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The discrete complex Ginzburg-Landau equation is a fundamental model for the dynamics of
nonlinear lattices incorporating competitive dissipation and energy gain effects. Such mechanisms
are of particular importance for the study of survival/destruction of localised structures in many
physical situations. In this work, we prove that in the discrete complex Ginzburg-Landau equation
dissipative solitonic waveforms persist for significant times by introducing a dynamical transitivity
argument. This argument is based on a combination of the notions of “inviscid limits” and of
the “continuous dependence of solutions on their initial data”, between the dissipative system and
its Hamiltonian counterparts. Thereby, it establishes closeness of the solutions of the Ginzburg-
Landau lattice to those of the conservative ideals described by the Discrete Nonlinear Schrödinger
and Ablowitz-Ladik lattices. Such a closeness holds when the initial conditions of the systems are
chosen to be sufficiently small in the suitable metrics and for small values of the dissipation or gain
strengths. Our numerical findings are in excellent agreement with the analytical predictions for the
dynamics of the dissipative bright, dark or even Peregrine-type solitonic waveforms.

I. INTRODUCTION

The complex discrete Ginzburg-Landau equation (DGL), in its standard local version

dun
dt

= un + (1 + iα)(un+1 − 2un + un−1)− (1 + iβ) |un|2un, un ∈ C n ∈ Z, α, β ∈ R, (1.1)

is one of the fundamental discrete dissipative nonlinear lattices appearing in numerous physical contexts, such as the
dynamics of coupled waveguides, lasers and of low-dimensional fluid dynamical systems [1]-[9]. An important feature
of the DGL lattice is that is connected with the physically significant Discrete Nonlinear Schrödinger equation (DNLS)
[10]-[13],

i
dφn
dt

= −α(φn+1 + φn−1 − 2φn) + β|φn|2φn, (1.2)

as α, β → ∞. Dividing (1.1) and (1.2) by α, scaling the time as τ = αt and denoting ε = 1/α and κ = β/α, we get
that the DGL (1.1) and the DNLS (1.2) can be rewritten respectively, in the form

i
dun
dτ

= iεun + (iε− 1)(un+1 − 2un + un−1)− (iε− κ) |un|2un, n ∈ Z, (1.3)

and

i
dφn
dτ

= −(φn+1 + φn−1 − 2φn) + κ|φn|2φn. (1.4)

Hence, equation (1.4) is obtained from (1.3) in the limit ε→ 0+, and consequently, (1.3) can be viewed as a dissipative
extension of (1.4). Notice that if α, β → ∞, the value of κ is determined by the rate at which α and β diverge, and
that for large but finite values of α, β being of the same order, one has that κ ∼ O(1). The sign of the parameter κ
renders the DNLS system as focusing (κ < 0) or defocusing (κ > 0).

The conservative DNLS equation (1.4), being non-integrable, has attracted tremendous attention as a universal
model for the dynamics of localised structures in discrete media. The existence of discrete breathers and discrete
solitonic structures for the DNLS (1.4) has been established by wide blend of computational and analytical methods,
ranging from the anticontinuous limit approaches to homoclinic, asymptotic and variational methods; see the repre-
sentative works [14]-[22] and references therein. It is crucial to remark that a major problem concerning the existence
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of travelling solitons of DNLS is that a localised state can be pinned due to the Peierls-Nabarro barrier [23]. This is
not the case for the Ablowitz-Ladik (AL) lattice

i
dψn
dt

= −(ψn+1 + ψn−1 − 2ψn) + κ(ψn+1 + ψn−1)|ψn|2, n ∈ Z, (1.5)

which is integrable (by the Inverse Scattering Transform Method [24]), admits a great variety of analytical solitary
solutions [25–28], and possesses continuous translation symmetry which allow them to travel along the lattice.

Since the existence of discrete localised modes concerns the conservative ideals (1.4) and (1.5), an important
question, both from the mathematical and the physical applications viewpoint, is the following: to what extent may
discrete solitonic structures persist or survive in the presence of linear or nonlinear gain/loss effects, which are relevant
to a more realistic description of physical set-ups where such effects cannot be neglected?

Key works on the numerical identification and the construction of analytical or approximative soliton solutions for
DGL systems which incorporate a mixture of cubic and other power-law type and saturable nonlinearities, and/or
non-local terms similar to the non-local nonlinearity of the AL-system are [29]-[33]. Apart from their physical sig-
nificance and relevance, the presence of the non-local terms in the DGL systems seems to be important in identi-
fying/constructing localised modes bifurcating from solutions arising in the integrable AL-limit. Extensions of such
approaches to 2D systems are provided in [34–36].

In the present paper, we aim at answering the above question by investigating the potential persistence and evolution
properties of localised structures for the DGL equation (1.3), by taking advantage of our recent results on the
congruence of the dynamics of solutions of nonlinear lattices involving local and non-local nonlinearities [37],[38].
In particular, via a transitivity argument, we establish a closeness result between the solutions of the dissipative
DGL equation (1.3) and the solutions of the AL lattice (1.5) in the limit ε → 0 and when the initial conditions are
sufficiently close in the l2 or l∞-metric and sufficiently small in the relevant norms.

Let as analyse this transitivity argument further. The first step is to prove that for any ε > 0, solutions of the DGL
(1.3) are close to the solutions of the DNLS (1.4) in the following sense of “a continuous dependence on their initial
data”: If their initial conditions satisfy ||u0 − φ0||l2 ≤ K0ε, for any 0 < ε < 1, ε ≤ ε, for some constant K0 > 0,
then the corresponding solutions satisfy ||u(t) − φ(t)|| ≤ Cε, for all t ∈ [0, Tf ], for arbitrary 0 < Tf < ∞ and the
constant is of the form C = C(u0, φ0, κ, Tf ). In the limit ε → 0, we revisit the “inviscid” limit of the DGL (1.3),
that is the DNLS (1.4) (see also [39] in the case of the dissipative DNLS). In the second step, by implementing the
closeness results of [37, Theorem 1.1, pg. 349], we are able to use for our purposes the “continuous dependence” result,
this time between the solutions of the DNLS (1.4) and the AL-lattice (1.5): Assuming that their initial conditions

satisfy ||φ0 − ψ0||l2 ≤ C0 ε, for any ε > 0, then we may prove an estimate of the form ||φ(t) − ψ(t)||l2 ≤ C̃ε where

again C̃ = C̃(φ0, ψ0, κ, Tf ). Consequently, combining the above two results, establishes when ε → 0 in the DCGL
equation (1.3), the convergence of its solutions to those of the AL-lattice (1.5), when the distance of their initial data
||u0 − ψ0||l2 → 0, as ε → 0, through analytical estimates in the same “continuous dependence of their initial data”
sense as described above.

The impact of this result is that the analytical solitary solutions of the Hamiltonian AL-lattice (1.5) should persist
for finite intervals which can be sufficiently large (pending on the closeness and smallness of the initial data of the
systems), in the dissipative DGL lattice (1.3), for small values of ε > 0. In particular, the corresponding dissipative
localised structures should share for the time of their survival, a functional form and characteristics which should be
close to the analytical solutions of the AL lattice. These should include bright and dark solitons, even discrete rational
solutions such as the discrete Peregrine soliton. The results are valid for all the distinct regimes of dissipation or gain
effects present in the DGL, which affect the maximal interval of existence of solutions.

