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GLOBAL SMALL SOLUTIONS TO A SPECIAL 2%-D COMPRESSIBLE VISCOUS
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NON-RESISTIVE MHD SYSTEM
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ABSTRACT. This paper solves the global well-posedness and stability problem on a special 2%-
D compressible viscous non-resistive MHD system near a steady-state solution. The steady-state
here consists of a positive constant density and a background magnetic field. The global solution
is constructed in LP-based homogeneous Besov spaces, which allow general and highly oscillating
initial velocity. The well-posedness problem studied here is extremely challenging due to the lack of
the magnetic diffusion, and remains open for the corresponding 3D MHD equations. Our approach
exploits the enhanced dissipation and stabilizing effect resulting from the background magnetic field,
a phenomenon observed in physical experiments. In addition, we obtain the solution’s optimal decay
rate when the initial data is further assumed to be in a Besov space of negative index.
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The small data global well-posedness problem on the three-dimensional (3D) compressible vis-
cous non-resistive magnetohydrodynamic (MHD) equations remains an challenging open problem.
Mathematically the concerned MHD equations are given by

a;,p +div(pv) =0,

P(dv+v-Vv)—uAv— (A +u)Vdivv+ VP = (V x B) x B,
B -V x(vxB)=0,

divB =0,
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where p denotes the density of the fluid, v the velocity field, and B the magnetic field. The
parameters i and A are shear viscosity and volume viscosity coefficients, respectively, which
satisfy the standard strong parabolicity assumption,

£>0 and v¥Ari2u>o0.

The pressure P = Ap? for some A > 0 and ¥y > 1. The compressible MHD equations model the
motion of electrically conducting fluids in the presence of a magnetic field. The compressible
MHD equations can be derived from the isentropic Navier-Stokes-Maxwell system by taking the
zero dielectric constant limit [34]. When the effect of the magnetic field can be neglected or B =0,
(1.1) reduces to the isentropic compressible Navier-Stokes equations.

The goal of this paper is to solve the small data global well-posedness problem on a very special
two-and-half-dimensional (2%—D) compressible viscous non-resistive MHD equations (to be spec-
ified later). In addition, we are also interested in the precise large-time behavior of the solutions.

Due to its wide physical applications and mathematical challenges, the compressible MHD equa-
tions have attracted the interests of many physicists and mathematicians (see, e.g., [3, 8,9, 10, 11,
13, 15, 18, 47, 55, 54] and the references therein). We briefly recall some results concerning the
multi-dimensional barotropic compressible MHD equations, which are closely related to our in-
vestigation here. Ducomet and Feireisl [10] considered the heat-conducting fluids together with
the influence of radiation, and obtained the global existence of weak solutions with finite energy
initial data. Hu and Wang [22] proved the global existence of weak solutions to the 3D isentropic
compressible MHD system via the Lions-Feireisl theory, see [44] and [12]. We remark that there
are essential differences between the vacuum case and the non-vacuum case. The global weak
solution in the case of vacuum was obtained in the work of Li, Xu and Zhang [36]. The local well-
posedness in the framework of critical Besov spaces was shown by Bian and Yuan [3] when there
is full dissipation and no vacuum. In the case of vacuum and no magnetic diffusion, Li, Su and
Wang [38] proved the local existence and uniqueness of strong solutions. The small data global
well-posedness problem is extremely difficult when there is no magnetic diffusion. There are some
satisfactory results in the simplified 1D geometry. Jiang and Zhang [28] proved the existence and
uniqueness of global strong solution to the isentropic case with large initial data. We refer to [40],
[41], [42] for more results in 1D concerning isentropic and heat-conductive non-resistive MHD
system with large initial data. Wu and Wu [47] presented a systematic approach to the small data
global well-posedness and stability problem on the 2D compressible non-resistive MHD equations
if the initial data close to an equilibrium state, especially with a background magnetic field. It
appears difficult to extend the approach of [47] to R?. There are some differences between 2D
case and 3D case. For 2D case, when applying V on equations, there will appear at least one good
part in nonlinear terms. For example, d;v-VB = 0,v0,B + d;v,d>B and d,v - VB (coming from
Vv . VB) always contain a strong dissipative part. However, this will not hold for 3D case. Tan and
Wang [46] obtained the global existence of smooth solutions to the 3D compressible barotropic
viscous non-resistive MHD system in the horizontally infinite flat layer Q = R? x (0, 1). Initial-
and boundary-value problems under some additional compatibility conditions for the 3D com-
pressible MHD equations were examined by Fan and Yu [11] and local solutions were obtained
even when there is a vacuum. Zhu [55] extended the result obtained in [38] to the case of allowing
non-negativity of the initial density. We mention that there are many interesting results on the zero
Mach limit results on the incompressible MHD equations (see, e.g.,[9, 21, 13, 25, 39, 32]).
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If we neglect the effect of the magnetic field, the system (1.1) reduces to the compressible
Navier-Stokes equations, which have also been studied by many researchers, see [4], [5], [6], [7],
[23], [29], [31], [37], [49], [50], [53] and the references therein.

Although the small data global well-posedness on the 2D compressible MHD equations without
magnetic diffusion has been successfully settled, this same problem on the 3D counterpart appears
to be inaccessible at this moment. This paper focuses on a very special 2%—D compressible MHD
system. The motion of fluids takes place in the plane R? while the magnetic field acts on fluids
only in the vertical direction, namely

V= (Vl(t7x17x2)7vz<t7x17x2)70) déf (ll,O),
p défp(f,xl,xz), BE (0,0,m(t,x1,x2)).
Then (1.1) is reduced to
o;p +div(pu) =0,
p(du+u-Vu)—pAu— (A —1—,u)Vdivu—|—VP—|—%Vm2:0, (1.2)
dym + div (mu) = 0.
Clearly (p©,u®,m() with
p(O) =1, u® — 0, m0 —1

solves (1.2). We intend to understand the well-posedness and stability problem on the system
governing the perturbation (a,u,b), where

a=p—-1, b=m—1.
It is easy to check that (a,u,b) satisfies

(dia+divua+u-Va+adiva =0,

1
du+u-Vu—pAu— (A +p)Vdiva+ VP(1 +a) +5V(b+ 1)2 =M(a,u,b),

(1.3)
o:b+diva+u-Vb+bdiva =0,
| (a,u,b)]=0 = (a0, u0,bo),
with
1
M(a,u,b) défl ©(VP(1+a)+ Vot 1)2 — (uAu+ (A + 1) Vdivu)). (1.4)
a

As the first step of our main results, we provide a local well-posedness result in the Besov space.

21
Proposition 1.1. (Local well-posedness) Let 1 < p < 4. Assume uy € B[‘L1 (R?), (ag,by) €

2
B[‘; 1(]RZ) with 1 + ag bounded away from zero. Then there exists a positive time T such that the
system (1.3) has a unique solution (a,u,b) satisfying

2 2 241
(a,b) € C(10,T:B),), weC([0,T):B,, )NL([0,T:B; ;).
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Before stating our main results, we introduce some notation. Let .7 (IR?) be the Schwartz space
on R? and .7’ (R?) be its dual space. For any z € .#’(R?), the lower and higher frequency parts
are expressed as!

