ2
A(T )

m1,A(T )
Z(s) > 0 .

From (5.35) we have that
(5.111)

Var

[

σ2
A(T )

m1,A(T )
Z(s)

]

=
σ2
A(T )

m1,A(T )2

(

σ2
A(s)

m1,A(s)2

)−1

σ2
A(s, T ) , 0 < s < T .

Since the function s → σ2
A(s)/m1,A(s)

2 is increasing, we have from (5.109), (5.111)
the inequality

(5.112)
σ2
A(T )

m1,A(T )2

(

σ2
A(s)

m1,A(s)2

)−1

m1,A(s, T )xclass(s, T )

≥ x

1 + ν
+

1

(1 + ν)m1,A(s, T )
Var

[

σ2
A(T )

m1,A(T )
Z(s)

]

, s < T .

Using the fact that the martingale s → Z(s) is a rescaled Brownian motion, and the

inequality m1,A(s, T ) ≤ e for T̃ ≤ s ≤ T , we conclude from (5.42) with x replaced
by x/(1 + ν) and k = 1/(1 + ν)e and (5.109)-(5.111) that

(5.113) P
(

τε,class,x,T < T̃
)

≥ 1− exp

[

− 2x

ε(1 + ν)2e

]

if T ≥ Tν ,

where τε,class,x,T is the first exit time from the half line (0,∞) for Xε,class(s, T ), s <
T .

We use (5.113) to prove the analogue of (5.65). Thus from (5.113) we have for
0 < δ < 1 that

(5.114) Xε,class(s, T ) > (1− δ)xclass(s, T ), T̃ ≤ s ≤ T,

with probability at least 1− exp

[

− 2δ2x

ε(1 + ν)2e

]

.

We also have from (5.109) that for any M > 0 then

(5.115)
σ2
A(T )

2
inf

T̃<τ<T

xclass(τ, T )
2

σ2
A(τ)σ

2
A(τ, T )

≥ 2x

(1 + ν)2
, 0 < x ≤ M, T ≥ Tν,M ,

where Tν,M ≥ Tν depends also on M . From (5.109) we see there are constants
C1, C2 > 0 such that

(5.116) inf
X>(1−δ)xclass(T̃ ,T )

[

σ2
A(T )

2

(X − x′)2

σ2
A(T̃ )σ

2
A(T̃ , T )

+ qε(x
′, y, T̃ )

]
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≥ min

[

σ2
A(T )

8

(1− δ)2xclass(T̃ , T )
2

σ2
A(T̃ )σ

2
A(T̃ , T )

, qε

(

1

2
(1− δ)xclass(T̃ , T ), y, T̃

)

]

≥ min

[

C1

A(T̃ )
, qε

(

C2

A(T̃ )
, y, T̃

)]

if 0 < δ <
1

2
, x′ > 0, T ≥ Tν .

It follows from (5.34), (5.78) and (5.114)-(5.116) that

(5.117) lim inf
T→∞

qε(x, y, T )

2x
≥ (1− δ)2

(1 + ν)2

{

1− exp

[

− 2δ2x

ε(1 + ν)2e

]}

.

The limit in (5.117) is uniform for 0 < x ≤ M, 0 < ε ≤ ε0, y0 ≤ y ≤ y∞.
The remainder of the proof follows the same lines as the proof of the lower bound

in Proposition 5.2, beginning after (5.66). �

6. Convergence to the exponential distribution

Here we complete the proof of Theorem 1.1. First we extend the method used
in proving Proposition 4.1 to prove an analogous result for the half line problem.

Proposition 6.1. Assume cε(x, t), x, t > 0, and Xε,t, t > 0, are as in Lemma
4.2. Then

(6.1)
Xε,t

〈Xε,t〉
D−→ X , as t → ∞ .

Let g : [0,∞) → R
+ be a continuous function which satisfies limt→∞ g(t) = ∞.

Then one has

(6.2) lim
t→∞

sup
x>g(t)

|βXε,t(x) − 1| = 0.

