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Abstract

We consider the incompressible Euler equations in the half cylinder R>0 × T. In this domain, any
vorticity which is independent of x2 defines a stationary solution. We prove that such a stationary
solution is nonlinearly stable in a weighted L1 norm involving the horizontal impulse, if the vorticity is
non-negative and non-increasing in x1. This includes stability of cylindrical patches {x1 < α}, α > 0.
The stability result is based on the fact that such a profile is the unique minimizer of the horizontal
impulse among all functions with the same distribution function. Based on stability, we prove existence
of vortex patches in the half cylinder that exhibit infinite perimeter growth in infinite time.

1 Introduction

We consider the incompressible Euler equations in the half cylinder S+ := R>0 × T, where T := [−π, π) is
the torus, in vorticity form:

∂tω + u · ∇ω = 0 for (t, x) ∈ (0,∞)× S+,

ω|t=0 = ω0 for x ∈ S+.
(1.1)

The velocity u in (1.1) is determined from the vorticity ω by the cylindrical Biot–Savart law, imposing no-
flow condition at the boundary ∂S+ := {0} × T, where u vanishes as x1 goes to infinity. The exact form of
the Biot–Savart law will be discussed in Section 2.1. It can be shown that for an initial data ω0 ∈ L∞(S+)
with bounded support, which means it is compactly supported so ω0 ∈ (L1 ∩ L∞), there exists a unique
global-in-time weak solution ω ∈ L∞

(
0,∞; (L1∩L∞)(S+)

)
of (1.1), by following the arguments of Yudovich

[26] in R2. By using the result of Kelliher [16], Beichman–Denisov in the appendix of [3] demonstrated this
in the full cylinder S := R× T, which is a general case of S+ having an odd-symmetry in x1 .

In this paper, we present two results: the stability of a compactly supported non-negative, monotone,
and x2−independent vorticity, and the existence of patch-type solutions which exhibit infinite growth of
perimeter in infinite time. This seems to be the first infinite perimeter growth result for patches defined in
an unbounded domain.
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1.1 Main results

We denote the weighted L1−norm on S+ with weight 1 + x1 as the J1−norm on S+:∥∥f∥∥
J1(S+)

:=

∫
S+

(1 + x1)
∣∣f(x)

∣∣dx.
Note that any x2−independent function is a stationary solution of (1.1) in S+, since the x2−independence

∂x2ω ≡ 0 of ω leads to u1 ≡ 0, which gives us

u · ∇ω = u1∂x1
ω + u2∂x2

ω = 0 · ∂x1
ω + u2 · 0 = 0.

The first result of this paper is about the stability of such a x2−independent solution when it is non-negative
and monotone with bounded support. Theorem 1.1 is analogous to that of radial and monotone solution in
R2 from the recent work [12].

Theorem 1.1. For any constants L,M > 0, there exists a constant C1 = C1(L,M) > 0 such that if
ζ = ζ(x1) is in L∞(S+), non-negative, non-increasing, and compactly supported with

supp (ζ) ⊂ {x1 < L},
∥∥ζ∥∥

L∞(S+)
≤M, (1.2)

then for any non-negative ω0 ∈ L∞(S+) with compact support, the corresponding solution ω(t) of (1.1)
satisfies

sup
t≥0

∥∥ω(t)− ζ
∥∥
J1(S+)

≤ C1

[∥∥ω0 − ζ
∥∥ 1

2

J1(S+)
+
∥∥ω0 − ζ

∥∥
J1(S+)

]
. (1.3)

Remark 1.2. The non-negativity of ω0 is necessary in our proof for technical reasons. One of the reasons is
that the rearrangement of a function, which is frequently used in our proof, cannot be defined on the infinite
domain S+ if the function contains a negative part. On the other hand, boundedness and compact support
of ω0 are imposed to apply the standard global well-posedness theory as well as to ensure that J1-norm of
ω0 is finite.

This can be considered as an extension of the work by Marchioro–Pulvirenti [20], where they considered
the Euler equations (1.1) in a bounded strip while we consider the equations in the infinite strip. More
precisely, the result in [20, Theorem 1] shows the explicit L1−stability of the form (1.3) of the x2−independent
and monotone ζ ∈ L∞ in a bounded strip {x1 < L}, where C1 depends on the domain size L and the
L∞−norm of the initial perturbed data ω0. By imposing the weight 1 + x1 on the L1−norm, we were able
to remove the dependence on

∥∥ω0

∥∥
L∞

and to extend the domain into the infinite strip {x1 <∞}.

This stability result is used in showing our next result, which deals with the perimeter of a smooth vortex
patch. In R2, if the initial data is given as a patch ω0 = 1Ω0

for some open set Ω0 ⊂ R2, then the unique
solution is of the form ω(t) = 1Ωt

, where Ωt = Φ(t,Ω0). Here, Φ(t) is the flow map, which is the unique
solution of the ODE

d

dt
Φ(t, x) = u

(
t,Φ(t, x)

)
, Φ(0, x) = x, (1.4)

where u(t) is determined from ω(t) by the Biot–Savart law in R2, given as u(t) = − 1
2π

x⊥

|x|2 ∗ ω(t). Moreover,

it is well known if the boundary ∂Ω0 of Ω0 is connected and C∞–smooth, then ∂Ωt is connected and C∞–
smooth as well ([5, 4, 23]). It can be shown that the same holds for open patches with smooth boundaries
in S+, by adapting the proof of Kiselev–Ryzhik–Yao–Zlatǒs [17].

Recently, it was shown in [10] that there exists a patch on R2 that has perimeter growth for finite time.
The following theorem shows the existence of a patch on S+ where the growth of the perimeter is infinite in
infinite time (see Figure 1).
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Ω0

t = 0

Ωt

t > 0

Figure 1: A schematic diagram for perimeter growth in Theorem 1.3

Theorem 1.3. There exists a constant C2 > 0 and a bounded, open set Ω0 ⊂ S+ with its smooth, connected
boundary ∂Ω0 ⊂ S+ := {x1 ≥ 0} that satisfies

length(∂Ω0) ≤ 20, ∂Ω0 ∩ ∂S+ 6= ∅,

such that for any t ≥ 0, the solution 1Ωt of (1.1) with the initial data 1Ω0 satisfies

length(∂Ωt) ≥ C2t, ∀t ≥ 0.

Here, the boundary ∂S+ of S+ is the circle {0} × T.

In an annulus, suggested by Nadirashvili [22], two points each on the inner circle and the outer circle
possess different angular velocities for all time. This difference leads to the growth of length of the curve on
the annulus that connects the two points. Theorem 1.3 shows that such growth of length can occur in an
unbounded space having one connected boundary component as well.