7 def Z Ajz and 7 def Z Ajz
<o JjZJjo—1
for some fixed integer jo (the value of jj is fixed in the proofs of the main theorems). The corre-
sponding truncated semi-norms are defined as follows:

def

’ def ) N h def
||ZHB§)’1 = ||z ||B;)’1 and ||ZHB;_’1

def || pyy
L
Let P =1 — VA~!V. be the projection onto the divergence-free vector fields and Q =1 —P =
vA~lv.

The small data global well-posedness and stability result on (1.3) is stated in the following
theorem.

Theorem 1.2. (Global well-posedness) Let2 < p < 4. For any (aly, Quf, b)) € Bgl(Rz), (ab bl €
2 2o
B, (R?) and (Pug,Quft) € B} (IR?), there exists a positive constant cy such that, if

I(ab. Q. b6) g, + N B 5 + I (Poo QU 5, < (15)
p,l p.1

then the system (1.3) has a unique global solution (a,u,b) so that
2
(a',0") € Co(RT;BY ), (d",b") € Cy(RY;B! ),

. . 21 241
Qu' € Go(R™; B9, NL'(R:B5,), (Pu,Qu") € G,(RY;B), NL'(RT;B! ).
Moreover, there exists some constant C such that
2 (t) < Cey, (1.6)

where

def

2(0) 2l Qu b o + @B 5+ (Pu,Qub)

t \Pp1 2( ,1;1
VAP A h P h
100" Qg #1971, 5+ IPwQO oy
t\"Zp,1 1\"p,1

One refers to (4.1) for the definition of Q.

1.1. Strategy of the proof of Theorem 1.2. Let us point out new ingredients in the proof of
Theorem 1.2. For usual compressible Navier-Stokes equations (see for example [4, 6]), the major
difficulty stems from the convection term in the density equation, as it may cause a loss of one
derivative of the density. To overcome it, previous proofs heavily relied on a paralinearized version
combined with a Lagrangian change of variables. For the compressible viscous non-resistive MHD
system (1.3), the situation becomes more complicated. There are absence of dissipation in the
density equation and the magnetic field equation, we cannot get any smoothing effect of the density
and the magnetic field. This bring us big difficulty to construct the global solutions of the system.
The new ingredient in the present paper lies in the introduction of un unknown good function ¢

INote that for technical reasons, we need a small overlap between low and high frequency.
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(see (4.1)), which enables us to capture the dissipation arising from combination of density and the
magnetic field. Finally, we complete the proof of Theorem 1.2 by a continuous argument.

It is natural and physically important to study the large-time behavior of the global solution
obtained in (1.2). The large-time behavior has always been a prominent topic on the fluid equations.
Important results have been established for the compressible Navier-Stokes equations (see, e.g.,
[7, 48, 53]) and the compressible MHD equations (see, e.g., [22, 34]).

What is special here is that the system concerned here is partially dissipated with no damping or
dissipation in the equations of p and b. We show that, when the low modes of the initial data are
in a Besov space with suitable negative index, then the Sobolev norm of the solution is shown to
decay at an optimal rate. The proof relies on the enhanced dissipation resulting from the interaction
between the velocity and the magnetic field.

Theorem 1.3. (Optimal decay) Let A’z & 71 (E]*F2)(s € R) and (a,u,b) be the global small
solutions addressed by Theorem 1.2 with p = 2. For any 0 < ¢ < 1, if additionally the initial data
satisfying (af,uf,bh) € B, 2(IR?), then we have the following time-decay rate

A" (@,)]|2 < C(1+1)""7°, ¥y € (~0,0] (1.7)
with @ is defined in (4.1).

Remark 1.4. The above decay rate (1.7) coincides with the heat flows, thus it is optimal in some
sense.

Finally, we mention the small data global well-posedness result for a closely related system
of inhomogeneous incompressible MHD equations. The general inhomogeneous incompressible
MHD equations are of the form
(0:p +div(pv) =0,
p(dv+v-Vv)—uAv+VP = (V xB) x B,
OB —V x(vxB)=0, (1.8)
divv =divB =0,

\ (p7V7B) |t:0 - (p07V07B0)'

If we set

def
V= (Vl(I,X1,X2>,V2(I,X1,X2>,O> = (

0,0,b(t,x1,12)),

u,0),
def

p=p(t,x,x), B
then (1.8) is reduced to
(0;p +div(pu) =0,

1

p(du+u-Vu) —,uAu-i—VP-l—EVbz =0,
/b +div (bu) =0, (1.9)
divu =0,

\ (p7u7b)‘f=0 = (P07“07b0)~
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Different from the compressible MHD equations, the combination I1:= P+ %bz can be regarded
as new pressure and the new system (1.9) is decoupled into equations of (p,u) and the equation
of b. We can solve the equations of (p,u) first and then get the solution of b through the third
equation of (1.9). Now we write p = 1 + a, inspired by [1], [52] and the previous well-posedness
result on the compressible MHD equations, we obtain the following global well-posedness result
on (1.9). We shall not provide a detailed proof for this result.

2
Theorem 1.5. Let p € (1,4), (ag,up,bp) € B;J (R?) with divug = 0 and 1+ ag bounded away from
zero. Then (1.9) has a unique global solution (a,u, VI1, b) such that for any t > 0,

(a,b) EC(R™; B, |(R*))NL7(By ((R?)), VITE Ly (B | (R?)),
21 ~ a2 241
ueC(R*;;BY | (R?)NLY(BY, (R?)NL (B! (R?)).
Moreover, we have

[(a, D)

o

1
_ .
p ol ozl s VT < Cexp (cexp(cr))

1 \"p,1 1 \Zp,l t\Pp1 1 \Bp1

for some time-independent constant C.

The rest of this paper is arranged as follows. In the second section, we recall some basic facts
about Littlewood-Paley theory. In the third section, we use the fixed point theorem to outline the
proof of Proposition 1.1. In the forth section, we use three subsections to prove Theorem 1.2. In
the first subsection, we exploit the special structure of (1.3) to capture the dissipation arising from
combination of density and the magnetic field at low frequencies part and in the second subsection,
we introduce a so called effective velocity to capture the dissipation arising from combination of
density and the magnetic field at high frequencies part, respectively. In the last subsection, we
use the continuity argument to close the energy estimates and thus complete the proof of Theorem
1.2. We shall prove the Theorem 1.3 in Section 5. Inspired by the papers [48], our main task is
to establish a Lyapunov-type inequality in time for energy norms (see (5.34)) by using the pure
energy argument (independent of spectral analysis).

Let us introduce some notations. For two operators A and B, we denote [A,B] = AB — BA, the
commutator between A and B. The letter C stands for a generic constant whose meaning is clear
from the context. We denote (a,b) the L?(IR?) inner product of a and b and write a < b instead of
a < Cb. Given a Banach space X, we shall denote ||(a,b)||x = |lallx + ||b]|x-

2. PRELIMINARIES

This section reviews Besov spaces and related facts to be used in the subsequent sections. We
start with the Littlewood-Paley decomposition. To define it, we fix a smooth radial non-increasing
function ) supported in the ball B(0, %) of R?, and with value 1 on B(0, %) such that, for ¢ (&) =

2(3)-2(8),
_ . 3 8
Jgi(p(Z 7)=1in Rz\{O} and Supp(pc{é GRZ:Zg\g\gg}.
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The homogeneous dyadic blocks A; are defined on tempered distributions by

Au™ o2 D 7 (9277 Zu).

