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Abstract. We introduce and study the Chaplygin systems with gyroscopic forces. This

natural class of nonholonomic systems has not been treated before. We put a special

emphasis on the important subclass of such systems with magnetic forces. The existence
of an invariant measure and the problem of Hamiltonization are studied, both within the

Lagrangian and the almost-Hamiltonian framework. In addition, we introduce problems

of rolling of a ball with the gyroscope without slipping and twisting over a plane and
over a sphere in Rn as examples of gyroscopic SO(n)–Chaplygin systems. We describe

an invariant measure and provide examples of SO(n− 2)–symmetric systems (ball with

gyroscope) that allow the Chaplygin Hamiltonization. In the case of additional SO(2)–
symmetry we prove that the obtained magnetic geodesic flows on the sphere Sn−1 are

integrable. In particular, we introduce the generalized Demchenko case in Rn, where

the inertia operator of the system is proportional to the identity operator. The reduced
systems are automatically Hamiltonian and represent the magnetic geodesic flows on the

spheres Sn−1 endowed with the round-sphere metric, under the influence of a homoge-
neous magnetic field. The magnetic geodesic flow problem on the two-dimensional sphere

is well known, but for n > 3 was not studied before. We perform explicit integrations in

elliptic functions of the systems for n = 3 and n = 4, and provide the case study of the
solutions in both situations.
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1. Introduction

1.1. Nonholonomic Lagrangian systems with gyroscopic forces. The main aim
of this paper is to introduce and study a general setting for Chaplygin systems with gyro-
scopic forces, with a special emphasis on the important subclass of the Chaplygin systems
with magnetic forces. This class of nonholonomic systems, although quite natural, has not
been treated before.

In his first PhD thesis, Vasilije Demchenko [32, 33], studied the rolling of a ball with
a gyroscope without slipping over a sphere in R3, by using the Voronec equations [68–70].
Inspired by this thesis, we consider the rolling of a ball with a gyroscope without slipping
and twisting over a sphere in Rn. This will provide us with examples of gyroscopic SO(n)–
Chaplygin systems that reduce to integrable magnetic geodesic flows on a sphere Sn−1.

Let (Q,G) be a Riemannian manifold. Consider a Lagrangian nonholonomic system
(Q,L1,D), where the constraints define a nonintegrable distribution D on Q. The con-
straints are homogeneous and do not depend on time. The Lagrangian, along with the
difference of the kinetic and potential energy, contains an additional term, which is linear
in velocities:

L1(q, q̇) =
1

2
(G(q̇), q̇) + (A, q̇)− V (q).

Here and throughout the text, (·, ·) denotes the parring between appropriate dual spaces,
while A is a one-form on Q. The metric G is also considered as a mapping TQ→ T ∗Q.

A smooth path q(t) ∈ Q, t ∈ ∆ is called admissible if the velocity q̇(t) belongs to Dq(t)
for all t ∈ ∆. An admissible path q(t) is a motion of the natural mechanical nonholonomic
system (Q,L1,D) if it satisfies the Lagrange-d’Alembert equations

(1.1) δL1 =
(∂L1

∂q
− d

dt

∂L1

∂q̇
, δq
)

= 0, for all δq ∈ Dq.

The equations (1.1) are equivalent to the equations

(1.2) δL =
(∂L
∂q
− d

dt

∂L

∂q̇
, δq
)

= F(q̇, δq), for all δq ∈ Dq,

where L is the part of the Lagrangian L1 which does not contain the term linear in velocities:

L(q, q̇) =
1

2
(G(q̇), q̇)− V (q).

Here the additional force F(q̇, δq) is defined as the exact two-form

F = dA,

where A is the one-form from the linear in velocities term of the Lagrangian L1. We will
subsequently consider a more general class of systems where an additional force is given as
a two-form which is neither exact nor even closed.

Systems with an additional force defined by a closed two-form F and without nonholo-
nomic constraints are very well studied. The corresponding Hamiltonian flows are usually
called magnetic flows or twisted flows. For the problem of integrability of magnetic flows,
see e.g. [14,17,60,64,66]. Following tradition, we introduce

Definition 1.1. Let F be a 2-form on Q. We refer to a system (Q,L,F,D) as a
natural mechanical nonholonimic system with gyroscopic forces. The additional gyroscopic
force F(q̇, δq) is called magnetic if the form F is closed,

dF = 0,

and in this case we say that the system (Q,L,F,D) is a natural mechanical nonholonomic
system with a magnetic force.

The equations of motion of a natural mechanical nonholonomic system with a gyroscopic
force (Q,L,F,D) are given in (1.2).
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Starting from the notion of G–Chaplygin systems for nonholonomic systems without
gyroscopic forces (see [4,12,29,48,54,65]), we introduce the following

Definition 1.2. Assume that Q is a principal bundle over S with respect to a free
action of a Lie group G, π : Q → S = Q/G, and that L and F are G–invariant. Suppose
that D is a principal connection, that is, D is G–invariant, transverse to the orbits of the G–
action, and rankD = dimS. Then we refer to (Q,L,D, G,F) as a gyroscopic G–Chaplygin
system.

Obviously, a gyroscopic G–Chaplygin system (Q,L,D, G,F) is G–invariant and reduces
to the tangent space of the base-manifold S = Q/G.

1.2. Outline and results of the paper. In Section 2 we consider gyroscopic non-
holonomic systems on fiber spaces. In Section 3 we employ them to describe a reduction
procedure for the gyroscopic G–Chaplygin systems (Theorem 3.1). The Chaplygin systems
have a natural geometrical framework as connections on principal bundles (see [54]). On
the other hand, nonholonomic systems were incorporated into the geometrical framework of
the Ehresmann connections on fiber spaces in [12]. In this paper, we combine the approach
of [12] with the Voronec nonholonomic equations, see [68].

In Section 4 we derive the equations of motion of the reduced gyroscopic G–Chaplygin
systems in an almost-Hamiltonian form and study the existence of an invariant measure
(Theorem 4.1). A closely related problem is the Hamiltonization of nonholonomic systems
(see [6,15,16,20,24,26,29,31,37,42,52,53,65]). In Section 5 we consider the Chaplygin
reducing multiplier and the time reparametrization of magnetic Chaplygin systems, both
within the Lagrangian and the Hamiltonian framework (see Theorem 5.1).

In Section 6 we briefly review the results about integrable nonholonomic problems of
rolling of a ball with the gyroscope, without slipping and twisting, over a plane and over a
sphere in the three-dimensional space. In particular, we present the Demchenko integrable
case [32] and the Zhukovskiy condition for the system [74].

In Section 7 we introduce the problems of rolling of a ball with a gyroscope, without
slipping and twisting, over a plane and over a sphere in Rn. We describe the reduction
(Propositions 7.1 and 7.2) and an invariant measure (Proposition 7.3) of these new systems.
The obtained systems are examples of gyroscopic SO(n)–Chaplygin systems that reduce to
magnetic flows.

In Section 8 we provide examples of SO(n−2)–symmetric systems (ball with gyroscope)
that allow the Chaplygin Hamiltonization (Theorem 8.1). We also prove the integrability
of the obtained magnetic geodesic flows on a sphere in Rn, n > 3 in the case of SO(2) ×
SO(n− 2)–symmetry (Theorem 8.2). Note that the phase space of a nonholonomic system
that is integrable after the Chaplygin Hamiltonization is foliated by d-dimensional invariant
tori, where the system is subject to a non-uniform quasi-periodic motion of the form

(1.3) ϕ̇1 = ω1/Φ(ϕ1, . . . , ϕd), . . . , ϕ̇d = ωd/Φ(ϕ1, . . . , ϕd), Φ > 0,

with some d, d 6 n. In Theorem 8.2 we present two examples of such systems, one with
d = 2 and n = 3 and another one with d = 3 and any n > 3.

Finally, in Section 9 we consider the case when the inertia operator for systems is SO(n)–
invariant, i.e. it satisfies the Zhukovskiy condition in Rn with an additional non-twisting
condition. We will refer to such systems as the generalized Demchenko case without twisting
in Rn. The reduced systems are automatically Hamiltonian. They represent the magnetic
geodesic flow on a sphere Sn−1 endowed with the round-sphere metric, under a influence
of the homogeneous magnetic field placed in the ambient space Rn. The magnetic geodesic
flow problem on a two-dimensional sphere is well known (see [64]). However, the magnetic
geodesic flow problems for n > 3 have not been studied before. We prove the complete
integrability of the system on the three-dimensional sphere (Theorem 9.3). We conclude the
paper with a detailed analysis of the motion of the generalized Demchenko systems without
twisting for n = 3 and n = 4 in terms of elliptic functions.
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2. Nonholonomic systems with gyroscopic forces on fibred spaces

2.1. The Voronec equations. Following Demchenko1 [32,33], we recall the Voronec
equations for nonholonomic systems [68]. We will then employ them to formulate the
reduced equations of gyroscopic Chaplygin systems. Here we assume that the constraints
may be time-dependent and nonhomogeneous.

Let q = (q1, . . . , qn+k) be local coordinates of the configuration space Q. Consider a
nonholonomic system with kinetic energy T = T (t, q, q̇), generalized forces Qs = Qs(t, q, q̇)
that correspond to coordinates qs, and time-dependent nonhomogeneous nonholonomic con-
straints

(2.1) q̇n+ν =

n∑
i=1

aνi(q, t)q̇i + aν(q, t), ν = 1, 2, . . . , k.

Let Tc be the kinetic energy T after imposing the constraints (2.1). Let Kν be the
partial derivatives of the kinetic energy T with respect to q̇ν , ν = 1, 2, . . . , k, restricted
to the constrained subspace. We assume that the constraints (2.1) are imposed after the
differentiation and get:

Tc(t, q1, . . . , qn+k, q̇1, . . . , q̇n) = T (t, q, q̇)|q̇n+ν=
∑n
i=1 aνi(q,t)q̇i+aν(q,t),

Kν(t, q1, . . . , qn+k, q̇1, . . . , q̇n) =
∂T

∂q̇n+ν
(t, q, q̇)|q̇n+ν=

∑n
i=1 aνi(q,t)q̇i+aν(q,t).

The equations of motion of the given noholonomic system can be presented in a form
which does not use the Lagrange multipliers:

d

dt

∂Tc
∂q̇i

=
∂Tc
∂qi

+Qi +

k∑
ν=1

aνi
( ∂Tc
∂qn+ν

+Qn+ν

)
+

k∑
ν=1

Kν

( n∑
j=1

A
(ν)
ij q̇j +A

(ν)
j

)
.(2.2)

The derivation of these equations is based on the Lagrange-d’Alembert principle and follows

Voronec [68]. Here i = 1, . . . , n. The components A
(ν)
ij and A

(ν)
i are functions of the time t

and the coordinates q1, . . . , qn+k given by

A
(ν)
ij =

(∂aνi
∂qj

+

k∑
µ=1

aµj
∂aνi
∂qn+µ

)
−
(∂aνj
∂qi

+

k∑
µ=1

aµi
∂aνj
∂qn+µ

)
,

A
(ν)
i =

(∂aνi
∂t

+

k∑
µ=1

aµ
∂aνi
∂qn+µ

)
−
(∂aν
∂qi

+

k∑
µ=1

aµi
∂aν
∂qn+µ

)
.

When all considered objects do not depend on the variables qn+ν , ν = 1, 2, . . . , k, we
have a Chaplygin system. Then the equations (2.2) are called the Chaplygin equations. The
Voronec and the Chaplygin equations, along with the equations of nonholonomic systems
written in terms of quasi-velocities, known as the Euler-Poincaré-Chetayev-Hamel equations,
form core tools in the study of nonholonomic mechanics (see [12,36,37,58,63,73]).

2.2. The Ehresmann connections and systems with gyroscopic forces. Con-
sider a natural mechanical nonholonimic system with a gyroscopic force (Q,L,F,D). After
Bloch, Krishnaprasad, Marsden, and Murray [12], we assume that Q has a structure of a
fiber bundle π : Q→ S over a base manifold S and that the distribution D is transverse to
the fibers of π:

TqQ = Dq ⊕ Vq, Vq = ker dπ(q).

The space Vq is called the the vertical space at q. The distribution D can be seen as the
kernel of a vector-valued one-form A on Q, which defines the Ehresmann connection, that
satisfies

1Demchenko’s PhD advisor, Anton Bilimović (1879-1970), was a distinguished student of Peter Vasilievich

Voronec (1871-1923) and one of the founders of Belgrade’s Mathematical Institute. We note that some
recent results (see [27,28]) are inspired by Bilimović’s work in nonholonomic mechanics [7–11].
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(i) Aq : TqQ→ Vq is a linear mapping, q ∈ Q;
(ii) A is a projection: A(Xq) = Xq, for all Xq ∈ Vq.

The distribution D is called the horizontal space of the Ehresmann connection A. By Xh

and Xv we denote the horizontal and the vertical component of the vector field X ∈ X(Q).
The curvature B of the connection A is a vertical vector-valued two-form defined by

B(X,Y ) = −A([Xh, Y h]).

Let dimQ = n + k and dimS = n. There exist local “adapted” coordinates q =
(q1, . . . , qn+k) on Q, such that the projection π : Q→ S and the constraints defining D are
given by

π : (q1, . . . , qn, qn+1, . . . , qn+k) 7−→ (q1, . . . , qn),

q̇n+ν =

n∑
i=1

aνi(q)q̇i, ν = 1, . . . , k.

Here (q1, . . . , qn) are the local coordinates on S. Then, locally, we also have

A =

k∑
ν=1

ων
∂

∂qn+ν
, ων = dqn+ν −

n∑
i=1

aνidqi,

Xh =
( n+k∑
l=1

Xl
∂

∂ql

)h
=

n∑
i=1

Xi
∂

∂qi
+

k∑
ν=1

n∑
i=1

aνiXi
∂

∂qn+ν
,

Xv =
( n+k∑
l=1

Xl
∂

∂ql

)v
=

k∑
ν=1

(
Xn+ν −

n∑
i=1

aνiXi

) ∂

∂qn+ν
,

B(
∂

∂qi
,
∂

∂qj
) =

k∑
ν=1

Bνij
∂

∂qn+ν
,

F =
∑

16s<l6n+k

Fsldqs ∧ dql.