Wan–Pulvirenti [25] showed a L1−stability of a disc patch 1Br
, r > 0 among patches in a bounded disc

BR, R ≥ r. More generally, [20] proved a L1− stability of a radially symmetric and monotone solution
among solutions in L∞(BR), R > 0 as well. Sideris–Vega [24] presented a L1−stability of a disc patch
1Br , r > 0 among patches with a compact support in R2. The most recent work [12] extended the work
in [20] to show a weighted L1−stability of a non-negative, radially symmetric, and non-increasing solution
among non-negative solutions in L∞(R2). In addition, [1] proved an orbital stability, admitting translation,
of the Lamb dipole by using a variational method. [6] showed a stability, up to translation, of the Hill’s
spherical vortex among non-negative axi-symmetric solutions in 3D. [9] presented an orbital stability in L1

of m−fold Kelvin waves for symmetric perturbations and constructed an m−fold Kelvin wave which shows
perimeter growth for sufficiently long finite time.

In the full strip S, [3] showed a stability of a cylindrical patch 1{|x1|<L} for sufficiently large L > 2. The
existence and uniqueness result in the strip is based on the work from [16], in which it characterized various
properties of a solution with bounded velocity and vorticity. [7] estimated the upper bound of the horizontal
support size of a non-negative solution in L∞(S) with compact support in S. Bedrossian–Masmoudi [2]
proved asymptotic stability and inviscid damping of Couette flow in S. Zillinger [27] showed linear inviscid
damping for monotone shear flows. Ionescu–Jia [15] showed inviscid damping of a shear flow in a bounded
cylinder [0, 1]×T, along with that the support of the vorticity perturbation stays in the cylinder for all t ≥ 0.

[22] proved that in an annulus, there exists a smooth solution of (1.1) which is C1−unstable among smooth
solutions. [10] constructed a patch in R2 in which the perimeter of the patch boundary grows for sufficiently
large finite time. [11] constructed a solution, close to Lamb dipole, with compact support in R2 which shows
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growth of its gradient and support size for infinite time. [8] proved the existence of a solution that is close
to the Hill’s vortex in L1(R3), its support being close to that of the Hill’s vortex as well, which exhibits
filamentation for infinite time. This, as corollaries, produced infinite growth of perimeter and gradient as
well.

1.2 Key ideas

In order to prove Theorem 1.1, we needed to reproduce the main ideas that were used in the proof of [12,
Lemma 3.3], such as the conservation of the measure of level sets, the total mass, the angular impulse,
and properties of symmetric decreasing rearrangement, including the rearrangement estimate established in
[20]. We use the conservation of the level set measure, the total mass, and the horizontal impulse. The
last quantity corresponds to the angular impulse in R2. Then we define the rearrangement on S+ to be
x2−independent so that it is defined in the same way the symmetric decreasing rearrangement is defined on
R2. This implies that the nonexpansivity property and the rearrangement estimate on R2 can be reproduced
to S+. In addition, we use the idea of cutting off a non-negative function by a certain height. One of the
important property of the cut-off operator Γα, α > 0, which is defined in section 2.4, is that it commutes
with the rearrangement operator ∗:

(Γαf)∗ = Γα(f∗),

for any non-negative f ∈ L1. The use of this cut-off operator makes our stability result be independent of
the L∞−norm of ω0.

Remark 1.4. Using the conservation of the total mass and the horizontal impulse, we can reproduce the
simplest stability of the stationary patch 1D of the unit disc D= B1(0) in R2 from [24] and Dritschel [13] to
the stationary patch 1Ω with

Ω := {x1 < 1} ⊂ S+ :∫
Ωt4Ω

|1− x1|dx =

∫
Ωt\Ω

(1− x1)dx+

∫
Ω\Ωt

(x1 − 1)dx =

∫
Ωt

(1− x1)dx+

∫
Ω

(x1 − 1)dx

=

∫
Ω0

(1− x1)dx+

∫
Ω

(x1 − 1)dx =

∫
Ω04Ω

|1− x1|dx, t ≥ 0.

However, note that the weight |1− x1| vanishes when x1 = 1; this norm is not strong enough to control the
flow map pointwise.

We move on to Theorem 1.3. The idea in [10] was using the L1−stability of the circular patch 1D and its
corresponding velocity uD, which can be derived explicitly. The fact that the Biot–Savart kernel K in R2

is roughly 1
|x| was used to show that the difference between velocities uΩt of 1Ωt and uD of 1D is uniformly

bounded by the L1−difference of 1Ω0 and 1D up to the power of 1
4 . The method used in the proof required

two points that are located on ∂Ω0 in the initial time and move along the flow map to have certain amount
of radial distance with each other. If that is the case, then the tangential velocities of those two points differ.
This difference creates the perimeter growth of the boundary. However, for infinite time, there is no reason
for the radial distance in the future to be nonzero, since the radial velocity of each point need not vanish.
Thus, in this method, the perimeter growth of ∂Ωt is limited to finite time where the distance is kept. This
is why we use a different approach in Theorem 1.3.

Similarly as in R2, the unique solution of (1.1) with patch-type initial data ω0 = 1Ω0
is the patch ω(t) = 1Ωt

,
where Ωt is the image of Ω0 through the flow map. As a way of understanding this patch 1Ωt , we can go
through the following process. First, we periodically extend the velocity field u(t) of 1Ωt to the half plane
R2

+ := R>0×R. Then, denoting this extension as uext(t), we generate the flow map Φ(t) in R2
+ from uext(t).

Then we project Ω0 ⊂ S+ through the flow map Φ(t) to obtain the image Φ(t,Ω0) = Φt(Ω0). Finally,
Ωt ⊂ S+ is obtained by projecting Φt(Ω0) onto S+ via the map Q : R2

+ −→ S+, which is defined as

Q(x1, x2) := (x1, x2 − 2nπ),

4



x1

Ω0

−π

π

0

3π

5π

7π

x2

t = 0 t > 0

Φ(t)

Φt(Ω0)

−π

π

0

3π

5π

7π

x1

x2

Ωt = Q(Φt(Ω0))

Figure 2: A schematic diagram of understanding Ωt ⊂ S+

for some n ∈ Z that satisfies x2 ∈ [(2n− 1)π, (2n+ 1)π). Such a framework is depicted in Figure 2.