For any homogeneous function A of order 0 and smooth outside 0, we have
Vpelle, A/ AD))Lr < ClIAjullLr.
Definition 2.1. Let p,r be in [1,+o] and s in R, u € /' (R?). We define the Besov norm by

def H (ZjSHAjUHL")j

g,

o(2)

We then define the homogeneous Besov spaces by Bj, , &ef {u € .7 (R?), H“”B;‘,, < 00}, where u €

S} (R?) means that u € . (R?) and limj_, _o ||Sjul| 1= = O (see Definition 1.26 of [2]).

When employing parabolic estimates in Besov spaces, it is somehow natural to take the time-
Lebesgue norm before performing the summation for computing the Besov norm. So we next
introduce the following Besov-Chemin-Lerner space L%(B;,y,) (see[2]):

L3 (By,) = {u(r,) € (0. +e0) x F5(R2) : [uly g, , < +oo}

where
def
)=

el sy & 12 Aes(t) oo rr

The index T will be omitted if 7 = 4o and we shall denote by %?;,([O,T];Bj,’,) the subset of

functions of L% (B, ;) which are also continuous from [0, 7] to Bj, ,.
By the Minkowski inequality, we have the following inclusions between the Chemin-Lerner
space L% (B, ,) and the Bochner space L% (B3, ,):

e

llzz s, ) < Nelligay,) A0 A STl ) 2 Mg, 42
The following Bernstein’s lemma will be repeatedly used throughout this paper.

Lemma 2.2. Let A be a ball and € a ring of R%. A constant C exists so that for any positive real
number A, any non-negative integer k, any smooth homogeneous function & of degree m, and any
couple of real numbers (p,q) with 1 < p < g < oo, there hold

1 1
Suppit C A% = sup ||0%ul|ze < CH A0 |,
|a|=k
Suppit C A€ = C_k_llk||u||Lp < sup |[0%u||r < Ck+1),k||u||Lp,
|o|=k
1 1
Suppii C A% = ||6(D)ul|re < ComA™ 25~ |1ul| .

Next we recall a few nonlinear estimates in Besov spaces which may be obtained by means of
paradifferential calculus. Here, we recall the decomposition in the homogeneous context:

w =T,w+Tou+Ru,v)=T,v+Tu, (2.1)
where ~
T,v def Z Si—1uAjv,  R(u,v) def Z Ajuld v,
JEL JEZ
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and

def : .
p & Z A v, Tlu= Z SitovAju.
lj=J'1<1 JEZ

The paraproduct 7" and the remainder R operators satisfy the following continuous properties.
Lemma 2.3. Let (s,r) € R x [1,00] and 1 < p, py, pa < oo with % — pil—i_piz
o We have:

Tl < lullon (Vllgy and (Turllggse < Nl _IVllgy i <0,

p,r
o Ifsi+s) >Oand% = %-ﬁ-% <1 then
IR, gyon S Nl g IVl
o Ifs1+s3=0and -+ > 1 then
IR G g0, Nllgsy IVl 2.2)
From Lemma 2.3, we may deduce the following several nonlinear estimates in Besov spaces

Lemma 2.4. ([2]) Let 51 < %,sz < % S1 450 > 2max(0,% —1), and 1 < p < o, Assume that
u€B), (R?) and v € B} (R?). Then there holds

] 3 < Cllullg Vg,

"Yl+“‘27ﬁ peo
Py

Lemma 2.5. ([48, Proposition A.1]) Let 1 < p,q < oo, 51 < % 57 < 2min{%,é} and sy + sy >
2max{0, % + é —1}. Forany (u,v) € B‘;‘l(Rz) X Bszl(Rz), we have

HMVH St —2 A HuH}gfl HVHB32 .
1+52
B

.2 . 21
Lemma 2.6. Let 2 < p < 4. Forany u € B;J(Rz),vg € Bgyl(Rz) and V' € B, (R?), we have

l 14
1Gv) Ny < (I Wgg, + IV 2l 5 (2.3)
2,1 2,1 P P

p:l p:l

Proof. We first use Bony’s decomposition to write
Sigr1(wv) =TS i 1v+Sjos1 (Tu+R(v,u)) + [Sjos1, Tl v. (2.4
Applying Lemma 2.3, we have

N é g
IS 1vlg, Sl 1 g, S 101, il 2.5)

=
Sl

and, for -1 e

1Sjorr1Tvuell g, <IIVII y u H <IIVII Sl 2 (2.6)
p, 12 Pl Pl
8



For the reminder term ||S 1 R(v, u)|| 59 » We cannot use Lemma 2.3 directly, however, in view of
the fact that I < 5 < 2and § —1 >0, there holds
ISj01ROv) gy S RO s, )
’ BI’/2=1
from which and Lemma 2.3, we get
IS0 ROv) g0 S IVl 5 el 28)
’ Bp,l p,1

By Lemma 6.1 in [6], the term with the commutator can be bounded

18041 Tlvllge, SIVall 2 [Vl 2o S VI 2yl 5 (2.9)
, B P P P
p*,1 p.l p,1 p.1
Thus, the combination of (2.4)—(2.9) shows the validity of (2.3). ]

We also need the following classical commutator’s estimate.

Lemma 2.7. ([2, Lemma 2.100]) Let 1 < p < oo, —2min {1—1, - ;} <s<2. ForanyveB, (R?)

2
and Vu € B} | (R?), there holds

~

114, u- V||, S di2=PIIVull 5 Vg
Bl 2

where (dj)p = 1.

Finally, we recall a composition result and the parabolic regularity estimate for the heat equation
to end this section.

Lemma 2.8. ([2]) Let G with G(0) = 0 be a smooth function defined on an open interval I of R
containing 0. Then the following estimates

16y, Sl and G Nzgqae ) S 1Nz
hold true for s > 0,1 < p, g < o and f valued in a bounded interval J C I.

Lemma 2.9 (2]). Let 6 e R, T >0, 1 < p,r<ooand 1 < gy < qy < oo. Let u satisfy the heat
equation

du—Au=f, ul—o=up.

Then there holds the following a priori estimate

[l 2 Sluollgg, +1AIL, 6aiz -
£, ) Por N ey,



3. THE PROOF OF PROPOSITION 1.1

We prove Proposition 1.1 by a fixed point theorem under the Lagrangian coordinates. We follow
the paper [5] closely and only give the sketch of the proof.

Step 1. First, we convert (1.2) into is Lagrangian formulation. For this, we need to introduce
some notations. For a vector w = w(x) = (wy,w2), V,w denotes the matrix (dy,w;);; and Dyw =
(V,w)T (i.e., the transpose of V,w). We may also frequently write Vw and Dw when it is clear
which space variable w depends on.