Proof. We first show that (3.40) holds for the half line problem. To do this we
write Λε(T ) as the ratio of (4.4) to (4.3). Note that Lemma 4.1 implies that (5.1)
holds for A(·) = 1/Λε(·), and Proposition 4.2 implies that (5.77) also holds when
A(·) = 1/Λε(·). Hence the conclusion of Proposition 5.3 holds when A(·) = 1/Λε(·).
It follows then from (4.5), Lemma 4.1 and Proposition 5.3 that

(6.3) lim
T→∞

m2,A(T )E[Xε,y,T ]

εσ2
A(T )

= 1 ,

with the limit in (6.3) being uniform in y for y in any interval 0 < y0 < y < y∞.
The function (y, t) → uε(y, t, T ), y > 0, t < T, defined by (4.2) is the solution to
the terminal value problem

(6.4)
∂uε(y, t)

∂t
+ [A(t)y − 1]

∂uε(y, t)

∂y
+

ε

2

∂2uε(y, t)

∂y2
= 0, y > 0, t < T,

(6.5) uε(y, T ) = uT (y), y ∈ R ,

with zero Dirichlet condition uε(0, t) = 0, t < T , and terminal condition uε(·, T ) ≡
1. By the maximum principle [18] we see that for any t < T the function y →
uε(y, t, T ) is increasing. Now (3.40) follows from (4.7), (6.3).

To prove (6.1) we use a similar identity to (3.32),

(6.6) P

(

Xε,T

〈Xε,T 〉
> x

)

=
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∫ y∞

0

P

(

Xε,y,T

〈Xε,T 〉
> x

)

uε(y, 0, T )cε(y, 0) dy

/

∫ y∞

0

uε(y, 0, T )cε(y, 0) dy .

We have for x > 0 that

(6.7) P (Xε,y,T > x) =

E[Kε,D(
√
εσA(T ){Z − zy,T /

√
ε}, y, 0, T )H(

√
εσA(T )){Z − zy,T/

√
ε} − x | Z > zy,T/

√
ε]

E[Kε,D(
√
εσA(T ){Z − zy,T/

√
ε}, y, 0, T ) | Z > zy,T/

√
ε]

,

where H : R → R is the Heaviside function. As with proving the limit (6.3), we
conclude from (3.40), (6.7) and Proposition 5.3 that

(6.8) lim
T→∞

P

(

Xε,y,T

〈Xε,T 〉
> x

)

= e−x for x > 0 ,

and the limit is uniform in any interval 0 < y0 < y < y∞. The convergence
in distribution (6.1) follows from (6.6), (6.8) upon using the monotonicity of the
function y → uε(y, 0, T ) again.

To begin the proof of (6.2) we first note we cannot set g(·) ≡ 0 as in Proposition
2.1 since the zero Dirichlet boundary condition implies that βXε,T (0) = 0 for T > 0.

Similarly to (3.33), (3.34) we observe that βXε,T (x) = Aε,D(x, T )Cε,D(x, T )/Bε,D(x, T )
2.

The functions Aε,D, Bε,D are as in (4.33), (4.34), while Cε,D is given by the formula

(6.9) Cε,D(x, T ) =

∫ y∞

0

dy

∫ ∞

0

dx′ Kε,D(x+ x′, y, 0, T )

× x′ exp

[

b(T )(x+ x′)y

εσA(T )
− a(T )x′

εσA(T )
− x′(2x+ x′)

2εσ2
A(T )

]

c̃ε(y, 0) .

Comparing (4.33), (4.34), (6.9) to (3.33), (3.34) we see from Proposition 5.3 and
the argument of Proposition 3.1 that for any δ > 0 there exists xδ, Tδ > 0 such that
supx≥xδ

|βXε,T (x) − 1| < δ for T ≥ Tδ. Note that to conclude this we use the fact

that the function y → exp[b(T )xy/
√
εσA(T )] is increasing for all x > 0. The limit

(6.2) evidently follows. �

Proposition 6.2. Assume cε(x, t), x, t > 0, and Xε,t, t > 0, are as in Lemma
4.2. Then

(6.10) lim
t→∞

d

dt
〈Xε,t〉 = 1 .