At this point, it is important to remark that in the DGL (1.3) the choice of a positive value for ε is crucial. When
ε > 0, it ensures global existence of the solutions for all initial data, as the case ε > 0 corresponds to the case of
linear gain and nonlinear loss manifested by the terms εun and ε|un|2un, respectively. To study the dynamics of the
localised structures in different regimes of gain/loss we consider the variant of (1.3)

i
dun
dt

= iε1un + (iε2 − 1)(un+1 − 2un + un−1)− (iε3 − κ) |un|2un, |εi| = ε > 0, i = 1, 2, 3. (1.6)

While the closeness results described above are valid for the DGL (1.6) in the case where |εi| = ε → 0, the time
interval [0, Tf ] for the study of the dynamics should be finite with Tf < Tmax where [0, Tmax) is the generic maximal
interval of existence of solutions of Eq. (1.6). This restriction is due to the fact that in the regimes of linear and
nonlinear gain or linear loss and nonlinear gain, the solutions may collapse (blow-up) in finite time Tmax. This is
in vast contrast to the Hamiltonian DNLS and AL lattices for which solutions exist for all times. In light of such a
behaviour, we numerically test the theoretical results for the DGL system (1.6) in the distinct regimes of gain and
loss. The findings of the numerical experiments are in excellent agreement with the analytical predictions for the
closeness of solutions and the global dynamics of the dissipative localised structures in the aforementioned regimes.
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The presentation of the paper is as follows: In Section II we prove the analytical closeness/convergence result of
solutions between the DCGL (1.6) and the AL lattice (1.5). Section III is devoted to the numerical studies. In
the first part of Section III, we prove analytical results on the global asymptotic behaviour of solutions for finite
lattice approximations, for all linear and nonlinear gain/loss regimes. These analytical results are particularly useful,
in explaining the observed dynamics for the dissipative localised structures illustrated by the findings of the direct
numerical simulations. The latter are presented in the second part of Section III. We would like to remark, that
such type of results highlights the importance of the issue of the potential global asymptotic stability or instability of
solutions: Exact analytical solutions (or other approximate solutions), if constructed for the DGL equation (see for
example [40, 41], [42, pg. 208]) and slightly perturbed, they should obey the global dynamics as analysed herein, and
exhibit in long term, the instability manifested by either decay, collapse or convergence to other asymptotic states
described by the global attractor of the system. In Section IV we summarise the main results and discuss potential
future studies.

II. INVISCID LIMIT AND CLOSENESS THEOREM

a. Preliminaries: local and global existence of solutions. The functional setting and properties of linear and
nonlinear operators involved in the nonlinear lattices considered in the present paper is described in [37, 38] and
references therein. In particular, for the DGL system (1.6), we may prove the following local existence result of
solutions in the sequence spaces

lp =

u = (un)n∈Z ∈ C | ||u||lp =

(∑
n∈Z
|un|p

)1/p
 , 1 ≤ p ≤ ∞. (2.7)

Proposition II.1 Let |εi| = ε > 0, κ ∈ R and the initial condition u(0) = u0 ∈ l2 be arbitrary. There exists some
Tmax(u0) > 0, such that the DGL system (1.6) has a unique solution u ∈ C1([0, Tf ], l2) for all 0 < Tf < Tmax. In
addition, the following alternatives hold: Either Tmax =∞ (global existence) or Tmax <∞ and limt↑Tmax

||u(t)||`2 =∞
(collapse or blow-up in finite time). Furthermore, the solution u depends continuously on the initial condition u0 ∈ l2,
with respect to the norm of C([0, Tf ], l2).

Let us recall, that the proof of Proposition II.1 makes use of the continuous embeddings

lr ⊂ ls, ||w||ls ≤ ||w||lr , 1 ≤ r ≤ s ≤ ∞, (2.8)

which will also be used in the sequel, for the derivation of various estimates.
It is crucial to remark that a vast contrast between the DGL system (1.6), the Hamiltonian DNLS (1.4) and the

AL lattice (1.5), is that solutions of the DNLS exists globally in time, unconditionally with respect to the size of the
initial data and the sign of the parameter κ. This is due to the conservation of the following quantities for the DNLS
system (1.4), namely the power P and Hamiltonian H

P =
∑
n∈Z
|φn|2,

H =
∑
n∈Z

(
|φn+1 − φn|2 +

κ

2
|φn|4

)
,

which for the AL-system (1.5) are the modified power PAL and the Hamiltonian HAL

PAL =
∑
n∈Z

ln
(
1− κ|ψn|2

)
,

HAL =
∑
n

ψn(ψn+1 + ψn−1).

The sign of parameter κ determines whether the nonlinearity is focusing (κ < 0) or defocusing (κ > 0). Instead of
Proposition II.1, for the DNLS and AL lattices we have the following one.
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Proposition II.2 1. Let κ ∈ R in the DNLS equation (1.4) (focusing or defocusing) and κ < 0 in the AL equation
(1.5) (focusing), and the initial conditions φ(0) = φ0, ψ(0) = ψ0 ∈ l2 be arbitrary. Then, their unique solutions
exist globally in time, i.e., φ, ψ ∈ C1([0,∞), l2). In particular the corresponding solutions satisfy

||φ(t)||2l2 = ||φ0||2l2 , for all t ∈ [0,∞), (2.9)

||ψ(t)||2l2 ≤ Cκ||ψ0||2l2 , for all t ∈ [0,∞), (2.10)

for some constant Cκ > 0 which depends on the parameter κ.

2. Consider the defocusing AL-equation (1.5) with κ > 0. Assume that the initial condition ψ(0) = ψ0 satisfies the
following assumptions:

||ψ0||∞ <
1

κ
and PAL(0) <∞. (2.11)

Then, its unique solution exist globally in time, i.e., ψ ∈ C1([0,∞), l2) and satisfies the estimate

||ψ(t)||2l2 ≤ C ′κ||ψ0||2l2 , for all t ∈ [0,∞), (2.12)

for some constant C ′κ > 0 which also depends on the parameter κ.

The proof of Proposition II.2, concerning in particular the AL lattice follows by implementing the arguments of
[37, Lemma 2.1 and Proposition 3.1], and we omit the details.

b. Proofs of the closeness results. We are ready to proceed to the statements and proofs of the main analytical
results of the paper. First, we prove the closeness of the solutions between the DGL equation (1.6) and the DNLS
equation (1.4) in the sense of a “continuous dependence on their initial data”. This is the first step for the transitivity
argument described in the introduction.