If u = u(t,x) is a C' vector field, it uniquely determines a trajectory X (¢, -), defined by the ODE
d
Xy =ut,X (1)),

X(Ovy) =)

Moreover, X (t,-)isaC 1—diffeomorphism over R? for every t > 0.
We are about to reformulate (1.2) using the following unknowns in Lagrangian coordinates:

3.1

P,y Ep(6,X(t,y), mt,y) Em(t,X(t,y)), and (t,y) E u(t,X(1,)). (3.2)

We may keep in mind that now X only depends on u since

X(ey) =y+ [ a(zy)ar. (3.3)

Next, let us introduce Jg(7,y) = det DX (¢,y). Then (1.2); and (1.2)5 imply, respectively,
Jap = po, and Jam = my. 3.4)

To reformulate (1.2),, we further introduce Ag(r,y) = (DX(z, y))fl and <% (t,y) = adjDX (t,y)
(the adjugate of DX, i.e., 2% = JgAg). As in [5], evaluating (1.2), at (¢,X(¢,y)), multiplying the
resulting equation by J, and using (3.4), we have
) _ _ _ I, _
Pod,li — pdiv (AAIVE) — (U + L) g VTr(AgDu) + <77 V(P(Jg ' po) + 5V Img)?) =0, 3.5)
l_l|t:() = Uy.
Here, Tr denotes the trace of square matrices.

Step 2. Linearized system. Note that (3.5) is already a determined system with @ the only
unknown. Since it is fully nonlinear, we need to reformulate it as

{poa,ﬁ — pAG— (14 A)Vdivii = f(q),

_ (3.6)
)0 = up,

where
£(8) =pdiv (AL — 1)Va) + (1 +A) (] —1)VTr(AaDu)
(- A)VTr((Ag — D)D) — g V(P po) + 5 (g o))
and / is the identity matrix.

We need the following well-posedness result for the linearized system.
10



21 2
Theorem 3.1 (See [51]). Ler 1 < p <4. Assumewg € B) | (R?), po—1 € B | (R?), and inf py > 0.
21
If f e LY([0, T];B;;l ) for some positive time T, then the system

{p()&tﬁ —pAu— (u+A)Vdiva = f,
;=0 =1

21 241
has a unique solution W in the class C([0,T]; B, | ') nL([o, T:B,, )
Moreover, we have the global estimate
lal | 3. +lowaa] s <Clwll 2 +Clfl ,
L7 (B, Ly(B), BJ, TBp,l
where C depends on p,infpgy, 1, A, ||po— 1|| 2 but T.
p 1
In fact, the author in [51] did not discuss the case p = 2. However, our regularity of the initial
density pg is much higher than that in [51]. Then one can follow the argument in [51] to show
Theorem 3.1 for p = 2. On the other hand, we can also use the linear theory established in [5] to
show the local well-posedness of (3.5). But in [5], the constant C in the linear estimate depends on
T.

Step 3. Fixed point argument. We shall perform the fixed point theorem in the Banach space
E,(T) defined as

EP(T)déf{uecb([o T);B ’ )|8tu€L([O,T];Bz’;l),ﬁELI([O,T];BET)}

endowed with the norm

def
[allg, = [l 2, +[da,Aall
T pl T(Bpl )
We need the nonlinear estimates for f(@1) when @i € E,(T) satisfying ||Au|| 24 sufficiently

B?
T P 1
small. So as in [5], we use the estimates in the appendix therein and product laws in Besov spaces

to get

lr@l | 5o <ClaalP o +CTlpo—1mo—1] 3 (3.7)
TBpl TBpl Pl
Similarly, if both ||A@|| 2 , and [[AW|| 2 , aresmall, and if 7 is also small, it holds that
TBpl L%‘(Bpl )
@)= fl R <dfa—-wlg, (3.8)
p.l

where 0 is a small number.

Based on (3.7), (3.8) and Theorem 3.1, the standard contraction mapping theorem guarantees a
unique solution @ of (3.6) (hence (3.5)) in E,(T) provided T is sufficiently small.

Step 4. Back to the Euler coordinates. We can go back to the Euler coordinates through the
inverse of X, where X is defined by (3.3). This gives the existence part of Proposition 1.1. The
uniqueness part can be proved by repeating Step 1-Step 3.

11



4. THE PROOF OF THEOREM 1.2

In this section, we complete the proof of Theorem 1.2 in the following three subsections. To find
the hidden dissipation of the system (1.2) and to avoid tedious calculations we may assume that
Y = 2 (the case that y = 1 is much more easier), since the other cases can be essentially reduced to
this case. We introduce an unknown good function ¢ as

0= P+-m>—=. 4.1)

Direct calculations show that (¢,u) satisfies
0;¢+3divua+u-Vo+2¢diva =0,
Ju+u-Vu—pgAu— (A +p)vVdivu+ Ve =F(a,u, @),

4.2)
def 1
Oli—0 = @ = a(z) +2a0+ Eb(z) +by, u|i—o =y,
where
def . . def d
F(a,u,0) =1(a)Ve —I(a)(uAu+ (A +pu)Vdiva) with I(a) = T+a (4.3)
Throughout we make the assumption that
1
sup a(r,x)] < 5 (4.4)

teR,x€R2
which will enable us to use freely the composition estimate stated in Lemma 2.8. Note that as

2

B} |(R?) < L*(RR?), Condition (4.4) will be ensured by the fact that the constructed solution has
’ 2

small norm in B, | (R?).

4.1. Low-frequency estimates. To study the coupling among a, ¢ and Qu, it is convenient to set
Qu=-A"'vd.

Since d and Qu = VA~ !'divu can be converted into each other by a zeroth-order homogeneous
Fourier multiplier, it suffices to bound d in order to control Qu. Now one can infer from (4.2) that

dp+3Ad = fi, ws)
od —2Ad — A = f> '

where
A _u.vo-20dive, £ %A div(—(u-Vu) +F(a,u, ).
In this subsection, we prove the following crucial lemma.

Lemma 4.1. For any t > 0, there holds that
19, aV e + 100 @) sz

<1196, g, +1CCA) ()i, (4.6)
12



Proof. Let ky be some integer. Setting fi = Avf, applying the operator AiSy, to the equations in
(4.5), then multiplying (4.5); by ¢/ /3, (4.5)2 by d}, respectively, we obtain

5 (1961334 1132 ) + 201 Ad 12 = () 00 /3) + (o) (47
where we have used the following cancellation
(3Ad, 9f/3) — (A@f,df) =0. (4.8)
To capture the dissipation of ¢, we need to consider the time derivative of the mixed terms involved
in (di, A;)
— L Aol + NG~ 3AdL

= _2<Adk7A(pk> - <(f2)1é7A‘Pk> - <A(f1)£7d/€>~ 4.9)

To eliminate the highest order terms on the right-hand sides of (4.9), we next estimate || A¢} ||%2
From (4.5), we have

AAQ +3A%d, = A(f)L. (4.10)
Testing (4.10) by 2A ¢} /3 yields

L IAGLI, = (28df, Agl) + (). 20%90/3). (@.11)
Denote
223 9f)12 + 9112 — (df Al + 2| A1
Summing up (4. 7)><9 (4.9), and (4.11), we obtain

RV R I

2
It’s straightforward to deduce from the low-frequency cut-off and Young’s inequality that

L2~ (00, At dp) |72 = 11(9f,d0) 172,
which leads to

1d
S LB S (1) (PN @.13)

Dividing by . formally on both hand sides of (4.13), and then integrating from O to ¢, we finally
get desired estimate (4.6) by summing up over k < kg. This proves the lemma. U

From Lemma 4.1 and the definitions of ¢, d, f; and f5, the low frequency part of (¢,Qu) can
be bounded by