Here Bνij(q) = A
(ν)
ij (q), where A

(ν)
ij (q) come from the Voronec equations (2.2) with homo-

geneous constraints, which do not depend on time. The generalized forces Qs = Qs(q, q̇),
s = 1, . . . , n+ k are the sums of the potential and the gyroscopic forces

Qs = QVs +QF
s , QVs = −∂V /∂qs, QF

s =

n+k∑
l=1

Fslq̇l.

The Voronec equations (2.2) take the form:

(2.3)
d

dt

∂Lc
∂q̇i

=
∂Lc
∂qi

+

k∑
ν=1

aνi
∂Lc
∂qn+ν

+

k∑
ν=1

n∑
j=1

∂L

∂q̇n+ν
Bνij q̇j +QF

i +

k∑
ν=1

aνiQ
F
n+ν ,

(i = 1, . . . , n), where Lc is the constrained Lagrangian Lc = L(q, q̇h) = Tc−V . In a compact
form, the equations can be expressed as:2

(2.4) δLc = FL(q, q̇)(B(q̇, δq)) + F(q̇, δq)

for all virtual displacements

δq =

n+k∑
s=1

δqs
∂

∂qs
∈ Dq.

2One can compare the form of equations (2.4) with the compact form of the Voronec equations obtained
from the Voronec principle, see e.g. [33].
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Here δLc is the variational derivative of the constrained Lagrangian along the variation δq
and FL is the fiber derivative of L:

δLc =
(∂Lc
∂q
− d

dt

∂Lc
∂q̇

, δq
)

=

n+k∑
s=1

(∂Lc
∂qs
− d

dt

∂Lc
∂q̇s

)
δqs,

FL(q,X)(Y ) =
d

ds
|s=0L(q,X + sY ), X, Y ∈ TqQ,

FL(q, q̇)(B(q̇, δq)) =

k∑
ν=1

∂L

∂q̇n+ν
(q, q̇)Bν(q̇, δq).

See [12] for the case without gyroscopic two-form F.
Note that, even in the case when the two form F is exact F = dA, it is convenient to

use the Lagrangian L and the form of the equations (2.4), rather then the Lagrangian L1

with the term linear in velocities.

Remark 2.1. In the case when the constraints are nonhomogeneous and time dependent

(2.1), the coefficients A
(ν)
ij , A

(ν)
i can be also interpreted as the components of the curvature

of the Ehresmann connection of the fiber bundle π : Q× R→ S × R (see Bakša [5]).

3. The Gyroscopic Chaplygin systems

In addition to the assumptions from Subsection 2.2, we now assume that the fibration
π : Q→ S is determined by a free action of a k–dimensional Lie group G on Q, so that S =
Q/G and that the constraint distribution D, the gyroscopic two-form F and the Lagrangian
L = T − V are G–invariant. Then A is a principal connection and the nonholonomic
system (2.4) is G–invariant and reduces to the tangent bundle of the base manifold S by
the identification TS = D/G. More precisely, we use the following definition.

Definition 3.1. Let G, V , and F be a G–invariant metric, a potential and a two-form
on Q. The reduced metric g, the reduced potential v, and the reduced two-form f on S are
defined by:

g(X,Y )|x = G(Xh, Y h)|q, v(x) = V (q), f(X,Y )|x = F(Xh, Y h)|q.
Here Xh, Y h are the horizontal lifts of X,Y at a point q ∈ π−1(x) defined by

dπ|q(Xh) = X, dπ|q(Y h) = Y, Xh, Y h ∈ Dq.

Note that we do not impose any additional assumptions on F. In particular, F does
not need to be of the form F = π∗w, where w is a 2-form on the base manifold S.

The equations (2.4) are G–invariant and they reduce to TS

(3.1) δl =
( ∂l
∂x
− d

dt

∂l

∂ẋ
, δx
)

= JK(ẋ, δx) + f(ẋ, δx) for all δx ∈ TxS,

where

l =
1

2
(g(ẋ), ẋ)− v(x)

is the reduced Lagrangian and the term3 JK(·, ·) depends on the metric and the curvature
of the connection, induced by FL(B(·, ·)). The term JK(·, ·) can be described as follows.
Consider the (0,3)-tensor field Σ on S defined by

(3.2) Σ(X,Y, Z)|x = FL(q,Xh)(B(Y h, Zh))|q, q ∈ π−1(x),

where Xh, Y h, Zh are the horizontal lifts of vector fields X,Y, Z on S. Then Σ is skew-
symmetric with respect to the second and the third argument, and

(3.3) JK(X,Y )|(x,ẋ) = Σ(ẋ, X, Y ).

3Let us note that in [37], the term “JK” is used for the associated semi-basic two-form σ on T ∗S given
below.
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Remark 3.1. Let us explain the notation for the JK-term. It is obtained from the
natural paring of the momentum mapping of the G-action J : TQ → g∗ and the curvature
K : TQ × TQ → g of the principal connection A, where g is the Lie algebra of the Lie
group G. Namely, we have a canonical identification of the vertical space Vq with the Lie
algebra g. Then the curvature of the Ehresmann connection B is g–valued and coincides
with the curvature K of the principal connection. Also, within this identification, the fiber
derivative FL(q, q̇) in the direction of the vertical vector ξ ∈ g ∼= Vq becomes the value of the
momentum mapping J of the G-action evaluated at ξ. In this way the expression (3.2), as
the natural paring of the tangent bundle momentum mapping J and the curvature two-form
K, defines a (0,3)-tensor field Σ on S. On the other hand, the JK-term defined by (3.3) is
a semi-basic 2-form on TS.

Definition 3.2. We refer to (S, l,JK, f) as a reduced gyroscopic G–Chaplygin system.
In the case when f is a closed form, we call it a reduced magnetic G–Chaplygin system.

The equations of motion of the reduced gyroscopic G–Chaplygin system (S, l,JK, f) are
described in (3.1).

We summarize the above considerations in the following statement.

Theorem 3.1. The solutions of the gyroscopic G–Chaplygin system (Q,L,D, G,F)
project to solutions of the reduced gyroscopic G–Chaplygin system (S, l,JK, f). Let x(t) be a
solution of the reduced system (3.1) with the initial conditions x(0) = x0, ẋ(0) = X0 ∈ Tx0

S
and let q0 ∈ π−1(x0). Then the horizontal lift q(t) of x(t) through q0 is the solution of the
original system (1.2), i.e., (2.4), with the initial conditions q(0) = x0, q̇(0) = Xh

0 ∈ Dq0 .

Remark 3.2. If f is an exact magnetic form, e.g. f = da, then the equations (3.1) are
equivalent to

(3.4) δl1 =
(∂l1
∂x
− d

dt

∂l1
∂ẋ

, δx
)

= JK(ẋ, δx) for all δx ∈ TxS,

where the Lagrangian l1, given by

l1 =
1

2
(g(ẋ), ẋ) + (a, ẋ)− v(x),

has the linear term (a, ẋ).

Remark 3.3. Within the affine connection approach to the Chaplygin reduction, it is
convenient to introduce (1,2)-tensor fields B and C defined by (see Koiller [54] and Cantrijn
Cantrijn, Cortes, de Leon, and Martin de Diego [29])

Σ(X,Y, Z) = g(B(X,Y ), Z) = g(X,C(Y, Z)).

In [44], the tensor field B was used, while here we work with the skew-symmetric tensor C.
Note that C is equal to the negative gyroscopic tensor T defined by Garcia-Naranjo [46,47].

Note that if F is magnetic, then f is not necessarily magnetic. Indeed, we have

Proposition 3.1. Assume that the form F is closed. Then the reduced form f is closed
if and only if

(3.5) F([Xh, Y h]−[X,Y ]h, Zh)+F([Zh, Xh]−[Z,X]h, Y h)+F([Y h, Zh]−[Y, Z]h, Xh) = 0,

for all vector fields X, Y , Z on S. In the adapted coordinates q = (q1, . . . , qn+k) on Q
described in Subsection 2.2, the condition (3.5) is equivalent to the equations

(3.6)

k∑
ν=1

(
BνijFp,n+ν +BνpiFj,n+ν +BνjpFi,n+ν

)
= 0, 1 6 i, j, p 6 n.

In particular, if the curvature B of the Ehresmann connection vanishes (equivalently, the
curvature K of the principal connection vanishes), then f is closed.
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Proof. Since F is magnetic, we have

dF(X ′, Y ′, Z ′) =X ′F(Y ′, Z ′) + Y ′F(Z ′, X ′) + Z ′F(X ′, Y ′)

− F([X ′, Y ′], Z ′)− F([Z ′, X ′], Y ′)− F([Y ′, Z ′], X ′) = 0,

for arbitrary vector fields X ′, Y ′, Z ′ on Q. On the other hand, by using the above relation
and the definition of f that depends on the horizontal distribution D, we get

df(X,Y, Z)|x =
(
Xf(Y,Z) + Y f(Z,X) + Zf(X,Y )

− f([X,Y ], Z)− f([Z,X], Y )− f([Y,Z], X)
)
|x

=
(
XhF(Y h, Zh) + Y hF(Zh, Xh) + ZhF(Xh, Y h)

− F([X,Y ]h, Zh)− F([Z,X]h, Y h)− F([Y,Z]h, Xh)
)
|q

=
(
F([Xh, Y h], Zh) + F([Zh, Xh], Y h) + F([Y h, Zh], Xh)

− F([X,Y ]h, Zh)− F([Z,X]h, Y h)− F([Y,Z]h, Xh)
)
|q,

where Xh, Y h, Zh are the horizontal lifts of the vector fields X,Y, Z on S, q ∈ π−1(x) is
arbitrary. Thus, df = 0 if and only if (3.5) is satisfied. Consider the adapted coordinates
q = (q1, . . . , qn+k) on Q described in Subsection 2.2 and take

X =
∂

∂qi
, Y =

∂

∂qj
, Z =

∂

∂qp
, 1 6 i, j, p 6 n.

Then the equation df(X,Y, Z) = 0 takes the form (3.6). �

Remark 3.4. In the special case, when F = π∗w, where w is a two-form on the
base manifold S, the equations (3.6) are automatically satisfied (Fi,n+ν = 0, 1 6 i 6 n,
1 6 ν 6 k). In this special case f = w, and dF = 0 if and only if df = 0.

4. Almost Hamiltonian description and an invariant measure

4.1. Almost symplectic manifolds. Recall that an almost symplectic structure is a
pair (M,ω) of a manifold M and a nondegenerate 2-form ω (see [59]). Here we do not assume
that the form ω is closed, in contrast to the symplectic case. As in the symplectic case,
since ω is nondegenerate, to a given function H one can associate the almost Hamiltonian
vector field XH by the identity

iXHω(·) = ω(XH , ·) = −dH(·).

The almost symplectic structure (M,ω) is locally conformally symplectic, if in a neigh-
borhood of each point x on M , there exists a function f different from zero such that fω is
closed. If f is defined globally, then (M,ω) is conformally symplectic [59].

4.2. Reduced flows on cotangent bundles. Let (x1, . . . , xn) be local coordinates on
S in which the metric g is given by the quadratic form

∑
ij gijdxi⊗dxj and the components

of the (1,2)-tensor C are Ckij (see Remark 3.3). Then the Lagrangian, the gyroscopic two-
form and the JK-term read as follows

l(x, ẋ) =
1

2

∑
gij ẋiẋj − v(x),

f =
∑
i<j

fijdxi ∧ dxj ,

JK(X,Y )|(x,ẋ) = g(ẋ,C(X,Y )) =
∑
k,l,i,j

gklC
k
ijXiYj ẋl.

We also introduce the Hamiltonian function

h(x, p) =
1

2
(p,g−1(p)) + v(x) =

1

2

∑
gijpipj + v(x),
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as the usual Legendre transformation of l. Here (p1, . . . , pn, x1, . . . , xn) are the canonical
coordinates of the cotangent bundle T ∗S,

pi = ∂l/∂ẋi =
∑
j

gij ẋj ,

and {gij} is the inverse of the metric matrix {gij}. For simplicity, the same symbol denotes
a function on the base manifold f : S → R and its lift to the cotangent bundle ρ∗f =
f ◦ ρ : T ∗S → R, where ρ : T ∗S → S is the canonical projection.

In canonical coordinates the equations (3.1) take the form

ẋi =
∂h

∂pi
=

n∑
j=1

gijpj ,(4.1)

ṗi = − ∂h
∂xi

+ Πi(x, p) +

n∑
j=1

fij(x)
∂h

∂pj
.(4.2)

Here, the JK-term is given in the form
(4.3)

Πi(x, p) = JK
( ∂

∂xi
, ẋ
)
|ẋ=g−1(p) =

n∑
k,l,j=1

gklẋlC
k
ij(x)ẋj |ẋ=g−1(p) =

n∑
j,k=1

Ckij(x)pk
∂h

∂pj
.

Let z = (x, p). The reduced equations (4.1), (4.2) on the cotangent bundle T ∗S can be
written in the almost Hamiltonian form

(4.4) ż = Xred, iXred(Ω + σ + ρ∗f) = −dh,

where Ω is the canonical symplectic form on T ∗S, σ is a semi-basic form defined by the JK
term (see [29,65]):

Ω = dp1 ∧ dx1 + · · ·+ dpn ∧ dxn,(4.5)

σ =
∑

16i<j6n

n∑
k=1

Ckij(x)pkdxi ∧ dxj .(4.6)

4.3. Invariant measure. The existence of an invariant measure for nonholomic prob-
lems is well studied (see [39–41, 43, 51, 55, 67, 72]). We will consider smooth measures of
the form µ = ν Ωn, where Ωn (see (4.5)) is the standard measure on the cotangent bundle
T ∗S and ν is a nonvanishing smooth function, called the density of the measure µ.