Theorem II.1 Let 0 < |εi| = ε < 1 be arbitrary and [0, Tmax) be the maximal interval of existence for the solutions
of the equation (1.6). Consider any finite Tf such that 0 < Tf < Tmax. For any 0 < ε < 1 such that ε ≤ ε, there exist
a positive constant C(κ, Tf , ||u0||l2 , ||φ0||l2), such that for initial data u(0) = u0 and φ(0) = φ0 satisfying

||u0 − φ0||l2 ≤ K0ε, (2.13)

the corresponding solutions of the DGL equation (1.6) and the (scaled) DNLS equation (1.4) satisfy for any t ∈ [0, Tf ],

||u(t)− φ(t)||l2 ≤ Cε. (2.14)

Proof: We shall use the distance variable ∆n = un − φn between the solutions. Subtracting (1.4) from (1.6) we see
that it satisfies the equation

d∆n

dt
= iε1un + (iε2 − 2)∆n − iε3|un|2un + κ

[
|un|2un − |φn|2φn

]
. (2.15)

Multiplying (2.15) by ∆n, summing over Z and keeping imaginary parts, we derive:

d||∆||2l2
dt

= 2||∆||l2
d||∆||l2
dt

= ε1Re
∑
n∈Z

un∆n + ε2
∑
n∈Z
|∆n+1 −∆n|2

− ε3Re
∑
n∈Z
|un|2un∆n + κIm

∑
n∈Z

[
|un|2un − |φn|2φn

]
∆n. (2.16)

Due to Proposition II.1, there exists a constant M = M(κ, Tf , ||u0||l2), such that the solutions of the DGL (1.6)
satisfy

||u||l2 ≤M, ∀t ∈ [0, Tf ], (2.17)
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while the solutions of the DNLS (1.4) satisfy the conservation (2.9). With these bounds, Cauchy-Schwarz inequality
and the inclusions relation (2.8), we may estimate each term on the right-hand side of (2.16). For the first and third
term, by using the bound (2.17), we get the estimates∣∣∣∣∣ε1Re

∑
n∈Z

un∆n

∣∣∣∣∣ ≤ ε||u||l2 ||∆||l2 ≤ εM ||∆||l2 , (2.18)

∣∣∣∣∣ε3Re
∑
n∈Z
|un|2un∆n

∣∣∣∣∣ ≤ ε
(∑
n∈Z
|un|6

) 1
2
(∑
n∈Z
|∆n|2

) 1
2

= ε||u||3l6 ||∆||l2 ≤ ε||u||3l2 ||∆||l2 ≤ εM3||∆||l2 . (2.19)

For the fourth term, we use the bound (2.9) and the inequality∣∣|un|2un − |φn|2φn∣∣ ≤ |φn|2|un − φn|+ |un| (|φn|+ |un|) |un − φn|,
to derive the estimate∣∣∣∣∣κIm

∑
n∈Z

[
|un|2un − |φn|2φn

]
∆n

∣∣∣∣∣ ≤ |κ| ||φ||2l∞ ||∆||2l2 + |κ| ||u||l∞ (||φ||l∞ + ||u||l∞) ||∆||2l2

≤ |κ| ||φ||2l2 ||∆||2l2 + |κ| ||u||l2 (||φ||l2 + ||u||l2) ||∆||2l2
≤ |κ| ||φ0||2l2 ||∆||2l2 + |κ|M

(
||φ0||l2 +M

)
||∆||2l2

= M0||∆||2l2 , M0 = |κ|
[
||φ0||l2(1 +M) +M2

]
. (2.20)

We set the constantsM1 = M+M3, M1 = M1(κ, Tf , ||u0||l2) andM2 = M0+4ε, whereM0 = M0((κ, Tf , ||u0||l2 , ||φ0||l2),
as it can be seen from (2.20). Then, from (2.16) and the estimates (2.18)-(2.20), we see that ||∆||l2 satisfies the linear
differential inequality

d||∆||l2
dt

≤ εM1 +M2||∆||l2 . (2.21)

Integration of (2.21) (or Gronwall’s inequality), and the assumption (2.13) on the initial data gives:

||∆(t)||l2 ≤ ||∆(0)||l2 exp(M2t) + ε
M1

M2
[exp(M2t)− 1]

≤ εK0 exp(M2t) + ε
M1

M2
[exp(M2t)− 1] , ∀t ∈ [0, Tf ]. (2.22)

Thus, since ε ≤ ε, the estimate stated in (2.14) is valid with the constant

C = K0 exp(M2Tf ) +
M1

M2
[exp(M2Tf )− 1] , (2.23)

implying also the corresponding limit in (2.14), and the proof is completed. �
Regarding second-order systems, we refer to [43] where error estimates for the approximation of the dynamics of a

diatomic infinite Fermi–Pasta–Ulam (FPU) system with light and heavy particles by the dynamics of the monoatomic
FPU system for a small mass ratio were derived.

The exponential dependence of the constant C given in (2.23), on Tf , is not surprising: we refer also to the time-
growth estimates for the relevant distance function between the solutions of the complex Ginzburg-Landau pde and
the NLS pde, when the inviscid limit of the former is considered [44], which can even grow exponentially [45].

The second step of the transitivity argument is based on the following result concerning the closeness of solutions
between the DNLS and the AL systems, in the sense of “continuous dependence of initial data”, discussed above. It
is proved in [37, Theorem 1.1, pg. 349].

Analytical estimates for Tmax in the case of the blow-up regime, will be proved in Section III for the case of finite
lattices.

Theorem II.2 Consider the DNLS equation (1.4) and the AL equation (1.5), and assume that their initial data
satisfy the conditions of Proposition II.2 for global in time existence. We further assume that for every 0 < ε < 1,
their initial conditions satisfy:

||φ0 − ψ0||l2 ≤ C0 ε
3, (2.24)

||φ0||l2 ≤ Cφ0 ε, (2.25)

PAL(0) =
∑
n

ln
(
1 + κ|ψn(0)|2

)
≤ ln

(
1 + (CAL ε)

2
)
, (2.26)
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for some constants C0, Cφ0
, CAL > 0. Then, for arbitrary finite 0 < Tf < ∞, there exists a constant C̃ =

C̃(φ0, ψ0, κ, C0, Tf ), such that the corresponding solutions for every t ∈ [0, Tf ], satisfy the estimate

||φ(t)− ψ(t)||l2 ≤ C̃ε3. (2.27)

One of the main applications of Theorem II.2 is that the DNLS equation admits small-amplitude solutions, of the
order O(ε), that stay O(ε3)-close to the soliton solutions of the AL equation. We remark that the results of [37], are
valid for both the focusing and defocusing cases of the DNLS and AL lattices.

Combining Theorems II.1 and II.2, we conclude with the proof of the transitivity argument, which gives the main
result of the paper.