Proof. We proceed similarly to the proof of Proposition 4.1, whence we may assume
that (4.13) holds. Also from (6.2) of Proposition 6.1 we may additionally assume
that

(6.11) ε < ν and sup
x>δ

|βXε,0(x) − 1| ≤ ρ,

where ρ, ν, δ > 0 may be chosen arbitrarily small. As in (3.9) we have that

(6.12)

∫ ∞

0

dy

∫ ∞

0

dx Gε(x, y, 0, T )cε(y, 0)

=

∫ ∞

0

dy P

(

Z >
m2,A(T )−m1,A(T )y√

εσA(T )

)

cε(y, 0) = Iε(T ) ,
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where A(·) = 1/Λε(·) is decreasing and A(0) = 1. We define the function wε(·) by

(6.13) wε(y) =

∫ ∞

y

cε(y
′, 0) dy′ for y ≥ 0 .

The integral on the RHS of (6.12) is bounded above as

(6.14) Iε(T ) ≤ P

(

Z >
1

ε1/4

)

wε(0) + wε

(

α(T )− ε1/4β(T )
)

,

where

(6.15) α(T ) =
m2,A(T )

m1,A(T )
, β(T ) =

σA(T )

m1,A(T )
.

Similarly we have a lower bound

(6.16) Iε(T ) ≥
[

1− P

(

Z >
1

ε1/4

)]

wε

(

α(T ) + ε1/4β(T )
)

.

We obtain using (4.13) bounds for Iε(T ) in terms of wε(α(T )). To see this first
observe from (3.23)-(3.26) the identity

(6.17) wε(x) =
wε(0)vε(x)

vε(0)
exp

[

−
∫ x

0

vε(x
′) dx′

]

, x > 0 .

From (3.25), (4.13) we see that vε(·) has the properties

(6.18) 1− C1 ≤ 1

vε(x)2
dvε(x)

dx
≤ 1 , x > 0, vε(0) = 1 ,

where C1 is the constant in (4.13). It follows from (6.18) that

(6.19) vε(x) ≤ 2,

∣

∣

∣

∣

dvε(x)

dx

∣

∣

∣

∣

≤ 4(C1 + 1) , for 0 < x < 1/2 .

Choosing x0 = 1/8(C1 +1), we have from (6.18), (6.19) that 1/2 ≤ vε(x) ≤ 3/2 for
0 ≤ x ≤ x0. Applying (6.17), (6.19) to (6.14), (6.16) we have that

(6.20)

[

1− P

(

Z >
1

ε1/4

)]

{

1− 8(C1 + 1)ε1/4β(T )
}

exp
[

−3ε1/4β(T )/2
]

≤ Iε(T )

wε (α(T ))
≤ 2e3x0/2P

(

Z >
1

ε1/4

)

+
{

1 + 8(C1 + 1)ε1/4β(T )
}

exp
[

3ε1/4β(T )/2
]

,

provided α(T ) + ε1/4β(T ) ≤ x0.
A similar argument may be made to estimate the integral

(6.21) Jε(T ) =

∫ ∞

0

dy

∫ ∞

0

dx x Gε(x, y, 0, T )cε(y, 0)

in terms of the function hε(·) defined by

(6.22) hε(y) =

∫ ∞

x

wε(y
′) dy′ , y ≥ 0.

To do this we first observe that

(6.23)
∫ ∞

0

dx x Gε(x, y, 0, T ) = m1,A(T ) [y − α(T )]P

(

Z >
m2,A(T )−m1,A(T )y√

εσA(T )

)
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+

(

εσ2
A(T )

2π

)1/2

exp

[

−{m2,A(T )−m1,A(T )y}2
2εσ2

A(T )

]

.

We conclude from (6.21)-(6.23) that

(6.24) Jε(T ) ≤
(

εσ2
A(T )

2π

)1/2

wε(0) +m1,A(T )hε (α(T )) .

Similarly to (6.16) we also have from (6.23) a lower bound

(6.25) Jε(T ) ≥
[

1− P

(

Z >
1

ε1/4

)]

m1,A(T )hε

(

α(T ) + ε1/4β(T )
)

.

Assuming again that α(T )+ ε1/4β(T ) ≤ x0, we bound Jε(T ) using (3.26), (6.19) as

(6.26)

[

1− P

(

Z >
1

ε1/4

)]

exp
[

−3ε1/4β(T )/2
]

≤ Jε(T )

m1,A(T )hε (α(T ))
≤ 3e3x0/2

(

εσ2
A(T )

2πm1,A(T )2

)1/2

+ 1 .