In absence of potential and gyroscopic forces, it was proved in [29] that the equations
(4.1), (4.2) have an invariant measure if and only if its density is basic, i.e, ν = ν(x). Then
the system with a potential force v(x) also preserves the same measure (see [29,65])).

For f = 0, the existence of the basic density ν = ν(x) is equivalent to the condition that
the one-form

(4.7) Θ =
∑
i,j

Cjij(x)dxi, i.e., Θ(X)|x = tr C(X, ·)|x, X ∈ TxS,

is exact: there exists a function λ such that Θ = dλ. Then the function ν(x) = exp(λ(x)) is
the density of an invariant measure (see [29,48]). The statement formulated in terms of the
tensor field B is given in [29], while in [48] it is formulated in terms of the gyroscopic tensor
T = −C. An example of a system with a potential force and with an invariant non-basic
measure is also given in [48].

In the presence of the gyroscopic form f we have a similar situation.

Theorem 4.1. The reduced gyroscopic Chaplygin equations (4.1), (4.2) have an invari-
ant measure µ = ν Ωn with a basic density ν(x) if and only if the one-form (4.7) is exact
Θ = dλ. Then the function ν = exp(λ(x)) is the density of the invariant measure.
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In other words, according to [29,48], a Chaplygin system with a gyroscopic term pos-
sesses a basic invariant measure if and only if the same Chaplygin system without gyroscopic
term preserves the same basic invariant measure.

Proof. The Lie derivative LXred(µ) vanishes if and only if the divergence of the vector
field νXred with respect to the canonical measure equals to zero. By using the identities

∂

∂pi

∂h

∂pj
= gji,

∑
i,j

fijg
ji = 0,

∑
ij

Ckijg
ji = 0,

we get:

div(νXred) =

n∑
i=1

∂

∂xi

(
ν
∂h

∂pi

)
+
∑
i

∂

∂pi

(
ν
(
− ∂h

∂xi
+

n∑
k,j=1

Ckij(x)pk
∂h

∂pj
+

n∑
j=1

fij(x)
∂h

∂pj

))
=

n∑
i=1

( ∂ν
∂xi
− ν

n∑
j=1

Cjij(x)
) ∂h
∂pi

.

Since ẋi = ∂h
∂pi

is arbitrary for each fixed x, the vector filed Xred preserves the measure

ν Ωn if and only if

ν−1 ∂ν

∂xi
=

n∑
j=1

Cjij(x), i = 1, . . . , n,

that is, if and only if

d ln ν =

n∑
i=1

ν−1 ∂ν

∂xi
dxi =

n∑
i,j=1

Cjij(x)dxi = Θ.

Note that, although the proof is derived in local coordinates, all considered objects are
global and the identity d ln ν = Θ holds globally. �

5. Chaplygin Hamiltonization for systems with magnetic forces

5.1. Chaplygin multipliers in the Lagrangian framework. We consider the re-
duced Chaplygin systems (3.1) and study the question of their transformation into a La-
grangian system after a time reparametrization.

Let us consider a time substitution dτ = N (x)dt, where N (x) is a differentiable nonva-
nishing function on S. Denote x′ = dx/dτ = N−1ẋ.

We first treat the exact case: f = da (see Remark 3.2). Locally, the one-form a is given
by a =

∑
i ai(x)dxi and

l1(x, ẋ) =
1

2

∑
gij ẋiẋj +

∑
i

aiẋi − v(x).

The Lagrangians l and l1 in the coordinates (x, x′) are denoted l∗ and l∗1 respectively
and take the form

l∗(x, x′) =
1

2

∑
N 2gijx

′
ix
′
j − v(x),(5.1)

l∗1(x, x′) =
1

2

∑
N 2gijx

′
ix
′
j +

∑
i

Nai(x)x′i − v(x).(5.2)

Following Chaplygin [31], we are looking for a nowhere vanishing function N (x), called
a Chaplygin reducing multiplier such that the reduced Chaplygin system (3.4)

(5.3)
d

dt

∂l1
∂ẋi

=
∂l1
∂xi

+

n∑
k,l,j=1

Ckij(x)gklẋlẋj
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after a time reparametrization dτ = N (x)dt becomes the Lagrangian system

(5.4)
d

dτ

∂l∗1
∂x′i

=
∂l∗1
∂xi

, i = 1, . . . , n.

Equivalently, we can use the Lagrangians l and l∗. Let

f = da =
∑
i<j

fijdxi ∧ dxj , fij =
∂aj
∂xi
− ∂ai
∂xj

,

f∗ = d(Na) =
∑
i<j

f∗ijdxi ∧ dxj , f∗ij = N fij + aj
∂N
∂xi
− ai

∂N
∂xj

.

Then, we are looking for a nowhere vanishing function N (x), such that the reduced
Chaplygin system

(5.5)
d

dt

∂l

∂ẋi
=

∂l

∂xi
+

n∑
k,l,j=1

Ckij(x)gklẋlẋj +

n∑
j=1

fij(x)ẋj

after a time reparametrization dτ = N (x)dt becomes the Lagrangian system with magnetic
forces

(5.6)
d

dτ

∂l∗

∂x′i
=
∂l∗

∂xi
+

n∑
j=1

f∗ijx
′
j , i = 1, . . . , n.

Proposition 5.1. Suppose that f is exact: f = da. The reduced equations of the
Chaplygin system with a linear term in velocities (5.3) after a time reparametrization dτ =
N (x)dt becomes the Lagrangian system (5.4) if and only if the corresponding system without
the linear term allows the Chaplygin multiplier N (x) and dN ∧ a = 0, that is, if

(5.7) aj
∂N
∂xi

= ai
∂N
∂xj

.

Note that conditions (5.7) imply that

f∗ = d(Na) = Nda + dN ∧ a = N f

and

(5.8) d(N f) = dN ∧ f = 0.

Let us now turn to the non-exact case. Thus, we assume now f is not exact. In this
case we set

(5.9) f∗ = N f .

Proposition 5.2. Suppose that f is not exact. The equations of motion of the reduced
gyroscopic Chaplygin system (5.5) after a time reparametrization dτ = Ndt become the
Lagrangian equations with gyroscopic forces (5.6), where f∗ is given by (5.9) if and only if
the corresponding system without gyroscopic forces allows the Chaplygin multiplier N (x).

Propositions 5.1 and 5.2 follow from the derivation given below for the Hamiltonian
setting as indicated in Remark 5.1.

Note that the gyroscopic system (5.6) is magnetic if the form (5.9) is closed. In partic-
ular, if f is closed, but not exact, then the Lagrangian system (5.6) is magnetic only if the
condition (5.8) holds. The condition (5.8) is always satisfied when n = 2. This is a rather
strong condition for n > 3. When n = 3, condition (5.8) reduces to the partial differential
equation

f23
∂N
∂x1

+ f31
∂N
∂x2

+ f12
∂N
∂x3

= 0.

Finally, it is important to note that even if we consider the exact case f = da and the
Lagrangians that are linear in velocities, instead of the equations (5.3) and (5.4) and the
gyroscopic form defined by f∗ = d(Na) it is more natural to consider the equations (5.5)
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and (5.6) with f∗ defined as f∗ = N f = Nda. In the latter case, for n = 2, the form f∗ is
magnetic regardless of (5.7).

5.2. Confomally symplectic structures. The existence of an invariant measure is
closely related to the Hamiltonization problem for magnetic G–Chaplygin systems. We first
consider G-Chaplygin systems without the gyroscopic term, see [29,37,65]. For f ≡ 0, the
reduced system (4.4) takes the form

(5.10) ż = X0
red, iX0

red
(Ω + σ) = −dh.

Suppose that the form Ω + σ is conformally symplectic, i.e. there exists a nonvanishing
function N , such that d(N (Ω +σ)) = 0. Since dΩ = 0, the last relation can be rewritten as:

(5.11) dN ∧ Ω + dN ∧ σ +Ndσ = 0.

After the time rescaling dτ = Ndt, the equation (5.10) reads

z′ = N−1ż = N−1X0
red =: X̃0

red.

The last relation introduces the rescaled vector field X̃0
red, which is Hamiltonian:

iX̃0
red
N (Ω + σ) = −dh.

Therefore, the system in the new time becomes the Hamiltonian system with respect to
the symplectic formN (Ω+σ). Then, according to the Liouville theorem [2], the Hamiltonian

vector field X̃0
red preserves the standard measure Nn(Ω + σ)n = NnΩn,

LX̃0
red

(NnΩn) = d(iX̃0
red

(NnΩn)) = 0.

Thus, for the almost Hamiltonian vector field X0
red = N X̃0

red we have

LX0
red

(Nn−1Ωn) = d(iX0
red

(Nn−1Ωn)) = d(iX̃0
red

(NnΩn)) = 0,

and the flow of X0
red preserves the measure Nn−1Ωn.

Now, we consider G–Chaplygin systems with a gyroscopic term.

Proposition 5.3. The function N = N (x) is a conformal factor for the almost sym-
plectic form Ω + σ + ρ∗f if and only if it is a conformal factor for the almost symplectic
form Ω + σ and the form f∗ = N f is magnetic.

Proof. The form Ω + σ + ρ∗f is conformally symplectic with a conformal factor N if
and only if

(5.12) dN ∧ Ω + dN ∧ σ +Ndσ + dN ∧ ρ∗f +Nρ∗df = 0.

Assume that N = N (x) is basic. Since only two last terms are basic, equation (5.12) is
satisfied if and only if N (x) satisfies (5.11) and f∗ = N f is closed. �

Consider the reduced gyroscopic Chaplygin system (4.4). If N = N (x) is a conformal

factor for Ω + σ + ρ∗f , as above we have that the rescaled vector field X̃red = N−1Xred

is Hamiltonian and preserves the measure Nn(Ω + σ + ρ∗f)n = NnΩn. Thus, the reduced
gyroscopic Chaplygin system ż = Xred preserves the same measure as in the case of the
absence of gyroscopic forces. This is in accordance with Theorem 4.1.

The existence of a basic conformal factor, as we will see in Subsection 5.3, is equivalent
to the condition that N is the classical Chaplygin multiplier in the Lagrangian framework
described above.



GYROSCOPIC CHAPLYGIN SYSTEMS 13

5.3. Chaplygin multipliers: from the Lagrangian to the Hamiltonian frame-
work. In the study of nonholonomic rigid body systems in Rn (see [42, 50, 52, 53]) the
Chaplygin time reparametrization of Lagrangian systems was transported into the Hamil-
tonian framework via the Legandre transformation. Similarly, consider the time substitution
dτ = N (x)dt and the Lagrangian function l∗(x, x′) given in (5.1). Then the conjugate mo-
menta are

p̃i = ∂l∗/∂x′i = N 2
∑
j

gijx
′
j ,

and the corresponding Hamiltonian is

h∗(x, p̃) =
1

2

∑ 1

N 2
gij p̃ip̃j + v(x).

The following diagram commutes:

(5.13)

TS{x, ẋ} x′=N−1ẋ−−−−−−→ TS{x, x′}

p=g(ẋ)

y yp̃=N 2g(x′)

T ∗S{x, p} p̃= Np−−−−→ T ∗S{x, p̃}.

Let Ω̃ be the canonical symplectic form on T ∗S with respect to the coordinates (x, p̃).
Then

(5.14) Ω̃ =
∑
i

dp̃i ∧ dxi = NΩ + dN ∧ θ, θ = p1dx1 + . . . pndxn, Ω = dθ.

Thus, h and h∗ represent the same Hamiltonian function on T ∗S written in two co-
ordinate systems. These coordinate systems are related by the non-canonical change of
variables

(5.15) (x, p) 7−→ (x, p̃) = (x,Np).
Assume that the two-form f∗ = N f is closed on S.
By using the commutative diagram (5.13), we get that the function N is a Chaplygin

reducing multiplier for the reduced gyroscopic Chaplygin system (5.5) (see Subsection 5.1)
if and only if the almost Hamiltonian equations (4.1), (4.2), after the time reparametrisation
dτ = N (x)dt and the coordinate transformation (5.15) become the Hamiltonian equations

(5.16) x′i =
∂h∗

∂p̃i
(x, p̃), p̃′i = −∂h

∗

∂xi
(x, p̃) +N

∑
j

fij(x)
∂h∗

∂p̃j
(x, p̃)

with respect to the twisted symplectic form

(5.17) Ω̃ + ρ∗f∗ =
∑
i

dp̃i ∧ dxi +N
∑
i<j

fijdxi ∧ dxj .

LetN be a nonvanishing function and consider the time reparametrisation dτ = N (x)dt.
The equations (5.16) in the original time t, after the coordinate transformation (5.15) take
the form

ẋi = N ∂h∗

∂p̃i
(x, p̃) = NN−2

∑
j

gij p̃j =
∑
j

gijpj ,(5.18)

˙̃pi = −N ∂h∗

∂xi
(x, p̃) +N 2

∑
j

fij(x)
∂h∗

∂p̃j
(x, p̃)(5.19)

= −N
( 1

2N 2

∑
j,k

∂gjk

∂xi
p̃j p̃k −

1

N 3

∂N
∂xi

∑
j,k

gjkp̃j p̃k +
∂v

∂xi
−
∑
j,k

fijg
jkpk

)
= −N

(1

2

∑
j,k

∂gjk

∂xi
pjpk −

1

N
∂N
∂xi

∑
j,k

gjkpjpk +
∂v

∂xi
−
∑
j,k

fijg
jkpk

)
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The equations (4.1) and (5.18) coincides. From p̃i = Npi, we get ˙̃pi = N ṗi + Ṅpi, that

is ṗi = N−1( ˙̃pi − Ṅpi). Therefore, using equation (5.19), we obtain

ṗi = −1

2

∑
j,k

∂gjk

∂xi
pjpk +

1

N
∂N
∂xi

∑
j,k

gjkpjpk −
1

N
∑
j

∂N
∂xj

ẋjpi −
∂v

∂xi
+
∑
j,k

fijg
jkpk(5.20)

= − ∂h
∂xi

(x, p) +
1

N
∂N
∂xi

∑
j,k

gjkpjpk −
1

N
∑
j,k

∂N
∂xj

gjkpkpi +
∑
j,k

fijg
jkpk

= − ∂h
∂xi

(x, p̃) +

n∑
j,k,l=1

N−1
(
δkj
∂N
∂xi
− δki

∂N
∂xj

)
gjlpkpl +

n∑
j=1

fij(x)
∂h

∂pj
,

The equations (4.2), (4.3), and (5.20) imply that the reduced gyroscopic Chaplygin
system (4.1), (4.2) after the time reparametrization dτ = N (x)dt and the change of variables
(5.15) takes the twisted canonical form (5.16) if and only if we have the equality of the
quadratic forms in momenta:

(5.21)

n∑
j,k,l=1

Ckij(x)gjlpkpl =

n∑
j,k,l=1

N−1
(
δkj
∂N
∂xi
− δki

∂N
∂xj

)
gjlpkpl, i = 1, . . . , n.