Theorem II.3 Let the assumptions (2.13) and (2.24)-(2.26) of Theorems II.1 and II.2, hold. For any 0 < ε ≤ ε < 1
and any Tf as described in TheoremII.1, there exist a positive constant K1 > 0 such that ||u0 − ψ0|| ≤ K1ε, and a
positive constant C1 = C1(u0, φ0, ψ0, κ, Tf ) such that the associated solutions of the DGL equation(1.6) and the AL
equation (1.5) satisfy for any t ∈ [0, Tf ], the estimate

||u(t)− ψ(t)||l2 ≤ C1ε. (2.28)

Proof: Due to the assumptions (2.13) and (2.24), the initial conditions u0 and ψ0 satisfy,

||u0 − ψ0||l2 ≤ ||u0 − φ0||l2 + ||φ0 − ψ0||l2 ≤ K0ε+ C0ε
3 ≤ K1ε,

for some K1 > 0. Then, with the aid of the estimates (2.14) and (2.27), we derive

||u(t)− ψ(t)||l2 ≤ ||u(t)− φ(t)||l2 + ||φ(t)− ψ(t)||l2
≤ Cε+ C̃ε3 ≤ C1ε, (2.29)

where φ(t) is the solution of the DNLS equation (1.4), and C1 is some constant depending on C and C̃, and the proof
is finished. �

Theorem II.3 establishes, when |εi| = ε→ 0 in the DCGL equation (1.6), its solutions convergence to those of the
AL-lattice (1.5), when the distance of their initial data ||u0 − ψ0||l2 → 0, as ε → 0. In terms of applications in the
context localised structures in discrete media, Theorem II.3 certifies the persistence of dissipative discrete solitons for
finite time intervals when the DGL equation (1.6) is the underlying evolution equation for the system. This persistence
will be illustrated in the next section, by direct numerical simulations, where actually, we will investigate numerically
the consequences of the following corollary.

Corollary II.1 Assume that the initial conditions of the AL equation (1.5) and of the DGL equation (1.6) satisfy
u0 = ψ0 and ||ψ0||l2 ≤ Cψ0ε, for any 0 < ε < 1, ε ≤ ε, for some constant Cψ0 > 0. Then there exists a positive
constant C1 = C1(u0, ψ0, κ, Tf ), such that the associated solutions of the DGL equation(1.6) and the AL equation
(1.5) satisfy for any t ∈ [0, Tf ], the estimate

||u(t)− ψ(t)||l2 ≤ C1ε.

Proof: We formally fix the initial condition of the DNLS equation (1.4), so that φ0 = ψ0 in order to apply the
transitivity argument. Note that since u0 = ψ0, the requirement ||u0 − ψ0||l2 ≤ K1ε is trivially satisfied for any
K1 > 0 and any 0 < ε < 1. Note also that since ||ψ0||l2 ≤ Cψ0ε, then due to the elementary inequality ln(1+bx) ≤ bx,
for all b > 0, x > 0, the condition (2.26) is satisfied too. Hence, the result of the Corollary follows immediately from
Theorem II.3. �

It is also important to remark, that due to the congruence results between the local DGL (1.6) and its nonlocal
counterpart, discussed in [38], which are valid even in the absence of external forcing gn = 0, for all n ∈ Z (see [38,
Eq. (1.3)]), the nonlocal DGL exhibits the same dynamics as described by Theorem II.3 and Corollary II.1, under
similar smallness conditions on its initial data.

III. NUMERICAL STUDIES

In this section, we report on the results of numerical studies regarding the persistence and asymptotic behaviour
of dissipative solitary waves in the DGL equation (1.6). Different regimes for linear/nonlinear gain or loss terms
lead to distinct dynamics for the solutions, as it will be demonstrated in the first section dealing with finite lattice
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FIG. 1. Defocusing nonlinearity (κ = 1 > 0) for the DGL lattice (1.6) with ε2 = 0.001, in the case of linear gain ε1 = 0.001
and nonlinear loss ε3 = 0.001. Spatiotemporal evolution of the initial condition un(0) = ψd

n(0) defined by the the dark soliton
analytical solution (3.24) of the AL lattice (1.5), for β = 0.01 and α = π/10 (details in the text-see Section B.a.1).

approximations induced by the application of periodic or Dirichlet boundary conditions, being necessary for the
implementation of numerical schemes. We note that the closeness results of Section II remain valid when the system
is supplemented with the above mentioned boundary conditions. In the second section, we illustrate the numerical
findings for the dynamics of bright and dark solitons and discrete rational solutions, when used as initial conditions
for the DGL system (1.6).

A. Set-up and comments on the asymptotic behaviour of solutions of the finite-lattice approximations

In the numerical simulations we consider a finite lattice occupying a symmetric interval [−L,L], where the position
of the N+1 equidistantly placed oscillators is given by the discrete spatial coordinate xn = −L+nh, n = 0, 1, 2, . . . , N ,
with h = 2L/N being the lattice spacing. The finite lattice is supplemented by either periodic boundary conditions
un = un+N or Dirichlet boundary conditions u0 = uN = 0, and the system is considered in the finite dimensional
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FIG. 2. Defocusing case κ > 0 for the DGL lattice (1.6) with ε2 = 0.001 in the case of linear loss ε1 = −0.001 and nonlinear
loss ε3 = 0.001. Initial conditions and parameters as in Figure 1 (details in the text-see Section B.a.2).

FIG. 3. Blow-up regime: Defocusing case κ > 0 for the DGL lattice (1.6) with ε2 = 0.001, nonlinear gain ε3 = −0.001
(ε̃3 = 0.001) and linear gain ε1 > 0. Left panel: Numerical blow-up time as a function of ε1 [continuous (blue) curve] against
the analytical upper bound (3.12) [dotted-dashed (green) curve] and the analytical blow-up time for plane waves (3.22) [dashed
(red) curve]. Right panel: The evolution of the dark-soliton with ε1 = 0.001 towards blow-up. Details in the text-see Section
B.a.3.

spaces

lpper :=

U = (Un)n∈Z ∈ R : Un = Un+N , ‖U‖lpper
:=

(
h

N−1∑
n=0

|Un|p
) 1

p

<∞

 , 1 ≤ p ≤ ∞,

lp0 :=

U = (Un)n∈Z ∈ R : U0 = UN = 0, ‖U‖lp0 :=

(
h

N−1∑
n=1

|Un|p
) 1

p

<∞

 , 1 ≤ p ≤ ∞,

respectively. The case h = O(1) corresponds to the discrete regime of the system and the case h → 0 approximates
the continuous regime. The norms in the case of the finite dimensional subspaces will be denoted by lp for simplicity,
and are equivalent according to the inequality

||U ||`q ≤ ||U ||`p ≤ N
(q−p)

qp ||U ||`q , 1 ≤ p ≤ q <∞. (3.1)
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FIG. 4. Evolution of the center of mass for the dissipative dark soliton in the regime of linear gain/nonlinear loss studied
in Figure 1 (left panel), and in the regime of linear loss/nonlinear loss studied in Figure 2 (right panel). Dashed black line
corresponds to the AL-lattice analytical dark soliton and red full line holds for the evolution in the DGL equation (1.6).

FIG. 5. Focusing case κ < 0 for the DGL lattice (1.6) with ε2 = 0.001 in the case of linear gain ε1 = 0.001 and nonlinear loss
ε3 = 0.001. Spatiotemporal evolution of the initial condition un(0) = ψs

n(0) defined by the the bright soliton analytical solution
(3.26) of the AL lattice (1.5), for β = 0.01 and α = π/10 (details in the text-see Section B.b.1).

We will also use the spatially-averaged l2-norm of the solutions. The square of this norm will be denoted by

χ(t) =
h

N

N−1∑
n=0

|un(t)|2, (periodic boundary conditions),

χ(t) =
h

N

N−1∑
n=1

|un(t)|2, (Dirichlet boundary conditions).