We require the boundary ∂Ω0 of the initial patch Ω0 to be connected and to have at least one point that
intersects with ∂S+ = {0} × T, the boundary of the domain S+ (cf. the boundary ∂Ω = {0, 1} × T of the
(steady) set Ω is not connected.). Then we use the fact that the point stays on the x2−axis ∂R2

+ along the
flow map, that is, ∂Φt(Ω0) ∩ ∂R2

+ 6= ∅ for any t ≥ 0. This is because the horizontal velocity of any point on
∂R2

+ is zero. Then we use the important fact that the vertical velocity of that point is strictly greater than
the growth rate of the vertical center of mass of the patch 1Φt(Ω0) on R2

+:

u2

(
t,Φ(t, x0)

)
− d

dt

1

|Φt(Ω0)|

∫
Φt(Ω0)

x2dx ≥ C > 0, x0 ∈ ∂Ω0 ∩ ∂S+, t ≥ 0,

which is depicted in Lemma 3.4. In this lemma, we show that the rate of 1Φt(Ω0) is close to the rate of 1Φt(Ω),

the half of the vertical velocity of the point on ∂Φt(Ω)∩∂R2
+. Here, Φ(t) is the flow map induced from the

periodic extension of u, the velocity of the steady solution 1Ω. Due to this difference in vertical velocities,
which is maintained for every time, the vertical distance between the point on ∂Φt(Ω0) ∩ ∂R2

+ and some
point on ∂Φt(Ω0) near the vertical center of mass of 1Φt(Ω0) is bigger than Ct. This distance works as a lower
bound of length(∂Ωt) in Theorem 1.3. To prove this, we use the stability (1.3) from Theorem 1.1 applied on
the bounded strip 1Ω, and the velocity u corresponding to 1Ω that is calculated explicitly in Section 3.1.

Organization of the paper

In Section 2, we define the cylindrical Biot–Savart law and list the conserved quantities of ω(t), give the
definition of rearrangement and its properties, define the cut-off operator, and move on to the proof of
Theorem 1.1. We begin Section 3 by calculating the velocity field u of the patch 1Ω and the total mass of
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1Ω. After defining the map Q from the , we define periodic extensions of u(t) and u, and induce flow maps
Φ(t) and Φ(t) from these extensions. Then we present that Ωt is the image of Φ(t,Ω0) = Φt(Ω0) through
the map Q. After explicitly calculating the growth rate of the vertical center of mass of the patch 1Φt(Ω) on

R2
+, we prove several lemmas concerning the control of the difference of vertical velocities and the growth

rates of vertical center of mass between 1Φt(Ω0) and 1Φt(Ω). We finish the paper with the proof of Theorem
1.3.

2 Stability

2.1 The cylindrical Biot–Savart law

We shall specify the exact form of the cylindrical Biot–Savart law, considered in this paper, which gives the
velocity u in (1.1) from the vorticity ω. We recall the Biot–Savart law for the full cylinder S = R × T ([3,
App. A]). The kernel K for S+ can be derived simply by imposing the odd symmetry in x1 to ω(x1, x2).
Then u is given as (see [3] for detail)

u(x) = ∇⊥Ψ(x) =

∫
S+

K(x, y)ω(y)dy, (2.1)

where Ψ is the stream function defined as

Ψ(x) =

∫
S+

Γ(x, y)ω(y)dy, Γ(x, y) = ΓS(x− y)− ΓS(x+ y),

ΓS(x) = − 1

4π
ln(coshx1 − cosx2), y = (y1,−y2),

and the kernel K = (K1,K2) is given by

K(x, y) = ∇⊥x Γ(x, y) = KS(x− y)−KS(x+ y),

KS(x) = ∇⊥ΓS(x) =
(sinx2, − sinhx1)

4π(coshx1 − cosx2)
.

(2.2)

Here, when ω ∈ L∞(S+) with bounded support is considered, Ψ solves the elliptic problem

−∆Ψ = ω in S+, Ψ|x1=0 ≡ 0, lim
x1→∞

∂x1
Ψ(x) = 0, |Ψ(x)| ≤ C(x1 + 1), (2.3)

and KS is the cylindrical Biot–Savart kernel in S. The kernel K in S+ has the form (2.2) due to the
odd-symmetry of ω in x1. Also, the kernel K has the following rough estimate

|K1(x, y)| ≤ C0

|x− y|
, |K2(x, y)| ≤ C0

|x− y|
+ 1, if − π ≤ x2 − y2 ≤ π, (2.4)

with some constant C0 > 0.

2.2 Conserved quantities

For a function f defined on S+ where both f and x1f are in L1(S+), we denote

h(f) :=

∫
S+

x1f(x)dx

as the horizontal impulse of f . To begin with, we let ω0 be in L∞(S+) with a bounded support in S+. Here,
we assume a impermeable wall {0} × T, which gives a tangential boundary condition for u at x1 = 0. Then

6



there exists the unique weak solution ω ∈ L∞
(
0,∞; (L1 ∩ L∞)(S+)

)
such that the following quantities are

conserved for all times;

(a) the total mass

∫
S+

ω(t, x)dx,

(b) the horizontal impulse h(ω(t)),

(c) the measure of a level set
∣∣{x ∈ S+ : ω(t, x) > α}

∣∣, ∀α > 0,

(d) the Lp − norm
∥∥ω(t)

∥∥
Lp(S+)

, p ∈ [1,∞].

Such conservation laws are needed to prove the J1− stability (1.3). The existence and uniqueness can be
found in [16] and [3]. The total mass is conserved because of the divergence-free condition of u(t), and the
conservation of the horizontal impulse is due to the odd-symmetry of the cylindrical Biot-Savart kernel K1,
which is presented in (2.2). We refer the reader to [3, Prop. 2.1] for details. The conservation of the measure
of each level set of ω(t) is because the flow map is measure-preserving in time. This leads to the conservation
of the Lp−norm of ω(t), since the Lp−norm can be represented as the integral of the measure of each level
set.

2.3 Rearrangement and its estimate

First, we define the rearrangement of a measurable set with finite measure in S+ and the rearrangement of
a function in L1(S+), analogously to [18, Sec. 3.3].

Definition 2.1. For a measurable set Ω ⊂ S+ with finite measure |Ω| < ∞, we define the rearrangement

Ω∗ of Ω as the bounded strip that has the same measure as Ω; that is, Ω∗ := {x1 <
|Ω|
2π }. In addition, for

a non-negative function f ∈ L1(S+), we define the rearrangement f∗ of f as the non-negative function that
satisfies

{f∗ > α} = {f > α}∗, ∀α > 0.