In the invariant form, (5.21) can be written as the condition on JK force term (4.3):

(5.22) Π(x, p) = N−1(p,g−1(p))dN −N−1(dN ,g−1(p))p,

Remark 5.1. Note that the equations (5.16)–(5.20) are valid without assumption that

the form f∗ = N f is closed, i.e., when Ω̃ + ρ∗f∗ (see (5.17)) is an almost symplectic form
as well. In this way, according to the commutative diagram (5.13), they imply Propositions
5.1 and 5.2.

It is clear that the sufficient conditions for the identities (5.21) are:

(5.23) Ckij(x) = N−1
(
δkj
∂N
∂xi
− δki

∂N
∂xj

)
, i, j, k = 1, . . . , n.

Thus, if the (1,2)-tensor field C defined in Remark 3.3 satisfies (5.23), N is a Chaplygin
reducing multiplier for the reduced gyroscopic G–Chaplygin system (4.1), (4.2), e.g., (5.5).
Then the (1, 2)-tensor C and the two-form σ in the invariant form can be written as

C(X,Y ) = N−1X(N )Y −N−1Y (N )X,(5.24)

σ = N−1dN ∧ θ.(5.25)

Moreover, from (5.14), (5.17), and (5.25), we obtain that the form Ω + σ + ρ∗f is
conformally symplectic with N a conformal factor being a Chaplygin reducing multiplier:

Ω̃ + ρ∗f∗ = N (Ω + σ + ρ∗f).

In the terminology of [46,47], the equations (5.23) and (5.24) mean that the gyroscopic
tensor T = −C is φ–simple, where φ = lnN . Following Garcia-Naranjo, we say that a
(1,2)-tensor C is lnN -simple if (5.24) holds.

In [48] the following inverse statement is proved: if a two-form Ω + σ is conformally
symplectic with a basic conformal factor N (x), then the gyroscopic tensor T is lnN -simple.
Now, based on the above considerations, we can reformulate and extend Theorem 3.21
from [48] on φ-simple Chaplygin systems as follows:

Theorem 5.1. (i) Assume that two-form f∗ = N f is closed on S. The conditions (a),
(b), and (c) listed below are equivalent. The conditions (d) and (e) are equivalent, while (e)
implies (c):

(a) the reduced gyroscopic Chaplygin system (5.5) after the time reparametrization
dτ = N (x)dt takes the form of the magnetic Lagrangian system (5.6);
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(b) the reduced gyroscopic Chaplygin system (4.1), (4.2) after the time reparametriza-
tion dτ = N (x)dt and the change of variables (5.15) takes the twisted canonical
form (5.16);

(c) the JK force term (4.3) on T ∗S has the form (5.22);
(d) the almost symplectic form Ω + σ + ρ∗f is conformally symplectic with the base

conformal factor N (x) and σ is given by (5.25);
(e) the (1,2)-tensor C is lnN -simple, that is, it is given by (5.24).

(ii) If N (x) is a Chaplygin multiplier, then the reduced equations of motion (4.1), (4.2)
possess the base invariant measure

(5.26) Nn−1Ωn.

(iii) If n = 2, then the statement (ii) can be inverted: if the reduced equations of motion
(4.1), (4.2) possess the base invariant measure

N (x)dp1 ∧ dp2 ∧ dx1 ∧ dx2,

then, after the time reparametrization dτ = N (x)dt the reduced equations become the usual
Hamiltonian equations on T ∗S with respect to the twisted symplectic form (5.17). For n = 2,
all items (a), (b), (c), (d), (e) are equivalent.

Theorem 5.1 relates the classical Chaplygin Hamiltonization (items (a), (b), (c) see
[31, 42]) and the Chaplygin Hamiltonization within the framework of almost symplectic
forms and the gyroscopic tensor field C (items (d) and (e), see [29,48]).

For the Veselova problem on SO(n) (see [42]) it is proved in [48] that (c) implies (d)
as well. A similar statement can be proved for the nonholonomic problem of a ball rolling
over a sphere considered in [52].

Remark 5.2. Note that (5.21) implies that the symmetric parts of the tensors
n∑
j=1

Ckij(x)gjl and

n∑
j=1

N−1
(
δkj
∂N
∂xi
− δki

∂N
∂xj

)
gjl

are equal, but the conditions (5.21) and (5.23), i.e, the items (c) and (e) of Theorem 5.1
do not need to be equivalent. For example, one can have C and σ different from zero, but
with iXredσ = 0. Then Π = 0 and Xred is a Hamiltonian vector field with respect to the
magnetic symplectic form Ω +ρ∗f . Thus, the constant N = 1 can be chosen as a Chaplygin
multiplier. As a result, the right hand side of (5.23) is zero, while the left hand side of
(5.23) is different from zero.

Further, from Theorem 5.1 it follows that if a Chaplygin system without gyroscopic
force allows Hamiltonization with a basic multiplier N , and if N f is closed, then the system
with reduced gyroscopic force f also allows Hamiltonization and vice versa: if a Chaplygin
system with gyroscopic force f allows Hamiltonization with a basic multiplier N (either
in the sense that N is a conformal factor for the almost symplectic form Ω + σ + ρ∗f and
according Proposition 5.3 N f is closed, or in the sense of the classical Hamiltonization where
N f is also closed) then the system without the gyroscopic force f allows Hamiltonization as
well.

For n = 2, the equations (5.5) are

d

dt

∂l

∂ẋ1
=

∂l

∂x1
+ S(x)ẋ2,(5.27)

d

dt

∂l

∂ẋ2
=

∂l

∂x2
− S(x)ẋ1,(5.28)

where

S(x) =

2∑
k,l=1

Ck12(x)gklẋl + f12(x).
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Item (iii) of Theorem 5.1 is given in [16,21], where the Lagrangian systems of the form
(5.27), (5.28), for f12(x) 6= 0 are called generalised Chaplygin systems.

6. Chaplygin ball with a gyroscope rolling over a plane and over a sphere

6.1. Chaplygin ball with a gyroscope rolling without slipping. One of the most
famous solvable problems in nonholonomic mechanics describes rolling without slipping
of a balanced, dynamically nonsymmetric ball over a horizontal plane (Chaplygin [30]).
After [30], a balanced, dynamically nonsymmetric ball is called the Chaplygin ball, see
[3,6,16,20,21,24,26,56].

Let OB, a, m, I = diag(A,B,C), be the center, radius, mass and the inertia operator of
a ball B. There are three possible configurations in the problem of rolling without slipping
of the Chaplygin ball B over a fixed sphere S of the radius b:

(i) rolling of B over the outer surface of S and S is outside B (see the leftmost part
of Fig. 6.1);

(ii) rolling of B over the inner surface of S (b > a)(see the central part of Fig. 6.1);
(iii) rolling of B over the outer surface of S and S is within B; in this case b < a and

the rolling ball B is a spherical shell (see the rightmost part of Fig. 6.1).

Let ε = b/(b± a), where we take ”+” for the case (i) and ”−” in the cases (ii) and (iii)
and let D = ma2. The equations of motion in the frame attached to the ball can be written
in the form

(6.1) ~̇k = ~k× ~ω, ~̇γ = ε~γ × ~ω,

where ω is the angular velocity of the ball, ~k = I~ω+D~ω−D〈~ω,~γ〉~γ is the angular momentum
of the ball with respect to the point of contact, and γ is the unit normal to the sphere S at
the contact point.

When b tends to infinity, then ε tends to 1 and ~γ tends to the unit vector that is constant
in the fixed reference frame. This way, for ε = 1, we obtain the equations of motion of the
Chaplygin ball rolling over the plane orthogonal to ~γ.

Figure 1. Rolling of the ball B with center OB over the sphere S with
center O: three scenarios

An invariant measure of the system was derived by Chaplygin for ε = 1 [30], and by
Yaroshchuk for ε 6= 1 [71]. Remarkably, for ε = −1, which is the case (iii) above with
a = 2b, the problem is integrable (see [19,23,25]).

Next, we assume that a gyroscope is placed in a ball B such that the mass center of the
system coincides with the geometric center OB of the ball. The addition of a gyroscope to
the problem is equivalent to the addition of a constant angular momentum ~κ directed along

the axis of the gyroscope to ~k [13,74]:

(6.2)
d

dt

(
~k + ~κ

)
= (~k + ~κ)× ~ω, ~̇γ = ε~γ × ~ω.



GYROSCOPIC CHAPLYGIN SYSTEMS 17

As above, ~k = I~ω+D~ω−D〈~ω,~γ〉γ, where D = a2m, m is the mass of the system (ball with
gyroscope), I is a new inertia operator that is described below (see (6.3)) together with the
momentum κ for the Bobilev symmetric case.

Markeev proved that the equations of motion for the rolling over the plane (ε = 1) can
be resolved in quadratures [61]. The analysis of the bifurcation diagram and the topology
of the phase space of the Markeev case is studied in [62] and [75], respectively.

There are two famous classical cases of the system (6.2) for ε = 1 where the quadratures
are given in elliptic functions. These cases were studied by Bobilev [13] and Zhukovskiy [74].

In the Bobilev case the central ellipsoid of inertia of the ball B is rotationally symmetric
and the gyroscope axis coincides to the axis of symmetry. Let OB~e1~e2~e3 and OB~e

′
1~e
′
2~e
′
3 be

the moving frames attached to the ball B and the gyroscope in which the inertia operator
has the forms I1 = (A1, A1, C1) and I2 = (A2, A2, C2), respectively. It is assumed that the
axis of the gyroscope is fixed with respect to the ball and coincides with the axis of symmetry
of the inertia ellipsoid of the ball (~e3 = ~e′3) and that the forces applied to the gyroscope
do not induce torque about the axis of the gyroscope. Thus, the gyroscope rotates with
a constant angular velocity ω′3 about the axis of symmetry. Then the operator I and the
momentum ~κ in (6.2) for the Bobilev case are given by:

(6.3) I = diag(A,A,C) = diag(A1 +A2, A1 +A2, C1) and ~κ = C2ω
′
3~e3.

In the Zhukovskiy case there is an additional assumption, (called the Zhukovskiy condi-
tion):

(6.4) C1 = A1 +A2,

that is, it is assumed that I is proportional to the identity matrix E = diag(1, 1, 1).
Demchenko used the Zhukovskiy condition to integrate the problem of rolling of the

gyroscopic ball over a sphere [32] (see also [33]). The integrability of the problem of rolling
of the gyroscopic ball over a sphere with the Bobilev conditions (6.3) can be found in [21].
The question about the existence of an integrable case for a dynamically nonsymmetric
ball with a gyroscope rolling over a sphere is still open. Another natural extension of the
problem of the ball rolling over a sphere is recently given in [34,35].

6.2. Chaplygin ball with a gyroscope rolling without slipping and twisting.
One can consider the additional nonholonomic constraint 〈ω, γ〉 = 0 describing no-twisting
condition: the ball B does not rotate around the normal at the contact point and is called
a rubber Chaplygin ball. Then the momentum with respect to the contact point can be

expressed as ~k = I~ω, I = I +DE. The gyroscopic equations take the form

(6.5)
d

dt

(
~k + ~κ

)
= (~k + ~κ)× ~ω + λ~γ, ~̇γ = ε~γ × ~ω,

where the Lagrange multiplier is given by λ = −〈~γ, I−1((~k + ~κ)× ~ω)〉/〈~γ, I−1~γ〉.
The system has an invariant measure with the same density as in the absence of a

gyroscope (see [37] for ε = 1 and [38] for ε 6= 1). As in the Markeev integrable case, for
ε = 1 the system is integrable according to the Euler-Jacobi theorem. This is proved by
Borisov, Mamaev and Kilin in [21] for the Veselova problem with a gyroscope, which is
described by the same system of equations. Borisov, Bizyaev, and Mamaev also pointed
out the integrability of the equations (6.5) for ε 6= 1 in the case of the dynamical symmetry
A = B if the gyroscope is oriented in the direction of the axis of the dynamical symmetry,
which gives the Bobilev conditions (6.3) (see Table 2 in [18]). Borisov and Mamaev proved
the integrability of the problem without the gyroscope, for ε = −1 [22], providing analogy
with the non-rubber rolling.

The system of a Chaplygin ball with a gyroscope rolling without slipping and twisting
over a sphere deserves to be studied in more detail. In order to describe its reduction and
Hamiltonization, we will consider a general problem in Rn.
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7. The rolling of a gyroscopic ball without slipping and twisting in Rn

7.1. Rolling of a ball without slipping and twisting over a sphere. The aim of
this Section is to generalize the considerations from Section 6 from R3 to Rn, for any n > 3.
We start with the situation without gyroscopic or magnetic forces, following [44, 45, 52].
We consider in this Subsection the rolling without slipping and twisting of an n-dimensional
ball B of radius a over the (n− 1)-dimensional fixed sphere S of radius b. There are three
possible scenarios, in a full analogy with the three configurations described at the beginning
of Section 6.1 for n = 3, recall Fig. 6.1.