Regarding the implementation of the above boundary conditions, when the analytical soliton solutions of the AL
system are inserted as initial data, the boundary conditions are strictly satisfied only asymptotically, as L → ∞.
However for a sufficiently large L the induced error has negligible effects on the observed dynamics.

Prior to the presentation of the numerical results, it is important to explain the asymptotic behaviour of the above
finite lattice approximations. For brevity we choose the case ε2 > 0 which induces stronger dissipation to the system.
We comment on the case ε2 ≤ 0 after the following proof.
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FIG. 6. Focusing case κ < 0 for the DGL lattice (1.6) with ε2 = 0.001 in the case of linear loss ε1 = −0.001 and nonlinear loss
ε3 = 0.001. Initial conditions and parameters as in Figure 5 (details in the text-see Section B.b.2).

FIG. 7. Blow-up regime: Focusing case κ < 0 for the DGL lattice (1.6) with ε2 = 0.001, nonlinear gain ε3 = −0.001 (ε̃3 = 0.001)
and linear gain ε1 > 0. Left panel: Numerical blow-up time as a function of ε1 [continuous (blue) curve] against the analytical
upper bound (3.12). Right panel: The evolution of the bright soliton with ε1 = 0.001 towards blow-up. Details in the text-see
Section B.b.3.

Theorem III.1 In the DGL equation (1.6), we fix ε2 > 0 and impose on the lattice either periodic or Dirichlet
boundary conditions. We distinguish between the following cases for the maximal time-interval of existence of solutions
[0, Tmax):

1. Linear gain ε1 > 0 and nonlinear loss ε3 > 0: Then the solutions exist globally in time, i.e., Tmax = ∞, are
uniformly bounded with respect to time and the spatially averaged l2-norm of the solution satisfies

χ(t) ≤
[
e−2ε1t

χ(0)
+
ε3
ε1

(
1− e−2ε1t

) ]−1

, lim sup
t→∞

χ(t) ≤ ε1
ε3
. (3.2)

2. Linear loss ε1 = −ε̃1 < 0 and nonlinear loss ε3 > 0. We have Tmax =∞, and the solutions of the system decay,

χ(t) ≤
[
e2ε̃1t

χ(0)
+
ε3
ε̃1

(
1− e2ε̃1t

) ]−1

, lim
t→∞

χ(t) = 0. (3.3)
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FIG. 8. Evolution of the center of mass for the dissipative bright soliton in the regime of linear gain/nonlinear loss studied
in Figure 5 (left panel), and in the regime of linear loss/nonlinear loss studied in Figure 6 (right panel). Dashed black line
corresponds to the AL-lattice analytical bright soliton and red full line holds for the evolution in the DGL equation (1.6).

3. Linear gain or linear loss ε1 ≥ 4ε2 − ε̃3||u0||2 and nonlinear gain ε3 = −ε̃3 < 0. For all initial data u0 ∈ l2, the
solutions of the system collapse (blow-up) in finite time Tmax satisfying the estimate

Tmax ≤
1

2(ε1 − 4ε2)
ln

[
1 +

ε1 − 4ε2
ε̃3||u0||2l2

]
, ε1 > 4ε2 − ε̃3||u0||2 := εcrit

1 , (3.4)

Tmax ≤
1

ε̃3||u0||2l2
, ε1 = 4ε2. (3.5)

Proof: We consider only the case of periodic boundary conditions since the case of Dirichlet boundary conditions
can be proved exactly in the same manner.
1. Multiplying (1.6) by un in the l2-inner product and taking imaginary parts, we get that χ(t) satisfies

χ̇+
2ε2
N
h

N−1∑
n=0

|un+1 − un|2 = 2ε1χ−
2ε3
N
h

N−1∑
n=0

|un|4. (3.6)

Applying the inequality (3.1) for q = 4 and p = 2 implies

||u||4l2 ≤ N ||u||4l4 , (3.7)

which can be used to estimate the last term of (3.6), and we arrive at the differential inequality for χ,

χ̇ ≤ 2ε1χ− 2ε3

(
h

N

N−1∑
n=0

|un|2
)2

= 2ε1χ− 2ε3χ
2, (3.8)

which is of Bernoulli type, and can be integrated as follows: Using the change of variables u = χ−1 in (3.8), we see
that u satisfies

u̇ ≥ −2ε1u+ 2ε3, (3.9)

and with the aid of the integrating factor e2ε1t, (3.9) can be solved, implying that

u(t) ≥ u(0)e−2ε1t +
ε3
ε1

(
1− e−2ε1t

)
.

Hence, χ(t) is bounded from above as described in the estimate given in (3.2), from which we infer the global existence
in time of solutions, that is, Tmax =∞ and the limit stated in (3.2).
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2. Setting in equation (3.6), ε1 = −ε̃1 < 0, and working exactly as in case 1, we derive the estimate of decay given in
(3.3).
3. This time we will work with the usual norm of lp-spaces. We set

P (t) = h

N−1∑
n=0

|un(t)|2 = ||u(t)||2l2 .

and the counterpart of (3.6), is

Ṗ = 2ε1P − 2ε2h

N−1∑
n=0

|un+1 − un|2 + 2ε̃3h

N−1∑
n=0

|un|4. (3.10)

The second term of the right-hand side of (3.10) is estimated from below by the inequality

−
N−1∑
n=0

|un+1 − un|2 ≥ −4

N−1∑
n=0

|un|2,

and its third term by the left-hand side of (3.1), applied again for q = 4 and p = 2. Then we have the differential
inequality for P ,

Ṗ ≥ 2(ε1 − 4ε2)P + 2ε̃3P
2. (3.11)

The Bernoulli inequality (3.11) can be integrated again with the change of variable ψ = P−1, providing the estimate
for P

P (t) ≥
[
− ε̃3
ε1 − 4ε2

+

(
1

P (0)
+

ε̃3
ε1 − 4ε2

)
e−2(ε1−4ε2)t

]−1

= B(t),

under the requirement that B(t) ≥ 0 is non-negative. This condition is satisfied only when,

t <
1

2(ε1 − 4ε2)
ln

[
1 +

ε1 − 4ε2
ε̃3P (0)

]
:= T ∗,

and T ∗ is finite, if ε1 > εcrit
1 . In this case, solutions exist in the finite time-interval (0, Tmax) with Tmax ≤ T ∗, since

lim
t→T∗

B(t) =∞,

implies the blow-up for P . In a similar way, we prove the case ε1 = 4ε2, using again the inequality (3.12). �
Note that the critical value εcrit

1 defined in (3.4) may separate finite time collapse from global existence which is
expectable when ε1 ≤ εcrit

1 since Tmax → +∞ as ε1 → εcrit
1 . Note that collapse may be observed not only in the linear

gain/nonlinear gain regime, but also in the linear loss/nonlinear gain regime when ε1 < 0 and (3.4) is satisfied.
When ε2 sufficiently small, similar estimates can be proved as in the scenarios 1-3 of Theorem III.1 which possess

essentially a similar functional form with modifications to the exponents governing convergence or the uniform bounds.
However, the dynamics is still governed by the linear and nonlinear gain/loss terms. For example, the estimates of
the blow-up time (3.4), can be modified to