By the above definition, f∗ is x2−independent, non-increasing in x1, and satisfies∣∣{f∗ > α}
∣∣ =

∣∣{f > α}
∣∣, ∀α > 0. (2.5)

From (2.5), we have ∥∥f∗∥∥
L1(S+)

=
∥∥f∥∥

L1(S+)
, h(f∗) ≤ h(f). (2.6)

There are two properties of rearrangement that we use in this section. The first is the nonexpansivity,
which is introduced in the following lemma.

Lemma 2.2 (Nonexpansivity). Let f, g ∈ L1(S+) be non-negative functions, and let g satisfy g∗ = g. Then
we have ∥∥f∗ − g∥∥

L1(S+)
≤
∥∥f − g∥∥

L1(S+)
.

We refer the reader to [18, Sec. 3.5] for the proof of a general case where g∗ = g need not hold. This is
the extension of [20, Lemma 2] in a bounded strip {x1 < a}, a > 0. Recall that in Theorem 1.1, we required
the stationary solution ζ = ζ(x1) to be non-increasing. This is because it satisfies ζ∗ = ζ, and this fact is
used in applying the above lemma with g = ζ in the proof of Theorem 1.1.

The second is the rearrangement estimate (2.7), which is a refinement of (2.6). Such an estimate can be
found in [20, Lemma 1] when the fluid lies on the bounded strip {x1 < a}, a <∞.

Lemma 2.3. For a non-negative function f ∈ L∞(S+) satisfying h(f) <∞, we have∥∥f − f∗∥∥2

L1(S+)
≤ C

∥∥f∥∥
L∞(S+)

[
h(f)− h(f∗)

]
. (2.7)

with some universal constant C > 0.
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This tells us that f∗ is the unique minimizer of the horizontal impulse among every function that has
the same measure of each level set with f .

Proof. Without loss of generality, we assume ‖f‖L∞ = 1. First, let us consider the case f = 1Ω, where
Ω ⊂ S+ is a measurable set with finite measure. Note that from |Ω| = |Ω∗|, for some β ≥ 0, we have

|Ω \ Ω∗| = |Ω∗ \ Ω| = 1

2
|Ω4Ω∗| = β.

Then using Ω \ Ω∗ = (Ω ∪ Ω∗) \ Ω∗, Ω∗ \ Ω = Ω∗ \ (Ω ∩ Ω∗), and h(f) ≥ h(f∗), we obtain∫
Ω\Ω∗

x1dx ≥
∫

(Ω∪Ω∗)∗\Ω∗
x1dx,

∫
Ω∗\Ω

x1dx ≤
∫

Ω∗\(Ω∩Ω∗)∗
x1dx. (2.8)

Then taking a1 ≥ b ≥ a2 > 0 that satisfy

{x1 < a1} = (Ω ∪ Ω∗)∗, {x1 < b} = Ω∗, {x1 < a2} = (Ω ∩ Ω∗)∗,

we get

a1 = b+
β

2π
, a2 = b− β

2π
.

This together with the inequality (2.8), we obtain

h(1Ω)− h(1Ω∗) =

∫
Ω\Ω∗

x1dx−
∫

Ω∗\Ω
x1dx ≥

∫
{b≤x1<a1}

x1dx−
∫
{a2≤x1<b}

x1dx

= 2π

(∫ a1

b

x1dx1 −
∫ b

a2

x1dx1

)
= π(a2

1 + a2
2 − 2b2) =

β2

2π
=

1

8π

∥∥1Ω − 1Ω∗
∥∥2

L1 .

Now we consider the case where f is a simple function of the form

f(x) =
1

n

n−1∑
i=1

1Ai
(x)

with some n ≥ 2, where {Ai}n−1
i=1 ⊂ S+ satisfies Ai+1 ⊂ Ai for i = 1, · · · , n − 2 and |A1| < ∞. Then its

rearrangement f∗ becomes

f∗(x) =
1

n

n−1∑
i=1

1A∗i (x).

Then due to the result above and the linearity of h, we get

h(f)− h(f∗) =
1

n

n−1∑
i=1

[
h(1Ai)− h(1A∗i )

]
≥ 1

8πn

n−1∑
i=1

∥∥1Ai − 1A∗i
∥∥2

L1

On the other hand, using the Cauchy-Schwarz inequality, we have∥∥f − f∗∥∥
L1 ≤

1

n

n−1∑
i=1

∥∥1Ai
− 1A∗i

∥∥
L1 ≤

√
n− 1

n

( n−1∑
i=1

∥∥1Ai
− 1A∗i

∥∥2

L1

) 1
2

.

This gives us

h(f)− h(f∗) ≥ n

8π(n− 1)

∥∥f − f∗∥∥2

L1 . (2.9)

Finally, for general f , we use the sequence of simple functions {gn}∞n=1 ⊂ L∞(S+) given as

gn(x) =
1

n

n−1∑
i=1

1
A

(n)
i

(x), A
(n)
i =

{
f >

i

n

}
.

Then gn is dominated by f and it converges to f pointwise as n goes to infinity, and the same holds for
(gn)∗ and f∗. Therefore, applying the estimate (2.9) to gn and using the dominated convergence theorem,
the proof is complete.
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2.4 The cut-off operator and the rearrangement

We need one more notion in order to prove Theorem 1.1; the cut-off operator of a non-negative function.
For any α > 0, we define a cut-off function ηα : R≥0 −→ R≥0 given by

ηα(s) :=

{
s if s ≤ α
α if s > α

,

and for any non-negative measurable function f on S+, we define the cut-off operator Γα as

Γαf := ηα ◦ f.

That is, Γα cuts off the part where f is greater than α and replaces it with α, whereas the other part of f
that is less than or equal to α stays the same. Note that if f is in L1(S+), where the rearrangement f∗ of f
is defined, then the cut-off operator and the rearrangement operator commute with one another:

(Γαf)∗ = Γα(f∗). (2.10)

Indeed, it can be easily shown that Γα(f∗) satisfies the definition of (Γαf)∗. For s ∈ [0, α], we have

{Γα(f∗) > s} = {f∗ > s} = {f > s}∗ = {Γαf > s}∗,

and for s ∈ (α,∞), we have
{Γα(f∗) > s} = ∅ = {Γαf > s}∗.

This property is crucial in the proof of Theorem 1.1.

2.5 Proof of Theorem 1.1

We finish this section by proving Theorem 1.1. We shall use the notation Λf,α := {f > α}.

Proof of Theorem 1.1. We fix L,M > 0 and let ζ be a function that satisfies the condition (1.2). Then note
that for any non-negative function f ∈ L1(S+), the measure of the level set Λf,M+1 can be estimated as

|Λf,M+1| =
∫
{f−M>1}

1dx ≤
∫
{f−M>1}

|f −M |dx ≤
∫
{f−M>1}

|f − ζ|dx ≤
∥∥f − ζ∥∥

L1 . (2.11)

We fix t ≥ 0 and for simplicity, we drop the parameter t from ω(t) and M + 1 from the level set notation
and the cut-off operator;

ω = ω(t), Λω0
= Λω0,M+1, Λω = Λω(t),M+1, Γω = ΓM+1[ω(t)].