Consider the space frame Rn(x) with the origin O at the center of the fixed sphere S
and the moving frame Rn(X) with the origin OB at the center of the rolling ball B. The
mapping from the moving to the space frame is given by x = gX + r, where g ∈ SO(n) is

a rotation matrix and r =
−−−→
OOB is the position vector of the ball center OB in the space

frame. The configuration space Q is the direct product of the Lie group SO(n) and the
sphere S = {r ∈ Rn | (r, r) = (b± a)2}.

Remark 7.1. Here and below, we take the sign ”+” for the case (i) and the case ”−”
for the cases (ii) and (iii) of the three possible scenarios in analogy with the three cases from
the beginning of Section 6.1.

Let ω = g−1ġ be the angular velocity of the ball in the moving frame, m be the mass
of the ball, and I : so(n) → so(n) the inertia operator. We additionally assume that the
ball is balanced, i.e., its geometric center coincides with the mass center. We will call such
a system a Chaplygin ball in Rn. Then the Lagrangian of the system is given by

(7.1) L(g, r, ω, ṙ) =
1

2
〈Iω, ω〉+

1

2
m〈ṙ, ṙ〉,

where now 〈·, ·〉 is the invariant scalar product proportional to the Killing form on so(n)
(〈·, ·〉 = − 1

2 tr(· ◦ ·)) and the Euclidean scalar product in Rn, respectively.

The direction
−→
OA/|

−→
OA| of the contact point A in the frame attached to the ball is

given by the unit vector γ = 1
b±ag

−1r. It is invariant with respect to the diagonal left

SO(n)-action: g̃ · (g, r) = (g̃g, g̃r), g̃ ∈ SO(n). The action defines SO(n)-bundle

(7.2) SO(n) // Q = SO(n)× S

π

��

Sn−1 = Q/SO(n)

with the submersion π given by

γ = π(g, r) =
1

b± a
g−1r.

The contact point A of the ball in the moving frame is XA = −(±aγ). The condition
that the ball is rolling without slipping is that the velocity ẋA of the contact point in the
space frame is equal to zero

0 = ẋA =
d

dt

(
gXA + r

)
= ∓aġγ + ṙ = ∓a(ġg−1)gγ + ṙ.

This leads to the constraint ṙ = ± a
b±aΩr, where Ω = Adg ω = ġg−1 is the angular

velocity in the space frame. On the other hand, the condition of no twisting at the contact
point can be written as the condition on Ω: Ω ∈ r ∧ Rn. The same condition can be
written in terms of ω: ω ∈ γ ∧Rn. For more detail, see [52]. The constraints determine the
distribution

D(g,r) = {(ω, ṙ) ∈ T(g,r)SO(n)× S | ṙ = ± a

b± a
(Adg ω)r, ω ∈ g−1r ∧ Rn}
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of rank (n − 1), a principal connection of the bundle (7.2). The Lagrangian L from (7.1)
is SO(n)–invariant as well. Thus, an n–dimensional Chaplygin ball rolling without slipping
and twisting over a fixed sphere in Rn is a SO(n)–Chaplygin system. It reduces to the
tangent bundle TSn−1 ∼= D/SO(n).

As in the three-dimensional case, we set ε = b/(b± a). The horizontal lift γ̇h|(g,r) =
(ω,V) is given by:

ω =
1

ε
γ ∧ γ̇,

V = ṙ = (b± a)
d

dt
(gγ) = (b± a)

(
1− 1

ε

)
gγ̇.

The reduced Lagrangian l and the (0, 3)-tensor field Σ are (see [52])

l(γ, γ̇) =
1

2
g(γ̇, γ̇) = − 1

4ε2
tr(I(γ ∧ γ̇) ◦ (γ ∧ γ̇)) = − 1

2ε2
〈I(γ ∧ γ̇)γ, γ̇〉,(7.3)

Σ(X,Y, Z)|γ =
2ε− 1

2ε3
tr(I(γ ∧X) ◦ (Y ∧ Z)) =

2ε− 1

ε3
〈I(γ ∧X)Y,Z〉,(7.4)

where, as in the three-dimension, I = I +D · Idso(n) and D = ma2. We have

(7.5)
∂l

∂γ
=

1

ε2
I(γ ∧ γ̇)γ̇,

∂l

∂γ̇
= − 1

ε2
I(γ ∧ γ̇)γ, JK(γ̇, δγ) =

2ε− 1

ε3
〈I(γ ∧ γ̇)γ̇, δγ〉

Therefore, the reduced Chaplygin equations (3.1) without gyroscopic forces are:

(7.6) δl − JK(γ̇, δγ) =
〈 1

ε2

d

dt

(
I(γ ∧ γ̇)γ

)
+

1− ε
ε3

I(γ ∧ γ̇)γ̇, δγ
〉

= 0, δγ ∈ TγSn−1.

Remark 7.2. Note that if the radii of the sphere and the ball are equal, then ε = 1/2.
Then, the curvature of D vanishes and Σ ≡ 0 [52]. For n = 3, see [26, 38]. Also, if I is
proportional to the identity operator then Σ ≡ 0. Then the JK-term vanishes although
the curvature of D is different from zero. Under these conditions, the reduced system is
Hamiltonian without any time reparametrization.

7.2. Gyroscopic ball. Now, we want to consider the gyroscopic Chaplygin ball in Rn
and to study how the addition of a gyroscopic term is going to modify the reduced equations
of motion (7.6). The equations (6.5) without the gyroscope have an analog in in Rn:

(7.7) k̇ = [k, ω] + λ0, γ̇ = −εωγ.
Here k = Iω and the Lagrange multiplier λ0 ∈ (Rn ∧ γ)⊥ is determined from the condition
that ω ∈ Rn ∧ γ (see [52]).

Let us notice that the equations (7.6) alternatively can be derived directly by the substi-
tution of ω = 1

εγ∧γ̇ in the equations (7.7). The equations (7.7) are also a convenient starting
point for gyroscopic generalizations. With a suitable modification of I for the gyroscopic
ball, the analogue of the equation (6.5) in Rn is

(7.8) k̇ = [k, ω] + [κ, ω] + λ0, γ̇ = −εωγ,
where now κ ∈ so(n) is a fixed matrix, k = Iω = Iω +Dω, D = a2m, and m is the mass of
the system (ball with gyroscope).

After the substitution ω = 1
εγ ∧ γ̇, and taking the scalar product with 1

εγ ∧ δγ, the
equations (7.8) take the form

(7.9)
〈 1

ε2
I(γ ∧ γ̈)− 1

ε3
[I(γ ∧ γ̇), γ ∧ γ̇], γ ∧ δγ

〉
=

1

ε2
〈[κ, γ ∧ γ̇], γ ∧ δγ〉,

where we used that λ0 is orthogonal to γ ∧ Rn. Now, since

[κ, γ ∧ γ̇] = (κγ) ∧ γ̇ − (κγ̇) ∧ γ
and

〈X ∧ Y,Z ∧ T 〉 = 〈X,Z〉〈Y, T 〉 − 〈X,T 〉〈Y, Z〉,
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we get the right hand side of (7.9):

rhs =
1

ε2

(
〈κγ, γ〉〈γ̇, δγ〉 − 〈κγ, δγ〉〈γ̇, γ〉 − 〈κγ̇, γ〉〈γ, δγ〉+ 〈κγ̇, δγ〉〈γ, γ〉

)
=

1

ε2
〈κγ̇, δγ〉.

Similarly, the left hand side of (7.9) is given by

lhs =
〈
− 1

ε2
I(γ ∧ γ̈)γ − 1

ε3
I(γ ∧ γ̇)γ̇, δγ

〉
= −δl + JK(γ̇, δγ),

where the second equality follows from (7.6). Therefore, from (7.9) we obtain

Proposition 7.1. The reduced equations of motion of a gyroscopic ball rolling without
slipping and twisting over a sphere are given by

(7.10) δl − JK(γ̇, δγ) =
〈 1

ε2
I(γ ∧ γ̈)γ − 1

ε3
I(γ ∧ γ̇)γ̇, δγ

〉
= f(γ̇, δγ)

where the gyroscopic term is given by f(γ̇, δγ) = 1
ε2 〈γ̇, κδγ〉.

Note that the gyroscopic two-form f

(7.11) f =
1

ε2

∑
i<j

κijdγi ∧ dγj .

is exact magnetic: f = da, where

a =
1

2ε2

∑
ij

κijγidγj .

Thus, the reduced equations of motion of a gyroscopic ball rolling without slipping and
twisting over a sphere (7.10) can be rewritten in the equivalent form (see Remark 3.2):

δl1 = JK(γ̇, δγ),

where the Lagrangian l1 is

l1(γ̇, γ) =
1

2ε2
〈I(γ ∧ γ̇)γ̇, γ〉+

1

2ε2
〈γ, κγ̇〉.

Remark 7.3. As in the 3-dimensional case, when b tends to infinity, ε tends to 1, γ
tends to the unit vector that is constant in the fixed reference frame and we obtain the
equations of motion of the Chaplygin ball with a gyroscope rolling without slipping and
twisting over the plane orthogonal to γ.

Remark 7.4. In addition, let us note that for ε = 1 the system (7.8) with κ = 0
represents also the Veselova problem with the left-invariant metric on SO(n) defined by the
operator I (see [42,67]). In this way, the system (7.8) for ε = 1 can be seen as a Veselova
problem with the addition of a gyroscope.

Note that the Veselova problem is an example of an LR system. These are nonholonomic
systems with left-invariant metrics and right-invariant constraints on Lie groups [42, 67].
One can consider LR systems with gyroscopic forces and their reduction to homogeneous
spaces as well. Along with the gyroscopic Chaplygin reduction, it is interesting to consider
the symplectic reduction of the corresponding Hamiltonian magnetic systems on Lie groups
by using a general framework for the reduction of the systems with symmetries on magnetic
cotangent bundles given in [57]. The reduction problems based on [57] will be consider
elsewhere.
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7.3. Invariant measure. We are going to describe the reduced magnetic flow (7.10)
and its invariant measure on the cotangent bundle of a sphere Sn−1. Consider the Legendre
transformation of the Lagrangian l given by (7.3).

(7.12) p =
∂l

∂γ̇
= g(γ̇) = − 1

ε2
I(γ ∧ γ̇)γ.

Since I(γ∧ γ̇) is skew-symmetric, we get 〈γ, p〉 = 0. Thus, the point (p, γ) belongs to the
cotangent bundle of a sphere realized as a symplectic submanifold in the symplectic linear
space (R2n{γ, p}, dp1 ∧ dγ1 + · · ·+ dpn ∧ dγn) defined by the equations:

(7.13) φ1 = 〈γ, γ〉 = 1, φ2 = 〈γ, p〉 = 0.

Let γ̇ = g−1(p) = Xγ(p, γ) be the inverse of the Legendre transformation (7.12), which
is unique on the subvariety (7.13). Then

(7.14) h(γ, p) =
1

2
〈Xγ(γ, p), p〉

is the Hamiltonian function of the reduced system. From (7.6) and (7.10) we have〈
− ṗ+

1− ε
ε3

I(γ ∧Xγ)Xγ , δγ
〉

=
1

ε2
〈Xγ , κδγ〉.

Therefore

ṗ =
1− ε
ε3

I(γ ∧Xγ)Xγ +
1

ε2
κXγ + µγ,

where µ is the multiplier determined from the condition that (γ̇, ṗ) is tangent to T ∗Sn−1:

〈γ̇, p〉+ 〈γ, ṗ〉 = 0.

Proposition 7.2. The reduced equations of the rolling of a ball with a gyroscope over
a sphere without slipping and twisting on T ∗Sn−1 are

(7.15) γ̇ = Xγ(γ, p), ṗ = Xp(γ, p) =
1− ε
ε3

I(γ ∧Xγ)Xγ +
1

ε2
κXγ + µγ,

where

(7.16) µ =
(ε− 1)

ε3
〈(I (γ ∧Xγ))Xγ , γ〉 − 2h(γ, p) +

1

ε2
〈Xγ , κγ〉.

Let

(7.17) w = dp1 ∧ dγ1 + · · ·+ dpn ∧ dγn |T∗Sn−1

be the canonical symplectic form on T ∗Sn−1.
From Theorem 4.1 and the formula for an invariant measure without magnetic term

(see [52]), we have:

Proposition 7.3. The reduced equations of the rolling of a ball with a gyroscope over
a sphere without slipping and twisting (7.15) have an invariant measure ν(γ)wn−1, where
w is from (7.17) and ν is defined by:

(7.18) ν(γ) := (det I|Rn∧γ)
1
2ε−1.

8. Hamiltonization and integrability

8.1. Hamiltonization of the SO(n − 2)–invariant case. As already mentioned
above, the existence of an invariant measure of a nonholonomic system is closely related
to the problem of its Hamiltonization. In this Section we provide a class of examples of
SO(n − 2)–symmetric systems (ball with gyroscope) that allow a Chaplygin Hamiltoniza-
tion.

Consider the inertia operators

I(ei ∧ ej) = (aiaj −D)ei ∧ ej i.e., I(X ∧ Y ) = AX ∧ AY,(8.1)
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parameterized by A = diag(a1, . . . , an), where [e1, . . . , en] is the standard basis of Rn. The
formulas for the reduced Lagrangian l (7.3), the Hamiltonian h (7.14), and the density of
an invariant measure ν (7.18) take the form:

l(γ, γ̇) =
1

2ε2

(
〈Aγ̇, γ̇〉〈Aγ, γ〉 − 〈Aγ, γ̇〉2

)
,(8.2)

h(γ, p) =
ε2

2

〈p,A−1p〉
〈γ,Aγ〉

,(8.3)

ν(γ) = const · 〈Aγ, γ〉
n−2
2ε +2−n,(8.4)

(see [51, 52]). Moreover, the function N (γ) = ε〈Aγ, γ〉 1
2ε−1 is a Chaplygin multiplier:

under the time substitution dτ = N (γ)dt, the reduced system (7.6) with κ = 0 becomes the
geodesic flow of the metric

(8.5) ds2
A,ε = (γ,Aγ)

1
ε−2

(
(Adγ, dγ)(Aγ, γ)− (Aγ, dγ)2

)
defined by the Lagrangian (see [52])

(8.6) l∗(γ, γ′) = l(γ, γ̇)|γ̇=N (γ)γ′ =
1

2
〈γ,Aγ〉 1ε−2

(
〈Aγ′, γ′〉〈Aγ, γ〉 − 〈Aγ, γ′〉2

)
.