Tmax ≤
1

2ε1
ln

[
1 +

ε1
ε̃3||u0||2

]
:= T ∗, ε1 > −ε̃3||u0||2 := εcrit

1 , (3.12)

Tmax ≤
1

ε̃3||u0||2
, ε1 = 0. (3.13)

The functional form of the estimates (3.12)-(3.13) remains valid when || · || is either the standard l2-norm or the

averaged norm
√
χ(·). With regard to the main result of the closeness Theorem II.3, the scenarios of Theorem III.1

are particularly useful in providing estimates of the interval [0, Tf ] for which the dissipative solitonic structures may
survive when Tf < Tmax; in particular, such information may have a crucial physical significance in the collapse
regime. Of the same usefulness for the dissipative localised structures can be the explicit decay rates in the decay
regime, or the spatially averaged energy estimates in the competitive linear gain and nonlinear loss regime. We should
stress that the above scenarios describe globally the asymptotic behaviour of the system as they hold for all initial
conditions.
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FIG. 9. Logarithmic scaled plots of the variation of the distance function ||y(t)||l2 = ||u(t) − ψ(t)||l2 , between the solutions
of the DGL (1.6) and the AL lattice (1.5) as function of ε, for fixed Tf = 500. Left panel: The case of the dark solitons

(ε =

√∑
n

(∣∣∣∣|φ̂n(0)|2 − |un(0)|2
∣∣∣∣) /N). Right panel: The case of bright solitons (ε =

√∑
n |un(0)|2/N). Details are given in

the text.

a. Dynamics of a wave background: Potential sharpness of the estimates of Theorem III.1. The estimates proved
in Theorem III.1, may posses ”sharpness properties”, as we will justify by the following analysis examining the long-
time behaviour of a wave background (in the form of a discrete plane wave), which may support on its top, localised
solutions as dark-solitons. The evolution and stability of a wave background may have important effects on the
dynamics of the supported solitonic structures in discrete and continuous set-ups [46–50].

For the DGL equation (1.6), to find the equation for the evolution of the background, we assume the ansatz of
solutions

un = Φ(t)eik̃xn , k̃ =
πk

L
, k ∈ N. (3.14)

Then inserting the ansatz (3.14) into (1.6), we see that Φ(t) satisfies the complex ODE,

i
dΦ

dt
= iε1Φ + ΛΦ− (iε3 − κ)|Φ|2Φ, (3.15)

with Λ = 4(iε2− 1) sin2
(
k̃
2

)
. The second term on the right-hand side of the ODE (3.15) can be absorbed when using

the phase factor

Φ(t) = eiΛtb(t),

which, if inserted in (3.15), implies that b(t) satisfies the equation

i
db

dt
− κ|b|2b = iε1b− iε3|b|2b. (3.16)

Still in (3.16), the second term on its left-hand side can be absorbed, when using the polar expression for b

b(t) = φ̂(t)eıθ(t), φ̂ : R→ R,
dθ

dt
= φ̂2,

deriving this way, the initial value problem for the scalar ODE,

dφ̂

dt
= ε1φ̂− ε3φ̂3, (3.17)

φ̂(0) = φ̂0, (3.18)
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where the initial condition φ̂2(0) = φ̂2
0 defines the initial amplitude of the background (e.g., as induced by the

background of the dark soliton initial condition). The explicit solution of the problem (3.17)-(3.18) is

φ̂2(t) =
ε1φ̂

2
0e

2ε1t

ε1 − ε3φ̂2
0 + ε3φ̂2

0e
2ε1t

. (3.19)

From the explicit solution (3.19), we may deduce the following scenarios for the asymptotic behaviour of the back-
ground, which are in compliance with those described in Theorem III.1:

1. Linear gain ε1 > 0 and nonlinear loss ε3 > 0. In this case, the background converges to a finite amplitude,

lim
t→∞

φ̂2(t) =
ε1
ε3
. (3.20)

The limit (3.20) is exactly the upper bound for the spatially averaged energy given in the superior-limit of (3.2)
stated in Theorem III.1 and the solution (3.19) describes the convergence rate of the upper-bound given in (3.2).

2. Linear loss ε1 = −ε̃1 < 0 and nonlinear loss ε3 > 0. In this case the background decays,

lim
t→∞

φ̂2(t) = 0,

and the solution (3.19) describes exactly the rate of decay given in (3.3) of Theorem III.1.

3. Nonlinear gain ε3 = −ε̃3 < 0. In this case the background collapses (blows-up) when the linear gain/loss strength
satisfies

ε1 > εcrit
1 := −ε̃3φ̂2

0. (3.21)

in the finite time

Tmax =
1

2ε1
ln

[
1 +

ε1

ε̃3φ̂2
0

]
. (3.22)

In the case where ε1 = 0, the background blows-up in finite time

Tmax =
1

ε̃3φ̂2
0

. (3.23)

The condition (3.21) and the estimates of the blow-up time Tmax (3.22)-(3.23) are exactly the ones given in (3.12)-
(3.13), for the case ε2 ≤ 0, since for the ansatz of plane-wave solutions, the linear coupling terms are absorbed as
described in the derivation of the ODE initial value problem (3.16)-(3.17).

The scenarios of Theorem III.1 for the global asymptotic behaviour of solutions of the finite lattice approximations
and the above analysis of the dynamics of a wave background will be important in explaining the dynamics observed
in the numerical simulations, that will be reported in the next subsection.

B. Numerical results

In the light of the analysis provided in the previous subsection, we present in this subsection the numerical results.
The numerical study concerns three types of initial conditions provided by the analytical solutions of the AL-lattice
(1.5): dark solitons, bright solitons and discrete Peregrine solitons (PS). In all cases, if not stated otherwise, we
consider in the DGL-lattice (1.6) parameter values |κ| = 1, ε2 > 0, with |εi| = 0.001, i = 1, 2, 3.

a. Defocusing case κ > 0: Dark Solitons. In this section we present the results concerning the dynamics ensuing
from dark soliton initial conditions provided by the analytical solution of the AL-lattice (1.5),

ψdn(t) = Atanh [β(n− ct)] exp(−i(ωt− αn)), A = tanhβ,

ω = cosα sechβ,

c = −β−1 sinα tanhβ,

(3.24)

with α ∈ [−π, π] and β ∈ [0,∞).
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FIG. 10. Focusing case κ < 0. Spatiotemporal evolution in the DGL equation (1.6) with ε2 = 0.001 of the initial condition
un(0) = ψr

n(−50) defined by the the analytical Peregrine soliton (3.27) of the AL lattice (1.5), for q = 0.1. Left panel: linear
gain ε1 = 0.001 and nonlinear loss ε3 = 0.001. Right panel: linear loss ε1 = −0.001 and nonlinear loss ε3 = 0.001. Details in
the text-see Section B.c.1 and B.c.2.)