(", Qu)lIz=ag ) + 11 (9", Q) 52
< 1106, Qub) gy + 11 (- V) Il g+ Il (@diven) | s

+ 1o V) )+ (B a, 0) g ) (4.14)
13



In the following, we estimate successively each of terms on the right hand side of (4.14). To
simplify the writing, we introduce the following notation:

def
Eult) = |19, Qu) g, + H‘PhHB% +|(Pu,Qu")

1 HB%’”
P,

p:l

def
&1(t) = ||(¢,QU)€||351+||§0'1|| 2 + | (Pu,Qu") | 240
: B

p,l Pl

First of all, in view of Lemma 2.6, there holds

I Vo), + l(gdiva)’| .
Slull > (19", +0" 2 )+l 5 (IQullyy +[Qu 5 )

p,1 p,1 p,1 p,1

2 0112 hy 2 012 h 2
S IPul; +l1Qul3y Q" +llofl3, +le"2,
Bpﬁl " Bp,l " Bpﬁl
h 2
S IPull 5 IPul 5., +ll0"1,
Bpﬁl p.l B[f,l

+ (10" Qg 120" -0 ) (19" Qu) g, + Q"] 3..)
P, P,

< Ew()E1(1). (4.15)

Next, to bound [|(u- Vu)|| B We obtain from the decomposition u = Pu+ Qu and Lemma 2.6
that "

I Vo)l gy <I(Pu- V[l gy +[[(Qu- V)|

SIPul 5 [Vull 5 +(IQu g, + Q] 5 )IVal 5. @16)

p,l Bp,l Pl Pl

Due to

4 h
IVal 5 < IBul 5.+ 10l + Q0 5., S i)
pil p;l ' pil

we infer from (4.16) that

y|<u.Vu)f||Bgl < E()E(1). (4.17)
We now turn to bound the terms involving composition functions in F(a,u, ¢). Keeping in mind

that

I(a)=a—al(a),
14



we first use Lemmas 2.6 and 2.8 to get
01 <nAl . ans
1((@)) g, Sl I, + 1@l (@) 15,

Sllallgg, + 1@ 2 (lallzg, + "]l 2-,)
2.1 P 2.1 p

pl pl
l 14 h
Sl llag, +llall 5 (la'llag, + "] )
' p,1 ' p,1
0 l h 2
<lla'llgn +(lallzg, + 1"l )
' ’ p,1
S(1+68%(1))Ew(t). (4.18)

Similarly, we can infer from Lemma 2.5 and Lemma 2.8 that

<
1@ 2y Slell 5 +llal(@)] 5,

pil Pl p,l

l
S(la'llg, + )3 )-+lall 5, W) 5

p,1 p,1 p.l

/
S(la’llgn, + a2 )+ lal 5 lall 5
" Pl Pl p,l

4 /¢
S+ lalyg, + a5 (e lag, + ] )

Pl p;1
S(1+68%(1))Ew(t). (4.19)
Now, for the first term || (I(a)V(p)€||Bgl in F(a,u, @), in view of the fact that ¢ = ¢’ + ¢", we can
write 7
11@)V0) g, < 1@ V0" Iz, +11 @)V ") |15 (4.20)
Thanks to Lemma 2.6 again, we have
1@V llge SIVO'Il 2 (1T(@) [lgg, + 1 T@)"] 2,)
2,1 Bpl 2,1 Bpl
P, P,
S0z, (1@ g, + 1)) )
: : 4
which combines (4.18) and (4.19) leads to
H(K“)V‘PE)EHBQJ §!\<PE||B;1(1 + 6 (1)) (1) (4.21)

For the term ||(I(a)V™)|| 59, in (4.20), we use Bony’s decomposition to write

Sj0+l (I(a)Vq)h) :Tl(a)SjoJrlvq)h + [Sj0+1 ) Tl(a)]vq)h

+Sjo1 (Tygnl(a) + R(1(a), V")) (4.22)
Applying Lemma 2.3, there holds
i Si01V 9"y, <@g 10170y, S W@ 5 0l . @23)
il ’ ’ p7l £l

15



from which and (4.19), we can further get
1T Sip+1 V0" llg, < (1 +<§w(t))5oo(t)llfpllf;;1~
The last two terms in (4.22) can be estimated the same as (2.6) and (2.9) so that
ISjp1 (Tygal (@) + R (@), Y9") [0, + 11 Ty V9"l
S HprhHB%fl 17(a)]l

p:l

B,

= o

< h
<1981, el

1 p1
l
<l llgg, + el 3 )19
) B?

p,1
SCAOIL P
Bp’1

2
5D
Bp.,l

this together with (4.24) give rise to

1T(@)Ve") gy, < (1+u()u(t)(lloll + ||<Ph||B% )-
: : 7
Plugging (4.21) and (4.26) into (4.20) yields
|1(@)Vo)llgy, < (1+Ea(0)Eulr) (@l + H‘PhHB% )-

p:l

(4.24)

(4.25)

(4.26)

(4.27)

For the last term in F(a,u, @), as we set Pu in the L” type spaces, we cannot use Lemma 2.6
directly to bound this term. For an integer jo > 0, we use Bony’s decomposition to rewrite this

term into
Sjo+1Q(1(a)A“) :Sjo+1@(TAu1(a) —|—R(Au,](a)))
+ T1()AS jy+1Qu+ [, 11Q, Ty Au.
The first term can be bounded by Lemmas 2.3 and 2.8,
18y 1Q(Taul (a) + R(Aw,1(a))) 3y
S @l 2 lAa] 2 S lall 2 flull 2.,

p,1 p,1 p,1 p,1
l h L h
< (lallg, +la"] 3 (10w, + (B 5.,))
' p.l ' Pl

Similarly, we have
, ) ’ )
1(Th@)ASjp-+1Qu) [l gg | Sl (@) 2-[|AS jor1 Quil g

4
<lall 5 1Qulls;,
p,1 '
l h l
Sl g, + "] 5 )1Qu' g,
’ p7l ?
16
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The commutator term is estimated by using Lemma 6.1 in [6] that

. 1 1 1
$51@. Tialoullg, SIVI@] 5 192l 50 (5 =3).

*
BY 7 Pt p 2
SIVI@I 2l 2.,
Pl Pl
5 all 2 ||uf| 2
|l 2 I IIB;#
<la'llgg, "] 2 )(IQu]lge +(Bu Q] 5., @3D)
5 s BP
pl pl
2] 21
where we have used the embedding B, | (R?) — B, | (R?),2< p<4.
The term /(a)Vdivu can be estimated in a similar manner. As a result, we have
| (2(a)(Au+ Vdiva))| g < Ea(r) 61 (7). (4.32)

Plugging (4.15), (4.17), (4.27), and (4.32) into (4.14) gives
||((P67Q“€)||z;e(gg'l) + ||((p€,(@u€)||Lt1(B%‘l)

S 195, Qui) g, + [ (1+ En(e)Ex(D)E (D). (4.33)

Finally, we shall derive the bound of ||a’||7. 0 . Due to the appearance of the term divu in the
y L7 (B3,)

first equation of (1.3), we cannot obtain the bound |a 7 (s ) directly. To break the barrier, we
¢+ B3

define
def

5% o34 (4.34)
which satisfies the following transport equation
;0 +u-Vo+ddivau+ ¢diva=0. (4.35)

Now applying A; to the above equation and using a commutator’s argument give rise to
A8 +u-VA;§+[Aj,u-V]§+A;(8divu) +A;(edivu) = 0.