Remark 8.1. Note that for n = 3 all symmetric operators I have the form (8.1) in a
basis formed by its eigenvectors. Namely, after the standard identification R3 ∼= so(3) [2],
for the given inertia operator I = diag(A,B,C) : R3 → R3 for the gyroscopic ball and the
parameter D = ma2, the operator I : so(3)→ so(3) has the form (8.1), with:

(8.7) A = diag
( ∆

A+D
,

∆

B +D
,

∆

C +D
), ∆ =

√
(A+D)(B +D)(C +D).

The above Hamiltonization recovers the procedure of reduction and Hamiltonization for
a three-dimensional ball without gyroscope from [38]. We would recall that Borisov and
Mamaev proved the integrability of the three-dimensional ball without gyroscope and the
spherical shell for a specific ratio between the radii: the case (iii) from Section 6.1, where
a = 2b, i.e. ε = −1, see [22]. The n–dimensional reduced system of a ball without gyroscope
rolling over a sphere (7.6) with the inertia operator I given by (8.1) is also integrable for
ε = −1; the integrability remains for such systems for an arbitrary ε, if the matrix A has
only two distinct parameters [44,45].

Now, we turn to the systems with gyroscopic force. If

(8.8) d(N f) =
2

ε
(

1

2ε
− 1)〈Aγ, γ〉 1

2ε−2
(∑

k

akγkdγk
)
∧
(∑
i<j

κijdγi ∧ dγj
)

= 0|T∗Sn−1

then the reduced gyroscopic system is Hamiltonizable as well. This follows from Theorem
5.1.

For n = 3, equation (8.8) is satisfied for an arbitrary gyroscopic term κ. The following
statement provides a class of examples, based on the SO(n − 2)-symmetry, which satisfy
equation (8.8), thus are Hamiltonizable, for every n > 3.

Theorem 8.1. Assume that the gyroscopic term f from (7.11) is given by κ = κ12e1∧e2,
i.e.,

f =
κ12

ε2
dγ1 ∧ dγ2

and the inertia operator of the system ball with gyroscope is given by (8.1), where a3 = a4 =
· · · = an:

A = diag(a1, a2, a3, . . . , a3).

Then the function N (γ) = εA(γ)
1
2ε−1, with

(8.9) A(γ) = a3 + (a1 − a3)γ2
1 + (a2 − a3)γ2

2 ,
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is a Chaplygin multiplier. Under the time substitution dτ = N (γ)dt and the change of
momenta p̃ = N (γ)p, the reduced system (7.15) becomes the magnetic geodesic flow of the
metric (8.5) with respect to the twisted symplectic form given by

(8.10) w̃ +Nρ∗f = dp̃ ∧ dγ1 + · · ·+ dp̃n ∧ dγn +
κ12

ε
A(γ)

1
2ε−1dγ1 ∧ dγ2|T∗Sn−1 .

Remark 8.2. The function (8.9) satisfies A(γ) = 〈Aγ, γ〉 for 〈γ, γ〉 = 1. We use the
function A to simplify some equations below. For example, the Hamiltonian of the magnetic
geodesic flow of the metric (8.5) in the coordinates (γ, p̃) can be written as

(8.11) h∗(γ, p̃) =
1

2
A(γ)1− 1

ε 〈p̃,A−1p̃〉.

8.2. Integrability of the SO(2)×SO(n−2)-invariant case. In this section we want
to impose additonal symmetry with respect to SO(n − 2)-symmetry considered in Section
8.1 and in particular in Theorem 8.1, This additional symmetry will imply integrability.

As mentioned above, the cotangent bundle T ∗Sn−1 is realized within R2n by the con-
straints (7.13). In the new coordinates (γ, p̃) = (γ, εA(γ)

1
2ε−1p), the constraints become

(8.12) φ∗1 = 〈γ, γ〉 = 1, φ∗2 =
1

ε
A(γ)1− 1

2ε 〈γ, p̃〉 = 0.

Instead of (8.12), we equivalently use the constraints

(8.13) ψ1 = 〈γ, γ〉 = 1, ψ2 = 〈p̃, γ〉 = 0.

The magnetic Poisson bracket on the cotangent bundle T ∗Sn−1 ⊂ R2n{γ, p̃} can be
described by the Dirac construction as follows:

{F,G}d = {F,G}κ − {F,ψ1}κ{G,ψ2}κ − {F,ψ2}κ{G,ψ1}κ

{ψ1, ψ2}κ
,

where

{F,G}κ = {F,G}0 +
κ12

ε
A(γ)

1
2ε−1

( ∂F
∂p̃1

∂G

∂p̃2
− ∂F

∂p̃2

∂G

∂p̃1

)
and

{F,G}0 =

n∑
i=1

(∂F
∂γi

∂G

∂p̃i
− ∂F

∂p̃i

∂G

∂γi

)
is the canonical Poisson bracket on R2n{γ, p̃}, (see [3]). Considered on R2n{γ, p̃} without
the subset {γ = 0}, the bracket {·, ·}d is degenerate with two Casimir functions ψ1 and ψ2.
The symplectic leaf given by (8.13) is exactly the cotangent bundle T ∗Sn−1 endowed with
the twisted symplectic form (8.10).

It is convenient to derive the equations of the magnetic Hamiltonian flows with respect
to the Dirac bracket {·, ·}d using the Lagrange multipliers and the magnetic Hamiltonian
flows with respect to the magnetic bracket {·, ·}κ (e.g., see [3]). Let

H = h∗ − λ1ψ1 − λ2ψ2.

The magnetic Hamiltonian flow generated by the Hamiltonian (8.11) with respect to
the Dirac bracket {·, ·}d is given by

γ′ =
∂H

∂p̃
= A(γ)1− 1

εA−1p̃− λ2γ,(8.14)

p̃′ =− ∂H

∂γ
+
κ12

ε
A(γ)

1
2ε−1e1 ∧ e2(γ′)(8.15)

=
1− ε
ε
A(γ)−

1
ε 〈p̃,A−1p̃〉

(
(a1 − a3)γ1e1 + (a2 − a3)γ2e2

)
+ 2λ1γ + λ2p̃

+
κ12

ε
A(γ)

1
2ε−1

(
(A(γ)1− 1

ε
p̃2

a2
− λ2γ2)e1 − (A(γ)1− 1

ε
p̃1

a1
− λ2γ1)e2

)
,



24 DRAGOVIĆ, GAJIĆ, JOVANOVIĆ

where the Lagrange multipliers λ1 and λ2 are determined from the condition that the func-
tions ψ1 and ψ2 are integrals of the flow.

From now on we consider the system (8.14), (8.15) restricted to the symplectic leaf
(8.13), that is, we consider the magnetic geodesic flow of the metric (8.5).

Let us impose now the additional symmetry. Suppose: a1 = a2 6= a3. Both the
Hamiltonian (8.11) and the magnetic two-form (8.10) are invariant with respect to the action
of the group SO(2)×SO(n− 2). We first consider the case κ12 = 0: the corresponding first
integrals are linear and given as follows:

Φ0
12 = γ1p̃2 − γ2p̃1, Φ0

ij = γip̃j − γj p̃i, 3 6 i < j 6 n.

Such first integrals are sometimes called Noether integrals as their existence follow from
the Emmy Noether theorem. Let us now consider a general case κ12 6= 0: straightforward
calculations show that Φij = Φ0

ij , 3 6 i < j 6 n remain to be first integrals for κ12 6= 0.
Moreover,

d

dτ
Φ0

12 = −κ12

ε
A(γ)

1
2ε−1(γ1γ

′
1 + γ2γ

′
2) = − κ12

a1 − a3

d

dτ

(
A(γ)

1
2ε

)
.

Thus, the first integrals for κ12 6= 0 are

Φ12 = γ1p̃2 − γ2p̃1 +
κ12

a1 − a3
A(γ)

1
2ε , Φij = γip̃j − γj p̃i, 3 6 i < j 6 n.

These first integrals are the components of the momentum mapping of the SO(2)×SO(n−2)-
action with respect to the twisted symplectic form (8.10).

Theorem 8.2. For a1 = a2 6= a3 the magnetic geodesic flow of the metric ds2
A,ε defined

by the Hamiltonian (8.11) with respect to the twisted symplectic form (8.10) is completely
integrable.

(i) If n = 3 the system is Liouville integrable. Generic invariant manifolds are two-
dimensional Lagrangian tori, the common level sets of h∗ and Φ12.

(ii) If n = 4 the system is Liouville integrable. Generic invariant manifolds are three-
dimensional Lagrangian tori, the common level sets of h∗, Φ12, and Φ34.

(iii) If n > 5 the system is integrable in the noncommutative sense. Generic invariant
manifolds are three-dimensional isotropic tori, the common level sets of h∗, Φ12,
and Φij, 3 6 i < j 6 n.

Proof. For n = 3 the statement is clear. For n = 4, the Hamiltonian system (8.14)
possesses three independent integrals h∗, Φ12, Φ34, in involution:

{h∗,Φ12}d = 0, {h∗,Φ34}d = 0, {Φ12,Φ34}d = 0.

Thus, the Hamiltonian system (8.14), (8.15) is completely integrable according to the
Arnold-Liouville theorem.

For n > 4, generic common level sets of all integrals are three-dimensional tori as
well. Indeed, consider the natural embedding T ∗S3 ⊂ T ∗Sn−1 induced by the embedding
span{e1, e2, e3, e4} ⊂ Rn. Let us set P = (p̃3, p̃4, . . . , p̃n), Γ = (γ3, γ4, . . . , γn). Then
p̃ = (p̃1, p̃2,P), γ = (γ1, γ2,Γ).

The system (8.14), (8.15) is invariant with respect to the SO(n− 2)–action

R(γ, p̃) = (γ1, γ2, RΓ, p̃1, p̃2, RP), R ∈ SO(n− 2).

Also, as we already mentioned, the integrals Φij , 3 6 i < j 6 n are components of the
corresponding momentum mapping

(γ, p̃) 7−→ Γ ∧P.

For any point c0 = (γ0, p̃0) ∈ T ∗Sn−1, there exists a matrix R0 ∈ SO(n− 2), such that
d0 = R0(γ0, p̃0) belongs to T ∗S3. Since the system is invariant with respect to the SO(n−2)–
action, the solution c(τ) = (γ(τ), p̃(τ)) with the initial condition c(0) = (γ(0), p̃(0)) = c0 is
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mapped to the solution d(τ) = R(γ(τ), p̃(τ)) with the initial condition

d(0) = R0(γ(0), p̃(0)) = R0(γ0, p̃0) = d0 ∈ T ∗S3.

The solutions c(τ) and d(τ) have the same energy, h∗(c0) = h∗(d0), while the corre-
sponding values of the momenta are different: the momentum of c(τ) is transformed to the
momentum of d(τ) by the adjoint mapping

Γ0 ∧P0 7−→ R0(Γ0 ∧P0)RT0 = Φ34(d0)e3 ∧ e4,

where c0 = (γ0,1, γ0,2,Γ0, p̃0,1, p̃0,2,P0).
One can easily verify that the solution d(τ) belongs T ∗S3, that is, it is a solution of

the problem for n = 4. Therefore, generically, d(τ) is a quasi-periodic trajectory over a
3–dimensional invariant torus T0 ⊂ T ∗S3, the connected component of the level set

h∗ = h∗(d0), Φ12 = Φ12(d0), Φ34 = Φ34(d0).

All other components of the momentum mapping Φij , 3 6 i < j 6 n, (i, j) 6= (3, 4) are
equal to zero.

Note that a point d ∈ T ∗Sn−1 belongs to T ∗S3 if and only if

Φij(d) = 0, 3 6 i < j 6 n, (i, j) 6= (3, 4).

Thus, the original trajectory c(τ) = R−1
0 (d(τ)) is quasi-periodic over the 3-dimensional

invariant torus T = R−1
0 (T0), which is also the connected component of the level set

h∗ = h∗(c0) = h∗(d0), Φ12 = Φ12(c0), Φij = Φij(c0), 3 6 i < j 6 n.

The integrability of the system is a particular example of so-called noncommutative
integrability. Namely, since the common level sets of the integrals are 3–dimensional, and
the Hamiltonian system (8.14), (8.15) has three independent first integrals h∗, Φκ12, and∑

36i<j6n(Φij)
2, that commute with all integrals, the system is completely integrable ac-

cording the Nekhoroshev-Mishchenko-Fomenko theorem on non-commutative integrability
for all n > 4 (e.g., see [3]). �

Note that in the original phase space T ∗Sn−1{γ, p}, the first integrals have the form

Φ12 = εA(γ)
1
2ε−1(γ1p2 − γ2p1) +

κ12

a1 − a3
A(γ)

1
2ε ,

and

Φij = εA(γ)
1
2ε−1(γipj − γjpi), 3 6 i < j 6 n.

In the original time, the system over a regular invariant torus T has the form (1.3), where
Φ = N−1|T .