Next as in (4.16) we use the formula

(6.27)
ε

2

∂cε(0, T )

∂x
=

1

2

∫ ∞

0

∂qε(0, y, T )

∂x
Gε(0, y, 0, T )cε(y, 0) dy

to estimate the LHS of (6.27) in terms of cε(α(T ), 0). We write the RHS of (6.27)
as a sum of the integral over the interval α(T )− ε1/4β(T ) < y < α(T ) + ε1/4β(T )
and the integral over the complement of this interval in R

+. From Proposition 5.1
of [6] this latter integral is bounded above by

(6.28)
1

√

2πεσ2
A(T )

exp

[

− 1

2ε1/2

] [

wε(0) +
m1,A(T )

σ2
A(T )

hε(0)

]

.

Again using Proposition 5.1. of [6], the former integral is bounded above by

(6.29)
1

m1,A(T )

[

1 +
ε1/4

σA(T )

]

sup
|y−α(T )|<ε1/4β(T )

cε(y, 0) .

To obtain a lower bound on the RHS of (6.27) we use Proposition 6.1 of [6]. Thus
since supA(·) ≤ 1, there exist universal constants C1, C2 > 0 such that

(6.30)
1

2

∂qε(0, y, T )

∂x
≥ 1 +

m1,A(T )[y − α(T )]

σ2
A(T )

− C1εT
2

y2
,

provided 0 < T ≤ 1, y ≥ C2T
2, ε ≤ T 3. Similarly to (6.29) one obtains from (6.30)

the lower bound
(6.31)

1

m1,A(T )

[

1− P

(

|Z| > 1

ε1/4

)

− ε1/4

σA(T )
− C1εT

2

{α(T )− ε1/4β(T )}2
]

inf
|y−α(T )|<ε1/4β(T )

cε(y, 0) .

We may bound cε(·, 0) in terms of the beta function βXε,0(·) = cε(·.0)hε(·)/wε(·)2
of (3.24). Thus from (3.26), (6.17), (6.19) we have

(6.32) sup
|y−α(T )|<ε1/4β(T )

cε(y, 0) ≤
{

1 + 8(C1 + 1)ε1/4β(T )
}2
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× exp
[

9ε1/4β(T )/2
] wε(α(T ))

2

hε(α(T ))
sup

|y−α(T )|<ε1/4β(T )

βε(y, 0) ,

provided α(T ) + ε1/4β(T ) ≤ x0. Similarly one obtains a lower bound

(6.33) inf
|y−α(T )|<ε1/4β(T )

cε(y, 0) ≥
{

1− 8(C1 + 1)ε1/4β(T )
}2

× exp
[

−9ε1/4β(T )/2
] wε(α(T ))

2

hε(α(T ))
inf

|y−α(T )|<ε1/4β(T )
βε(y, 0) .

We choose now T0, ν > 0 such that

(6.34) 0 < T0 ≤ 1, 2C2T
2
0 ≤ α(T0) ≤

x0

2
, ν1/4β(T0) ≤ α(T0)

2
.

Note that the choice in (6.34) is possible since limT→0 α(T )/T = 1. The inequalities
(6.32), (6.33) both hold for T = T0 and ε satisfying (6.11). From (1.2), (1.4) we
have that

(6.35)
d

dt
〈Xε,t〉

∣

∣

∣

t=T0

=
ε

2

∂cε(0, T0)

∂x

Jε,D(T0)

Iε,D(T0)2
,

where Iε,D(T ), Jε,D(T ) are defined as in (6.12), (6.21), but with the half line Dirich-
let Green’s function Gε,D replacing the whole line Green’s function Gε. Evidently
we have that Iε,D(T ) ≤ Iε(T ), Jε,D(T ) ≤ Jε(T ), whence (6.20), (6.26) yield upper
bounds on Iε,D(T ), Jε,D(T ). We can also see from the lower bound on qε(x, y, T )
in Proposition 3.3 of [6] and (4.15) that the lower bounds in (6.20), (6.26) also hold
with T = T0 and ν small, up to a multiplicative factor close to 1. We conclude
that the LHS of (6.35) is equal to 1 modulo terms in the parameters ν, ρ of (6.11)
which converge to zero as ν, ρ → 0. Now (6.10) follows by arguing as in the proof
of Lemma 7.3 of [7]. �

Appendix A. Properties of Gaussian Conditional Variables

Let Z be the standard normal variable and for z ∈ R let Xz be the random
variable Z − z conditioned on Z > z. Here we derive some properties of the
variables Xz.