To begin with, we estimate h(|ω − ζ|) using the decomposition∫
{x1≥L}

x1ωdx =
[
h(ω)− h(ζ)

]
−
∫
{x1<L}

x1(ω − ζ)dx.

Then using the non-negativity of ω, we can use this decomposition to obtain

h(|ω − ζ|) =

∫
{x1<L}

x1|ω − ζ|dx+

∫
{x1≥L}

x1 |ω − ζ|︸ ︷︷ ︸
=|ω|=ω

dx ≤ L
∫
{x1<L}

|ω − ζ|dx+

∫
{x1≥L}

x1ωdx

≤ L
∫
{x1<L}

|ω − ζ|dx+
[
h(ω0)− h(ζ)

]
+

∫
{x1<L}

x1

∣∣ω − ζ∣∣dx.
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In the above, the conservation h(ω) = h(ω0) was used. Then we have

h(|ω − ζ|) ≤ 2L

∫
{x1<L}

|ω − ζ|dx+ h(|ω0 − ζ|) ≤ 2L
∥∥ω − ζ∥∥

L1 + h(|ω0 − ζ|).

This shows us that it is only left to estimate
∥∥ω − ζ∥∥

L1 to obtain an estimate of
∥∥ω − ζ∥∥

J1
. First, we split

the integral of
∥∥ω − ζ∥∥

L1 to get

∥∥ω − ζ∥∥
L1 =

∫
Λω

|ω − ζ|dx+

∫
ΛC

ω

|Γω − ζ|dx.

In the right-hand side, we can estimate the first term:∫
Λω

|ω − ζ|dx ≤
∫

Λω

ωdx+

∫
Λω

ζdx =

∫
Λω0

ω0dx+

∫
Λω

ζdx ≤
∫

Λω0

|ω0 − ζ|dx+

∫
Λω0

ζdx+M · |Λω|︸︷︷︸
=|Λω0

|

≤
∥∥ω0 − ζ

∥∥
L1 +M · |Λω0

|+M · |Λω0
| ≤ (2M + 1)

∥∥ω0 − ζ
∥∥
L1 .

The third inequality follows by using ζ ≤ M and the conservation |Λω| = |Λω0 |. The last inequality comes
from the estimate (2.11) of |Λω0 |.
The second term is estimated by using the estimate (2.7) from Lemma 2.3 and the nonexpansivity from
Lemma 2.2, due to (Γω)∗ = (Γω0)∗ and ζ∗ = ζ, respectively. We also use the commutative property
(Γω0)∗ = Γ[(ω0)∗] from (2.10):∫

ΛC
ω

|Γω − ζ|dx ≤
∥∥Γω − ζ

∥∥
L1 ≤

∥∥Γω − (Γω)∗
∥∥
L1 +

∥∥(Γω0)∗ − ζ
∥∥
L1

≤
√
C(M + 1)

[
h(Γω)− h

(
(Γω0)∗

)] 1
2 +

∥∥Γω0 − ζ
∥∥
L1

≤
√
C(M + 1)

[
h(Γω)− h

(
Γ[(ω0)∗]

)] 1
2 +

∥∥ω0 − ζ
∥∥
L1 .

Furthermore, the term h(Γω) − h
(
Γ[(ω0)∗]

)
from the above can be estimated by adding and subtracting

suitable terms, using Γω ≤ ω, and using the conservation h(ω) = h(ω0):

h(Γω)− h
(
Γ[(ω0)∗]

)
=
[
h(Γω)− h(ω)

]
+
[
h(ω0)− h(ζ)

]
+
[
h(ζ)− h

(
(ω0)∗

)]
+
[
h
(
(ω0)∗

)
− h
(
Γ[(ω0)∗]

)]
≤ h(|ω0 − ζ|) + h

(∣∣(ω0)∗ − ζ
∣∣)+

∫
Λ(ω0)∗,M+1

x1(ω0)∗dx.

The second term in the right-hand side of the above inequality can be estimated in the same way as we did
for the term h(|ω − ζ|), which gives us

h
(∣∣(ω0)∗ − ζ

∣∣) ≤ 2L
∥∥(ω0)∗ − ζ

∥∥
L1 + h(|ω0 − ζ|) ≤ 2L

∥∥ω0 − ζ
∥∥
L1 + h(|ω0 − ζ|).

For the third term, note that Λ(ω0)∗,M+1 = {x1 < a0} for some a0 ≥ 0, and from the level set measure
conservation of rearrangement and the estimate (2.11) of |Λω0 |, we have

a0 =
|Λ(ω0)∗,M+1|

2π
=
|Λω0
|

2π
≤ 1

2π

∥∥ω0 − ζ
∥∥
L1 .

Using this and the L1−norm conservation of rearrangement, we get∫
Λ(ω0)∗,M+1

x1(ω0)∗dx ≤ a0

∫
{x1<a0}

(ω0)∗dx ≤ 1

2π

∥∥ω0 − ζ
∥∥
L1

∥∥(ω0)∗
∥∥
L1 =

1

2π

∥∥ω0 − ζ
∥∥
L1

∥∥ω0

∥∥
L1

≤ 1

2π

∥∥ω0 − ζ
∥∥2

L1 +
1

2π

∥∥ζ∥∥
L1

∥∥ω0 − ζ
∥∥
L1 ≤

1

2π

∥∥ω0 − ζ
∥∥2

L1 + LM
∥∥ω0 − ζ

∥∥
L1 .
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Thus, gathering all the above estimates, we have∥∥ω − ζ∥∥
L1 ≤ CL,M

[∥∥ω0 − ζ
∥∥ 1

2

L1 +
∥∥ω0 − ζ

∥∥
L1 + h(|ω0 − ζ|)

1
2

]
,

where CL,M > 0 is a constant that depends only on L,M . Finally, we obtain∥∥ω − ζ∥∥
J1
≤ (2L+ 1)

∥∥ω − ζ∥∥
L1 + h(|ω0 − ζ|) ≤ C1

[∥∥ω0 − ζ
∥∥ 1

2

J1
+
∥∥ω0 − ζ

∥∥
J1

]
,

where C1 = C1(L,M) > 0 is a constant.