1. Linear gain ε1 > 0 against nonlinear loss ε3 > 0. We use as initial condition un(0) = ψdn(0) for β = 0.01 and
α = π/10. The top left panel of Figure 1 shows the time evolution of the dark soliton density |un|2, and the

top-right panel, the normalised density |un|2/φ̂2(t), where φ̂2(t) is given by (3.19). The top panels illustrate
the evolution for t ∈ [0, 1500] and n ∈ [−4000, 4000]. We observe a robust evolution of the dissipative dark
soliton as guaranteed by the closeness result of Theorem II.3 on the deformed background by the presence of the
gain/loss effects. In particular, the soliton’s evolution is only modified by the dynamics of the background, as it
is illustrated by the evolution of the normalised density. Both figures corroborate the accuracy of the analytical
predictions described by the case 1 of Theorem III.1 and case 1 for the evolution of the wave background: the
dissipative soliton profile is remarkably similar to the analytical dark soliton (3.24) of the AL-lattice and traces
the path guided by the evolution of the background dictated by the ODE-solution (3.19). This fact is even
more evidentially depicted in the bottom left panel of Figure 1. It is clearly discernable that the evolution of
the background for the dark soliton initial condition, depicted by the continuous (blue) curve, follows exactly
the dynamics described by the estimates given in (3.2), reaching an asymptotic state for its amplitude as given
in (3.2). For the chosen parameter values this asymptotic state should be ≤ ε1/ε3 = 1. We stress that the
behaviour described by the estimates (3.2) holds for all initial conditions. Thus, for the dark soliton initial data
described above, one should expect the asymptotic limit to be < ε1/ε3 = 1. The strict equality for the limit
= ε1/ε3 = 1 should be expected for plane waves of the form (3.14) or spatially homogeneous initial data, where
the dynamics are described by the exact ODE initial-value problem (3.17)-(3.18). This fact is illustrated by
the numerical result for the evolution of a plane wave with the same amplitude as of the background of the
dark-soliton initial condition, depicted by the dashed (red) curve. The dynamics is exactly the one given by the
solution of the ODE initial value problem, given in (3.19) and its asymptotic limit goes to ε1/ε3 = 1 as expected
from (3.20).

Concerning the behaviour of the dark soliton on the deformed background, the former evolves such that it even-
tually reaches the asymptotic state of the latter, which is the global attractor of the system. Its destabilisation
occurs after t ≈ 2800, as seen in the bottom right panel, displaying the relevant evolution of the normalised
density for t ∈ [2000, 3500].

2. Linear loss ε1 < 0 against nonlinear loss ε3 > 0. This case corresponds to the case 2 of Theorem III.1 for the
decay of solutions and case 2 for the decaying dynamics of the wave background. The decay of the dissipative
soliton is illustrated in the left panel of Figure 2, while the right panel shows the evolution of the normalised

density |un|2/φ̂2(t), yet justifying that the AL-lattice dark soliton persists in the DGL lattice “modulo” its
modification by the decaying background.

3. Blow-up regime: linear gain ε1 > 0 and nonlinear gain ε3 < 0. This case corresponds to the case 3 of Theorem
III.1 for the blow-up of solutions and case 3 for the blow-up dynamics of the wave background. Since the
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parameters εi are small, we test the simplified version of the analytical estimates for the blow-up times (3.12)
against the numerical blow-up times by fixing ε2 = 0.001, ε3 = −0.001, varying ε1 = O(10−3). Due to the
form of the inequality (3.11), the comparison principle of ODE’s [51], applied to the ODE problem (3.17)-(3.18)
suggests that the blow-up time (3.23) for plane waves should serve as a lower-bound for the actual blow-up
time, while (3.12) gives an upper bound as proved in Theorem III.1. The validity of the estimates is illustrated
in the left panel of Figure 3. The dashed-dotted (green curve) shows the upper bound T ∗ for the blow-up time
(3.12) as a function of ε1; in the formula (3.12) we use the averaged l2-norm of the initial data. The solid (blue
curve) corresponds to the numerical blow-up time for the dark-soliton initial conditions. The dashed (red curve)
plots the corresponding analytical blow-up time curve Tmax (3.22) for plane waves. In order to evaluate the
numerical blow-up time, we have used -as in the whole simulations of the paper- a Dormand-Prince algorithm
with a termination event triggered when the l2-norm of the solution is higher than 108. Using higher blow-up
thresholds only leads to drastically increase the computation time without noticeable changes in the accuracy
of the blow-up time.

We stress again the fact that the analytical estimate (3.12) is generic for all initial data and its proximity to
the actual blow-up time may depend on the specific initial data. However, such investigations are beyond the
scope of the present work. On the other hand, we observe that the blow-up times for plane waves (3.23) is closer
to the numerical ones. This is expectable, since the dark soliton initial condition resembles a density dip on a
constant background, and thus, its blow-up dynamics should be closer to the blow-up dynamics of a plane wave.
The evolution of the dark soliton initial condition towards blow-up for t ∈ [0, 2000] is depicted in the left panel,
while its normalised density is the same as in bottom left-panel of Figure 1.

Another interesting feature relevant to the closeness result of Theorem II.3 is the comparison of the evolution of the
center of mass of the AL-dark soliton, XCM = X0 + ct, with c = (2/β) sinα tanhβ, and the center-of-mass of the
dissipative soliton defined as

XCM =

∑n0+δ
n=n0−δ n(1− |un|2/|φ̂|2)∑n0+δ
n=n0−δ(1− |un|

2/|φ̂|2)
, (3.25)

with n0 being the location of the minimum density |un|2 of the dark soliton, and δ accounts for the size of the soliton
core (δ ∼ 100). The results of the comparison are shown in Figure 4. The left panel corresponds to the dynamics in
the linear gain/nonlinear loss regime presented in Figure 1 and the right panel belongs to the dynamics in the linear
loss/nonlinear loss regime presented in Figure 2. We observe that in both cases, the paths are almost indistinguishable
for significant time intervals. A divergence starts at an earlier time in the loss/loss regime than in the gain/loss regime.
This is due to the decay in the loss/loss regime of the background supporting the dark soliton.

b. Focusing case κ < 0: Bright Solitons. In this section we present the results concerning the dynamics of dark
soliton initial conditions provided by the analytical solution of the AL-lattice (1.5),

ψsn(t) = Asech [β(n− ct)] exp(−i(ωt− αn)), A = sinhβ,

ω = −2 cosα coshβ,

c = 2β−1 sinα sinhβ,

(3.26)

with α ∈ [−π, π] and β ∈ [0,∞).

1. Linear gain ε1 > 0 against nonlinear loss ε3 > 0. We use as initial condition un(0) = ψsn(0) for β = 0.01 and
α = π/10. The top left panel of Figure 5 shows the time evolution of the bright soliton density |un|2, and the

top right panel, the normalised density |un|2/φ̂2(t); both panels illustrate the evolution for t ∈ [0, 1500] and
n ∈ [−4000, 4000]. We observe again a robust evolution of the dissipative bright soliton as guaranteed by the
closeness result of Theorem II.3. Its evolution is only influenced by the dynamics of the background as in the
dark soliton case; the dynamics of the latter is in full agreement with the one described by the corresponding
ODE-solution (3.19) as shown in the bottom panels of Figure 5, where the background amplitude converges to
the asymptotic state ε1/ε3 = 1.

2. Linear loss ε1 < 0 against nonlinear loss ε3 > 0. The decay of the dissipative bright soliton is depicted in

the left panel of Figure 6, while the right panel shows the evolution of the normalised density |un|2/φ̂2(t). We
observe again that the AL-bright soliton persists in the DGL lattice “modulo” its modification by the decaying
background.