Taking L? inner product of the resulting equation with A ;0, applying the Holder inequality and
integrating the resultant inequality over [0,z], then summing up j < jy, we arrive at

18 1z-sg ) <186 g, + 1 (Sivan) s go )+ 1 (@diva) Il o

t t ]
+/ dival =[] 40 dr+/ Y A u- V)52 dx. (4.36)
0 ! 0 j<io
By Lemma 2.6, there holds
I(Sdivu) g <18l + 1871 5 )ldivul]
’ ’ B[[;),l B;).l
S(ll(aeﬁpg)ﬂggl +||(ah,<Ph)||B% )(ll@llell,gg1 +||Quh||31_2,+1)- (4.37)
7 pl " pl

17



Similarly,

I (pdiva)llz <(0 s, + 9" z,)(H@ugHBz +H@uhll 24)- (4.38)

Pal pl

With the aid of the embedding relation B" {(R?) = L*(R?) and Lemma 2.7, we can bound the
forth term on the right hand side of (4.36) as

i i
Idivulle- (o7l <1075, 1Qull 2.
pl

<@, 0" lgg, + 1 (a" 0 )H 2 )(1Qu' 55 +IlQu” e (4.39)

Pl pl

The last term in (4.36) can be bounded by a similarly derivation of (4.9) in [16] that
Y 1A u-V18]: <(|Qu' |5, +l|Buw)]| 5@ ")y, + " 0] 5 ). @40)

i<io By, B,
Taking (4.37)—(4.40) into (4.36), we obtain
t
18" 55 a8, Sl(ah, W)l + | En(2)Ei(7)ax @.41)

which combines the definition a = %((p — ) leads to

¢ ‘ ¢
iz ag ) S0 Wz mg ) T 119 Iz g,
1
SHab 08) g, + 119 Nz + [ E=(D)E () @42)
In the same manner, we can infer from forth equation of (1.3) that
1
161z, 16 90 sy, + 19"z, + | E-(D)E (). (4.43)

Consequently, combining with (4.33), (4.42) and (4.43), we finally arrive at
I(a",",Qu") ||z;°(3271) + (9", Qu) lzya2,)

< II(ag, b, @6 Quo) | gy, + /0 (1+&a(7)) (7)1 () dT. (4.44)

4.2. High-frequency estimates. In this subsection, we shall introduce the so called effective ve-
locity to capture the damping effect of ¢ in the high frequency part.

4.2.1. Estimates for auxiliary unknowns. First, we infer from (4.2) that (¢, Qu) satisfies

0,0+ 3diva = —¢@divu —div(¢u),
{&@u—ZA@u-l—V(p =—Q(u-Vu)+QF(a,u, ). (4.45)
Now, we define the effective velocity G as follows
G Qu- EA Ve. (4.46)
Then G satisfies
3G —2AG = %G + %A—lw + %A*V(q)divu) + %Q((pu) —Q(u,Vu)+QF(a,u, ). (4.47)

18



Applying the heat estimate (2.9) for the high frequencies of G only, we get
IG"1_ 2., +||Gh||
L pl p,l )

<166l 2 1+||Gh|| 2 HOME a, +(pdiva)| i

pl pl pl p,1 )

+lQ(ew)|| 5, +||@(u,VU)h|| 2., +]QF(a,u, )" || : (4.48)
L} (BI (B )

p,1 171 p.1
The important point is that, owing to the high frequency cut-off at |&| ~ 2/0,
IIGhII 2, 82 2")IIGhII ! and | ¢" || 2, S27%0l|

2 .
~Y =
1pP

pl p,1 Bpl Lf (Bp,l)

Hence, if jj is large enough then the term ||G”| | 2., may be absorbed by the right hand side.
L

£
t B[tl
In view of (4.46), we have ¢ satisfies '

3
8,(p+§(p+u-V(p = —3divG —2¢divu. (4.49)
Applying A j to (4.49) and using a commutator argument give rise to
. 3. . . . .
dA;Q+ EAj(p +u-VA;j¢=—[Aj,u-V]p—3A;divG — 2A;(@divu). (4.50)

Taking L? inner product of (4.50) with l—ly\A j(p\p’zA i@, applying the Holder inequality and inte-
grating the resultant inequality over [0,¢] lead to

. t .
I350(0)lr+ [ 14,0l dz
0
. I .
S N N e

t . t . t .
+/0 ||[Aj,u-V](p||Lpd17+/O ||AjdivG||Ud1:-|—/O 1A (@divu) |z dt @50

from which we can further get

3
h 2 ok
193 3l

p,l p,l)
<H<P0H +3||GhH e +/||Vu|| 3 lloll 2 d. (4.52)
pl p pl pl
Multiplying (4.48) by a suitable large constant and adding to (4.52), we obtain
IIGhII~ 2, +e" ||~ 2 +||Gh|| 2 +le" ||
L (B? = (B!

pil f p.1 Bpl pl)

<IIGoll 2 1+||(P0|| 2 +/ IIVUII 2 ||<P|| 2 dt

pl pl X pl

[ uevull ol ou!] s ddes [IE@ue)| 5 de @Sy
pl pl ,;1
19



4.2.2. Recovering estimates for a, b. In this subsection, we shall recover the estimates for a,b
def 1A_1V(p and the embedding relation in the high

and u. On the one hand, in view of G = Qu —

frequency, there holds
I|Quh||~ 2 N||Gh||~ 2 el
Ly(B) Lr(B,, ) L7(B,,)

p,1 p,1

Gh|| seeh 2+1)+H<P I

2
p
p.l Bpl

H@uhH @ S
pl )

As a result, we can rewrite (4.53) into

3 HlQutl o el s HllQut s
2 ||Z?,(Bp 3 | HL}(BP) | HL}(B,f’fl)

p,l p;l

lo"|l
Lf p,1
t
< h h
S lleoll 5 + || Qug | .%71 +/ [Vl .% o]l .% dt
P,
+ [ val 5+ fw)” I3 dr+/ (Flam )] 5 (d7.  (454)
P 1 p 1

Finally, we estimates the incompressible part of the velocity field. Applying the operator P to the
second equation of (4.2), we find that Pu satisfies the heat equation

J;/Pu— APu = —P(u- Vu) + PF(a,u, ). (4.55)
By Lemma 2.9, we can get
HPUH 2 +||IP’HH
pl ) pl
<Pl eVl el (4.56)
B/ L/(B,, L(B,, )
Combining (4.54) with (4.56) gives
9" 5 +lEuQu) s
( pl N(Bpl )
+lo”| b + | (Pu, Qu” )II 241
Bp_yl) (Bp] )
S ||<Po|| +||(Puo,@u(>)|| 2 +/ IIVUII 2 ||<P|| 2 dt
I’-,1 pl pl pl
+ [ vl 5+ w5 dr+/HFau,<p>H padn. 45D
pl pl
We now bound the terms on the right hand side of (4.57). First, it’s obvious that
ol 2 <(IIQuZHB2 + | (Pu,Qu") | 2H)(II(P g, +[lo" || > ). (4.58)

IVull 2
Pl pl

PJ pl
20



Then, according to Lemma 2.5, there holds

2

[u-Vuf| 5 Sl
BP

p1

SIPul?, +|Que(l +[|1Qu?|?,
BP 2,1 BP

p,l

p:l p.l

< e ’ e h h
SIul Pl 5., 10, Q0 g, +1Qu 5 Q" 5.,

p.l p:l p:l

S(g)oo(t)(g)l(t>.
By the embedding relation in high frequency and the Young inequality, we get

Ilow"]| 2, Slleull 2 <lol?s +lul?; < E(r)éi(r).
B BP Z

p.l Bl’sl p.l Bp,l

At last, we deal with each term in F(a,u, ¢). In view of Lemmas 2.5, 2.8, there holds

11(a)Vell 2, SIH@)| 2|Vl 2 +I(a)l| 2 V"] 2,
B? B? B? B? B?