3 Perimeter growth

3.1 Velocity and the total mass of the stationary patch 1Ω

We consider the patch-type vorticity ω = 1Ω on S+. It defines a stationary solution because ω = ω(x1)
is x2−independent. The velocity field u on S+ that corresponds to ω by the Biot–Savart law (2.1) can be
calculated, using the stream function Ψ = Ψ(x1). We denote Ψ′ as the first derivative of Ψ with respect to
the x1−variable. Then using the conditions from the problem (2.3), we obtain

u2(x) = Ψ′(x1) = −Ψ′(ξ)

∣∣∣∣ξ=∞
ξ=x1

= −
∫ ∞
x1

Ψ′′(ξ)︸ ︷︷ ︸
=∆Ψ(ξ)

dξ =

∫ ∞
x1

1(0,1)(ξ)dξ =

{
1− x1 if 0 ≤ x1 < 1,

0 if x1 ≥ 1
.

In addition, we can calculate the total mass m(1Ω) of 1Ω:

m(1Ω) =

∫
S+

1Ω(x)dx =

∫
Ω

1 dx =

∫ 1

0

∫ π

−π
1 dx2dx1 = 2π.

3.2 Framework of understanding the patch 1Ωt on S+

To begin with, we let Π : R −→ T be the quotient map Π(x) := x − 2nπ for some n ∈ Z that satisfies
x ∈ [(2n− 1)π, (2n+ 1)π). Additionally, we define a map Q : R2

+ −→ S+ by

Q(x1, x2) := (x1,Π(x2)) = (x1, x2 − 2nπ),

for the same n ∈ Z above.
We let ω0 = 1Ω0

with Ω0 ⊂ S+. Then we obtain the unique solution ω(t) = 1Ωt
of (1.1) on S+ with

the initial data ω0 = 1Ω0
, and get the velocity field u(t) on S+ by the cylindrical Biot–Savart law (2.1). We

introduce one way of understanding the patch 1Ωt . Let us consider the periodic extension uext(t) on R2
+ of

u(t), defined as
uext(t, x) := u

(
t, Q(x)

)
, t ≥ 0, x ∈ R2

+. (3.1)

Then if we let t ≥ 0 and x ∈ R2
+, then uext(t) induces the flow map Φ(t) on R2

+ that satisfies the ODE
(1.4). Note that Φ(t) is well-defined because uext(t) is uniformly bounded in time and has the log-Lipschitz
estimate: ∥∥uext(t)∥∥L∞(R2

+)
≤ C

∥∥ω0

∥∥
(L1∩L∞)(S+)

, t ≥ 0,

|uext(t, x)− uext(t, z)| ≤ C
∥∥ω0

∥∥
(L1∩L∞)(S+)

|x− z|(1− ln |x− z|), t ≥ 0, |x− z| ≤ 1.

See [21, Sec. 2.3], especially [21, Lemma 3.2], or [19, Sec. 8.2.3]. Then we consider Φ(t,Ω0) ⊂ R2
+, and

Ωt ⊂ S+ is the image of Φ(t,Ω0) through the map Q:

Ωt = Q
(
Φ(t,Ω0)

)
= Q

(
Φt(Ω0)

)
.
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That is, Ωt is the union of intersection between Φt(Ω0) and {(x1, x2) ∈ R2
+ : (2k − 1)π ≤ x2 < (2k + 1)π}

that are translated by the distance 2kπ in x2 from k = −N to k = N :

Ωt =

N⋃
k=−N

Ωt,k, Ωt,k := Et,k −
(

0
2kπ

)
,

Et,k := Φt(Ω0) ∩ {(x1, x2) ∈ R2
+ : (2k − 1)π ≤ x2 < (2k + 1)π},

(3.2)

where N = N(t) ∈ N satisfies Φt(Ω0) ⊂ R>0 × [−(2N + 1)π, (2N + 1)π).

3.3 Growth rate of the vertical center of mass of 1Φt(Ω)

For a function f defined on R2
+ in which both f and x2f are in L1(R2

+), we define the vertical center of mass
k(f) as

k(f) :=

(∫
R2

+

f(x)dx

)−1

·
∫
R2

+

x2f(x)dx.

As in (3.1), we define uext, the periodic extension of u, which is the steady velocity from ω = 1Ω, by

uext(x) := u
(
Q(x)

)
, x ∈ R2

+.

We consider Φ(t), the flow map from uext, and the image of Ω through Φ(t):

Φt(Ω) = Φ(t,Ω) = {(x1, x2) ∈ R2
+ : 0 < x1 < 1, (1− x1)t− π ≤ x2 < (1− x1)t+ π}.

Then we can calculate k(1Ω);

k(1Ω) =

(∫
Ω

1 dx

)−1

·
∫

Ω

x2dx =
1

2π

∫ 1

0

∫ π

−π
x2dx2dx1 = 0,

and d
dtk(1Φt(Ω)), the growth rate of k(1Φt(Ω)):

d

dt
k(1Φt(Ω)) =

d

dt

[(∫
Φt(Ω)

1 dx

)−1

·
∫

Φt(Ω)

x2dx

]
=

(∫
Ω

1 dx

)−1

· d
dt

∫
Φt(Ω)

x2dx

=
1

2π

d

dt

∫
Ω

Φ2(t, x)dx =
1

2π

∫
Ω

∂tΦ2(t, x)dx =
1

2π

∫
Ω

uext,2(x)dx

=
1

2π

∫
Ω

u2(x)dx =
1

2π

∫ π

−π

∫ 1

0

(1− x1)dx1dx2 =
1

2
.

(3.3)

3.4 Growth rate of the vertical center of mass of 1Φt(Ω0)

In the following lemma, we show that the difference between the vertical velocities u2(t) of 1Ωt
and u2 of 1Ω

is controlled by the L1−difference between the corresponding patches.

Lemma 3.1. There exists a constant C3 > 0 such that if Ω0 ⊂ S+ is a bounded open set, then for any t ≥ 0
and x ∈ S+, the velocity fields u(t) and u that are determined by vortex patches ω(t) = 1Ωt

and ω = 1Ω,
respectively, by the cylindrical Biot-Savart law (2.1) satisfy

|u2(t, x)− u2(x)| ≤ C3

[
|Ωt4Ω| 12 + |Ωt4Ω|

]
. (3.4)

To prove this lemma, we use an elementary lemma (e.g. see Iftimie–Sideris–Gamblin [14]) that is used
in bounding the velocity term by the L1−norm and the L∞−norm of the vorticity term.
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Lemma 3.2 ([14, Lemma 2.1]). Let A ⊂ R2 and f ∈ (L1 ∩ L∞)(A) be a non-negative function. Then there
exists an absolute constant C ′ > 0 such that for any x ∈ R2, we have∫

A

f(y)

|x− y|
dy ≤ C ′

∥∥f∥∥ 1
2

L1(A)

∥∥f∥∥ 1
2

L∞(A)
.