Lemma A.1. Let m : R → R be the function m(z) = 〈Xz〉, z ∈ R. Then m(·) is
a continuous positive decreasing function satisfying the inequalities,

(A.1)
1

z
− 2

z3
< m(z) <

1

z
for z > 1 ,

(A.2) max{|z|,
√

2/π} < m(z) <
√

2/π + |z| for z < 0 .

Proof. We have that

(A.3) m(z) =

∫ ∞

z

(z′ − z)e−z′2/2 dz′
/

∫ ∞

z

e−z′2/2 dz′

= e−z2/2
/

∫ ∞

z

e−z′2/2 dz′ − z =

[
∫ ∞

0

e−z′2/2−zz′

dz′
]−1

− z .

Differentiating the last formula on the RHS of (A.3) we see that

(A.4)
dm(z)

dz
=

∫ ∞

0

z′e−z′2/2−zz′

dz′
/

[
∫ ∞

0

e−z′2/2−zz′

dz′
]2

− 1 .
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Using the fact that

(A.5) m(z) =

∫ ∞

0

z′e−z′2/2−zz′

dz′
/

∫ ∞

0

e−z′2/2−zz′

dz′ ,

we conclude that m(·) is the solution to the Riccati equation

(A.6)
dm(z)

dz
= m(z)2 + zm(z)− 1 , .

which satisfies m(0) =
√

2/π. Observe that m(z) = −z is a solution to (A.6).
We show that the function (A.3) is decreasing. To see this we use the identity

(A.7)
∫ ∞

0

z′(z′+z)e−z′2/2−zz′

dz′ =

∫ ∞

0

z′
(

− d

dz′

)

e−z′2/2−zz′

dz′ =

∫ ∞

0

e−z′2/2−zz′

dz′ .

Evidently (A.7) implies that

(A.8) 〈X2
z 〉+ z〈Xz〉 = 1 .

Since 〈Xz〉2 < 〈X2
z 〉, we see from (A.8) that the RHS of (A.6) is strictly negative,

whence m(·) decreases. Note also that (A.8) implies the upper bound in (A.1). To
obtain the lower bound we recall the well known inequality

(A.9)

[

1

z
− 1

z3

]

< ez
2/2

∫ ∞

z

e−z′2/2 dz′ <
1

z
for z > 0.

Considering (A.6) to be a linear equation with inhomogeneous term m(z)2 − 1, the
solution m(z) has the representation

(A.10) m(z) = ez
2/2

∫ ∞

z

[1−m(z′)2]e−z′2/2 dz′ .

It follows from the upper bound in (A.1) and (A.10) that

(A.11) m(z) ≥
(

1− 1

z2

)

ez
2/2

∫ ∞

z

e−z′2/2 dz′ .

We then obtain the lower bound in (A.1) from the lower bound in (A.9) and (A.11).
To obtain the lower bound in (A.2) we use the fact that trajectories of the non-

autonomous differential equation (A.6) do not intersect in R
2, in particular the

trajectories z → [m(z), z] and z → [−z, z]. To obtain the upper bound we observe
that the function w(z) = α− z −m(z) is a solution to the initial value problem

(A.12)
dw(z)

dz
= a(z)w(z)− b(z) , w(0) = α−

√

2/π ,

where the functions a(·), b(·) are given by

(A.13) a(z) = α+m(z) , b(z) = α[α− z] .

Evidently w(z) ≥ 0 for z < 0 if w(0) ≥ 0 and b(z) ≥ 0 for z < 0. This is the case if

α =
√

2/π. �

Lemma A.2. For any δ satisfying 0 < δ < 1 there exists c(δ) > 0 depending on δ
such that for all z ∈ R,
(A.14)
P (m(z) < Xz < (1 + δ)m(z)) ≥ c(δ) , P ((1 − δ)m(z) < Xz < m(z)) ≥ c(δ) .

Furthermore there exist constants C, c > 0 such that for all z ∈ R,

(A.15) P (Xz > km(z)) ≤ Ce−ck , k = 1, 2, ...
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The variables Xz/m(z) converge in distribution as z → ∞ to the exponential vari-
able X with mean 1.