Pl p,l p,l p,l p,l

< e h
SI@I - ilollsg, +lal 3 o'

p,l p,l p,l

< . . h h
S 510y, + (g, + 115 Dl 5

p,l p,1 p.l
from which and (4.19), we can further get
@)Vl 5, < (1+Ea(t)éu() (Il + 10" 5)-
B, 7 B,
The last term in F(a,u, ¢) can be bounded in the same manner. Hence, we have

|(1(a) (Au-+ Vdive)?|| 5, <|@)] 5 full 5.,

p,1 p,1 p,1

J4 h h
Shall  (IQu'llz +11(Pu, Qu) 5.,
By 7 B,

Sée(t)E1(1).
Collecting the estimates above, we get from (4.57) that

" > +[[(Pu,Qu)| >,
LDO( P 00( P

T\ pl d p.,l)

+ || " 2 +|(Pa,Qu” 2
I0'1, 3 IO

t
Shedll 5 +1Puo.Quf)l 5, + [ (14 (0l (D)d
p.l p.l

21
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"l

For the term ||a 2 - we get by a similar derivation of (4.52) that

p,1

h h
la IIZW(.% <||ao|| g el 2 +/ [Vull 2 llall 3 d=

t p,1 pl Bpl p pl

<||ao|| 2 +[|(Pu,Qut)| 5

pl Lf B[Iij,l )
+/ (1Qu’ |55, +1I(Pu,Qu| 2+1)(||a g, +||ah|| 2 )dt
pl [,1

Sl z 1B, s+ [ G (@ (4.65)
1 \Bp 1

[ouR
ST

1
In the same manner, we can infer that
t
1" 2 Sllbg H 2 + |(Pu,Qu")|| >, +/ ¢ (T)&1(T)dT. (4.66)
Z(Br) LiB? ) Jo
t \Bp1 t\Bp 1
Multiplying by a suitable large constant on both sides of (4.64) and then pulsing (4.65) and (4.66),
we can finally get

@ oM 5 + (P, Qu| 5

7(B,, Ly(B), )
o, s FIEwe
p.1 L .1 )
S el 980, -+ P Qu) .+ [uramem@amda o

pl

4.3. Proof of Theorem 1.2. In this subsection, we shall give the proof of Theorem 1.2 by the
local existence result and the continuation argument. Denote

def IATANTI h ph h
2(0) € (@', Qu b zo sy ) + (a5 Mg TP QE 5

p.l 4 Bp,l

0 QU g, 0" BRG]
(pl L Bp,l )

def
2o = H<a07Qu07bO)HBO +H(ao,bh)|| 2 + || (Puo, QUO)II 2 (4.68)

P 1 p 1
It follows from Lemmas 2.6 and 2.5that

14 h 0 0 h 1.h
lobllsg, 08l 2 <Iahb5) s, + a0 -
; B ; B

p.l p.l

¢ 0 ¢ 0 h ph
+11(a0, bo)ll gy, Il (a0 bo)ll g, + (a0, bo)ll 2 )

p:l

<(1+ 20) 2o (4.69)
Now, summing up (4.44) and (4.67), we get

2 (1) < (1+ 20) 2o +C(Z (1)* (1 +C 2 (1)). (4.70)
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Under the setting of initial data in Theorem 1.2, there exists a positive constant Cy such that 2y <
Co€. Due to the local existence result which has been achieved by Proposition 1.1, there exists a
positive time 7" such that

Z(t)<2Cye, Vre|0,T]. 4.71)

Let T* be the largest possible time of 7' for what (4.71) holds. Now, we only need to show 7 = o,
By the estimate of (4.70), we can use a standard continuation argument to prove that 7" =
provided that € is small enough. We omit the details here. This finishes the proof of Theorem 1.2.
U

5. THE PROOF OF THEOREM 1.3

In this section, we shall follow the method (independent of the spectral analysis) used in [14]
and [48] to get the decay rate of the solutions constructed in the previous section. From the proof
of Theorem 1.2, we can get the following inequality (see the derivation of (4.33) and (4.64) for
more details):

d L h h L h h
Sowiliy +llolhy + iz )+ 1@l + ol +lul
4
S (14 (@ b) 5 + (@ b)z +uliz ) (5.1
L h h L h h
x (e, w,b)lg + (@ D)l +lullgy M@l +llelizy + Iz )-
By Theorem 1.2,

l(awb)lgy + @bl +lullly <eco. (52)

Inserting (5.2) into (5.1) yields

d l h h - l h h
o+ '+ )+ o+ o+ - ) < 0. .
dl(H((p,u)HB(Z),l ||(P||B%1 ||u||3311> C(||((p7u>||3511 ||(P||B%1 ||u||B%,1) <0 (5 3)

In order to derive the decay estimate of the solutions given in Theorem 1.2, we need to get a
Lyapunov-type differential inequality from (5.3). According to (5.2) and the embedding relation
in the high frequency, it’s obvious for any 8 > 0 that

1
ol =C(loly ). (5:4)

and

Julig; > Cllhullzy ). (5.3)

Thus, to get the Lyapunov-type inequality of the solutions, we only need to control the norm of
[ (pHg2 . This process can be obtained from the fact that the solutions constructed in Theorem 1.2
2.1

can propagate the regularity of the initial data in Besov space with low regularity, see the following
Proposition 5.1. This will ensure that one can use interpolation to get the desired Lyapunov-type
inequality.

23



Proposition 5.1. Let (a,u b) be the solutions constructed in Theorem 1.2 with p = 2. Assume
further that (ao,uo,bﬁ ) € B, O(R?) for some 0 < 6 < 1. Then there exists a constant Cy > 0

depending on the norm of the initial data such that for all t > 0,
H (a7b7u7 (P) (tv ) Hg;g < C().