Proof of Lemma 3.1. We fix x = (x1, x2) ∈ S+. First, we define the periodic extensions Ωt,ext,Ωext ⊂ R2
+ of

sets Ωt,Ω ⊂ S+ as

Ωt,ext = Ωt, Ωext = Ω in S+,

Ωt,ext +

(
0

2kπ

)
= Ωt,ext, Ωext +

(
0

2kπ

)
= Ωext for any k ∈ Z.

Also, we define a subset A ⊂ R2
+ as A := R>0 × [−π + x2, π + x2). Then using that K2(x, ·), 1Ωt,ext

, and
1Ωext

are 2π−periodic in y2, we have

|u2(t, x)− u2(x)| ≤
∫
S+

|K2(x, y)| · |1Ωt(y)− 1Ω(y)|dy =

∫
A

|K2(x, y)| · |1Ωt,ext(y)− 1Ωext
(y)|dy.

Now we use the estimate (2.4) of K2 and the above lemma to get

|u2(t, x)− u2(x)| ≤
∫
A

|K2(x, y)| · |1Ωt,ext
(y)− 1Ωext

(y)|dy ≤
∫
A

(
C0

|x− y|
+ 1

)
· |1Ωt,ext

(y)− 1Ωext
(y)|dy

≤ C ′0
∥∥1Ωt,ext

− 1Ωext

∥∥ 1
2

L1(A)

∥∥1Ωt,ext
− 1Ωext

∥∥ 1
2

L∞(A)
+
∥∥1Ωt,ext

− 1Ωext

∥∥
L1(A)

= C ′0
∥∥1Ωt

− 1Ω

∥∥ 1
2

L1(S+)
+
∥∥1Ωt

− 1Ω

∥∥
L1(S+)

,

for some C ′0 > 0. Finally, taking C3 := max{1, C ′0}, we have

|u2(t, x)− u2(x)| ≤ C ′0
∥∥1Ωt − 1Ω

∥∥ 1
2

L1(S+)
+
∥∥1Ωt − 1Ω

∥∥
L1(S+)

≤ C3

[
|Ωt4Ω| 12 + |Ωt4Ω|

]
.

As a corollary of this lemma, applying the J1−stability, obtained in Theorem 1.1, on (3.4) allows us to
control the difference between u2(t) and u2 with the difference between Ω0 and Ω in measure.

Corollary 3.3. There exists a constant C4 > 0 such that if Ω0 ⊂ {x1 < 3} is a bounded open set that
satisfies |Ω04Ω| ≤ 1, then for any t ≥ 0 and x ∈ S+, the velocity fields u(t) and u from the previous lemma
satisfy

|u2(t, x)− u2(x)| ≤ C4|Ω04Ω| 14 . (3.5)

Proof. Using (1.3) from Theorem 1.1 with L = M = 1, ζ = 1Ω, and ω(t) = 1Ωt
, we can take an absolute

constant C1 > 0 that satisfies

|Ωt4Ω| =
∫

Ωt4Ω

1dx ≤
∫

Ωt4Ω

(1 + x1)dx ≤ C1

[(∫
Ω04Ω

(1 + x1)dx

) 1
2

+

∫
Ω04Ω

(1 + x1)dx

]
.

Then using the conditions Ω0 ⊂ {x1 < 3} and |Ω04Ω| ≤ 1, we have

|Ωt4Ω| ≤ C1

[(∫
Ω04Ω

(1 + x1)dx

) 1
2

+

∫
Ω04Ω

(1 + x1)dx

]
≤ 4C1

[
|Ω04Ω| 12 + |Ω04Ω|

]
≤ 8C1|Ω04Ω| 12 .

(3.6)

Finally for any t ≥ 0 and x ∈ S+, combining this with (3.4) from the previous lemma, we obtain

|u2(t, x)− u2(x)| ≤ C3

[
|Ωt4Ω| 12 + |Ωt4Ω|

]
≤ C3

[√
8C1|Ω04Ω| 14 + 8C1|Ω04Ω| 12

]
≤ C4|Ω04Ω| 14

with C4 := C3(
√

8C1 + 8C1).
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Using this corollary, we prove that the growth rate of the vertical center of mass d
dtk(1Φt(Ω0)) of 1Φt(Ω0)

is close to d
dtk(1Φt(Ω)) in (3.3) if the sets Ω0 and Ω in S+ are close with each other in measure.

Lemma 3.4. There exists a constant C5 > 0 such that if Ω0 ⊂ {x1 < 3} from the previous corollary satisfy
|Ω0| = |Ω| as well, then for any t ≥ 0, we have∣∣∣∣ ddtk(1Φt(Ω0))−

d

dt
k(1Φt(Ω))

∣∣∣∣ ≤ C5|Ω04Ω| 14 . (3.7)

Proof. We fix t ≥ 0. Then following a similar procedure as in (3.3), we have

d

dt
k(1Φt(Ω0)) =

d

dt

[(∫
Φt(Ω0)

1 dx

)−1

·
∫

Φt(Ω0)

x2dx

]
=

(∫
Ω0

1 dx

)−1

·
∫

Ω0

d

dt
Φ2(t, x)dx

=
1

2π

∫
Ω0

uext,2
(
t,Φ(t, x)

)
dx =

1

2π

∫
Φt(Ω0)

uext,2(t, x)dx.

Then taking N ∈ N that satisfies Φt(Ω0) ⊂ R>0 × [−(2N + 1)π, (2N + 1)π) and using notations

Et,k = Φt(Ω0) ∩ {(2k − 1)π ≤ x2 < (2k + 1)π}, Ωt,k = Et,k −
(

0
2kπ

)
, k ∈ {−N, · · ·N},

from (3.2), we have

d

dt
k(1Φt(Ω0)) =

1

2π

∫
Φt(Ω0)

uext,2(t, x)dx =
1

2π

N∑
k=−N

∫
Et,k

u2

(
t, Q(x)

)
dx

=
1

2π

N∑
k=−N

∫
Et,k

u2

(
t, x− (0, 2kπ)

)
dx =

1

2π

N∑
k=−N

∫
Ωt,k

u2(t, x)dx =
1

2π

∫
Ωt

u2(t, x)dx.