3. Blow-up regime: linear gain ε1 > 0 and nonlinear gain ε3 < 0. We performed a study for the blow-up dynamics
of the bright solitons, similar to the one of the dark solitons. The parameters εi are the same as in the study
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for the dark solitons. The only curve which is absent is the red (dashed) curve Tmax (3.22) for plane waves,
since it is irrelevant to the case of vanishing boundary conditions. The validity of the analytical upper bound
(3.12) in regard to the numerical blow-up time is pictured in the left panel of Figure 7. In order to evaluate
the numerical blow-up time, we used the same numerical technique as for dark solitons. We observe that the
analytical upper bound is not as close to the numerical blow-up time, as in the case of the dark solitons. We
also observe by a comparison of the numerical blow-up times, that the bright solitons blow-up at earlier times
than the dark ones. These effects suggest that the spatial and localisation nature of the initial conditions may
affect drastically the structure of the blow-up scenario and its associated time.

The results comparing the temporal evolution of the center of masses of the dissipative soliton and the bright
AL-soliton are illustrated in Figure 8. Again we observe that in both cases the paths are almost indistinguishable for
significantly long time intervals. Note that in the loss/loss regime we do not observe the divergence of paths, as the
bright soliton, vanishing as |n| → ∞, evolves on a ”zero” amplitude background which is not affected by the loss/loss
dynamics.

c. Accuracy of the closeness estimates of Theorem II.3. Theorem II.3 establishes the convergence of solutions of
the DGL equation (1.6) to the solutions of the AL-lattice (1.5), at a rate of O(ε), when ε ≤ ε→ 0, and the distance
between their initial conditions is ||u0 − ψ0||l2 = O(ε).

Figure 9, depicts logarithmic scaled plots of the variation of the distances ||y||l2 = ||u(t) − ψ(t)||l2 as functions of
ε for fixed Tf = 500. The left (right) panel illustrates the results of the case of dark (bright) solitons. The dashed
lines in both panels, correspond to lines of the analytical estimates of Theorem II.3 of the form ||y||l2 versus Cε. For
the case of the dark solitons, we have C = 3.9 × 103 in the linear gain/nonlinear loss regime, corresponding to the
top dashed (blue) line. In the case of the linear loss/nonlinear loss regime, we have C = 1.8× 103, which corresponds
to the second dashed (purple) line. The dots on the solid lines correspond to the numerically detected rates of the
variations of the distance functions fitted to the lines of the form ||y||l2 versus Cεa, for the above given values of the
constant C. In the case of the linear gain/nonlinear loss we found that a = 2.12, as illustrated by the dots on the
first solid (red) line. In the case of linear loss/nonlinear loss, we found that a = 2.07, as depicted by the dots on the
second solid (green) line. The numerical results illustrate that the analytical estimates are not only fulfilled, but also
that the numerical variation of the distance functions is of significantly lower rate, namely of order ∼ ε2.

In the case of the bright solitons, for the analytical estimates we found for the dashed curves, that C = 1.0336
in the case of linear gain/nonlinear loss regimes and C = 1.0945 for the linear loss/nonlinear loss regimes. For the
numerically determined rates, we found a = 1.01 in the case of the linear gain/nonlinear loss regime and a = 1.04 for
the linear loss/nonlinear loss regime, very close to the analytical predictions for the convergence estimates of order
∼ ε.

As a conclusion, while the analytical closeness estimates are satisfied, the numerical studies indicate that the actual
order of closeness may depend on the specific nature of the initial conditions, e.g., the type of their localisation. In this
context, whether an improvement of the theoretical estimates is achievable, is an interesting problem to be explored
in future investigations.

d. Focusing case κ < 0. Discrete Peregrine Solitons. Finally, we present the results concerning the dynamics
ensuing from discrete Peregrine initial conditions provided by the analytical Peregrine soliton solution of the AL-lattice
(1.5),

ψrn(t) = q

[
1− 4(1 + q2)(1 + 4iq2t)

1 + 4n2q2 + 16q4t2(1 + q2)

]
e2iq2t, (3.27)

where the parameter q fixes a background amplitude.

1. Linear gain ε1 > 0 against nonlinear loss ε3 > 0. We use as initial condition un(0) = ψrn(−50) with a background
amplitude q = 0.1. We observe in the left panel of Figure 10, that the profile of the analytical Peregrine soliton
is preserved up to t ≈ 50. As it can be expected, the structures are not temporarily localised: a rise of amplitude
follows since the dynamics is chiefly controlled by the evolution of the background, governed by the solution of
the ODE (3.19).

2. Linear loss ε1 < 0 against nonlinear loss ε3 > 0. The loss/loss regime seems to be more physically relevant to
the construction of discrete spatio-temporally localised waveforms reminiscent of the Peregrine soliton as the
solution in this regime eventually decays. Hence, we may expect that a spatio-temporal waveform may survive
prior to the eventual decay dynamics. This very scenario is depicted in the right panel of 10. In fact, prior to
the eventual decay of the solution, the dynamics ensuing from the initial condition un(0) = ψrn(0) exhibits a
spatio-temporal localised pattern, akin to that of the analytical AL Peregrine soliton.
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IV. CONCLUSIONS

Introducing a dynamical transitivity argument, which combines the notions of “inviscid limit” and “continuous
dependence on their initial data” between dissipative and Hamiltonian integrable and non-integrable nonlinear lattices
[37], we have proved the persistence of localised structures for the discrete Ginzburg-Landau equation, for small values
of its dissipation or gain strengths. The persisting waveforms are close to the analytical solutions of the Hamiltonian
integrable Ablowitz-Ladik lattice, with their distance measured in the suitable metrics induced by the discrete ambient
space, when their initial data are also close. The numerical simulations confirm the main closeness theoretical result,
namely that the localised structures in the form of bright and dark solitary waves on the Ginzburg-Landau lattice
share for significant times major characteristics, such as the functional form and velocity, with their conservative
counterparts. Moreover, in full agreement with a systematic analysis for the finite lattice approximations (relevant
to the numerical studies), the numerical findings illustrate that the global asymptotic behaviour of the dissipative
solitary waves is mainly controlled by the dissipation or loss effects which are present in the discrete Ginzburg-Landau
system. We remark that these results have an impact in determining the stability of even the exact solutions of the
discrete Ginzburg-Landau system [40–42], for which, if their small perturbations will be used as initial conditions
in the system, should exhibit the global asymptotic behaviour identified herein. However, an important feature of
the dynamics is that the Ablowitz-Ladik solitons persist in the dissipative system ”modulo” the growth/decay rates
(which are analytically quantified) for the dynamics of the wave background determined by the dissipative or energy
gain effects. Furthermore, we have studied the existence and persistence of spatiotemporally localised waveforms
possessing the characteristics of the discrete Peregrine solitons in discrete DGL systems. These results may suggest
other applications such as the persistence of the solitary waves without ”deformation” when in the system additional
suitable terms [42] are included. Another direction will investigate potential extensions of the closeness argument to
continuous systems. Investigations in this direction are in progress and relevant results will be reported elsewhere
[52].
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