Remark 8.3. For n = 3, within the standard isomorphism between Lie algebras
(so(3), [·, ·]) and (R3,×) given by

(8.16) aij = −εijkak, i, j, k = 1, 2, 3

(see [2]), the equations (7.8) with the inertia operator defined by (8.1), A = diag(a1, a1, a3),
and κ = κ12e1∧e2 correspond to the equations (6.5) defined by the Bobilev conditions (6.3)
with ~κ = −κ12~e3 and I and A related by (8.7) (see Subsection 6.2 and Remark 8.1). Then,
along with the Liouville integrability after the Hamiltonization described in Theorem 8.2,
the system is also integrable according to the Euler-Jacobi theorem.
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9. Generalized Demchenko case without twisting in Rn

9.1. Definition of the system. As above, we will consider the rolling of a gyroscopic
ball B without slipping and twisting in Rn, now with an additional symmetry of the system.
The additional symmetry is analogous to the Zhukovskiy condition (6.4) in dimension n =
3. Recall, that adding a gyroscopic term does not change formulas for curvature of the
distribution D, JK term (7.5) and Σ term (7.4). For the curvature K of D see Lemma 7
in [52]:

K(g,r)(ξ
h
1 , ξ

h
2 ) =

2ε− 1

ε2
Adg(ξ1 ∧ ξ2), ξ1, ξ2 ∈ Tπ(g,r)S

n−1.

Since the reduced gyroscopic form f is exact magnetic for an arbitrary κ ∈ so(n),

(9.1) κ =
∑
i<j

κijei ∧ ej ,

if the JK-term in (3.1) vanishes, then the reduced gyroscopic G–Chaplygin system (3.1) is
automatically Hamiltonian without any time reparametrization.

We provide two situations when such conditions are satisfied, for the rolling of a gyro-
scopic Chaplygin ball without slipping and twisting over a sphere Sn−1 (see Remark 7.2).
The first situation: if the radii of the sphere and the ball are equal, which is equivalent to
the condition ε = 1/2, then the curvature K of D vanishes (the constraints are holonomic).
Since the JK-term is given by the coupling of the curvature K with the momentum mapping
of the SO(n)–action on the configuration space (7.2) (see Remark 3.1), we have JK = 0.
The second situation we get when the inertia operator I of the system, that is, the modified
inertia operator I, is proportional to the identity operator. Then the coupling between the
curvature and the momentum mapping vanishes, see (7.5), although the curvature of D
is different from zero. Let us remind that the curvature of the distribution measure the
nonholonomicity of the constraints: it is zero if and only if the constraints are holonomic.

These two situations do not require a time reparametrisation for a Hamiltonization:
the reduced equations (7.15) are Hamiltonian with respect to the symplectic form w + ρ∗f ,
where w is the canonical symplectic form (7.17).

For n = 3, the condition that the inertia operator I is proportional to the identity
operator is equivalent to the Zhukovskiy condition (6.4). One gets the case of motion of a
gyroscopic ball considered by Demchenko in [32], see also [33] and subsection 9.2 below,
under an additional non-twisting condition. This motivates us to introduce the following
definition of a generalized Demchenko case without twisting in higher dimensions.

Definition 9.1. We say that the ball with a gyroscope satisfies the Zhukovskiy condition
if the inertia operator I of the system is proportional to the identity operator. The generalized
Demchenko case without twisting in Rn, n > 3, is a system of a balanced n-dimensional
gyroscopic ball satisfying the Zhukovskiy condition, rolling without slipping and twisting
over a fixed (n− 1)–dimensional sphere.

As before, we consider the cotangent bundle T ∗Sn−1 ⊂ R2n{γ, p} realized by the con-
straints (7.13), w is the canonical symplectic form on T ∗Sn−1 given with (7.17) and ρ is the
canonical projection ρ : T ∗Sn−1 → Sn−1. Now, the magnetic Poisson brackets on R2n{γ, p}
without the set {γ = 0} are defined by:

(9.2) {F,G}d = {F,G}κ − {F, φ1}κ{G,φ2}κ − {F, φ2}κ{G,φ1}κ

{φ1, φ2}κ
,

where

{F,G}κ =
∑
i

(∂F
∂γi

∂G

∂pi
− ∂F

∂pi

∂G

∂γi

)
+

1

ε2

∑
i,j

κij
∂F

∂pi

∂G

∂pj

and φ1, φ2 are given in (7.13). The symplectic leaf given by (7.13) is the cotangent bundle
T ∗Sn−1 endowed with the twisted symplectic form w + ρ∗f .
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Let the modified inertia operator I = I +DIdso(n) (D = ma2) be equal to the identity
operator on so(n) multiplied by a constant τ . For example, we can take I given by (8.1)
with A = diag(

√
τ , . . . ,

√
τ). Then the reduced Hamiltonian takes the form

(9.3) h =
ε2

2τ
〈p, p〉.

By taking H = h − λ1φ1 − λ2φ2, we obtain the magnetic Hamiltonian flow of the
Hamiltonian (9.3) with respect to the Dirac bracket (9.2)

γ̇ =
∂H

∂p
=
ε2

τ
p− λ2γ,(9.4)

ṗ =− ∂H

∂γ
+

1

ε2
κ
(∂H
∂p

)
= 2λ1γ + λ2p+

1

τ
κp− λ2

ε2
κγ.(9.5)

Here, from the condition that φ1 and φ2 are first integrals of the flow, the Lagrange multi-
pliers can be calculated to get

λ1 =
1
τ 〈p, κγ〉 −

ε2

τ 〈p, p〉
2〈γ, γ〉

, λ2 =
ε2

τ

〈p, γ〉
〈γ, γ〉

.

Proposition 9.1. The equations of motion of the n-dimensional generalized Demchenko
case without twisting are:

(9.6) τ ω̇ = [κ, ω] + λ0, γ̇ = −εωγ,

where κ ∈ so(n) is a fixed skew-symmetric matrix (9.1) and the Lagrange multiplier λ0 ∈
(Rn∧γ)⊥ is determined from the condition that ω ∈ Rn∧γ. The equations of motion reduce
to the magnetic geodesic flow of the Hamiltonian (9.3) with respect to the bracket (9.2)

(9.7) γ̇ =
ε2

τ
p, ṗ =

1

τ
κp+ µγ, µ =

1

τ
〈p, κγ〉 − ε2

τ
〈p, p〉,

restricted to the cotangent bundle of the sphere (7.13).

The proof follows from (7.8), the equations (9.4), (9.5) restricted to (7.13), and Propo-
sition 7.2.

When ε = 1, we obtain the equations of motion of a gyroscopic ball rolling without
slipping and twisting over the plane orthogonal to γ, such that the the inertia operator
I of the system is proportional to the identity operator. In dimension n = 3 this is the
Zhukovskiy problem with an additional nontwisting condition (see Section 6).

Let us note that integrable magnetic Hamiltonian systems on S2 were studied in [64],
using their relation to a special Neumann system on S3. In particular, the reduced problem
(9.7) for n = 3 was described there by using the Cartan model of the sphere S2 within
the group SU(2). Although the systems (9.7) are quite natural as they are described by
the round metric on a sphere with a magnetic field defined by a constant two-form in the
ambient space, they have not been studied before for n > 3.

Since I (and equivalently I) is proportional to the identity matrix, we can consider,
without loss of generality, the system in a suitable orthonormal basis [e1, . . . , en] of Rn,
such that the skew-symmetric matrix (9.1) takes the form

κ = κ12e1 ∧ e2 + κ34e3 ∧ e4 + · · ·+ κ2[n/2]−1,2[n/2]e2[n/2]−1 ∧ e2[n/2].

9.2. Three-dimensional Demchenko case without twisting. In his PhD thesis
[32] (see also [33]) Demchenko studied the rolling of a ball with a gyroscope without slipping
over a fixed sphere in R3. He assumed that the ball is dynamically axially symmetric, that
axis of gyroscope coincide with symmetry axis of the ball, and that the inertia operators
of the ball and the gyroscope satisfy the Zhukovskiy condition (6.4), that is, the inertia
operator of the system is proportional to the identity matrix: I = diag(A,A,A).
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The equations of motion are (see (6.2))

(9.8) ~̇k = (~k + ~κ)× ~ω, ~̇γ = ε~γ × ~ω,

where ~k = (A+ma2)~ω −ma2〈~ω,~γ〉~γ. Demchenko solved the system via elliptic functions.
Now, we add the no-twisting condition on the Demchenko rolling, e.q. we additionally

assume that the angular velocity ~ω belongs to the common tangent plane of the ball and
the sphere in their contact point. The equations of motion are (see (6.5))

(9.9) ~̇k = ~κ× ~ω + λ~γ, ~γ = ε~γ × ~ω,

where ~k = (A+ma2)~ω = ((A+ma2)ω1, (A+ma2)ω2, (A+ma2)ω3)) and λ is the Lagrange
multiplier of the constraint 〈~ω,~γ〉 = 0,

λ = −〈~γ,~κ× ~ω〉.

After the identification (8.16), the matrix system (9.6), for n = 3, becomes the system
(9.9) in the vector notation, where the matrix multiplier λ0 corresponds to λ~γ, γ ≡ ~γ, and
the parameter τ is equal to A+ma2 (see Remark 8.1).

The reduced equations of motion (9.7) on T ∗S2, for κ = κ12e1 ∧ e2, become

(9.10)

γ̇1 =
ε2

τ
p1, ṗ1 =

1

τ
κ12p2 + µγ1,

γ̇2 =
ε2

τ
p2, ṗ2 = −1

τ
κ12p1 + µγ2,

γ̇3 =
ε2

τ
p3, ṗ3 = µγ3,

µ =
κ12

τ
(p1γ2 − p2γ1)− ε2

τ
(p2

1 + p2
2 + p2

3),

They are Hamiltonian with respect to the Poisson structure (9.2) and the Hamiltonian is

h =
ε2

2τ
(p2

1 + p2
2 + p2

3).

Theorem 9.1. The reduced equations of the Demchenko case without twisting (9.10)
are Liouville integrable on T ∗S2 with the first integrals h, Φ, where

Φ(γ, p) = γ1p2 − γ2p1 +
κ12

2ε2
(γ2

1 + γ2
2).

Proof follows by a direct calculation.
The reduced system (9.10) can be solved in elliptic quadratures.

Theorem 9.2. The reduced equations of the three-dimensional Demchenko case without
twisting (9.10) can be explicitly integrated via elliptic functions and their degenerations.

Proof. Instead on the cotangent bundle T ∗S2{γ, p}, we will equivalently integrate the
system on the tangent bundle TS2{γ, γ̇}. Let us introduce polar coordinates r, ϕ by

γ1 = r cosϕ, γ2 = r sinϕ.

From the condition 〈γ, γ〉 = 1 it follows that r2 + γ2
3 = 1, while 〈γ, γ̇〉 = 0 is identically

satisfied. By differentiating r2 + γ2
3 = 1 with respect to time, one gets γ̇2

3 = r2

1−r2 ṙ
2.

In the new coordinates, using the last relation, the first integrals can be rewritten as:

h =
τ

2ε2

(
ṙ2 + r2ϕ̇2 +

r2ṙ2

1− r2
),(9.11)

Φ =
τ

ε2
r2ϕ̇+

κ12

2ε2
r2.(9.12)

Note that τ > 0. We also assume h > 0 since h = 0 corresponds to the equilibrium
positions.
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From (9.12), we get

(9.13) ϕ̇ =
2ε2Φ− κ12r

2

2τr2
,

and, by plugging into (9.11), it follows

ṙ2 =
( ε2

τ2
(2hτ + κ12Φ)− κ2

12

4τ2
r2 − ε4Φ2

τ2

1

r2

)
(1− r2).

Introducing u = r2, one derives

u̇2 = Q3(u),

Q3(u) : =
κ2

12

τ2
(u− 1)

(
u2 − 4ε2

κ2
12

(2hτ + κ12Φ)u+
4ε4Φ2

κ2
12

)
(9.14)

=
κ2

12

τ2
(u− 1)(u− u1)(u− u2).

Thus, r2 can be expressed as an elliptic function (or its degenerations) of time. Using
γ2

3 = 1− r2, one gets γ3, and from (9.13) one finds ϕ after an integration. �

Notice that the polynomial Q3 (9.14) always has u = 1 as a root. Observe also:

Q3(0) = −4ε4Φ2

τ2
< 0.

From Vieta’s formulas, it follows that u1u2 > 0, or in other words, the remaining two
roots u1, u2 of Q3 are of the same sign. Having in mind that 0 6 u 6 1, the real solutions,
for u1 < u2, corresponds to the following cases:

(A) 0 < u1 < u2 < 1; Case (A) happens when the discriminant of the polynomial
Q2(u) = (u − u1)(u − u2) is greater then zero, the minimum of Q2(u) is between
0 and 1, and Q2(1) > 0. This yields conditions:

hτ + κ12Φ > 0,

2hτ + κ12Φ <
κ2

12

2ε2
,

2hτ + κ12Φ− ε2Φ <
κ2

12

4ε2

(B) 0 < u1 < 1 < u2. Case (B) happens when Q2(1) < 0, that is

2hτ + κ12Φ− ε2Φ >
κ2

12

4ε2

In both cases r belongs to an annulus:

Case (A)
√
u1 6 r 6

√
u2; Case (B)

√
u1 6 r 6 1.

When the discriminant of the polynomial Q3 (9.14) vanishes, the corresponding elliptic
functions degenerate. It happens if u1 = u2, or when one of the roots u1, u2 is equal to 1.
Direct calculations show that the discriminant of the polynomial Q3 vanishes when

hτ + κ12Φ = 0, or 2hτ + κ12Φ− ε2Φ =
κ2

12

4ε2
.

The first case corresponds to the condition that the discriminant of Q2 is zero, and the
second case corresponds to Q2(1) = 0.
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9.3. The generalized Demchenko case without twisting in R4. A qualitative
analysis of the solutions. In dimension four, the equations of motion of generalized
Demchenko case without twisting reduce to Hamiltonian equations with respect to the
Poisson structure (9.2) on the cotangent bundle T ∗S3 ⊂ R4{γ, p} of the three-dimensional
sphere realized by 〈γ, γ〉 = 1, 〈γ, p〉 = 0. Let

κ = κ12e1 ∧ e2 + κ34e3 ∧ e4.