Now note that from the inequality (3.6), we can get∣∣∣∣ ∫
Ωt

u2(x)dx−
∫

Ω

u2(x)dx

∣∣∣∣ =

∣∣∣∣ ∫
Ωt\Ω

u2(x)dx−
∫

Ω\Ωt

u2(x)dx

∣∣∣∣ ≤ ∫
Ωt4Ω

|u2(x)|dx

≤
∥∥u2

∥∥
L∞(S+)

· |Ωt4Ω| ≤ 8C1|Ω04Ω| 12 .

Using this and (3.5) from Corollary 3.3, we can obtain upper and lower bounds of d
dtk(1Φt(Ω0)). For the

upper bound, we have

d

dt
k(1Φt(Ω0)) =

1

2π

∫
Ωt

u2(t, y)dy ≤ 1

2π

∫
Ωt

[
u2(x) + C4|Ω04Ω| 14

]
dx

≤ 1

2π

[ ∫
Ω

u2(x)dx+ 8C1|Ω04Ω| 12 + C4|Ωt| · |Ω04Ω| 14
]

≤ d

dt
k(1Φt(Ω)) + (2C1 + C4)|Ω04Ω| 14 .

In the same way, the following lower bound can be derived:

d

dt
k(1Φt(Ω0)) ≥

d

dt
k(1Φt(Ω))− (2C1 + C4)|Ω04Ω| 14 .

Finally, taking C5 := 2C1 + C4, we obtain (3.7).
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3.5 Proof of Theorem 1.3

We finish this paper by proving Theorem 1.3.

Proof of Theorem 1.3. Let Ω0 ⊂ S+ be a bounded, open set with a smooth boundary ∂Ω0 that satisfies the
following conditions (see Figure 1):

(a) there exists a closed curve γ : [0, 1] −→ S+ such that γ([0, 1]) = ∂Ω0 and γ(0) = γ(1);

(b) length(∂Ω0) ≤ 20;

(c) |Ω0| = |Ω|;

(d) δ := |Ω04Ω| ≤ min

{
1,

(
1

4(C4 + C5)

)4}
;

(e) k(1Ω0
) = 0;

(f) (0, 0) ∈ ∂Ω0 ∩ ∂S+.

(3.8)

Note that the set Ω does not satisfy the condition (a) due to disconnectedness of its boundary ∂Ω =
({0}×T)∪ ({1}×T). We fix t ≥ 0. We claim that there exist two points a = (a1, a2), b = (b1, b2) ∈ ∂Φt(Ω0)
depending on t and an absolute constant C2 > 0 such that they satisfy

a2 − C2t ≥ k(1Φt(Ω0)) ≥ b2. (3.9)

Once the above is shown, then we obtain

length(∂Ωt) ≥ |a− b| ≥ a2 − b2 ≥ C2t,

and the proof is done.
We consider the point Φ(t, (0, 0)) ∈ R2

+ = R≥0 × R. Then note that we have Φ1(t, (0, 0)) = 0 because
any point on the x2−axis stays on the axis along the flow map, due to the tangential boundary condition of
u at x1 = 0. Additionally, using the inequality (3.5) from Corollary 3.3, we get

Φ2(t, (0, 0)) = Φ2(0, (0, 0)) +

∫ t

0

d

ds
Φ2(s, (0, 0))ds = 0 +

∫ t

0

uext,2
(
s,Φ(s, (0, 0))

)
ds

=

∫ t

0

u2

(
s,Q

(
Φ(s, (0, 0))

))
ds ≥

∫ t

0

[
u2

(
Q
(
Φ(s, (0, 0))

))
− C4δ

1
4

]
ds.

Then due to Φ1(s, (0, 0)) = 0, we have the lower bound of Φ2(t, (0, 0)):

Φ2(t, (0, 0)) ≥
∫ t

0

[
u2

(
Q
(
Φ(s, (0, 0))

))
− C4δ

1
4

]
ds =

∫ t

0

[(
1−Q1

(
Φ(s, (0, 0))

))
− C4δ

1
4

]
ds

=

∫ t

0

[(
1− Φ1(s, (0, 0))

)
− C4δ

1
4

]
ds =

∫ t

0

(1− C4δ
1
4 )ds = (1− C4δ

1
4 )t.

(3.10)

Similarly, we can find the upper bound of k(1Φt(Ω0)) using the inequality (3.7) from Lemma 3.4 and the
calculation (3.3):

k(1Φt(Ω0)) = k(1Ω0
) +

∫ t

0

d

ds
k(1Φs(Ω0))ds ≤

∫ t

0

(
d

ds
k(1Φs(Ω)) + C5δ

1
4

)
ds =

(
1

2
+ C5δ

1
4

)
t. (3.11)

Then by the above bounds (3.10), (3.11), and the condition (d) of (3.8), we have

Φ2(t, (0, 0))− t
4
≥ (1− C4δ

1
4 )t− t

4
=

(
1

2
− C4δ

1
4

)
t+

t

4

≥
(

1

2
− C4δ

1
4

)
t+ (C4 + C5)δ

1
4 t ≥

(
1

2
+ C5δ

1
4

)
t ≥ k(1Φt(Ω0)).
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We choose a = Φ(t, (0, 0)) and C2 = 1
4 . It is only left to show that there exists a point b ∈ ∂Φt(Ω0) such

that
k(1Φt(Ω0)) ≥ b2. (3.12)

Indeed, if every point ξ ∈ ∂Φt(Ω0) satisfies k(1Φt(Ω0)) < ξ2, then it leads to the following contradiction:

k(1Φt(Ω0)) =

(∫
Φt(Ω0)

1 dx

)−1

·
∫

Φt(Ω0)

x2dx >

(∫
Φt(Ω0)

1 dx

)−1

· k(1Φt(Ω0)) ·
∫

Φt(Ω0)

1 dx = k(1Φt(Ω0)).

This finishes the proof of the claim (3.9).
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or analysed during the current study.

Acknowledgments

KC has been supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07043065). IJ
has been supported by the New Faculty Startup Fund from Seoul National University and the Samsung
Science and Technology Foundation under Project Number SSTF-BA2002-04.

Conflict of interest

The authors state that there is no conflict of interest.

References

[1] K. Abe and K. Choi. Stability of Lamb dipoles. Arch. Rational Mech. Anal., 244:877—-917, 2022.

[2] J. Bedrossian and N. Masmoudi. Inviscid damping and the asymptotic stability of planar shear flows
in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci., 122:195–300, 2015.

[3] J. Beichman and S. Denisov. 2D Euler equation on the strip: stability of a rectangular patch. Comm.
Partial Differential Equations, 42(1):100–120, 2017.

[4] A. L. Bertozzi and P. Constantin. Global regularity for vortex patches. Comm. Math. Phys., 152(1):19–
28, 1993.
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