Proof. It follows from (4.7) that

1d
S (1061 3+ 1152 ) +21Adfl1E: = (A6 0/3) +{(f2)kedf)

By performing a routine procedure, one obtains

1
||(<P,U)||f;£g S ||(‘P07u0)||§lg+/() H(fhfZ)“éing'

To control ||a||% ., we first get by taking A; on both hand side of (4.35) that

B 0"
8tAj5+u-VAj6+[Aj,u-V]6 :Ajf3

with £3 % § divu + @ divu.
Then, we get by a similar derivation of (4.36) that

t
¢ ¢ ' ¢
181532 <1550 + [ divuloe 6" ;0

t t
+ [ 1ulay, 181 gz @+ [ 1Allode

in which we have used the Lemma 2.100 of [2] to deal withe the commutator.
With the aid of the embedding relation B%J (R?) < L= (R?) and Lemma 2.7, we have

. ¢ ¢
Idival (18 g0 +1Vul gy 18150 </ Vullg (16 HB;_g+||5hHB;J)
; h
Slullg (1815 + 18" 151)
VAW h h
Shullg, (1t ) g0 + 11 (a" ") 151,
For the las term in (5.10), we use Lemma 2.4 directly to get
1f5llg50 <IVullgy, 105, 0)2
AW h h
Shullg, (10", 0 ;o + (e 0"y,
Inserting (5.11) and (5.12) into (5.10) yields
t
18150 5”50“32;*/0 lullaz (1@, ) llao +1(a", 0" 51 T

from which and (5.8), we obtain

||(a,(p, )HB GNH(aO’(pO’uO || G+/ || f17f2 HB GdT

) il (16 e + " ")y )=
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(5.6)

(5.7

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)



In the same manner, we also can get
t
||(b,§0,ll)||§5§ rSH(bO:(pO:uO)ngg-i_/o ||(f1,f2)||§£gdf

t
. /ASVNTE h Shyy .
+ ) ol (1060 s + 16" 9y )

which combines with (5.14) leads to
t
||(a7b7‘P7“)||§;g §’|(a07b07¢07u0)’|§zg+/() ||(f17f2)“§£gd7

t
0 30 L
+ [l (16" 8 0") e + 15" 0" )

(5.15)

(5.16)

To bound the nonlinear terms in fi, f, we need the following two crucial estimates which can

be obtained from Lemma 2.4 directly.
l
o If8ll. Sy, lgllpy, —1<s<1,

l
o I8l Sl gl 0<s<1.

To simplify the notation, we set

def ¢
2-(0) 2 |, w,b) g + @by +lullly |

def ¢ h h
Z1(1) = (@ w)llz + el +lullz -
From (5.17), one has
||U~V<P€||f§ig + H(PdivugHgig
l 14 h 14 14 '
< Il 190 g1, + sy 110 lgso + 10 o lidival
h . 14
9%y, lIdivurilp o

J4

¢ 4 h ¢ ¢ ¢ h ¢
Slellg (u ||B;;+Hu||gg71||¢ ||szg+HUHB%JH‘PHBE;"‘||‘P||3%71||“’|3£g
00
S 20)(e7w)l| g0
Thanks to (5.18), we have
- Volly o + [ pdiva’f o
¢ h h h ¢ h - h
< Jullyoe V0l + V0l lullhy + (ol + ol )dival
h ¢ ¢ h h
< ol Iulfyo + (1l + ol lully,
R (t>||ue||32*fo + Do (1) 21 (1)

which, together with (5.19), gives
1Ailly.e S A" W) g0 + Tl 2101,
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(5.17)

(5.18)

(5.19)

(5.20)

(5.21)



Next, we bound the terms in f,. The estimate of u- Vu follows from essentially the same procedures

as div(¢u) so that
¢ )¢ ¢
[l Vulfj o <llu-Vu'| o+ - V|,
¢ h ¢ ¢ h h
Sl -+l ) lullyo + (lullly +ully )iy,
S%U)Hugﬂgig + Do (1) 21 (1)
For the term /(a)(Au+ Vdivu), it follows from (5.18) that

|I(a)(Au+ Vdivu) <||Au+ Vdivu||Bg 1 1(a) HBEG“

5”“”3371(”(I(a>)£||3£g+l + II(I(a))hHBigﬂ)
<ol + 0l (1 7@) g, +11(7(@) 51, )-
In view of the previous estimates (4.18) and (4.19), there holds
(2@ 1Ly, + 1@ 1, S (14 Dur(t) Z(1).
Hence, we infer from (5.23) that

|1(a)(Au+ Vdiva) ||§ig S(1+ Zes(1)) Doo(t) 21 (1).

[
B, .

For the last term in f;, we exploit (5.17) and (5.18) to get
III(a)V<P||f;£g SI@)g5o V9" l15y, + [1(@)lg;0-111V0" 155,
SIT@layell0'lls3, + 1@ g0 10" gy
Keeping in mind that /(a) = a — al(a), we use Lemma 2.4 and (4.18), (4.19) to write
11(@)l3, Sllall gy + lal (@) 5,0

<lall g +llall o 1@ 51,

SA+IE@) gy, + 1@ 3y, ) 0" g50 + 54,

S+ (Ze(0)?) a2 + (1+ (Zee(1))?) Zeo(1)-
Similar to previous estimate, one has

[1(@)llg; o0 S 11(7@)) 159, + II(I(a))hHB,_z, S (14 Zo(1)) Zeo(1).

p.l

Taking (5.27) and (5.28) into (5.26) gives
||1(G)V<P||f;ig S+ (Ze(1))%) 21 (l)||a€||32jg + (14 (Z(1))?) Zeo(1) 1 (1)
Collecting the estimates (5.22), (5.25), and (5.29), we obtain
||f2H§£g S+ (Ze(0)) 210 (a0 | g0 + (1 + Do) Zea(1) 21 (1),
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(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)



Plugging (5.21) and (5.30) into (5.16), we finally arrive at
t
H(%@‘PN)H%& Sll(ao,bo,fpo,uo)l|§zg+/0 (1+ Ze(7))Zee(7) 21 (7) dT

+ [0+ @ @PA@ @b owliedr 653D
Noticing that the definition of ¢ in (4.2), it is easy to deduce from Lemma 2.4 that
l9oll, 0 <lI(a0,50) 5o + Il (a0 b0) |l (a0, b0) 51,
Sl a0, b0) e + 1l a0, bo) o + 1l )y (1 6 gy, + I ) gy )
Consequently, one can employ nonlinear generalisations of the Gronwall’s inequality to get
[ (a,b,0,0)(t, )30 < Co (5.32)
for all # > 0, where Cy > 0 depends on the norm of ag, by, ug. This completes the proof of Propo-

sition 5.1. O

Now, we prove the Lyapunov-type inequality from (5.3). For any 0 < ¢ < 1, it follows from an
interpolation inequality that
0 @ ¢ \I-a _ 2
(@l <C(Ig.wllge)™ (oWl )™, o1 =5~ € (0.1)

which, together with Proposition 5.1, implies

1
I(@wllgy = co(ll(@.wlgy )™ (533)

Taking B = 1+ a; > 0in (5.4) and (5.5) and combining with (5.33), we deduce from (5.3) that

d L h h
ol ol +lluly )
~ 2
+ao(ll(@wlz +lelz +luly )7 <o. (5.34)

Solving this differential inequality directly, we obtain

(o)l +lolls, +lullly <ci+0)7%, (535)

For any —o < 71 < 0, by the interpolation inequality, we have

1- Y
(0wl <Cll(@.ml o) (ol ) a2=—C < (0.0)

which, together with Proposition 5.1, gives

—o(l-ay) _nto

2 a7
l(@. W)l <C(1+0) 2" =C(1+1)" 2 (5.36)
In the light of —0 < 71 <0, we see that

(0" 0"l < Clllgly +lullyy ) <C(1+0)%,
| )l



which, together with (5.36), yields
¢ h
10wl <CC @)l + 11 (0. )
<CO1+0)7"7 +C(1+1)~%
Y1+o
<C(1+41t)" 7z .

Hence, thanks to the embedding relation BY | (R?) < L?(R?), one infers that

n+o

A" (@,u)]| 2 <C(1+1)" 2.
This completes the proof of Theorem 1.3. [
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