The equations (9.7) are:

(9.15)

γ̇1 =
ε2

τ
p1, ṗ1 =

1

τ
κ12p2 + µγ1,

γ̇2 =
ε2

τ
p2, ṗ2 = −1

τ
κ12p1 + µγ2,

γ̇3 =
ε2

τ
p3, ṗ3 =

1

τ
κ34p4 + µγ3,

γ̇4 =
ε2

τ
p4, ṗ4 = −1

τ
κ34p3 + µγ4,

µ =
1

τ

(
κ12(p1γ2 − p2γ1) + κ34(p3γ4 − p4γ3)

)
− ε2

τ
(p2

1 + p2
2 + p2

3 + p2
4).

The Hamiltonian is

h =
ε2

2τ
(p2

1 + p2
2 + p2

3 + p2
4).

Theorem 9.3. The reduced equations of generalized Demchenko case for n = 4 (9.15)
are Liouville integrable on T ∗S3 with the three first integrals h, Φ12, and Φ34 in involution,
where

Φ12(p, γ) = γ1p2 − γ2p1 +
κ12

2ε2
(γ2

1 + γ2
2),

Φ34(p, γ) = γ3p4 − γ4p3 +
κ34

2ε2
(γ2

3 + γ2
4).

The proof follows by a direct calculation.
It is well known that the question of integrability for a Hamiltonian system is distinct

from the problem of its explicit integration.
The reduced equations of generalized Demchenko case without twisting in R4 can be

solved via elliptic functions by quadratures, similarly to their three-dimensional counterpart,
see Theorem 9.2 above.

Theorem 9.4. The reduced equations of generalized Demchenko case without twisting
for n = 4 (9.15) can be explicitly integrated via elliptic functions and their degenerations.

Proof. As in dimension n = 3, instead on the cotangent bundle T ∗S2{γ, p}, we will
integrate the system on the tangent bundle TS3{γ, γ̇}. Let us introduce new coordinates
ρ1, ρ3, ϕ1, ϕ3 by

γ1 = ρ1 cosϕ1, γ2 = ρ1 sinϕ1, γ3 = ρ3 cosϕ3, γ4 = ρ3 sinϕ3.

From the condition 〈γ, γ〉 = 1 it follows that ρ2
1 + ρ2

3 = 1, while 〈γ, γ̇〉 = 0 is identically
satisfied. In the new coordinates the first integrals become

(9.16)

h =
τ

2ε2

(
ρ̇2

1 + ρ2
1ϕ̇

2
1 + ρ̇2

3 + ρ2
3ϕ̇

2
3

)
,

Φ12 =
τ

ε2
ρ2

1ϕ̇1 +
κ12

2ε2
ρ2

1,

Φ34 =
τ

ε2
ρ2

3ϕ̇3 +
κ34

2ε2
ρ2

3.

Since the first integrals Φ12 and Φ34 depend on ρ1, ϕ̇1 and ρ3, ϕ̇3 respectively, ϕ̇1 can
be expressed as a function of ρ1 and values of these first integrals; similarly, ϕ̇3 can be
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expressed as a function of ρ3 and values of these first integrals:

(9.17) ϕ̇1 =
2ε2Φ12 − κ12ρ

2
1

2τρ2
1

, ϕ̇3 =
2ε2Φ34 − κ34ρ

2
3

2τρ2
3

.

By differentiating the relation ρ2
1 + ρ2

3 = 1 with respect to time, we get

ρ̇2
3 =

ρ2
1

1− ρ2
1

ρ̇2
1.

Using (9.17), the last equality, and the expression for the first integral h from (9.16), one
obtains

ρ̇2
1 = (1− ρ2

1)
2ε2h

τ
− (2ε2Φ34 − κ34 + κ34ρ

2
1)2

4τ2
− 1− ρ2

1

ρ2
1

(2ε2Φ12 − κ12ρ
2
1)2

4τ2
.

Introducing u = ρ2
1, it follows

(9.18) u̇2 = P3(u).

Here, P3 is a polynomial in u of the degree not greater than three:

P3(u) := a0u
3 + a1u

2 + a2u+ a3,

where

a0 =
κ2

12 − κ2
34

τ2
, a3 = −4ε4Φ2

12

τ2
,

a1 = −8ε2h

τ
− 2κ34

τ2
(2ε2Φ34 − κ34)− κ2

12

τ2
− 4ε2κ12Φ12

τ2
,

a2 =
8ε2h

τ
− (2ε2Φ34 − κ34)2

τ2
+

4ε2κ12Φ12

τ2
+

4ε4Φ2
12

τ2
.

Therefore, from the equation (9.18), integrating, one gets ρ2
1 as an elliptic function or

a degeneration of an elliptic function, depending on the degree and composition of zeros
of the polynomial P3(u). We get ρ3 from the algebraic equation ρ2

3 = 1 − ρ2
1. Finally, the

variables ϕ1, ϕ3 can be obtained by quadratures from (9.17). �

Let us express the variable ρ2
1 in terms of the Weierstrass ℘-function in a generic case:

κ2
12 6= κ2

34 and the polynomial P3(u) has all roots distinct. Introducing z such that

u =
4

a0
z − a1

3a0
,

the equation (9.18) takes the form

(9.19) ż2 = 4z3 − g2z − g3,

where

g2 =
a2

1

12
− a0a2

4
, g3 =

a0a1a2

4
− a3

1

216
− a2

0a3

16
.

By integration of (9.19) we get
∞∫
z

dξ√
4ξ3 − g2ξ − g3

−
∞∫
z0

dξ√
4ξ3 − g2ξ − g3

= ±(t− t0).

Finally, using the Weierstrass ℘-function (see for example [1]), one obtains

z = ℘(A± (t− t0)), z0 = ℘(A).

Now, we are going to provide a qualitative analysis of the solutions of the generalized
Demchenko case without twisting in R4, obtained in Theorem 9.4.

Case A. Let us consider first the case κ2
12 6= κ2

34. Then P3(u) is a degree three poly-
nomial. The coordinates ρ1, ϕ1 and ρ3, ϕ3 are polar coordinates on the projections of the
sphere 〈γ, γ〉 = 1 to the coordinate planes Oe1e2 and Oe3e4, respectively. Hence, ρ1 and
ρ3, and consequently u can take values between 0 and 1.
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Since

P3(0) = −4ε4Φ2
12

τ2
< 0,

and

P3(1) = −4ε4Φ2
34

τ2
< 0,

one concludes that on interval (0, 1) the polynomial P3(u) has (i) no real roots; (ii) two
distinct real roots; or (iii) one double real root.

(i) If the number of real roots is zero, then the polynomial P3(u) takes negative values
on the whole interval (0, 1). Thus, the case (i) does not correspond to a real motion.

(ii) In the case (ii) when the polynomial P3(u) has two distinct real roots u1 < u2 on
the interval (0, 1), the projection of a trajectory to the Oe1e2 and Oe3e4 planes
belong, respectively, to the annuli

√
u1 6 ρ1 6

√
u2 and

√
1− u2

2 6 ρ3 =
√

1− ρ2
1 6

√
1− u2

1.

There are three types of the trajectories in this case. Let

û =
2ε2Φ12

κ34
.

If û belongs to (u1, u2) then ϕ̇1 changes the sign and trajectories are presented in
Figure 2. If û is equal to u1 or u2, then the trajectories are presented in Figure 3.
Otherwise, the trajectories are presented in Figure 4.

Figure 2. The case u1 < û < u2

Figure 3. The cases û = u2 (left) and û = u1 (right)
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Figure 4. The case when û does not belong to the interval [u1, u2]

Figure 5. A case that does not correspond to a possible motion.

(iii) The case of a double root u1 = u2 corresponds to the stationary motion

ρ1 = const, ϕ1 = α1t+ ϕ10,

ρ3 =
√

1− ρ2
1 = const, ϕ3 = α3t+ ϕ20,

where

α1 =
2ε2Φ12 − κ12u1

2τu1
= const, α3 =

2ε2Φ34 − κ34(1− u1)

2τ(1− u1)
= const.

From the equations of motion (9.15) it follows that the constants α1 and α3 should
satisfy:

κ12α1 − κ34α3 + τ(α2
1 − α2

3) = 0.

Since the roots u1 and u2 of the polynomial P3(u) coincide, the discriminant of
the polynomial P3(u) is equal to zero.

As we mentioned, in the case when ϕ̇1 changes the sign, the trajectories are
presented in Figure 2. In both cases, if we consider ϕ1 as a function on the universal
covering of S1, it is an unbounded function of time: in one case it goes to plus
infinity, while in the other case it goes to minus infinity, when t goes to infinity.

We come to a natural question: is there any case when ϕ1 is a bounded or, in
particular, a periodic function of time?

In other words, are there conditions which would generate Figure 5 as a limit
case of those presented in Figure 2. The answer is negative, as one concludes from
the following:

Proposition 9.2. If κ12 6= 0, then ϕ1 is unbounded function of time.

Proof. From (9.17) we have

ϕ̇1 =
2ε2Φ12

2τu
− κ12

2τ
.
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Since κ12 6= 0, the second addend is a constant, while the first one is periodic in
time. So ϕ1 is unbounded function of time. �

Case B. In the case κ34 = ±κ12, the coefficient of u3 in the polynomial P3(u) is zero.
Hence P3(u) is at most a quadratic polynomial in u. Qualitative pictures of the trajectories
are the same as before. They are presented in Figures 2, 3, and 4 with an important
difference: now the solutions are not elliptic functions of time.

In the case when u1 = u2, the discriminant of the polynomial P3 vanishes. This leads
to the stationary motion

ρ1 = const, ρ3 =
√

1− ρ2
1 = const, ϕ1 = α1t+ ϕ10, ϕ3 = α3t+ ϕ20.

As in the case A, the constants α1 and α3 are not independent. If κ12 = κ34 we have
α1 = α3, or α1 + α3 = κ12/τ . When κ34 = −κ12, then α1 = −α3 or α1 + α3 = κ12/τ .

Remark 9.1. Let us remark that in the dynamics of the Lagrange top in absence of
gravity there exist a situation similar to the one mentioned before Proposition 9.2 (see Figure
5). This system can also be seen as a symmetric Euler top. There is a stationary motion
about the axis of symmetry that is in a non-vertical position. In other words, the system of
equations admits the following particular solution: the nutation angle θ = θ0 ∈ (0, π/2) is
a constant different from zero, the precession angle ϕ is constant, and the angle of intrinsic
rotation ψ is a linear function of time. If in an initial moment of time one chooses θ close
to θ0, then the nutation and precession will be periodic functions of time, and the axis of
symmetry will uniformly rotate about the vector of angular momentum, which is fixed in
the space. See [2] for more details.

What is going on in with the Lagrange top with the presence of gravity? Can the
precession angle be a periodic function on the universal covering of S1?

It may look like the mentioned stationary solution exists in the presence of gravity as
well. The three first integrals (the energy integral, the projection of the angular momentum
on the vertical axis, the projection of the angular momentum on the axis of symmetry) are
constant functions on the solution. However, from the equations of motion one gets that
the stationary motion about the axis of symmetry is possible only when θ = 0 or θ = π.
Based on that, one can speculate that a solution of the Lagrange top with the presence of
gravity having the precession angle as a bounded or periodic function of time does not exist.
A rigorous proof of that observation was provided by Hadamard in 1895 [49]. Although
the Lagrange top was widely studied since then, with dozens of volumes devoted to it, this
Hadamard’s result is very hard to find. A nice exception is a recent short note [76].
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[4] A. Bakša, On geometrisation of some nonholonomic systems, Mat. Vesn. 27 (1975), 233–240. (in
Serbian); English transl.: Theor. Appl. Mech. 44(2) (2017), 133–140.



GYROSCOPIC CHAPLYGIN SYSTEMS 35
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(1916).

[12] A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, R. M. Murray, Nonholonomic mechanical systems with

symmetry, Arch. Ration. Mech. Anal. 136 (1996), 21–99,
[13] D. K. Bobilev, About a ball with an iside gyroscope rollong without sliding over the plane, Mat. Sb.,

1892.

[14] S. V. Bolotin, V. V. Kozlov, Topology, singularities and integrability in Hamiltonian systems with
two degrees of freedom, Izv. RAN. Ser. Mat., 81(2017), no. 4, 3–19 (Russian); English translation: Izv.

Math., 81(2017) 671–687.

[15] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, Hamiltonization of non-holonomic systems in the neigh-
borhood of invariant manifolds, Regul. Chaotic Dyn. 16 (2011), 443–464.

[16] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, Geometrisation of Chaplygins reducing multiplier theorem,

Nonlinearity 28 (2015), 2307–2318.
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[45] B. Gajić, B. Jovanović, Two integrable cases of a ball rolling over a sphere in Rn, Rus. J. Nonlin. Dyn.,

15(4) (2019), 457–475
[46] L. C. Garcia-Naranjo, Generalisation of Chaplygin’s Reducing Multiplier Theorem with an application

to multi-dimensional nonholonomic dynamics, J. Phys. A, Math. Theor. 52 (2019), 205203, 16 pp,
arXiv:1805.06393 [nlin.SI].

[47] L. C. Garcia-Naranjo, Hamiltonisation, measure preservation and first integrals of the multi-

dimensional rubber Routh sphere, Theor. Appl. Mech. 46(1) (2019), 65–88, arXiv:1901.11092 [nlin.SI].
[48] L. C. Garcia-Naranjo, J. C. Marrero, The geometry of nonholonomic Chaplygin systems revisited, Non-

linearity 33(3) (2020), 1297–1341, arXiv:1812.01422 [math-ph].
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Prilozh. 22 (1988), 69–70, (in Russian); English transl.: Funct. Anal. Appl. 22(1) (1988), 58–59.

[56] V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn.
7 (2002), 161–176.

[57] N. Kowalzig, N. Neumaier, M. J. Pflaum, Phase Space Reduction of Star Products on Cotangent
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