Proof. Let ρz(z
′), z′ > 0, be the pdf of the variable Xz. Then

(A.16) ρz(z
′) = A(z) exp

[

− (z′ + z)2

2

]

= B(z) exp

[

−z′z − z′2

2

]

, z′ > 0 ,

where A(z), B(z) depend only on z. For z < 1 the variable Xz is approximately
Gaussian with mean m(z). Hence using the first representation on the RHS of
(A.16) and Lemma A.1. we conclude that (A.14), (A.15) hold. For z ≥ 1 the
variable Xz is approximately exponential with mean m(z). Using the second rep-
resentation on the RHS of (A.16) we see that (A.14), (A.15) hold. We similarly see
that Xz/m(z) converges in distribution to the exponential variable as z → ∞. �

Lemma A.3. Let f : [0,∞) → R be a continuous non-negative increasing function.
Then there is a universal constant c > 0 such that

(A.17)
E[Xzf(Xz))]

E[f(Xz)]
≥ cm(z) for z ∈ R .

If in addition limz→∞ f(z) = 1 and − log[1− f(·)] is a concave function, then there
is a universal constant C such that

(A.18)
E[Xzf(Xz)]

E[f(Xz)]
≤ Cm(z) for z ∈ R .

Proof. The ratio of expectations in (A.17) is given by

(A.19)

∫ ∞

0

z′f(z′)ρz(z
′) dz′

/

∫ ∞

0

f(z′)ρz(z
′) dz′ ,

where ρz(·) is the pdf of Xz. From Lemma A.2 we see there is a constant C1 > 0
such that

(A.20)

∫ m(z)

0

ρz(z
′) dz′ ≤ C1

∫ ∞

m(z)

ρz(z
′) dz′ , z ∈ R .

It follows from(A.20) that the LHS of (A.19) is bounded below by m(z)/(C1 + 1),
whence (A.17) follows.

To obtain the upper bound (A.18) we first observe that the expression on the
LHS of (A.18) is bounded above by

(A.21) m(z) +

∫ ∞

m(z)

z′f(z′)ρz(z
′) dz′

/

∫ ∞

0

f(z′)ρz(z
′) dz′ .

Suppose now that f(z′) ≥ 1 − e−1 for z′ ≥ m(z). Then since sup f(·) = 1, it
follows from (A.14) that the expression (A.21) is bounded above by C2m(z) for
some constant C2. Hence to complete the proof of (A.18) we may assume that

f(m(z)) ≤ 1 − e−1. In that case f(z′) = 1 − e−q(z′), where q(·) is a non-negative
increasing concave function and q(m(z)) ≤ 1. From the concavity of q(·) we have
that q(z′) ≤ q̃(z′) for z′ ≥ m(z), and q(z′) ≥ q̃(z′) for m(z)/2 < z′ < m(z), where
q̃(·) is the secant line function

(A.22) q̃(z′) =
2

m(z)
[(m(z)− z′)q(m(z)/2) + (z′ −m(z)/2)q(m(z))] .

Hence the second term in (A.21) is bounded above by
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(A.23)

∫ ∞

m(z)

z′[1− e−q̃(z′)]ρz(z
′) dz′

/

∫ m(z)

m(z)/2

[1− e−q̃(z′)]ρz(z
′) dz′

≤ e

∫ ∞

m(z)

z′q̃(z′)ρz(z
′) dz′

/

∫ m(z)

m(z)/2

q̃(z′)ρz(z
′) dz′ .

We see from (A.22) that

(A.24) q̃(z′) ≥ q(m(z))/2 for 3m(z)/4 ≤ z′ ≤ m(z) ,

q̃(z′) ≤ (2n+ 1)q(m(z)) for z′ ≤ (n+ 1)m(z) , n = 1, 2, ...

It follows from (A.23), (A.24) that the second term in (A.21) is bounded above by

(A.25) 2e

∞
∑

n=1

(2n+ 1)

∫ (n+1)m(z)

nm(z)

z′ρz(z
′) dz′

/

∫ m(z)

3m(z)/4

ρz(z
′) dz′ .

We conclude from (A.14), (A.15) that the expression (A.25) is bounded above by
Cm(z), z ∈ R, for some constant C. �
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